5 research outputs found

    Gestão e engenharia de CAP na nuvem híbrida

    Get PDF
    Doutoramento em InformáticaThe evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.O desenvolvimento e maturação da Computação em Nuvem abriu a janela de oportunidade para o surgimento de novas aplicações na Nuvem. A Computação de Alta Performance, uma classe dedicada à resolução de problemas complexos, surge como um novo consumidor no Mercado ao aproveitar as vantagens inerentes à Nuvem e deixando o dispendioso centro de computação tradicional e o difícil desenvolvimento em grelha. Situando-se num avançado estado de maturação, a Nuvem de hoje deixou para trás muitas das suas limitações, tornando-se cada vez mais eficiente e disseminada. Melhoramentos de performance, baixa de preços devido à massificação e serviços personalizados a pedido despoletaram uma atenção inusitada de outros mercados. A CAP, independentemente de ser uma área extremamente bem estabelecida, tradicionalmente tem uma fronteira estreita em relação à sua implementação. É executada em centros de computação dedicados ou computação em grelha de larga escala. O maior problema com o tipo de instalação habitual é o custo inicial e o não aproveitamento dos recursos a tempo inteiro, fator que nem todos os laboratórios de investigação conseguem suportar. O objetivo principal deste trabalho foi investigar novas soluções técnicas para permitir o lançamento de aplicações CAP na Nuvem, com particular ênfase nos recursos privados existentes, a parte peculiar e final da cadeia onde se pode reduzir custos. O trabalho inclui várias experiências e análises para identificar obstáculos e limitações tecnológicas. A viabilidade e praticabilidade do objetivo foi testada com inovação em modelos, arquitetura e migração de várias aplicações. A aplicação final integra uma agregação de recursos de Nuvens, públicas e privadas, assim como escalonamento, lançamento e gestão de aplicações CAP. É usada uma estratégia de perfil de utilizador baseada em autenticação federada, assim como procedimentos transparentes para a utilização diária com um equilibrado custo e performance

    Context-aware task scheduling in distributed computing systems

    Full text link
    These days, the popularity of technologies such as machine learning, augmented reality, and big data analytics is growing dramatically. This leads to a higher demand of computational power not only for IT professionals but also for ordinary device users who benefit from new applications. At the same time, the computational performance of end-user devices increases to meet the demands of these resource-hungry applications. As a result, there is a coexistence of a huge demand of computational power on the one side and a large pool of computational resources on the other side. Bringing these two sides together is the idea of computational resource sharing systems which allow applications to forward computationally intensive workload to remote resources. This technique is often used in cloud computing where customers can rent computational power. However, we argue that not only cloud resources can be used as offloading targets. Rather, idle CPU cycles from end-user administered devices at the edge of the network can be spontaneously leveraged as well. Edge devices, however, are not only heterogeneous in their hardware and software capabilities, they also do not provide any guarantees in terms of reliability or performance. Does it mean that either the applications that require further guarantees or the unpredictable resources need to be excluded from such a sharing system? In this thesis, we propose a solution to this problem by introducing the Tasklet system, our approach for a computational resource sharing system. The Tasklet system supports computation offloading to arbitrary types of devices, including stable cloud instances as well as unpredictable end-user owned edge resources. Therefore, the Tasklet system is structured into multiple layers. The lowest layer is a best-effort resource sharing system which provides lightweight task scheduling and execution. Here, best-effort means that in case of a failure, the task execution is dropped and that tasks are allocated to resources randomly. To provide execution guarantees such as a reliable or timely execution, we add a Quality of Computation (QoC) layer on top of the best-effort execution layer. The QoC layer enforces the guarantees for applications by using a context-aware task scheduler which monitors the available resources in the computing environment and performs the matchmaking between resources and tasks based on the current state of the system. As edge resources are controlled by individuals, we consider the fact that these users need to be able to decide with whom they want to share their resources and for which price. Thus, we add a social layer on top of the system that allows users to establish friendship connections which can then be leveraged for social-aware task allocation and accounting of shared computation

    Cloud eLearning - Personalisation of learning using resources from the Cloud

    Get PDF
    With the advancement of technologies, the usage of alternative eLearning systems as complementary systems to the traditional education systems is becoming part of the everyday activities. At the same time, the creation of learning resources has increased exponentially over time. However, the usability and reusability of these learning resources in various eLearning systems is difficult when they are unstandardised and semi-standardised learning resources. Furthermore, eLearning activities’ lack of suitable personalisation of the overall learning process fails to optimize resources’ and systems’ potentialities. At the same time, the evolution of learning technologies and cloud computing creates new opportunities for traditional eLearning to evolve and place the learner in the center of educational experiences. This thesis contributes to a holistic approach to the field by using a combination of artificial intelligence techniques to automatically generate a personalized learning path for individual learners using Cloud resources. We proposed an advancement of eLearning, named the Cloud eLearning, which recognizes that resources stored in Cloud eLearning can potentially be used for learning purposes. Further, the personalised content shown to Cloud Learners will be offered through automated personalized learning paths. The main issue was to select the most appropriate learning resources from the Cloud and include them in a personalised learning path. This become even more challenging when these potential learning resources were derived from various sources that might be structured, semi- structure or even unstructured, tending to increase the complexity of overall Cloud eLearning retrieval and matching processes. Therefore, this thesis presents an original concept,the Cloud eLearning, its Cloud eLearning Learning Objects as the smallest standardized learning objects, which permits reusing them because of semantic tagging with metadata. Further, it presents the Cloud eLearning Recommender System, that uses hierarchical clustering to select the most appropriate resources and utilise a vector space model to rank these resources in order of relevance for any individual learner. And it concludes with Cloud eLearning automated planner, which generates a personalised learning path using the output of the CeL recommender system
    corecore