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Abstract Traditional cloud computing providers enable developers to program and

deploy applications in the cloud by using platform as a service (PaaS) providers.

Despite the benefits of such an approach, this service model usually comes with a high

level of the lock in effect into the service provider. The lock in effect occurs when a

software developer needs to change its cloud provider. When this happens, it usually

means a major application rewrite, specific for the new PaaS. This paper details the

initial results of a project whose goal is to build a PaaS where vendor lock in does not

occur. With this PaaS, developers wishing to deploy their applications into the cloud

may continue to program using their usual development environments. There are no

necessary changes required to make the application PaaS compatible. As a proof of

concept, we developed an open source PaaS management application as a regular web

application and then deployed it on the cloud.
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1 Introduction

Cloud computing has evolved from previous computing paradigms using concepts

that go back to the days of mainframes [1]. Its rapid and scattered development

originated a huge usage momentum; however, its accelerated growth lacked a

sustaining basis. With this scattered development and with few or no defined

standards, each provider devised its own cloud architecture and infrastructure, a

very similar situation to the appearance of the TCP [2].

Nevertheless, some efforts are being made to standardize cloud computing

development [3, 4]. These standards would leverage the cloud-based environment

development. As part of this long-lasting process, PaaS is still in a maturing process.

As illustrated in Fig. 1, PaaS is in an early phase, especially when compared with

other cloud components’ development stages. As a result, there is no PaaS available

that simultaneously fulfills the users’ needs, budget, and system adaptability,

although the expectations to get such PaaS providers are high.

As the first private cloud implementations were steady and stable, developers

turn their minds to providing private PaaS. One of the main objectives of these

private PaaS projects was to achieve control over the bursting of virtual machines

(VMs) and their underlying virtual networks, whose management was completely

out of sight on commercial solutions.
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Fig. 1 Hype cycle for cloud computing, 2011 [5]
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The solutions pertinent to this article are those that fall under the definition of

PaaS and SaaS as proposed by NIST [6]. For an in-depth review of cloud computing

terms and taxonomy, please refer to [7].

When looking at the current IaaS and PaaS offerings, solutions lack interoper-

ability. This issue is being addressed by projects such as Deltacloud [8] and Aeolus

[9] on the IaaS front. While this approach eases the interoperability and interchange

of data and operating systems images between clouds, it does not fully remove the

burden of infrastructure management from the end user. For seamless handling of

the infrastructure management problem, the cloud client needs a different service

model, the PaaS. This service model allows automatic and seamless application

scaling without the need of intervention from the client or the application.

PaaS implementations range from application specific to generic application

programming solutions. However, up to the moment, most PaaS also have the

downside of requiring a proprietary software development kit (SDK) that will cause

the resulting application to be tightly locked to the supplier’s runtime or

development environment [10].

The work presented in the paper follows the authors’ previous work [11], where a

distributed cloud computing scenario was proposed and PaaS was deemed as the

ideal abstraction layer from the point of view of a software developer. The previous

work identifies the key stakeholders on the distributed architecture, and proposes

possible streams of revenue or rewards for each player [12]. An initial architectural

model is also proposed and extensively described by Batista [13].

We propose to build a new PaaS, capable of supporting several cloud

implementations that do not lock developers into a specific SDK. The expected

result is a fully transparent PaaS runtime that requires no special SDK. This would

enable any Java written application to deploy on the cloud and benefit from the

cloud’s features, without having to specifically write any code or use any SDK for

that matter.

This paper presents architectural details and implementation consideration of

some of the PaaS components already developed. With the implemented compo-

nents, we present some preliminary functionality and performance testing.

The organization of this paper is as follows: Sect. 1 introduces the problem that

we are currently tackling and Sect. 2 presents the state of the art relevant to the

problem. Section 3 presents and discusses the proposed PaaS architecture, while

Sect. 4 provides details on the implementation of the proposed PaaS. Section 5

presents the testbed and results of the PaaS usage and Sect. 6 presents the

conclusions on this PaaS architecture.

2 State of the Art

2.1 Cloud Computing Layers

Usually, cloud computing is divided in three distinct logic layers that are dependent

of their main function. These are infrastructure, platform and service. Any of these

layers can be publicly available to the end-user, according to its needs. Figure 2
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graphically presents the three-layer vision on the cloud computing architecture.

Next, sub-sections briefly describe each layer, with a special focus on the

infrastructure as a service stratum that PaaS, the main motivation of this paper,

relies on.

2.1.1 Software as a Service (SaaS)

The software layer allows the access to platform-enabled applications by typically

using a web browser. Software as a service (SaaS) is usually available on cloud

solutions.

The SaaS model is not new [14]; the concept began to gain some visibility in the

late 90s. With the rise of cloud computing, this model was finally able to reach

mainstream. Currently, even the most traditional software houses are developing

products that embrace this business model [15, 16].

2.1.2 Platform as a Service (PaaS)

The platform layer consists of specially crafted software development kits (SDK)

that allow developers to produce their own programs using all of the cloud-

supported features. In a common scenario, the SDK distributed by the service

provider is aware of the cloud capabilities but abstracts them from the user. When

deployed on the platform, an application automatically takes advantage of the

scaling features available.

The downside to this approach is vendor lock in. There is no standard cloud SDK

or programming language. This means that from the moment a developer chooses to

use features from a given SDK, the only way to switch vendors is to redesign the

parts of the application that rely on the SDK functionality [17].

Cloud Computing 
architecture

Software as a Service (SaaS)
Applications

Platform as a Service (PaaS)
Development platform. Infrastructure, OS and 

middleware Abstraction

Infrastructure as a Service (IaaS)
Resources. Infrastructure Abstraction

Fig. 2 Cloud computing architecture
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2.1.3 Cloud Infrastructure as a Service (IaaS)

Both PaaS and SaaS rely on IaaS. Before discussing the particularities of PaaS, we

must first understand the bottom layer of the cloud computing architecture: IaaS.

Searches for projects that implement the required functionality showed that a great

number of them started as grid management platforms and are now turning to cloud

interfaces, leveraging previous knowledge on distributed computing platforms.

The infrastructure layer is the lower level layer, abstracting and usually

virtualizing the hardware layer. There are different virtualization concepts targeting

operating systems, hardware, CPUs and embedded systems, networks and storage.

These enable a homogenous virtualized environment on which to install and execute

specific software. Furthermore, this is the scale in and scale out layer. If required,

extra infrastructure nodes can be deployed to overcome computing needs. When not

needed, these nodes can again be decommissioned. The infrastructure can be made

available as a service (IaaS—Infrastructure as a Service), where users may gain

access to virtualized servers.

This service allows a user to provision and spawn an infrastructure and run his

selected software stack. This is an on-demand service, as the infrastructure can grow

or shrink with the load fluctuations. It is usually the client’s responsibility to manage

most of the software stack and make sure that the application running on the cloud

can scale horizontally with the addition of new nodes. The startup and shutdown

process of extra nodes is requested via an interface (usually a web service). When in

a commercial business model, the charges are calculated on CPU/h usage. A storage

service is usually associated with an IaaS, where charges are based on GB

transferred and/or stored per month.

2.2 Current Trends: Sky Computing

Cloud computing abstracts resources and facilitates its usage seamlessly. Going one

step further, the same principle applies to a group of clouds where several building

blocks underpin the creation of a sky environment [18]. By blending resources on

public and private clouds, the Sky Cloud can make intensive computing efficiently,

mitigate bottlenecks, and keep sensitive data protected.

A decisive factor in favor of sky computing is the alleged freedom of choice for

developers and customers alike. Using this paradigm, applications will be able to

move freely among cloud providers, with no need for rewrites or code changes. The

big challenge here is managing the combined resources of available clouds, public

or private, and interoperating between them [19].

Because of deficient standardization, several projects try to solve the interop-

erating problem through middleware. In [20], authors go through the specifics of

projects like libcloud, DeltaCloud, jclouds, fog and Altocumulus. A proposed

architecture, using a middleware API to interoperate between clouds is depicted in

Fig. 3.

On a sky computing architecture, users try to take the maximum advantage of the

better (and less expensive) cloud providers available. In such scenarios, the ultimate

goal is the development of a PaaS able to abstract the different cloud providers and
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give the user a single interface with all systems. Such a layer would certainly pass

the frontier of its definition and would mix with some upper layer services

(management, accounting, etc.).

2.3 Platform as a Service

In the last couple of years, the PaaS layer has seen a major boost in terms of

solutions and efforts of standardization. For application development (where

developers are familiar with middleware, frameworks, SDKs and APIs that solve

most of the platform dependency issues), the PaaS model presents itself as the

natural development environment.

The criteria for electing the following PaaS solutions for review are based on the

solution’s maturity level and functional similarities with the proposed goals for our

PaaS implementation.

Despite our efforts, most of the research done is based on the providers white

papers (pure commercial providers) and open-source projects (mixture of commer-

cial providers and technology enforcers) readings.

2.3.1 Manjrasoft’s Aneka

Aneka [21] is a .NET based, multi-platform PaaS implementation produced by

Manjrasoft [22]. It is not a free product; therefore, no experiments were performed

on this software.
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Fig. 3 Sky computing
architecture [19]

80 J Netw Syst Manage (2014) 22:75–99

123



This product features a very complex resource scheduling and reservation

algorithm that one would expect on a grid middleware instead of on a cloud PaaS. It

also features a very strong authentication mechanism used throughout its inner

services. Due to its programming models, a traditional .NET application requires

some porting before it can take advantage of the features of the platform. The

application data is stored on a RDBMS that is connected to the platform via a

plugin, meaning that alternative data storage models are a possibility [23, 24].

The provisioning model used by this project is heavily market oriented. It allows

complex accounting and the establishment of service level agreements (SLA) with

clients [23]. This is a major advantage if Aneka is to be used to host a public PaaS.

Its usage of an RDBMS, however, may hinder such a wide public deployment.

Although Aneka has some market-oriented features, so far no one created a

public cloud based on this project. This may be due to licensing issues, as it is a

proprietary project, and therefore, it is not easy to modify its core to cater to specific

company needs.

Another reason for the lack of a public PaaS based on Aneka can be that this

project does not actually show off a cloud usage scenario on its web page, instead it

publicizes its usage on batch oriented parallel computing, a workload that is more

akin to grid computing.

In [25], authors present performance results after integrating Aneka’s PaaS into

Azure. The results present an increase of throughput with each increase of working

nodes. However, the throughput increase presented is not linear and the

performance with 16 working nodes is roughly 68 % lower when compared with

the theoretical throughput of 16 nodes, given the throughput of one node.

2.3.2 Google’s AppEngine

Google AppEngine (GAE) [26] supports Google approved subsets of Python and

Java programming languages, along with specific Google AppEngine APIs. It also

features an impressive structured storage solution. AppEngine’s data storage

solution, BigTable, when accessed from a Java program, features an interface

similar to the Java Persistence API (JPA). It also supports a query language similar

to SQL but without some of the complex queries, deemed google query language

(GQL) [27, 28].

2.3.3 AppScale

An open source project, deemed AppScale, tries to replicate the functionality of

GAE and interact with existing IaaS layers [29, 30]. This is one of the projects that

most resembles the implementation described herein, since it is also deployable on

common IaaS and features an application server (HTTP and HTTPS) based on a

servlet container.

This implementation started as a way to deploy the open source AppEngine’s

SDK over existing IaaS, but over time it grew into a fully featured PaaS. It currently

supports most of the functionality of the Google service, and uses a variety of

infrastructure resources that can range from physical servers to IaaS.
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In terms of architecture, as illustrated by Fig. 4, each AppScale deployment

features several modules: an AppLoadBalancer (ALB), one or more AppServers

(AS), one DatabaseMaster (DM) and one or more DatabaseSlave (DBS). Virtual

machine (VM) nodes execute these modules independently or in any combination of

modules. Each VM includes an AppController (AC) that starts automatically on

boot. The Head Node (where the ALB is being executed) is responsible for

deploying and booting the required additional nodes, and for their configuration in

terms of running modules. Along with configuration duties, the AC is also in charge

of monitoring the health and status of each node. If required, the AC may

commission and decommission nodes to better adjust to the desired application’s

behavior and/or cost goals.

As mentioned, the ALB is unique within each AppScale deployment. Its main

responsibility is to route users to an AS. After the initial routing, users are

permanently routed to the given AS. If the AS becomes unreachable, then the user

will again be routed through the ALB to a new AS.

The AppServer extends the GAE’s development server. The functionality

extensions range from a fully automated execution of GAE applications to generic

data store interfaces capable of Put, Get, Query, and Delete operations.

2.3.4 OpenShift

The JBoss community started the PaaS development with the cooling tower (CT)

[31], advertising it as a turnkey PaaS solution. This project was based on a

traditional JBoss application server cluster and on the automatic deployment of the

required software stacks to scale the cluster.

Cooling tower claimed to be a build once and deploy anywhere type; quite

similar to the objective of the work presented here. This project is still at an early

stage, but it already features an interesting persistence layer, Infinispan [32].

Recommend for application data storage, Infinispan is a persistent extension to the

java.util.Map interface that allows a simple data model. It also features very

interesting core features such as automatic management of data copies and data

balancing among available nodes.

This project should allow the usage of most of the J2EE specifications, with

exceptions for every part of the standard that relies on the existence of a relational

database for persistence, such as the JPA.

Fig. 4 AppScale design [29]
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Application wise, CT presents a single deployment environment for several

running instances. It features an internal Naming Server, where all the accessible

running instances must be registered.

Cooling tower, with fundings by RedHat, later evolved into SteamCannon. By

the end of 2011, RedHat announced its new PaaS solution based on the recently

acquired Mankara: OpenShift [33].

OpenShift claims to be completely compliant with the EE6 standard. Architec-

ture wise, OpenShift is divided into Gears, Nodes, and Districts, as depicted by

Fig. 5.

Each Gear enables the execution of one or more applications, named Cartridges.

A cartridge is an abstraction for both language based applications (like PHP, Ruby,

etc.) and database applications (like PostgreSQL, MySQL and MongoDB). Each

Gear runs on a single VM, named Node. A District is a bundling of Nodes within

which Gears can be moved freely to better load-balance execution requests.

The high level of abstraction in the cartridge module allows OpenShift to present

itself as non-locking-in PaaS solution where running applications on this PaaS will

function normally and without developers’ intervention on more traditional web

servers. In addition, applications currently deployed on traditional web servers can

be integrated into this PaaS seamlessly.

2.3.5 WSO2 Stratos

WSO2’s Stratos service [34, 35] is a traditional PaaS with an open stack that is

deployable over any IaaS or physical infrastructure. It takes the form of a

middleware platform that eases the process of building cloud-enabled software. This

platform claims to help developers avoid the vendor lock in problems. The approach

is somehow similar to OpenShift where WSO2 Stratos provides ‘‘Carbon as a

Service’’, with Carbon as a component-based framework for building SOA servers.

Web Hosting, logging, clustering, caching, etc. are deployed in the form of Carbon

components. The composition and grouping of these components by end users

defines a server (a product).

Fig. 5 OpenShift resources and containers
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This PaaS supports multi-tenancy with full logical isolation on both storage and

execution components. Since tenants are completely isolated, scalability is achieved

by scaling the execution components of the application and statically partitioning

tenants by the newly created resources.

2.3.6 COSCA

COSCA [36] presents a component-based PaaS solution for common applications.

Running on top of the JVM, it supports heterogeneous configurations and

combinations of applications running on each executing node. It supports elastic

and automatic scaling, virtual addressing of applications, resource consumption-

based cost tracking and multi-tenancy. It also claims to be a cloud-independent

programming model, avoiding the vendor lock-in effect.

COSCA is still in an early stage and unable to handle and integrate distributed

application states.

2.3.7 BeanStalk

Amazon’s BeanStalk [37] provides PaaS access to Amazon’s resources by means of

SDKs for each runnable software stack: Apache HTTP server for PHP and Python,

IIS 7.5 for .NET, and Apache Tomcat for Java. BeanStalk presents itself as an ‘‘easy

to begin, impossible to outgrow’’ solution. It supports elastic and automatic scaling

of deployed applications. However, the request for an amount of resources over 500

applications or 20 Amazon EC2 instances requires previous manual authorization.

2.3.8 CloudBees

CloudBees [38] presents itself as a multi-cloud, independent PaaS, capable of

operating on simultaneously on multi-cloud environments, on and off-premises. It

does so by building on top of the IaaS layer, which has a more stable

interoperability. Capable of running any JVM based framework, it relies on its

DEV@cloud development environment and the RUN@cloud runtime environment.

For helping developers to be in control of the entire applications’ lifecycle, they

provide Jenkins support.

2.3.9 Cloud Foundry

VMWare Cloud Foundry [39] claims to be an open PaaS, due to its open source

nature. Cloud Foundry holds different concepts: a publicly available PaaS for

running applications (operated by VMWare), a Micro Cloud Foundry (usually used

for testing applications before launching them into the PaaS), and an open-source

project and community. Development bases on ‘‘standard Cloud Foundry tools’’ and

services, meaning that even though not locked to a provider (due to its open source

nature), developers are still locked in the developing model. It currently supports

Spring, Ruby on Rails, Ruby and Sinatra, Node.js and Grails as development
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frameworks. Similar to CloudBees, Cloud Foundry is an independent PaaS capable

on running in several different IaaS providers.

2.3.10 Cloudify

GigaSpaces Cloudify [40] is an open Source PaaS that claims to enable the moving

of applications to the cloud with no code changes and, of course, no lock in. Similar

to Carbon as a Service from WSO2 Stratos and OpenShift’s cartridges, Cloudify

claims to support ‘‘any app, any stack’’ on virtually any cloud and using multiple

cloud providers at the same time. For the time being, Azure and EC2 are integrated

and Apache CloudStack, OpenStack, Rackspace, GoGrid, and Citrix XenServer are

on the way. For ease of development, Cloudify provides a fully functional emulator

for desktop experiments.

2.3.11 Cumulogic

Cumulogic [41] presents a PaaS ready for integration over HP Cloud Services,

Apache CloudStack, OpenStack and Eucalyptus. It provides a standard Java based

development model, therefore claiming to prevent vendor lock-in.

2.3.12 EngineYard

Engine Yard [42] is a PaaS that runs on top of Amazon EC2, based on open source

technologies. It provides support for Ruby on Rails, PHP, and Node.js.

2.3.13 PaaS Compared

From the above-mentioned PaaS solutions, AppScale, OpenShift, WSO2 Stratos,

COSCA, Cloudify, Cumulogic, and EngineYard try to solve the provider lock in

issues that arise with PaaS vendors. Interestingly, except for EngineYard (with no

source code available) and Cumulogic (only for qualified Universities), all other

solutions are based on open source projects. Even if one of these vendors would

decide to abandon the project, and there were PaaS restrictions involved, users

would not need to migrate to another PaaS right away (but would need to deploy

this PaaS elsewhere compatible), which at least alleviates the vendor lock-in issue.

OpenShift, COSCA, and Cloudify claim to be a truly transparent PaaS, with no

code changes or special care required for deploying applications on the cloud,

meaning that a running web application currently on a traditional server could be

easily migrated and benefit from the PaaS infrastructure. The remaining solutions

require some sort of modified build environment to build for the cloud runtime.

Each solution presents a different architectural structure, even though the

underlining concepts are equivalent: load balancers, master registries and execution

nodes (of system tasks or user tasks).
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3 Zooming in on the PaaS

This paper presents the efforts taken to develop a fully transparent PaaS runtime that

requires no special SDK. The only foreseen restriction is the locking of some

package versions due to container implementation restrictions. The design priority

for this PaaS is to ensure that developers have to make as little modifications as

possible to the standard development practices and patterns that the modern

development strategies already recommend.

Traditional web server clusters include a load-balancing layer, an application

server layer, and a data persistence layer. Depending on the implementation model

of these clusters, they may present a scaling bottleneck, as each of the servers must

synchronize its state with the remaining ones, creating a complex web of

connections that limit the growth of the cluster. In our approach, this problem is

tackled by introducing some modifications on the container, as well as two

restrictions on the programming model: no direct access to the filesystem and no

access to the server context.

One of the initial goals for the PaaS was its ability to run fully functional

unmodified open source web applications. To do so, the PaaS requires a web server

that can behave seamlessly as a web cluster. Figure 6 illustrates the proposed PaaS

architecture. Technically, the proposed architecture is a near cluster, where each

application container can host a different set of applications. The application state is

stored centrally after serving each request. Extra work is placed on the load

balancer, which needs to examine the requests and forward them to an appropriate

application server. When deployed, each application server may hold a different set

of applications. It is then up to the load balancer to route the incoming requests to

the proper server. The proposed architecture has the same layers of a traditional web

cluster, but adds a different scaling model, similar to the underlining concepts

depicted at the end of the last section, enabling each of the deployed applications to

scale independently of the remaining ones.

As explained in [12], one of the proof of concepts involving this PaaS would be

its ability to run on operating systems and hardware out of the cloud manager’s

control, refurbishing concepts as volunteer desktop computing. As such, Fig. 6

shows the involvement of users on a ‘‘user provided node configuration’’. This

configuration step enables volunteer node owners to present their resources to our

PaaS pool of resources. After the registration phase, when the new node registers its

computing availability to the management services, its resources can be used to host

applications. Along with this node harvesting model, more traditional (PaaS

controlled) spawning models are also available. Within these models, newly

deployed virtual machines register themselves in the PaaS pool of resources.

With the proposed architecture, the traditional web server cluster’s main

components (the load balancer, the application server and the storage backend)

continue to be available and operate as expected from an external point of view.

This allows applications to run mostly unmodified.

The architecture’s component nodes or building blocks can be roughly divided in

three distinct categories: management, processing, and support.
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3.1 Management Nodes

Management nodes write to the main cloud management databases and run one or

more of the components described below.

3.1.1 The Management Application

This application is responsible for the management of the users and their nodes. The

application manages the main database and allows the visualization of the cloud

status as a whole. Besides the load balancers, this is the only visible part of the cloud

accessible from outside. Being a web application, it can also be used as a concept

showcase, since all the design and execution principles of a web application hosted

on a cloud are in place.

3.1.2 Management Services

This is a set of web services run by the management nodes. These services perform

the identification and monitoring of the processing nodes as well as the management

of the application’s elasticity and SLA enforcement. Application elasticity depends

on various factors, such as the load of the nodes on which the application is

deployed, the application’s SLA, the billing information, or even the limits and

thresholds set by the user. When needed, a given application may be deployed on an

extra node. Each scaling operation consists of assigning or de-assigning a given

application/host pair. Upon each scaling operation, the application/host information

on the central database is updated to ensure a proper load balancing operation. An

application deploy operation depends on the management service to actively

 PaaS Environment

Processing Nodes

Management Nodes

Storage backend

Management
Services

• Node Identification
• Node Monitoring
• Application Elasticity
• SLA enforcement

Load balancer

• Requests single entry point
Database server

• Application specific 
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Fig. 6 Proposed PaaS architecture
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communicate with an available node and send it a new application package to

deploy on the web server. The application uninstall procedure depends on ordering

the node’s web server to uninstall the given application.

3.2 Processing Nodes

Processing nodes are the main worker nodes. These nodes run a modified web server

instance, along with the management application described below. Within the web

server instance, each node may deploy an assorted number of virtual hosts, one for

each deployed application. If required, applications may store and retrieve

information from a central application database.

Each node hosts a set of services that allow monitoring and secure deployment of

applications. These services run on the web server instance and store all sessions on

a central database. For security measures, access to these services is SSL protected,

requiring the authentication of the invoking client.

3.3 Supporting Services

Load balancing in this scenario is complex, since not all the application servers host

the same set of applications. This means that the load balancer must be designed in

terms of sets of application/host instead of simple host availability. The application/

host availability information is acquired from a central database. All of the

incoming traffic routes through the load balancer.

For security reasons, a DNS server is required to ensure the SSL based

establishment of the trust relations between the processing nodes and the

management nodes. It is imperative that both nodes have their DNS entries updated

before attempting to perform the SSL handshake.

Almost every component of this PaaS uses a database. For convenience, an SQL

server was used throughout this project, but a close analysis of the data stored on

each database may prove that some of the data are better suited for storage on other

types of databases. Examples of such data are the HTTP sessions that can easily be

migrated to a key-value store such as redis [43].

3.4 Architectural Issues

One security issue present in this architecture is the possibility of attacks against the

central session database. On a final product, the database containing the session data

should be replaced, and most likely, an abstraction layer should be used to store and

retrieve sessions from the central repository.

There is no sharing of the application server’s context among instances. This is

probably easy to solve by storing the context properties along with the session on

the central database. No attempt was made to do so since the session is usually the

only place used to store application state.

Storage is also not shared among instances. This requires that the applications are

aware of that, and do not try to store files locally. Some practices, such as creating a

cached version of the html output for a file may prove to be counterproductive in
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this scenario as such a cache would exist on a single node and could be invalidated

by updates performed on a different node. The same is valid for user uploads, which

would be saved to a single node, and therefore would not be accessible from other

nodes. This can be solved by using a simple storage service that allows a distributed

storage to be seamlessly integrated with the application. However, that was not the

scope of this project.

Concerning latency, each request answered on this platform involves a few

mandatory round trips to one or more databases. The load balancer performs at least

one request, and another request originates from the application to fetch any session

information required to serve the request (even if the application itself requires no

data from the database). As long as the database can perform, latency is expected to

be constant regardless of the number of running nodes and application requests.

Finally, all the application requests are bound to go through the load balancer.

When on heavy loads, this may represent a bottleneck. Even on more conservative

load usage, if the load balancer becomes unresponsive, the entire solution comes to

a halt. To better deal with this unresponsive load balancer, redundant load balancer

nodes could be implemented. To better deal with heavy loads, another possible

solution would be the deployment of a set of load balancers per application, thus

minimizing the overall risks of load balancer failure.

3.5 Architectural Benefits

Despite some architectural issues, there are also some benefits from such

architecture. The most important is the central session storage that does not suffer

from the problems that replicated sessions usually suffer, e.g., a high level of chatter

between the cluster nodes or missing some session data if the data is modified

directly.

Regardless of the session’s centralization contribution to latency, storing the

session always after serving a request (or a set of requests) is a simple solution to a

complicated problem. Traditional replication techniques require that the server

nodes communicate with each other. This architecture removes this requirement as

the only time a session is requested from central storage is when one of the

processing nodes needs to access that session to output the HTTP response. This

enables the cluster size to grow far past the point where the traditional cluster

container starts spending more time coordinating than serving requests.

In terms of scalability, the proposed architecture should be able to scale

applications horizontally. In an application server cluster, the number of requests

answered should scale almost linearly with the addition of more nodes to the pool of

nodes running the same application. Since this architecture is based on the same

principles of the traditional clusters, this rule should also apply. This potential

benefit will be monitored closely during the performance tests.

Considering the developed PaaS model, there is no need to change or rewrite

code that already runs on a standard web server. The only exception would be the

use of local resources, as explained previously. Even so, this model ensures no

vendor lock-in.
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3.6 Comparison with the State of the Art

Despite clear differences in terms of maturity levels, an architectural comparison

between the proposed solution and the most relevant PaaS presented in the state of

the art is mandatory.

As most of the solutions presented, we propose the sharing of execution servers

by several applications. It is up to the overall system to minimize the running

execution servers. OpenShift, WSO2 Stratos, COSCA, Cloudify and Cumulogic

also present a shared environment along with a truly vendor lock-in free PaaS

solution, just as our proposal does.

As with AppScale, COSCA and most PaaS solutions, we enable the commission

and decommission of execution nodes on demand.

The proposed PaaS solution is not as generic as the Carbon based model

presented by WSO2 Stratos or as the cartridges model of OpenShift. It is, in fact

very similar to COSCA’s proposal. Despite that, it holds pretty much the same

components and possibilities as the rest of the pack, even though in a less flexible

composition approach. This is related with the initial goal set: to provide a PaaS

capable of deploying web applications that were not developed for the cloud. In

such a scenario, most of the presented PaaS flexibility is not required at the

application level, being something handled during deployment.

Another important goal is related to the previous work presented in [11, 13],

where we discuss the incorporation of off-premises computers (personal comput-

ers or servers—user nodes) into the cloud’s resources to be managed by the PaaS.

In this case, the user nodes are incorporated (in some extent, user configured) into

the cloud’s available resources and may be used to host and run third party web

applications. Therefore, this PaaS has to handle the process of registering the user

nodes into the available resource pool, by means of a secure automatic enrollment

process initiated by the execution node. This idea resembles (for its use of off-

premises resources) the Program Ultra-Dispatcher (PROUD) approach. PROUD

[44], despite not being a PaaS solution, clearly provides the means for users to

take advantage of both the clouds’ resources and underused resources of nearby

computers. However, and contrary to our concept, these resources are controlled

(and owned) by the user; regardless of being physical computers or virtual

computers. The PROUD focuses on enabling a given user to execute their

applications on the most convenient location, based on preset rules that are based

on computer CPU usage, memory usage, etc. The results of running the

application are seen just as if they were being executed locally, thanks to the

feedback of the remote desktop. In our approach, we provide the PaaS and

computing nodes (regardless of the nodes’ actual ownership) to support the

developers’ applications. The typical output is only seen using a web browser to

access the deployed application.

Finally, in terms of cloud usage, our approach enables sky computing usage,

along with the user node providers.

Table 1 provides a brief comparison among the different PaaS presented in the

state of the art and our approach.
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4 The Implementation

Java was used for most of the programming needs, despite the SOA based

architecture and intrinsic service independency (in terms of service hosting

platforms and programming language).

Table 1 PaaS compared with state of the art

Vendor
lock-in

Open
source

Main
deployment
language

Sharing of
execution
servers by
applications

Commission
and
decommission
of executing
nodes on-
demand

Use idle
computer
resources

Secure
enrollment
process
for
executing
nodes

Manjrasoft’s
Aneka

YES .Net

Google’s
AppEngine

YES YES Pyhton,
Java

YES

AppScale YES Python,
Java

YES

OpenShift YES Node.js,
Ruby,
Python,
PHP, Perl,
Java and
others

YES YES

WSO2
Stratos

YES Java YES YES

COSCA Java YES YES

BeanStalk YES PHP,
Python,
.NET,
Java

YES

Cloudbees YES Java, JRuby,
Grails

YES YES

Cloud
Foundry

YES YES Spring,
Ruby on
Rails,
Ruby and
Sinatra,
Node.js,
Grails

YES YES

Cloudify YES Any app,
any stack

YES YES

Cumulogic EDU Java, Spring YES YES

EngineYard Ruby on
Rails,
PHP,
Node.js

YES

Our proposal Java YES YES YES YES
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After breaking down the inner workings of a typical web server farm, the

conclusion is that most of the required components are already in place and working

properly. The requests’ distribution mechanism is mostly in place, and the current

application containers already support central session storage but do not use it for

every request. The missing pieces are the autonomics, the load balancer, and the

accounting [13]. All of the components of the architecture depicted on Fig. 6 are

operational, even though some improvements are in order.

For the time being, the load balancer is an unmodified HAProxy. This means that

the Load balancer is capable of balancing requests only on a node basis. For the

purpose of this paper, this does not pose any kind of limitation, since all tests will

focus on a single application. However, to support multiple application/host

features, the HAProxy balancing rules must be redesigned.

The DNS server is an unmodified PowerDNS application.

The platform data, the application data, and the session data are all stored

centrally. An extensive analysis of the available data storage possibilities is required

in order to optimize it. However, for now, all data is stored on a MySQL node

instance for its simplicity and availability.

For the application container web server, we selected the Apache Tomcat server.

The Tomcat server was chosen for its simple architecture, plugin model and ease of

changes in its core functionality. Application isolation is achieved via Tomcat’s

virtual hosting features. If needed, further security measures may be enabled via the

container’s security manager. The Tomcat server was modified to load the http

session information from a MySQL database when a new request arrives, and store

it back on the database when it is no longer needed. This allows a series of

standalone Tomcat instances that have the same (and unique) application deployed

to behave very similarly to a cluster. It also allows a group of heterogeneous

instances to behave as a series of clusters, as if each was running one application.

For simplicity, no session locking is performed, meaning that concurrent requests

that use the same session, but are directed to different application servers, may end

up on storing an unexpected (although consistent) session state. With concurrent

session writes, only one of the information sets will be stored. The session locking

was left out for simplicity, and in our preliminary testing, no session contention

problems were found. Two assumptions justify the decision:

1. Typically, http session dependent applications (stateful applications) are user

directed. Users will mostly use browsers that support http 1.1 and a persistent

connection, and the system will not store a session to the database until all the

requests that use it are served. Even so, as with shopping carts and other web

applications, on some circumstances, e.g. if the application server is sluggish or

unresponsive, prior to the reception of the HTTP Response, users may issue a

new (identical) HTTP Request. With no session locking, if the request alters the

session information, this will result in keeping session changes only of one of

the requests, typically the later. Under normal user usage (HTTP Request/

Response), the session is updated before the new HTTP Request is issued.
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2. On the other end, stateless web applications do not depend at all on the session,

or depend only on a session set up step, with subsequent requests behaving as

read-only from the http session point of view.

The management application is the user interface that allows the cloud supplier to

manage the whole PaaS. This is an ongoing project. This application is built using a

common set of technologies that can be found on modern Java based web

applications (STRUTS2/JPA2). In its current deployment, it manages and monitors

part of the cloud’s central database. Being a regular web application that was not

developed to run on the cloud, it is a good candidate to deploy over the proposed

PaaS solution. Figure 7 presents a preliminary look and feel of the management

application.

The management services register available processing nodes, communicate

securely with the registered nodes, monitor them, and manage their deployed

applications. To perform such a list of tasks, these services also manipulate the

internal DNS server records, allowing the update of node entries without a static IP

address.

Node management services expose methods that allow local resource monitoring

and the upload of standard application packages, such as a WAR. Upon upload, the

service configures a new virtual host on the Tomcat server to host the uploaded

application.

During the development of the platform, some hard to solve problems were

faced. Things like which container to choose for modification or how to monitor the

physical host running the JVM, were not trivial at that time and took quite a bit of

experimenting.

For the application container, the initial choice was to modify a full J2EE

container, to seamlessly supply the full power of J2EE as a cloud platform. However

the code base of such a project is huge, and takes quite a lot of time just to

understand how the several modules work and how the codebase is organized. After

a bit of struggling with the GlassFish code base, a servlet container was chosen as a

Fig. 7 The management application
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subset that would validate the concept and still run many different applications.

Tomcat was chosen over Jetty due to background knowledge on its administration.

5 Testing

Testing the functionality of the proposed architecture allows the validation of the

architecture’s reliability. Testing will also provide some performance and scalability

analysis.

5.1 Testbed Description

The testbed runs in a group of physical machines each one with one or more virtual

machines. The physical machines run Scientific Linux 5.5, with the Xen hypervisor,

and work as virtualization nodes for an OpenNebula based IaaS. The virtual

machines run the last beta release of Red Hat Enterprise Linux Version 6 (RHEL 6).

During the initial testing phase, the available hardware was two ‘‘long-past-their-

half-life-expectancy’’ servers. By using aged hardware and proving that this PaaS

scenario could function on this configuration, we could take advantage of this

obsolete equipment to perform tasks that they were no longer able to perform. The

best server (Server 1) is a Dell PowerEdge 2850 with two Xeon CPU’s @2.8 GHz

with hyperthreading, 2 GB of ECC RAM, and 33 GB of disk space. This host runs

its software on 250 MB of RAM, the remainder is left for the virtual machines. The

other server (Server 2) is a Dell PowerEdge 4400 with two Pentium III

Coppermine@800 MHz CPUs, 1 GB of RAM with only 250 MB for the system

and about 100 GB of storage. Server 1’s disk space was used for operating system

images’ storage. Server 2’s storage is composed of slow disk space that was used for

backups and source code repositories.

The tests performed with this hardware configuration did not show a linear

relation with the increase of the number of nodes. Given the two physical server

deployments with a high number of virtual machines running from the same disk,

the observed bottleneck was both on CPU and on the heavy IO performed on the

disk and network interface on the same host. In fact, all of the hosts (virtual and

physical) were swapping out part of their main memory, and all the swap files and

partitions were on the same disk.

This minimal hardware setup enabled us to prove that there is no need for high-

end hardware requirements to successfully validate a PaaS architecture under low

and moderate loads. However, the original goal was to assess the scalability and

performance of the PaaS under heavy loads.

Considering the findings in [30], regarding the similar results of executing tests

on physical machines or on virtual machines running on the same physical host, we

set up a new hardware testbed with a single physical host: a twin six-core Intel Xeon

@2,667 GHz CPU with hyperthreading and 98 GB of ECC RAM, backed by a

1 TB fibre channel storage unit.

The testing was performed over a set of 18 virtual machines, each running

Scientific Linux 6. One of the VMs was set aside to run the management services,
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the MySQL database, and the load balancer, while the remaining VMs were left as

processing nodes. Each VM was allocated one CPU core and 4 GB of memory. All

virtual machines were running SNMP and were monitored by an external system

while the tests were performed. The virtual machines were managed using

OpenNebula.

The setup environment uses NAT networking instead of bridged networking.

Because of the NAT networking, the virtual instances are not accessible from the

outside world. However, such access is not required; the only service that absolutely

needs to be accessible from the outside world is the load manager that may run

directly on one of the physical hosts.

Throughout the testing, one virtual machine instance was used to run all of the

management services and the other instances were reserved to be used as processing

nodes. The virtual machines were kept running throughout the whole test, but the

services that composed the processing node were only started on an ‘‘as needed’’

basis.

As mentioned before, the Management Application will be used for testing

purposes.

5.2 Reliability

The reliability test results will indicate if the service is able to function for low

loads, as long as at least one processing node runs the target application. This test

started with the management node running, and two processing nodes running the

same application on the same named virtual host. After deploying the application,

the application code was manually modified (on each virtual host) to identify which

of the hosts responded to a request. This helped on reinsuring that the requests were

not all being sent to the same node.

A custom entry was added to the hosts’ file on a client desktop pointing to the

selected name for the virtual host to the IP address of the load balancer. The

application was then accessed using the laptop’s browser. The navigation was as

follows: first, login as administrator; second, click once on each menu entry; third,

update the user name; forth, logout.

This navigation sequence was repeated with different amounts of running nodes.

Each sequence always worked as expected, showing little or no session stickiness,

proving that the load balancer was not configured to stick each session to a server

instance, and that the modifications made to the Tomcat server work at least under a

light load. The navigation sequence was recorded using JMeter, which was later

used to test the performance and scalability of the system.

Additionally, one of the nodes was shut down, leaving only one of the initial

nodes running. A new node was booted, the application was deployed on that

node and it was added to the load balancer. Finally, the remaining original node

was shut down, leaving none of the original nodes running. As long as at least one

node is running the requested application, the system will keep the application

state.
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5.3 Performance

The performance tests were made using JMeter-2.0.1, running on a different

physical computer. It simulated the workflow described above for a consecutively

higher number of users (threads). Each thread executes the workflow 20 times. Each

workflow consists of 13 requests, 11 of which require application database access

and one is a static image. JMeter was configured with a Gaussian timer with a

300 ms delay and 100 ms of deviation.

We set a maximum response time on 500 ms and tracked individual response

times. For each number of active nodes we calculated the 90th percentile of the time

of the response for a given amount of threads. The usage of a high percentile instead

of the simple average enables us to best cope with network fluctuations and other

random abnormalities. By plotting the information of each amount of threads per

each number of nodes, we calculated the real number for the 90th percentile for each

number of nodes. Figure 8 summarizes results along with a trend line and associated

equation.

Analyzing the number of threads per number of nodes, there is a performance

cost of roughly 2.5 % per increased node, adding about 30 % of theoretical

performance loss when comparing the throughput of 3 nodes with 17 nodes.

An analysis of the monitoring data collected while testing shows that there is a

possible performance bottleneck on the PaaS: the MySQL server. With the higher

numbers of processing nodes, MySQL was using about 80–90 % of its available

processing power. This behavior is easily explained by the amount of database

requests being made: at least one for each request (caused by the application state

being stored in a database) and on most cases another access for application specific

data.

Despite the overall 30 % performance loss reported, the results are encouraging

when compared with others: Aneka [25] running on Windows Azure reported about

a 68 % theoretical performance loss on 16 nodes, which translates into a 47.4 %

Fig. 8 Threads for 90th percentile requests below 500 ms
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loss when scaling from 4 to 16 nodes. With our approach, the same scaling (from 4

to 16 nodes) sets the performance back by 27.6 %.

6 Conclusions

We were able to successfully run a fairly complex Java based application in a

distributed web environment, with no specific code change using our developed

PaaS. The only foreseeable restriction is the usage of the processing node’s local

resources (no local paths should be used). This web application was developed using

an ordinary version of NetBeans, as a regular web application. Despite the lack of

knowledge of the cloud’s insights, the web application can be deployed in the cloud

environment where it can be scaled up and down according to the application’s

needs. All the cloud’s insights and inner works are completely transparent to

developers.

The performance results show a very well behaved relation with the increase of

the number of nodes, which allows us to safely state that the PaaS solution proposed

presents a good scalability solution. One that shows better results than more mature

(and of course more complex) available PaaS solutions.

Despite the good overall performance, the metrics gathered from the servers via

SNMP raised a yellow flag concerning the MySQL server resource consumption. As

previously mentioned, a thorough investigation of possible database solutions is

mandatory at this point.

Even though there are still loose ends and issues to solve, at this stage it is

already possible to assess the viability of the proposed solution. The final

architecture displays some interesting strong points even when compared with the

state of the art PaaS solutions.

To take advantage of the platform’s elasticity, the load balancer needs to be

implemented from scratch because none of the evaluated load balancers has the

features or the code organization that would allow a simple modification to fulfill

the requirements of our PaaS.

To test this PaaS to its full extension, the next step will be to deploy it on a sky

computing approach, trying to understand the benefits (if any) of a heterogeneous

solution.
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Cláudio Teixeira Graduated from the University of Aveiro, Portugal in 2003, with a 5-year degree in

Telematics and Computers Engineering. In 2009, he received his Ph.D. degree in Computer Science. He

is currently an assistant researcher at the Department of Electronics and Telecommunications and

Informatics of the University of Aveiro. His main research interests include integration of information

systems, system modeling and architecture, XML-based information systems, cloud computing and

e-government.

Joaquim Sousa Pinto graduated from the University of Aveiro, Portugal in 1985, with a 5-year degree in

Electronics and Telecommunications Engineering. In 1997, he received his Ph.D. degree in Electronics

Engineering. He is currently an Assistant Professor at the Department of Electronics and Telecommu-

nications and Informatics of the University of Aveiro. His main research interests include digital libraries,

information systems, and cloud computing.

Ricardo Azevedo graduated from the University of Aveiro, Portugal in 2004, with a 5-year degree in

Telematics and Computers Engineering. In 2006, he received his M.Sc. in Internet Computing. He is

currently Project Manager in the Innovation Department of Portugal Telecom. His main research interests

include identity management, information and network security, privacy, context aware, and cloud

computing.

Tiago Batista graduated from the University of Aveiro, Portugal, in 2010, with a M.Sc. on Telematics

and Computers Engineering. He is currently working as a Software Engineer in the Innovation

Department of Portugal Telecom. His main research interests include identity management, cloud

computing, and virtualization.
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