34,886 research outputs found

    A framework for selecting workflow tools in the context of composite information systems

    Get PDF
    When an organization faces the need of integrating some workflow-related activities in its information system, it becomes necessary to have at hand some well-defined informational model to be used as a framework for determining the selection criteria onto which the requirements of the organization can be mapped. Some proposals exist that provide such a framework, remarkably the WfMC reference model, but they are designed to be appl icable when workflow tools are selected independently from other software, and departing from a set of well-known requirements. Often this is not the case: workflow facilities are needed as a part of the procurement of a larger, composite information syste m and therefore the general goals of the system have to be analyzed, assigned to its individual components and further detailed. We propose in this paper the MULTSEC method in charge of analyzing the initial goals of the system, determining the types of components that form the system architecture, building quality models for each type and then mapping the goals into detailed requirements which can be measured using quality criteria. We develop in some detail the quality model (compliant with the ISO/IEC 9126-1 quality standard) for the workflow type of tools; we show how the quality model can be used to refine and clarify the requirements in order to guarantee a highly reliable selection result; and we use it to evaluate two particular workflow solutions a- ailable in the market (kept anonymous in the paper). We develop our proposal using a particular selection experience we have recently been involved in, namely the procurement of a document management subsystem to be integrated in an academic data management information system for our university.Peer ReviewedPostprint (author's final draft

    Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    Get PDF
    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources
    • …
    corecore