1,181 research outputs found

    Recognizing Objects In-the-wild: Where Do We Stand?

    Full text link
    The ability to recognize objects is an essential skill for a robotic system acting in human-populated environments. Despite decades of effort from the robotic and vision research communities, robots are still missing good visual perceptual systems, preventing the use of autonomous agents for real-world applications. The progress is slowed down by the lack of a testbed able to accurately represent the world perceived by the robot in-the-wild. In order to fill this gap, we introduce a large-scale, multi-view object dataset collected with an RGB-D camera mounted on a mobile robot. The dataset embeds the challenges faced by a robot in a real-life application and provides a useful tool for validating object recognition algorithms. Besides describing the characteristics of the dataset, the paper evaluates the performance of a collection of well-established deep convolutional networks on the new dataset and analyzes the transferability of deep representations from Web images to robotic data. Despite the promising results obtained with such representations, the experiments demonstrate that object classification with real-life robotic data is far from being solved. Finally, we provide a comparative study to analyze and highlight the open challenges in robot vision, explaining the discrepancies in the performance

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Robust Scene Estimation for Goal-directed Robotic Manipulation in Unstructured Environments

    Full text link
    To make autonomous robots "taskable" so that they function properly and interact fluently with human partners, they must be able to perceive and understand the semantic aspects of their environments. More specifically, they must know what objects exist and where they are in the unstructured human world. Progresses in robot perception, especially in deep learning, have greatly improved for detecting and localizing objects. However, it still remains a challenge for robots to perform a highly reliable scene estimation in unstructured environments that is determined by robustness, adaptability and scale. In this dissertation, we address the scene estimation problem under uncertainty, especially in unstructured environments. We enable robots to build a reliable object-oriented representation that describes objects present in the environment, as well as inter-object spatial relations. Specifically, we focus on addressing following challenges for reliable scene estimation: 1) robust perception under uncertainty results from noisy sensors, objects in clutter and perceptual aliasing, 2) adaptable perception in adverse conditions by combined deep learning and probabilistic generative methods, 3) scalable perception as the number of objects grows and the structure of objects becomes more complex (e.g. objects in dense clutter). Towards realizing robust perception, our objective is to ground raw sensor observations into scene states while dealing with uncertainty from sensor measurements and actuator control . Scene states are represented as scene graphs, where scene graphs denote parameterized axiomatic statements that assert relationships between objects and their poses. To deal with the uncertainty, we present a pure generative approach, Axiomatic Scene Estimation (AxScEs). AxScEs estimates a probabilistic distribution across plausible scene graph hypotheses describing the configuration of objects. By maintaining a diverse set of possible states, the proposed approach demonstrates the robustness to the local minimum in the scene graph state space and effectiveness for manipulation-quality perception based on edit distance on scene graphs. To scale up to more unstructured scenarios and be adaptable to adversarial scenarios, we present Sequential Scene Understanding and Manipulation (SUM), which estimates the scene as a collection of objects in cluttered environments. SUM is a two-stage method that leverages the accuracy and efficiency from convolutional neural networks (CNNs) with probabilistic inference methods. Despite the strength from CNNs, they are opaque in understanding how the decisions are made and fragile for generalizing beyond overfit training samples in adverse conditions (e.g., changes in illumination). The probabilistic generative method complements these weaknesses and provides an avenue for adaptable perception. To scale up to densely cluttered environments where objects are physically touching with severe occlusions, we present GeoFusion, which fuses noisy observations from multiple frames by exploring geometric consistency at object level. Geometric consistency characterizes geometric compatibility between objects and geometric similarity between observations and objects. It reasons about geometry at the object-level, offering a fast and reliable way to be robust to semantic perceptual aliasing. The proposed approach demonstrates greater robustness and accuracy than the state-of-the-art pose estimation approach.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163060/1/zsui_1.pd

    Utilization and experimental evaluation of occlusion aware kernel correlation filter tracker using RGB-D

    Get PDF
    Unlike deep-learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation Filter (KCF) uses implicit properties of tracked images (circulant matrices) for training in real-time. Despite their practical application in tracking, a need for a better understanding of the fundamentals associated with KCF in terms of theoretically, mathematically, and experimentally exists. This thesis first details the workings prototype of the tracker and investigates its effectiveness in real-time applications and supporting visualizations. We further address some of the drawbacks of the tracker in cases of occlusions, scale changes, object rotation, out-of-view and model drift with our novel RGB-D Kernel Correlation tracker. We also study the use of particle filter to improve trackers\u27 accuracy. Our results are experimentally evaluated using a) standard dataset and b) real-time using Microsoft Kinect V2 sensor. We believe this work will set the basis for better understanding the effectiveness of kernel-based correlation filter trackers and to further define some of its possible advantages in tracking

    Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in Clutter

    Get PDF
    Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter

    Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in Clutter

    Full text link
    Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter.Comment: Poster CoRL 2023. Dataset and code available here: https://github.com/gtziafas/OCID-VL

    Real-time 3D hand reconstruction in challenging scenes from a single color or depth camera

    Get PDF
    Hands are one of the main enabling factors for performing complex tasks and humans naturally use them for interactions with their environment. Reconstruction and digitization of 3D hand motion opens up many possibilities for important applications. Hands gestures can be directly used for human–computer interaction, which is especially relevant for controlling augmented or virtual reality (AR/VR) devices where immersion is of utmost importance. In addition, 3D hand motion capture is a precondition for automatic sign-language translation, activity recognition, or teaching robots. Different approaches for 3D hand motion capture have been actively researched in the past. While being accurate, gloves and markers are intrusive and uncomfortable to wear. Hence, markerless hand reconstruction based on cameras is desirable. Multi-camera setups provide rich input, however, they are hard to calibrate and lack the flexibility for mobile use cases. Thus, the majority of more recent methods uses a single color or depth camera which, however, makes the problem harder due to more ambiguities in the input. For interaction purposes, users need continuous control and immediate feedback. This means the algorithms have to run in real time and be robust in uncontrolled scenes. These requirements, achieving 3D hand reconstruction in real time from a single camera in general scenes, make the problem significantly more challenging. While recent research has shown promising results, current state-of-the-art methods still have strong limitations. Most approaches only track the motion of a single hand in isolation and do not take background-clutter or interactions with arbitrary objects or the other hand into account. The few methods that can handle more general and natural scenarios run far from real time or use complex multi-camera setups. Such requirements make existing methods unusable for many aforementioned applications. This thesis pushes the state of the art for real-time 3D hand tracking and reconstruction in general scenes from a single RGB or depth camera. The presented approaches explore novel combinations of generative hand models, which have been used successfully in the computer vision and graphics community for decades, and powerful cutting-edge machine learning techniques, which have recently emerged with the advent of deep learning. In particular, this thesis proposes a novel method for hand tracking in the presence of strong occlusions and clutter, the first method for full global 3D hand tracking from in-the-wild RGB video, and a method for simultaneous pose and dense shape reconstruction of two interacting hands that, for the first time, combines a set of desirable properties previously unseen in the literature.Hände sind einer der Hauptfaktoren für die Ausführung komplexer Aufgaben, und Menschen verwenden sie auf natürliche Weise für Interaktionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der 3D-Handbewegung eröffnet viele Möglichkeiten für wichtige Anwendungen. Handgesten können direkt als Eingabe für die Mensch-Computer-Interaktion verwendet werden. Dies ist insbesondere für Geräte der erweiterten oder virtuellen Realität (AR / VR) relevant, bei denen die Immersion von größter Bedeutung ist. Darüber hinaus ist die Rekonstruktion der 3D Handbewegung eine Voraussetzung zur automatischen Übersetzung von Gebärdensprache, zur Aktivitätserkennung oder zum Unterrichten von Robotern. In der Vergangenheit wurden verschiedene Ansätze zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und physische Markierungen sind zwar präzise, aber aufdringlich und unangenehm zu tragen. Daher ist eine markierungslose Handrekonstruktion auf der Basis von Kameras wünschenswert. Multi-Kamera-Setups bieten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und haben keine Flexibilität für mobile Anwendungsfälle. Daher verwenden die meisten neueren Methoden eine einzelne Farb- oder Tiefenkamera, was die Aufgabe jedoch schwerer macht, da mehr Ambiguitäten in den Eingabedaten vorhanden sind. Für Interaktionszwecke benötigen Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeutet, dass die Algorithmen in Echtzeit ausgeführt werden müssen und robust in unkontrollierten Szenen sein müssen. Diese Anforderungen, 3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allgemeinen Szenen, machen das Problem erheblich schwieriger. Während neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben, weisen aktuelle Methoden immer noch Einschränkungen auf. Die meisten Ansätze verfolgen die Bewegung einer einzelnen Hand nur isoliert und berücksichtigen keine alltäglichen Umgebungen oder Interaktionen mit beliebigen Objekten oder der anderen Hand. Die wenigen Methoden, die allgemeinere und natürlichere Szenarien verarbeiten können, laufen nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche Anforderungen machen bestehende Verfahren für viele der oben genannten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand der Technik für die Echtzeit-3D-Handverfolgung und -Rekonstruktion in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die vorgestellten Algorithmen erforschen neue Kombinationen aus generativen Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen Computer Vision und Grafik eingesetzt werden, und leistungsfähigen innovativen Techniken des maschinellen Lernens, die vor kurzem mit dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Arbeit werden insbesondere vorgeschlagen: eine neuartige Methode zur Handbewegungsrekonstruktion bei starken Verdeckungen und in unkontrollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D Handbewegung aus RGB-Videos in freier Wildbahn und die erste Methode zur gleichzeitigen Rekonstruktion von Handpose und -form zweier interagierender Hände, die eine Reihe wünschenwerter Eigenschaften komibiniert

    RGB-D Scene Representations for Prosthetic Vision

    Get PDF
    This thesis presents a new approach to scene representation for prosthetic vision. Structurally salient information from the scene is conveyed through the prosthetic vision display. Given the low resolution and dynamic range of the display, this enables robust identification and reliable interpretation of key structural features that are missed when using standard appearance-based scene representations. Specifically, two different types of salient structure are investigated: salient edge structure, for depiction of scene shape to the user; and salient object structure, for emulation of biological attention deployment when viewing a scene. This thesis proposes and evaluates novel computer vision algorithms for extracting salient edge and salient object structure from RGB-D input. Extraction of salient edge structure from the scene is first investigated through low-level analysis of surface shape. Our approach is based on the observation that regions of irregular surface shape, such as the boundary between the wall and the floor, tend to be more informative of scene structure than uniformly shaped regions. We detect these surface irregularities through multi-scale analysis of iso-disparity contour orientations, providing a real time method that robustly identifies important scene structure. This approach is then extended by using a deep CNN to learn high level information for distinguishing salient edges from structural texture. A novel depth input encoding called the depth surface descriptor (DSD) is presented, which better captures scene geometry that corresponds to salient edges, improving the learned model. These methods provide robust detection of salient edge structure in the scene. The detection of salient object structure is first achieved by noting that salient objects often have contrasting shape from their surroundings. Contrasting shape in the depth image is captured through the proposed histogram of surface orientations (HOSO) feature. This feature is used to modulate depth and colour contrast in a saliency detection framework, improving the precision of saliency seed regions and through this the accuracy of the final detection. After this, a novel formulation of structural saliency is introduced based on the angular measure of local background enclosure (LBE). This formulation addresses fundamental limitations of depth contrast methods and is not reliant on foreground depth contrast in the scene. Saliency is instead measured through the degree to which a candidate patch exhibits foreground structure. The effectiveness of the proposed approach is evaluated through both standard datasets as well as user studies that measure the contribution of structure-based representations. Our methods are found to more effectively measure salient structure in the scene than existing methods. Our approach results in improved performance compared to standard methods during practical use of an implant display
    • …
    corecore