3,463 research outputs found

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment

    Is spatial intelligibility critical to the design of largescale virtual environments?

    Get PDF
    This paper discusses the concept of 'intelligibility', a concept usually attributed to the design of real-world environments and suggests how it might be applied to the construction of virtual environments. In order to illustrate this concept, a 3d, online, collaborative environment, AlphaWorld, is analyzed in a manner analogous to spatial analysis techniques applied to cities in the real world. The outcome of this form of spatial analysis is that AlphaWorld appears to be highly 'intelligible' at the small-scale, 'local neighborhood' level, and yet is completely 'unintelligible' at a global level. This paper concludes with a discussion of the relevance of this finding to virtual environment design plus future research applications

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Where do we go from here? An assessment of navigation performance using a compass versus a GPS unit

    Get PDF
    The Global Positioning System (GPS) looks set to replace the traditional map and compass for navigation tasks in military and civil domains. However, we may ask whether GPS has a real performance advantage over traditional methods. We present an exploratory study using a waypoint plotting task to compare the standard magnetic compass against a military GPS unit, for both expert and non-expert navigators. Whilst performance times were generally longer in setting up the GPS unit, once navigation was underway the GPS was more efficient than the compass. For mediumto long-term missions, this means that GPS could offer significant performance benefits, although the compass remains superior for shorter missions. Notwithstanding the performance times, significantly more errors, and more serious errors, occurred when using the compass. Overall, then, the GPS offers some clear advantages, especially for non-expert users. Nonetheless, concerns over the development of cognitive maps remain when using GPS technologies

    The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments

    Get PDF
    Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks

    NavMarkAR: A Landmark-based Augmented Reality (AR) Wayfinding System for Enhancing Spatial Learning of Older Adults

    Full text link
    Wayfinding in complex indoor environments is often challenging for older adults due to declines in navigational and spatial-cognition abilities. This paper introduces NavMarkAR, an augmented reality navigation system designed for smart-glasses to provide landmark-based guidance, aiming to enhance older adults' spatial navigation skills. This work addresses a significant gap in design research, with limited prior studies evaluating cognitive impacts of AR navigation systems. An initial usability test involved 6 participants, leading to prototype refinements, followed by a comprehensive study with 32 participants in a university setting. Results indicate improved wayfinding efficiency and cognitive map accuracy when using NavMarkAR. Future research will explore long-term cognitive skill retention with such navigational aids.Comment: 24 page

    Use of Augmented Reality in Human Wayfinding: A Systematic Review

    Full text link
    Augmented reality technology has emerged as a promising solution to assist with wayfinding difficulties, bridging the gap between obtaining navigational assistance and maintaining an awareness of one's real-world surroundings. This article presents a systematic review of research literature related to AR navigation technologies. An in-depth analysis of 65 salient studies was conducted, addressing four main research topics: 1) current state-of-the-art of AR navigational assistance technologies, 2) user experiences with these technologies, 3) the effect of AR on human wayfinding performance, and 4) impacts of AR on human navigational cognition. Notably, studies demonstrate that AR can decrease cognitive load and improve cognitive map development, in contrast to traditional guidance modalities. However, findings regarding wayfinding performance and user experience were mixed. Some studies suggest little impact of AR on improving outdoor navigational performance, and certain information modalities may be distracting and ineffective. This article discusses these nuances in detail, supporting the conclusion that AR holds great potential in enhancing wayfinding by providing enriched navigational cues, interactive experiences, and improved situational awareness.Comment: 52 page

    Wayfinding and Navigation for People with Disabilities Using Social Navigation Networks

    Get PDF
    To achieve safe and independent mobility, people usually depend on published information, prior experience, the knowledge of others, and/or technology to navigate unfamiliar outdoor and indoor environments. Today, due to advances in various technologies, wayfinding and navigation systems and services are commonplace and are accessible on desktop, laptop, and mobile devices. However, despite their popularity and widespread use, current wayfinding and navigation solutions often fail to address the needs of people with disabilities (PWDs). We argue that these shortcomings are primarily due to the ubiquity of the compute-centric approach adopted in these systems and services, where they do not benefit from the experience-centric approach. We propose that following a hybrid approach of combining experience-centric and compute-centric methods will overcome the shortcomings of current wayfinding and navigation solutions for PWDs
    • …
    corecore