489 research outputs found

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals

    Analysis of two pairing-based three-party password authenticated key exchange protocols

    Get PDF
    Password-Authenticated Key Exchange (PAKE) protocols allow parties to share secret keys in an authentic manner based on an easily memorizable password. Recently, Nam et al. showed that a provably secure three-party password-based authenticated key exchange protocol using Weil pairing by Wen et al. is vulnerable to a man-in-the-middle attack. In doing so, Nam et al. showed the flaws in the proof of Wen et al. and described how to fix the problem so that their attack no longer works. In this paper, we show that both Wen et al. and Nam et al. variants fall to key compromise impersonation by any adversary. Our results underline the fact that although the provable security approach is necessary to designing PAKEs, gaps still exist between what can be proven and what are really secure in practice

    Distributed Single Password Protocol Framework

    Get PDF
    Passwords are the most widely used factor in various areas such as secret sharing, key establishment, and user authentication. Single password protocols are proposed (starting with Belenkiy et. al [4]) to overcome the challenges of traditional password protocols and provide provable security against offline dictionary, man-in-the-middle, phishing, and honeypot attacks. While they ensure provable security, they allow a user securely to use a single \textit{low-entropy human memorable} password for all her accounts. They achieve this with the help of a cloud or mobile storage device. However, an attacker corrupting both the login server and storage can mount an offline dictionary attack on user\u27s single password. In this work, we introduce a framework for distributed single password protocols (DiSPP) that analyzes existing protocols, improves upon them regarding novel constructions and distributed schemes, and allows exploiting alternative cryptographic primitives to obtain secure distributed single password protocols with various trade-offs. Previous single password solutions can be instantiated as part of our framework. We further introduce a secure DiSPP instantiation derived from our framework enforcing the adversary to corrupt several cloud and mobile storage devices in addition to the login server in order to perform a successful offline dictionary attack. We also provide a comparative analysis of different solutions derived from our framework

    On the security of a provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks

    Get PDF
    In a recent paper, Chang and Le proposed an efficient smart card?based authenticated key exchange protocol (which is referred to as CL scheme) for heterogeneous ad hoc wireless sensor networks. However, we found that the CL scheme is subject to sensor capture attack which breaks the session key security of the CL scheme. An improved protocol is proposed to fix this problem.Peer reviewe

    Authentic-caller : self-enforcing authentication in a next generation network

    Get PDF
    The Internet of Things (IoT) or the Cyber-Physical System (CPS) is the network of connected devices, things and people which collect and exchange information using the emerging telecommunication networks (4G, 5G IP-based LTE). These emerging telecommunication networks can also be used to transfer critical information between the source and destination, informing the control system about the outage in the electrical grid, or providing information about the emergency at the national express highway. This sensitive information requires authorization and authentication of source and destination involved in the communication. To protect the network from unauthorized access and to provide authentication, the telecommunication operators have to adopt the mechanism for seamless verification and authorization of parties involved in the communication. Currently, the next-generation telecommunication networks use a digest-based authentication mechanism, where the call-processing engine of the telecommunication operator initiates the challenge to the request-initiating client or caller, which is being solved by the client to prove his credentials. However, the digest-based authentication mechanisms are vulnerable to many forms of known attacks e.g., the Man-In-The-Middle (MITM) attack and the password guessing attack. Furthermore, the digest-based systems require extensive processing overheads. Several Public-Key Infrastructure (PKI) based and identity-based schemes have been proposed for the authentication and key agreements. However, these schemes generally require smart-card to hold long-term private keys and authentication credentials. In this paper, we propose a novel self-enforcing authentication protocol for the SIPbased next-generation network based on a low-entropy shared password without relying on any PKI or trusted third party system. The proposed system shows effective resistance against various attacks e.g., MITM, replay attack, password guessing attack, etc. We a..
    corecore