4,375 research outputs found

    The CDF Data Handling System

    Full text link
    The Collider Detector at Fermilab (CDF) records proton-antiproton collisions at center of mass energy of 2.0 TeV at the Tevatron collider. A new collider run, Run II, of the Tevatron started in April 2001. Increased luminosity will result in about 1~PB of data recorded on tapes in the next two years. Currently the CDF experiment has about 260 TB of data stored on tapes. This amount includes raw and reconstructed data and their derivatives. The data storage and retrieval are managed by the CDF Data Handling (DH) system. This system has been designed to accommodate the increased demands of the Run II environment and has proven robust and reliable in providing reliable flow of data from the detector to the end user. This paper gives an overview of the CDF Run II Data Handling system which has evolved significantly over the course of this year. An outline of the future direction of the system is given.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 4 EPS figures, PSN THKT00

    Managed storage systems at CERN

    Get PDF

    Grid Data Management in Action: Experience in Running and Supporting Data Management Services in the EU DataGrid Project

    Full text link
    In the first phase of the EU DataGrid (EDG) project, a Data Management System has been implemented and provided for deployment. The components of the current EDG Testbed are: a prototype of a Replica Manager Service built around the basic services provided by Globus, a centralised Replica Catalogue to store information about physical locations of files, and the Grid Data Mirroring Package (GDMP) that is widely used in various HEP collaborations in Europe and the US for data mirroring. During this year these services have been refined and made more robust so that they are fit to be used in a pre-production environment. Application users have been using this first release of the Data Management Services for more than a year. In the paper we present the components and their interaction, our implementation and experience as well as the feedback received from our user communities. We have resolved not only issues regarding integration with other EDG service components but also many of the interoperability issues with components of our partner projects in Europe and the U.S. The paper concludes with the basic lessons learned during this operation. These conclusions provide the motivation for the architecture of the next generation of Data Management Services that will be deployed in EDG during 2003.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages, LaTeX, PSN: TUAT007 all figures are in the directory "figures

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part

    Cold Storage Data Archives: More Than Just a Bunch of Tapes

    Full text link
    The abundance of available sensor and derived data from large scientific experiments, such as earth observation programs, radio astronomy sky surveys, and high-energy physics already exceeds the storage hardware globally fabricated per year. To that end, cold storage data archives are the---often overlooked---spearheads of modern big data analytics in scientific, data-intensive application domains. While high-performance data analytics has received much attention from the research community, the growing number of problems in designing and deploying cold storage archives has only received very little attention. In this paper, we take the first step towards bridging this gap in knowledge by presenting an analysis of four real-world cold storage archives from three different application domains. In doing so, we highlight (i) workload characteristics that differentiate these archives from traditional, performance-sensitive data analytics, (ii) design trade-offs involved in building cold storage systems for these archives, and (iii) deployment trade-offs with respect to migration to the public cloud. Based on our analysis, we discuss several other important research challenges that need to be addressed by the data management community

    Adding Storage Simulation Capacities to the SimGrid Toolkit: Concepts, Models, and API

    Get PDF
    International audienceFor each kind of distributed computing infrastructures, i.e., clusters, grids, clouds, data centers, or supercomputers, storage is a essential component to cope with the tremendous increase in scientific data production and the ever-growing need for data analysis and preservation. Understanding the performance of a storage subsystem or dimensioning it properly is an important concern for which simulation can help by allowing for fast, fully repeatable, and configurable experiments for arbitrary hypothetical scenarios. However, most simulation frameworks tailored for the study of distributed systems offer no or little abstractions or models of storage resources.In this paper, we detail the extension of SimGrid, a versatile toolkit for the simulation of large-scale distributed computing systems, with storage simulation capacities. We first define the required abstractions and propose a new API to handle storage components and their contents in SimGrid-based simulators. Then we characterize the performance of the fundamental storage component that are disks and derive models of these resources. Finally we list several concrete use cases of storage simulations in clusters, grids, clouds, and data centers for which the proposed extension would be beneficial

    Architecting the cyberinfrastructure for National Science Foundation Ocean Observatories Initiative (OOI)

    Get PDF
    The NSF Ocean Observatories Initiative (OOI) is a networked ocean research observatory with arrays of instrumented water column moorings and buoys, profilers, gliders and autonomous underwater vehicles (AUV) within different open ocean and coastal regions. OOI infrastructure also includes a cabled array of instrumented seafloor platforms and water column moorings on the Juan de Fuca tectonic plate. This networked system of instruments, moored and mobile platforms, and arrays will provide ocean scientists, educators and the public the means to collect sustained, time-series data sets that will enable examination of complex, interlinked physical, chemical, biological, and geological processes operating throughout the coastal regions and open ocean. The seven arrays built and deployed during construction support the core set of OOI multidisciplinary scientific instruments that are integrated into a networked software system that will process, distribute, and store all acquired data. The OOI has been built with an expectation of operation for 25 years.Peer Reviewe
    • …
    corecore