16,372 research outputs found

    Processing second-order stochastic dominance models using cutting-plane representations

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).This study was funded by OTKA, Hungarian National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)

    Portfolio selection models: A review and new directions

    Get PDF
    Modern Portfolio Theory (MPT) is based upon the classical Markowitz model which uses variance as a risk measure. A generalization of this approach leads to mean-risk models, in which a return distribution is characterized by the expected value of return (desired to be large) and a risk value (desired to be kept small). Portfolio choice is made by solving an optimization problem, in which the portfolio risk is minimized and a desired level of expected return is specified as a constraint. The need to penalize different undesirable aspects of the return distribution led to the proposal of alternative risk measures, notably those penalizing only the downside part (adverse) and not the upside (potential). The downside risk considerations constitute the basis of the Post Modern Portfolio Theory (PMPT). Examples of such risk measures are lower partial moments, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We revisit these risk measures and the resulting mean-risk models. We discuss alternative models for portfolio selection, their choice criteria and the evolution of MPT to PMPT which incorporates: utility maximization and stochastic dominance

    Robust Hedging of Variance Swaps: Discrete Sampling & Co-maturing European Options

    Get PDF
    In the practice of quantitative finance, model risk has raised significant concern and thus model-independent hedging is of particular interest to both academia and industry. In this thesis, we review two methods of constructing robust and model-independent hedging portfolios of variance swaps. One of them assumes a continuum of European options trade but does not require the underlying asset's price path to be continuous. However, the other assumes finite number of options quoted but requires the continuity of underlying asset's price path. We explore numerically the hedging performance as well as upper and lower bounds of several numerical examples by implementing these two methods. Finally, we try to combine these two methods and use an example to show an idea of a possible approach of doing this

    Mathematical Models in Farm Planning: A Survey

    Get PDF

    Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

    Full text link
    We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs---in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.Comment: 42 pages, 10 figure
    • …
    corecore