6 research outputs found

    Finding the Oasis in the Desert Fog? Understanding Multi- Scale Map Reading

    Get PDF
    workshopInternational audienc

    This is the tricky part: When directions become difficult

    Get PDF
    Automated route guidance systems, both web-based systems and en-route systems, have become commonplace in recent years. These systems often replace humangenerated directions, which are often incomplete, vague, or in error. However, humangenerated directions have the ability to differentiate between easy and complex steps through language in a way that is more difficult in automated systems. This article examines a set of human-generated verbal directions to better understand why some parts of directions are perceived as being more difficult than the remaining steps. Insights from this analysis will lead to recommendations to improve the next generation of automated route guidance systems

    This is the tricky part: When directions become difficult

    Get PDF
    Automated route guidance systems, both web-based systems and en-route systems, have become commonplace in recent years. These systems often replace human-generated directions, which are often incomplete, vague, or in error. However, human-generated directions have the ability to differentiate between easy and complex steps through language in a way that is more difficult in automated systems. This article examines a set of human-generated verbal directions to better understand why some parts of directions are perceived as being more difficult than the remaining steps. Insights from this analysis will lead to recommendations to improve the next generation of automated route guidance systems

    A Conceptual Model of Exploration Wayfinding: An Integrated Theoretical Framework and Computational Methodology

    Get PDF
    This thesis is an attempt to integrate contending cognitive approaches to modeling wayfinding behavior. The primary goal is to create a plausible model for exploration tasks within indoor environments. This conceptual model can be extended for practical applications in the design, planning, and Social sciences. Using empirical evidence a cognitive schema is designed that accounts for perceptual and behavioral preferences in pedestrian navigation. Using this created schema, as a guiding framework, the use of network analysis and space syntax act as a computational methods to simulate human exploration wayfinding in unfamiliar indoor environments. The conceptual model provided is then implemented in two ways. First of which is by updating an existing agent-based modeling software directly. The second means of deploying the model is using a spatial interaction model that distributed visual attraction and movement permeability across a graph-representation of building floor plans

    Personal Wayfinding Assistance

    Get PDF
    We are traveling many different routes every day. In familiar environments it is easy for us to find our ways. We know our way from bedroom to kitchen, from home to work, from parking place to office, and back home at the end of the working day. We have learned these routes in the past and are now able to find our destination without having to think about it. As soon as we want to find a place beyond the demarcations of our mental map, we need help. In some cases we ask our friends to explain us the way, in other cases we use a map to find out about the place. Mobile phones are increasingly equipped with wayfinding assistance. These devices are usually at hand because they are handy and small, which enables us to get wayfinding assistance everywhere where we need it. While the small size of mobile phones makes them handy, it is a disadvantage for displaying maps. Geographic information requires space to be visualized in order to be understandable. Typically, not all information displayed in maps is necessary. An example are walking ways in parks for car drivers, they are they are usually no relevant route options. By not displaying irrelevant information, it is possible to compress the map without losing important information. To reduce information purposefully, we need information about the user, the task at hand, and the environment it is embedded in. In this cumulative dissertation, I describe an approach that utilizes the prior knowledge of the user to adapt maps to the to the limited display options of mobile devices with small displays. I focus on central questions that occur during wayfinding and relate them to the knowledge of the user. This enables the generation of personal and context-specific wayfinding assistance in the form of maps which are optimized for small displays. To achieve personalized assistance, I present algorithmic methods to derive spatial user profiles from trajectory data. The individual profiles contain information about the places users regularly visit, as well as the traveled routes between them. By means of these profiles it is possible to generate personalized maps for partially familiar environments. Only the unfamiliar parts of the environment are presented in detail, the familiar parts are highly simplified. This bears great potential to minimize the maps, while at the same time preserving the understandability by including personally meaningful places as references. To ensure the understandability of personalized maps, we have to make sure that the names of the places are adapted to users. In this thesis, we study the naming of places and analyze the potential to automatically select and generate place names. However, personalized maps only work for environments the users are partially familiar with. If users need assistance for unfamiliar environments, they require complete information. In this thesis, I further present approaches to support uses in typical situations which can occur during wayfinding. I present solutions to communicate context information and survey knowledge along the route, as well as methods to support self-localization in case orientation is lost
    corecore