22,731 research outputs found

    Channels Reallocation In Cognitive Radio Networks Based On DNA Sequence Alignment

    Full text link
    Nowadays, It has been shown that spectrum scarcity increased due to tremendous growth of new players in wireless base system by the evolution of the radio communication. Resent survey found that there are many areas of the radio spectrum that are occupied by authorized user/primary user (PU), which are not fully utilized. Cognitive radios (CR) prove to next generation wireless communication system that proposed as a way to reuse this under-utilised spectrum in an opportunistic and non-interfering basis. A CR is a self-directed entity in a wireless communications environment that senses its environment, tracks changes, and reacts upon its findings and frequently exchanges information with the networks for secondary user (SU). However, CR facing collision problem with tracks changes i.e. reallocating of other empty channels for SU while PU arrives. In this paper, channels reallocation technique based on DNA sequence alignment algorithm for CR networks has been proposed.Comment: 12 page

    Multiverse: Mobility pattern understanding improves localization accuracy

    Get PDF
    Department of Computer Science and EngineeringThis paper presents the design and implementation of Multiverse, a practical indoor localization system that can be deployed on top of already existing WiFi infrastructure. Although the existing WiFi-based positioning techniques achieve acceptable accuracy levels, we find that existing solutions are not practical for use in buildings due to a requirement of installing sophisticated access point (AP) hardware or special application on client devices to aid the system with extra information. Multiverse achieves sub-room precision estimates, while utilizing only received signal strength indication (RSSI) readings available to most of today's buildings through their installed APs, along with the assumption that most users would walk at the normal speed. This level of simplicity would promote ubiquity of indoor localization in the era of smartphones.ope

    SAI: safety application identifier algorithm at MAC layer for vehicular safety message dissemination over LTE VANET networks

    Get PDF
    Vehicular safety applications have much significance in preventing road accidents and fatalities. Among others, cellular networks have been under investigation for the procurement of these applications subject to stringent requirements for latency, transmission parameters, and successful delivery of messages. Earlier contributions have studied utilization of Long-Term Evolution (LTE) under single cell, Friis radio, or simplified higher layer. In this paper, we study the utilization of LTE under multicell and multipath fading environment and introduce the use of adaptive awareness range. Then, we propose an algorithm that uses the concept of quality of service (QoS) class identifiers (QCIs) along with dynamic adaptive awareness range. Furthermore, we investigate the impact of background traffic on the proposed algorithm. Finally, we utilize medium access control (MAC) layer elements in order to fulfill vehicular application requirements through extensive system-level simulations. The results show that, by using an awareness range of up to 250 m, the LTE system is capable of fulfilling the safety application requirements for up to 10 beacons/s with 150 vehicles in an area of 2 × 2 km2. The urban vehicular radio environment has a significant impact and decreases the probability for end-to-end delay to be ≤100 ms from 93%–97% to 76%–78% compared to the Friis radio environment. The proposed algorithm reduces the amount of vehicular application traffic from 21 Mbps to 13 Mbps, while improving the probability of end-to-end delay being ≤100 ms by 20%. Lastly, use of MAC layer control elements brings the processing of messages towards the edge of network increasing capacity of the system by about 50%

    Development and field evaluation of an online monitor for near-continuous measurement of iron, manganese, and chromium in coarse airborne particulate matter (PM)

    Get PDF
    A novel air sampling monitor was developed for near-continuous (i.e., 2-h time resolution) measurement of iron (Fe), manganese (Mn), and chromium (Cr) concentrations in ambient coarse particulate matter (PM) (i.e., PM10–2.5). The developed monitor consists of two modules: (1) the coarse PM collection module, utilizing two virtual impactors (VIs) connected to a modified BioSampler to collect ambient coarse PM into aqueous slurry samples; (2) the metal concentration measurement module, which quantifies the light absorption of colored complexes formed through the reactions between the soluble and solubilized target metals and pertinent analytical reagents in the collected slurries using a micro volume flow cell (MVFC) coupled with UV/VIS spectrophotometry. The developed monitor was deployed in the field for continuous ambient PM collection and measurements from January to April 2016 to evaluate its performance and reliability. Overall, the developed monitor could achieve accurate and reliable measurements of the trace metals Fe, Mn, and Cr over long sampling periods, based on the agreement between the metal concentrations measured via this online monitor and off-line parallel measurements obtained using filter samplers. Based on our results, it can be concluded that the developed monitor is a promising technology for near-continuous measurements of metal concentrations in ambient coarse PM. Moreover, this monitor can be readily configured to measure the speciation (i.e., water-soluble portion as well as specific oxidation states) of these metal species. These unique abilities are essential tools in investigations of sources and atmospheric processes influencing the concentrations of these redox-active metals in coarse PM. Copyright © 2016 American Association for Aerosol Research © 2016 American Association for Aerosol Research

    Tracking Human Mobility using WiFi signals

    Get PDF
    We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of human mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80\% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking
    corecore