

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Multiverse: Mobility pattern understanding improves
localization accuracy

Beknazar Abdikamalov

Department of Computer Science and Engineering

Graduate School of UNIST

2019

Multiverse: Mobility pattern understanding improves
localization accuracy

Beknazar Abdikamalov

Department of Computer Science and Engineering

Graduate School of UNIST

Abstract

This paper presents the design and implementation of Multiverse, a practical indoor localization

system that can be deployed on top of already existing WiFi infrastructure. Although the exist-

ing WiFi-based positioning techniques achieve acceptable accuracy levels, we find that existing

solutions are not practical for use in buildings due to a requirement of installing sophisticated

access point (AP) hardware or special application on client devices to aid the system with ex-

tra information. Multiverse achieves sub-room precision estimates, while utilizing only received

signal strength indication (RSSI) readings available to most of today’s buildings through their

installed APs, along with the assumption that most users would walk at the normal speed. This

level of simplicity would promote ubiquity of indoor localization in the era of smartphones.

Contents

I Introduction . 1

II Related work . 3

III System overview . 4

IV Offline phase . 6

4.1 Converting floor plan image to a graph of nodes 6

4.2 Building fingerprint database . 8

V Online phase . 10

5.1 Retrieve locations from RSS data . 10

5.2 Minimum required speed . 11

5.3 PathTree construction . 12

5.4 PathTree compressor . 12

VI Implementation . 13

VII Evaluation . 16

7.1 Methodology . 16

7.2 Localization error . 16

7.3 Fréchet distance error . 18

7.4 System efficiency . 19

2

VIII Discussion . 20

IX Conclusion . 22

References . 23

Acknowledgements . 27

List of Figures

1 Illustration of the main idea . 1

2 Multiverse system workflow. 4

3 Transform process of the algorithm 1 . 6

4 Curve fitting results for 3 different APs . 8

5 A snapshot of the fingerprint database . 8

6 Android application: TrackeTracker . 9

7 An illustration of the PathTree construction . 10

8 Number of possible locations for each timestamp 10

9 The effect of the PathTree Compressor on number of viable paths. 15

10 Implementation of the server. RSSI data is sent continuously to the main server

in batches of 5 minutes. 15

11 Floor plan of the experimentation area . 16

12 CDF of point-wise distance errors . 17

13 CDF of Fréchet distance errors . 17

14 Evaluation of sample trace 1. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are

starting and ending positions, correspondingly. 18

15 Evaluation of sample trace 2. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are

starting and ending positions, correspondingly. 19

4

16 Evaluation of sample trace 3. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are

starting and ending positions, correspondingly. 20

I Introduction

Plausible path Improbable path

Location estimated from WiFi signal

Start Stop

Figure 1: Illustration of the main idea

Indoor localization is considered unarguably one of the most important enabling techniques

for mobile services. It has drawn significant amount of interest from research communities

during the last few decades. There have been several directions of research but, inspired by

the GPS (global positioning system), a major portion of researchers have given their focuses

on developing a hand-held system that exploits some sort of signals received by the system

to pinpoint an indoor position. The variety of the signals utilized for this purpose subsumes

WiFi [1], Bluetooth [2,3], FM radio [4,5], RFID (radio-frequency identification) [6–9], ultrasound

or sound [10, 11], light [12, 13], and magnetic field [14, 15]. Thanks to all the efforts, it is now

widely accepted that when the signals are properly fingerprinted per location, the accuracy of

indoor positioning can be as much as few meters. According to a recent study exploiting much

more detailed low-level signal information including [16, 17], the accuracy can be even more

improved to a sub-meter scale.

However, it is disappointing that none of these achievements became a de-facto standard of

indoor localization and the majority of billions of smartphone users in the world are still not

benefited from an indoor localization technique in their living spaces. To address the practicality

issues hindering adoption of such methods in reality, we propose a new immediately deployable

indoor localization system, Multiverse. Unlike previously available methods, Multiverse keeps

away from the following two nuisances: 1) user device engagement and 2) labor-intensive pro-

1

cedure. The necessity of user device engagement for some reasons such as signal measurement,

signal analysis, dead reckoning, and map matching makes user devices battery-hungry and slug-

gish. Therefore, it is not surprising that a set of methods that essentially asks for the user

device engagement is under-appreciated. Especially, a branch of methods continuously burden-

ing a user device to have an estimate of the position such as dead reckoning is not welcomed.

Similarly, the necessity of any labor intensive procedure such as signal fingerprinting at a wide

range of positions in an indoor structure makes a localization method shunned. Crowdsourcing

is considered to be a good alternative to such a procedure, but if it demands more than natural

behaviors of an average person, it is also unpromising. To our knowledge, available indoor local-

ization techniques with room-level or better accuracy are not free from either or both of these

nuisances.

Multiverse escapes from those problems by implementing a localization algorithm running in

the backend server of a WiFi infrastructure, which deduces the most plausible mobile trajectory

over multiple imperfect location estimates made from WiFi signals captured in the infrastruc-

ture. By doing so, it removes its dependency on user devices and raises its localization accuracy

to a room-level. At the same time, it removes the necessity of a labor-intensive procedure of sig-

nal fingerprinting by roughly crowdsourcing the positions on a floor plan from randomly chosen

users in the indoor structure. The conjecture behind Multiverse is that the deduced plausible

trajectory with consideration of indoor walking speed substantially reduces the uncertainty in-

volved in spot-wise location estimates. We empirically validate the conjecture by implementing

Multiverse in the WiFi infrastructures of several indoor places and by obtaining its accuracy of

1.6 meters improved from 5.1 meters observed in a infrastructure-based spot-wise localization

method. The idea is illustrated in Figure 1, where aiming to construct plausible paths would

improve overall localization accuracy.

We implemented Multiverse using the RSSI data feed coming from the Cisco Wireless

LAN controller, which is designed to send real-time information about clients devices that are

heard by access points of the network. We run evaluations against one of the best-performing

infrastructure-based system RADAR-inspired solution [18,19] under the same circumstances; we

describe the testbed in VI. Our experiments show that Multiverse achieves a median localization

error of 1.6 m, and the 80th percentile error is 4.1 m.

2

II Related work

In the literature of indoor localization, numerous solutions have been proposed in the past two

decades. Generally, they fall into 2 classes: RSS based, modeling based, and fusion techniques.

Firstly, RSS based approaches, which rely on RSSI readings from the target device at multiple

APs and combines them via triangulation along with a propagation model to locate the devices

[1,19–26]. These approaches have an advantage of being readily deployable, but largely based on

laptops with quite different antenna forms (antenna polarization) or need to read RSSI values

directly from the devices. Second, angle of arrival (AoA) based approach, which calculates the

AoAs of the multipath signals received at each AP, finds the direct path to the target device and

then applies triangulation to localize [16, 17, 27–31]. The best AoA based approaches showed

a great level of precision on the order of 0.4 m [16, 17]. However, these methods are relatively

challenging to deploy, since they require additional hardware changes by introducing as high as

8 antennas [16, 31], or new boxes itself with rotating antennas [17], or require special APs to

access IQ samples [16,29].

There are other recently proposed methods that use device sensors such as gyroscopes, ac-

celerometers, etc., along with RSS values [32–37]. However, it would not be practical in the

sense that clients are required to install special applications or allow certain modifications in

their operating systems. However, we want to continuously localize a mobile device with only

these existing WiFi signals without any additional infrastructure, as well as without requiring

access to the device readings directly.

3

III System overview

Main challenges and design goals. Multiverse builds its components around three major

design goals: (i) The system should be usable in buildings using existing their WiFi infras-

tructure. (ii) Continuously and accurately track users with any smartphone connected to APs,

without directly accessing their devices. (iii) The system should output location traces which

are humanly possible, without violating human walking speed.

!"#$!%%&

'()
*
+$!%%&

*
+$,
*
-

.*"/01$23"4152637
ττ

)318365199

!%%&$91:;1<51

'()
*
+$!%%&

*
-

=0663$80"<

>"23*?$>"8

,3"51,3"5@13

A36;<B$,3;2C

=*<D1383*<2$EF
)"2C,311$G6<923;5263

H65"I6<$19IJ"263
)699*/01$065"I6<9

K)
*
L

OFFLINE PHASE

ONLINE PHASE

G6J8319963

INPUT OUTPUT

.*"/01$

8"2C9

Filter by

Mobility Pattern

,3"4152637$91015263

Figure 2: Multiverse system workflow.

System workflow. We divide the system stem into two main categories: offline and online

phases. Figure 2 illustrates their workflow. Offline phase actions refer to processes that are to

prepare the system and are done only once in the beginning, while online phase tasks are done

while tracking users.

A floor plan is available in almost any building and shows the structure of the floors from

above, including the relationships between rooms, spaces, and other physical features. Simply

taking a direct line between two points in a floor plan is not necessary to be the walking

distance or route between them due to the block of walls and other obstacles. Hence, we

perform the following steps to get the real distances and paths between any locations in the

floor by considering all the physical constraints. First, we convert the true-color image of the

floor plan map to the gray-scale intensity image using MATLAB’s Image Processing Toolbox [38].

Second, a binary matrix is created based on the gray-scale image by replacing all values above a

determined threshold with 1s and setting all other values to 0s. In the evaluations, we determined

the threshold using Otsu’s method [39], which chooses the threshold value to minimize the

intraclass variance of the thresholded black and white pixels. Lastly, the binary matrix is equally

divided into a mesh of grids and we refer to each center of those grids as node. Length l of a

grid can be 1-3 meters according to the general performance of fingerprinting-based localization

4

methods. In our experiment, we set l = 1m. By calculating the distances between all pairs

of sample points, we have the distance matrix D = [dij], where dij is the shortest distance

calculated using Dijkstra’s algorithm between two points pi and pj in the floor plan. This

algorithm is described in more detail in the Algorithm 1.

To estimate location from received RSSI values it is necessary to have an RSSI to node

mapping. To accomplish the mapping, we have developed an Android application TraceTracker,

which can be used simply by pinpointing the locations on the screen while walking as shown in

Figure 6. Using the data, we build a matrix M which maps each historical AP ×RSSI to a

vector of corresponding locations (nodes) ~P .

Based on our experiments, we have found out that signal strength signals received at APs

need to be preprocessed by performing the following steps: (i) Merge the possible nodes of

signals with the same timestamp (ii) Skip signal data if impossible to connect with its temporally

neighbouring signal data, if all of the connections between consecutive location nodes exceed the

maximum walking speed of an average human.

After cleaning up the noisy or violating signal points, the system utilizes the fingerprint

database M to get the list of possible locations for each received signal strength data using

the location estimator described in the Algorithm 2. Then, a tree of all the possible paths is

constructed by connecting the consecutive list of locations. Since, to avoid exponential growth

of the tree, the tree is compressed periodically at certain time intervals to keep the tree at

manageable size. Finally, the list of viable paths will be connected to get the most viable

trajectory.

5

a) Floor plana) Floor plan b) Binary matrixb) Binary matrix c) Graph of nodesc) Graph of nodes

Figure 3: Transform process of the algorithm 1

IV Offline phase

4.1 Converting floor plan image to a graph of nodes

Our goal in this phase is to convert a typical floor plan image into a binary matrix M , where

each cell c of the matrix is defined as follows

M(c) =

1, if c is accessible

0, if c is inaccessible

To obtain the matrix above, we run the algorithm 1 on the obtained image file of a floor plan.

Overall, this conversion gives us the following benefits:

1. Environmental constraints such as walls and doors are naturally considered to efficiently

avoid during path construction processes. Constraint areas are considered as inaccessible

areas.

2. Shortest path-finding algorithms can run efficiently. We are able to utilize Dijkstra’s

shortest path calculation between any points in the accessible space by treating the whole

space as a graph.

3. Received signal strength to location converting models are able to map RSSI values into

discrete locations, which improves memory and computational utilization.

A floor plan is available in almost any building and shows the structure of the floors from

above, including the relationships among rooms, spaces, and other physical features. Simply

taking a direct line between two points in a floor plan is usually not the walking route or distance

between them due to the block of walls and other obstacles. Hence, we perform the following

steps to get the real distances and paths between any 2 locations in the floor by considering all

the physical constraints. First, we convert the true-color image of the floor plan map to the gray-

scale intensity image using MATLAB’s Image Processing Toolbox [38]. Second, a binary matrix

is created based on the gray-scale image by replacing all values above a determined threshold

with 1s and setting all other values to 0s. In the evaluations, we determined the threshold using

Otsu’s method [39], which chooses the threshold value to minimize the intraclass variance of the

6

thresholded black and white pixels. Lastly, the binary matrix is equally divided into a mesh

of grids and we refer to each center of those grids as node. The length l of a grid can be 1-3

meters according to the general performance of fingerprinting-based localization methods. In

our experiment, we set l = 1m.

An example of the converted floor plan can be seen in Figure 3. Dots in the accessible area

refer to nodes which is the result if equally dividing the space into a mesh of grids.

Algorithm 1 Converting floor plan to graph of nodes
Input: Image of the floor plan

Output: Matrix map

1: Convert plan into a gray-scale image using the function rgb2gray;

2: Computer threshold of the gray image of the plan using Otsu’s method;

3: Binarize the gray image using the determined threshold to get a binary matrix;

4: Uniformly divide the binary matrix into a mesh of grids;

5: Create a graph using the centers of the grids;

Also, after converting the floor plan to a graph of nodes, we do one more step which helps us

to obtain realistic routes and distances while running the main algorithm. Since, simply taking

a direct line between points in the floor plan will not give us the real walking routes between

them due to the block of walls and other obstacles. We utilize the Floyd-Warshall algorithm [40]

to determine the shortest paths between any nodes in the graph. The computation is run once

only and stored in the matrix to quickly returning realistic routes and distances in the later

stages of the system. This step will output the matrix R = [rij], where rij is the shortest path

between two points pi and pj in the floor plan.

Table 1: List of attributes of each WiFi signal

Name Description

Epoch time (s) Timestamp that represents local time in AP when message was sent

Signal age (s) Time since the last packet was heard from this station

Data rate (Mb/s) Data rate of chirp frame

Client type (boolean) The signal source (Either AP or device)

Channel (number) Channel of tag transmission (Either 5 GHz or 2.4 GHz)

AP MAC (string) MAC address of AP

Association status (boolean) The signal data is probe or data package

RSSI (dBm) The value of the RSSI

Noise floor (dBm) Noise floor of the radio

Radio BSSID (string) BSSID of the radio that detected the device

Mon BSSID (string) BSSID of the AP that the station is associated to

Client MAC (string) MAC address of station

7

-70 -60 -50

2

4

6

8

10

12

Data

Fitted curve

(a) AP: 1

-75 -70 -65 -60

0

10

20

30

40

Data

Fitted curve

(b) AP: 2

-70 -60 -50

0

5

10

15

20

Data

Fitted curve

(c) AP: 3

Figure 4: Curve fitting results for 3 different APs

4.2 Building fingerprint database

Raw RSSI data is obtained from the AP controllers, which has an access to all the APs in the

building. The list of attributes that makes each signal data point is shown in the table 1. Out of

all the signal attributes, we utilize epoch time, RSSI value, media access control (MAC) address

of the connected AP and hashed MAC address of the connected device.

To estimate location from the RSS data it is necessary to have a way to map incoming raw

data to location(s). There are 2 main techniques to obtain locations using RSS data: to build a

fingerprint database or building a model using fitting techniques. Modelling attempts based on

ground truth trace data are done using curve fitting and it can be seen that it’s very challenging

to find a pattern in the data. Graphs of curve fitting results are shown for 3 different APs in the

Figure 4. Since, modelling techniques achieve low accuracy, since it is impossible to model signal

to distance due to environmental constraints, we use the fingerprint based technique. Also, it

helps us to take into account many cases with its corresponding signal vectors.

A
P

R
S
S
I

1 [43, 5, 18…

[5, 18, 67…

[27, 57…

[94, 26, 99…

[88, 13, 12…

[3, 71, 95…

[1, 12, 33…

[2, 4, 44, 60…

[121, 33, 11…2

3

-55 -56 -57

Figure 5: A snapshot of the fingerprint database

Each signal data is a sequence of tuples of the form (Ti, APi, RSSIi). To accomplish the

mapping, we have developed an Android application TraceTracker, which can be used simply

by pinpointing the locations on the screen while walking as shown in Figure 6. The application

8

Figure 6: Android application: TrackeTracker

returns the list of tuples of the form (Ti, xi, yi), which corresponds to the time and coordinate of

the points clicked on the screen during the collection process. Then, then the system matches the

timestamps of the real coordinates data with the raw signal data to start creating the mapping

matrix. Since, radio frequencies of 5 GHz and 2.4 GHz have different signal properties, we create

2 different matrices for each.

We assume this fingerprint collection process is considerably simple and can be done by any

person familiar with the floor plan. Also, the process is more ’realistic’ in the sense that during

location estimation process the signals we receive would be from moving objects, not always

static. However, most of the fingerprint-based solutions collect fingerprint data in a static way,

which might differ from the online phase signal propagation.

Using the data, we build a matrix M which maps each historical AP ×RSSI to a vector of

corresponding locations (nodes) ~P .

After these steps, we will have the fingerprint database which stores corresponding locations

for tuples of the form AP × RSSI, which were recorded in the ground truth collection steps

using TraceTracker application. The matrix have the form show in Figure 5.

9

V Online phase

2 10

9

11

20

12

1 3 7

t

(a) List of possible lo-
cations for each times-
tamp

2

10 9

20 1211

1

3

7

t

0.5 m/s 1.4 m/s

1.2 m/s1.6 m/s
0.7 m/s

(b) Tree of all viable trajectories

2

9
10

11

20

12

33

4.4 m/s

(c) Viable trajectories in the map. Lo-
cation 33 is absent in the tree b) due to
high speed of 4.4 m/s to pass the shortest
route.

Figure 7: An illustration of the PathTree construction

5.1 Retrieve locations from RSS data

0 100 200 300 400

Time stamp

0

50

100

150

N
u

m
b

e
r

o
f

p
o

s
s
ib

le
 l
o

c
a

ti
o

n
s
 (

n
o

d
e

s
)

(a) Sample trace 1

-50 0 50 100 150 200 250

Time stamp

0

50

100

150

200

N
u

m
b

e
r

o
f

p
o

s
s
ib

le
 l
o

c
a

ti
o

n
s
 (

n
o

d
e

s
)

(b) Sample trace 2

Figure 8: Number of possible locations for each timestamp

The online phase of the system starts as soon as we receive raw RSS data with the attributes

shown in the Table 1. In the server, we continuously receive these data and estimate the locations

of users. We use the hashed MAC of the client device to distinguish the users. The input data is

a sequence of tuples (APi, RSSIi, Ti) and the sequence is merged by Ti, so that at each ti there

is a set of records APt, RSSIt. Then, the input will be fed into the fingerprint database built in

the section 4.2 to get corresponding location estimates Lt as shown in the Algorithm 2. Now,

for each time, we have a set of possible locations in the graph. As in the 4.2, the fingerprint

database was built for both radio frequencies separately, which can be either 5 GHz or 2.4 GHz.

The radio frequency of the signal can be identified by the attribute channel of from the Table 1.

Our evaluations showed that localization performances of both frequencies are almost the same.

10

However, the fingerprint database collected out of 21 traces with around 5 minutes of walking.

This database has 2.1 times more of signals in the 2.4 GHz channel than 5 GHz ones.

Algorithm 2 Location Estimator

1:
−→
R : sequence of RSSI vectors,

−→
Ri: sequence of RSSI vectors at timestamp i

2:
−→
Hx: set of RSSI vectors corresponding to location x in the fingerprint DB

3:
−→
X : set of locations, x: a location

4: Ĥx: divergence factor of RSS vectors at given location x

5: GetEuclideanDistance(
−→
A,
−→
B): a function to calculate pairwise Euclidean distance between

two vectors
−→
A and

−→
B

6: GetMedian(
−→
A): returns median value of numbers in

−→
A

7: Append(
−→
A, a): appends a to a vector

−→
A

8: procedure Estimator(R)

9:
−→
P ← ∅

10: for
−→
Ri ∈

−→
R do . Loop sequence of RSSI vectors

11: for x ∈
−→
X do . Loop through every position (grid)

12:
−→
Hx ← {

−→
H |M(

−→
H) = x} . M - fingerprint database

13: if
−→
Hx = ∅ then

14: continue

15: end if

16: D ← GetEuclideanDistance(
−→
Ri,
−→
Hx)

17: if D ≤ Ĥx then

18:
−→
Pi ← Append(

−→
Pi, x)

19: end if

20: end for

21: end for

22: return
−→
P . Sequence of plausible locations

23: end procedure

After the Algorithm 2 is done running, we have a list of possible locations (nodes) for each

timestamp. Since, our goal is to reduce to point-wise location estimates based on the human

walking speed, we keep all the probable location points until the end. The possible locations

count for traces are shown in Figure 8, where random 2 traces are chosen in Figure 8a and

Figure 8b, each with around 5 minutes of walking trace.

5.2 Minimum required speed

In this subsection, we start to apply realistic trajectory estimation to improve the localization

accuracy. Since, raw data might consist of invalid RSSI values or values which are not present in

the fingerprint database for some of the time instances, which would make it hard to construct

11

realistic paths. We identify the problematic points by taking the fastest possible path between

consecutive signal points. Since, each signal point was converted to a list of possible locations

from the previous subsection 5.1, the minimum required speed to pass the consecutive signal

points is the closest distance between consecutive list of locations divided to a duration it takes

to pass the points.

Multiverse achieves preprocessing by running the following steps. by performing the following

steps: (i) Merge the possible nodes of signals with the same timestamp (ii) Skip signal data

if impossible to connect with its temporally neighbouring signal data, if all of the connections

between consecutive location nodes exceed maximum walking speed of an average human.

5.3 PathTree construction

After dropping the noisy points, we start to construct a tree of viable paths user might have

taken. We call this tree of viable paths - PathTree. First, assuming we know the starting

point of the trajectory, so at t = 0, there is a single possible location. Starting from the next

timestamp, we keep connecting the all the possible permutations between locations of current t

and previous time t−1. However, an important point is to construct path between two locations

pi and pj only if the required speed to pass the shortest path between them do not exceed 4 m/s,

which is already a very walking speed. Illustration of the idea is shown in the Figure 7, where

set of possible locations (Figure 7a) are utilized to construct the PathTree (Figure 7b), which

results in viable trajectories (Figure 7c). Example of impossible route is show in the Figure 7c,

where node 33 is absent in the tree Figure 7b. It is due to a high speed (4.4 m/s) requirement

to pass the given route. The constructor’s algorithm is fully described in the Algorithm 3 and

we call the function PathTree Constructor.

5.4 PathTree compressor

The PathTree gets exponentially large due to high number of permutations generated from pos-

sible locations space. To avoid the exponential size, the method called PathTree compressor is

developed, which runs periodically at certain compression intervals and steps are thoroughly de-

scribed in the Algorithm 4. In our experiments, the compression interval is set to 5seconds. This

is an important step which serves a crucial role of pruning out impossible paths and keeping the

system performance at a high level by decreasing the size of the PathTree. It achieves it by utiliz-

ing the two key functions SpeedConsistencyF ilter() and Cluster(). SpeedConsistencyF ilter()

is a function that prunes out the paths which have inconsistent speeds, by calculating standard

deviation of the speed vector. And, Cluster() function utilizes DBScan method to cluster the

start and ending points of path, if they are with ε distance, based on simple Euclidean distance

calculation. In our experiments, we set the value of ε to 0.1.

The compressor results can be seen on the Figure 9.

12

Algorithm 3 PathTree Constructor

1:
−→
P : sequence of plausible positions,

−→
Pj : sequence of plausible positions at time index j,

2: T : tree of viable paths (PathTree), Tk: set of locations at the kth level of the PathTree

3: τi: epoch time value at time index i

4: xi: location at time index i

5: Tmin: minimum number of nodes at any level of the PathTree

6: Append(
−→
A, a): appends a to a vector

−→
A

7: GetCount(Tk): number of locations at the kth level of the PathTree

8: GetDepth(T): returns depth of the PathTree T

9: GetShortestDistance(x, y): returns the shortest path distance between locations x an y

given environmental constraints

10: procedure Constructor(P)

11: T ← Tree() . Initialization of the PathTree

12: T1 ←
−→
P1

13: k ← 1

14: for i ∈ {2, . . . , I} do . I: last time index

15: k ← k + 1

16: for j ∈ {i, . . . ,min(i+ ∆imax − 1, I} do
17: ∆τ ← τj − τi . Duration (s)

18: for xi ∈
−→
Pj do

19: d← GetShortestDistance(xj, xi) . Distance (m)

20: v ← d/∆τ . Speed of walk (m/s)

21: if v ≤ vmax then
22: Tk ← Append(Tk, xj)

23: end if

24: end for

25: end for

26: if GetCount(Tk) ≥ Tmin then . Number of nodes in the next level ≥ Tmin
27: break

28: end if

29: if GetDepth(T) ≥ Tmax then . PathTree depth ≥ Tmax
30: Compressor(T) . Refer to the Algorithm 4

31: end if

32: end for

33: return T . Tree of plausible paths

34: end procedure

VI Implementation

13

Algorithm 4 PathTree Compressor
1: T : PathTree

2: Lt: list of paths from time t, N : number of timestamps of each path in Lt
3: AppendChild(T, t, L): appends a child LN to the node L1 at the level t of the PathTree T

and returns modified T

4: Cluster(L, ε): clusters set of paths based on start and end locations using DBScan algorithm

with given parameter ε

5: GetAllPath(T, t): returns list of paths of the PathTree T starting from timestamp t till now

6: GetShortestPath(x, y): returns the shortest path between locations x an y given environ-

mental constraints

7: GetUnique(
−→
A): returns unique elements of vector A

8: PruneTree(T, t): remove all the nodes of the PathTree T starting from timestamp t

9: SpeedConsistencyF ilter(Lt): filters list of paths by checking speed consistency

10: procedure Compressor(T)

11: Lt, N ← GetAllPath(T, t)

12: L′
t ← SpeedConsistencyFilter(Lt) . Prune paths with inconsistent speed sequence

13: Pstart ← GetUnique(L′
t,1)

14: Pend ← GetUnique(L′
t,N)

15:
−−−−→
Ldirrect ← GetShortestPath(Pstart, Pend)

16:
−−−−→
Ldirrect

′ ← Cluster(Ldirrect, ε) . Cluster direct paths using DBScan method

17: T ′ ← PruneTree(T, t)

18: for L′
direct ∈

−−−−→
Ldirrect

′ do

19: T ′ ← AppendChild(T ′, t, L′
direct)

20: end for

21: return T ′ . Compressed tree of plausible paths

22: end procedure

We implemented Multiverse using the RSSI data feed from the Cisco Wireless LAN controller

(Cisco WLC 8500), which is designed to send information about clients devices that are heard

by the network in the campus of Ulsan National Institute of Science and Technology. We have

developed a framework that can access to the controller at the interval of 4 seconds and dumps

signal information with data fields described in the Table 1 of selected devices. We distinguish

devices using their MAC address. Out of all the signal attributes, we utilize information related

to each nearby AP, RSSI and its corresponding timestamp when the signal was heard. Note:

every device that connects to the WiFi infrastructure at each venue has agreed to this tracking

as part of the sign-on agreement. In addition, all devices that are treated as hashed entities

with no additional knowledge about them.

RSSI data feed is collected in our main server and all the WiFi signal data are sent to a

program written in MATLAB to send back the location information in batches Figure 10. Each

14

10 20 30 40 50 60 70 80

Time index (#)

0

50

100

150

N
u
m

b
e
r

o
f
p
o
s
s
ib

le
 p

a
th

s
 (

#
)

(a) Sample trace 1

0 10 20 30 40 50 60 70 80

Time index (#)

0

50

100

150

(b) Sample trace 2

0 10 20 30 40 50 60 70 80

Time index (#)

0

50

100

150

N
u
m

b
e
r

o
f
p
o
s
s
ib

le
 p

a
th

s
 (

#
)

(c) Sample trace 3

0 10 20 30 40 50 60 70

Time index (#)

0

20

40

60

80

100

120

(d) Sample trace 4

Figure 9: The effect of the PathTree Compressor on number of viable paths.

Wireless LAN
controller

(x, y) ?

Cisco WLC 8500

AP Server User device

Figure 10: Implementation of the server. RSSI data is sent continuously to the main server in

batches of 5 minutes.

batch is each 5 minutes to get the trace trajectory data for each device.

We used Cisco’s Wireless controller device to access real-time data of users connected to

15

VII Evaluation

77 m

33 m

Access point: Cisco Aironet 1832i

Figure 11: Floor plan of the experimentation area

7.1 Methodology

We design real-life experiments in a campus building with 16 APs installed at known locations

Figure 11. Users walked around arbitrarily in the building for an hour during normal office hours,

with the smartphone at their hands by clicking their current locations using the TraceTracker,

covering approximetly 2000 m2. As each user walks, the AP signal strength data is sent from

WiFi LAN Controller to the main server. At the same time, real coordinates of the users is

uploaded in the server as well from TraceTracker. The distance between the ground truth

and the estimated locations is Multiverse’s instantaneous localization error. Since, the raw

data might not always correctly match temporally with the ground truth data points, we used

interpolation between locations by correctly finding the midpoints between consecutive graph

nodes using the shortest distances matrix built in the 4.1.

7.2 Localization error

Trace comparisons of ground truth vs Multiverse and ground truth vs Landmark-based methods

are shown in the Figure 14, Figure 15 and Figure 16 for random sample traces with around 5

minutes of walking. We can most of the time find out the room-level location, and corridors are

mostly easiest due to simplicity of the environment.

Our experiments show that Multiverse achieves a median localization error of 1.6 m, and the

80th percentile error is 4.1 m.

16

0 9.2 20 40 60 80
0

0.2

0.4

0.6

0.8

0.9

1

Multiverse: 1.6 m

Landmark-1: 6.2 m

Landmark-3: 5.5 m

Landmark-5: 5.1 m

Figure 12: CDF of point-wise distance errors

Two metrics are designed for localization performance: location error and room error. Lo-

cation error is defined as the Euclidean distance from the estimated location to the ground

truth one. As the final outputs of Multiverse, the RSS noises and mapping errors are simulta-

neously taken into account. Each query contains a fingerprint and LiFS returns an estimated

location. We also implemented RADAR-inspired solution [18] with 3 different configurations.

Configurations are different in the way K nearest neighbors algorithm uses the value of K. Then

compare their performance with Multiverse on the same experiment data. The average point-

wise distance error of Multiverse is 1.6 meters, which is around 30 % smaller than Landmark-5

(5.1 meters) as can be seen in Figure 12. The performance of Multiverse is considerably better

than the state-of-the-art model-based approaches (larger than 5 meters) reported in [31] and EZ

(larger than 7 meters) [6]. Some location errors are caused by the symmetric structure of rooms,

but they are relatively small and will not contribute to room error. This accuracy is impressive,

considering Multiverse needs no site survey and no specific infrastructure.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Multiverse

Landmark-3

Figure 13: CDF of Fréchet distance errors

17

(a) Multiverse: Point wise-error: 2.5 m, Fréchet distance error: 9.2 m

(b) Landmark-based: Point wise-error: 5.5 m, Fréchet distance error: 65.2 m

Figure 14: Evaluation of sample trace 1. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are starting and

ending positions, correspondingly.

7.3 Fréchet distance error

Since Multiverse outputs trace, it is also important to ensure curve similarity. For that purpose,

we implement Fréchet distance to measure ground truth curve and Multiverse output curve.

δF (f, g) = inf
α,β

max
t∈[0,1]

‖f(α(t))− g(β(t))‖ (1)

where f and g are the two shapes and α and β are the two parameterizations and δF (f, g) is

the Fréchet distance during time t ∈ [0, 1].

The CDF of the Fréchet distance errors are depicted in Figure 13. We compare the results of

Multiverse against Landmark-3. Since, our method takes into consideration environmental con-

straints and uses shortest paths between consecutive locations, the errors are noticeably better

18

(a) Multiverse: Point wise-error: 1.1 m, Fréchet distance error: 7.0 m

(b) Landmark-based:Point wise-error: 5.6 m, Fréchet distance error: 63.6 m

Figure 15: Evaluation of sample trace 2. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are starting and

ending positions, correspondingly.

(Multiverse: [Figure 14a, Figure 15a, Figure 16a] vs Landmark-based: [Figure 14b, Figure 15b,

Figure 16b]).

7.4 System efficiency

To output a estimated trace for a 5 minute trace, it takes about 1 minute of computational time

in a modern CPU. The running machine has the following capabilities. Processor: P3.5 GHz

Intel Core i7. Memeory: 20 GB 1600 MHz DDR3.

19

(a) Multiverse: Point wise-error: 2.85 m, Fréchet distance error: 8.0 m

(b) Landmark-based:Point wise-error: 7.4 m, Fréchet distance error: 62.0 m

Figure 16: Evaluation of sample trace 3. Multiverse trajectory (dotted blue lines) vs Landmark-

based (dotted red lines) vs ground truth trace (black dots). Blue, red dots are starting and

ending positions, correspondingly.

VIII Discussion

Most indoor localization systems rely on sophisticated signal information or device sensor data

to accurately estimate the user location and traces. While Multiverse utilizes contextual infor-

mation such as previous possible location and human mobility pattern information.

This work also motivates indoor positioning systems to consider curve similarity, since it’s

an important metrics to validate the system. It also ensures high quality analysis results such

as human walking patterns in commercial buildings.

However, the system has some limitations. The location information is usually available after

20

certain delay due to higher than average computational demand and device heterogeneity is not

guaranteed, since in the evaluations we have not utilized all the brands of smartphones with

diverse WiFi hardware. It has been discussed that devices based on WiFi chipset model, might

have different signal propagation patterns [41], which results in RSS vectors mismatch to bring

localization accuracy down. These issues are extensively discussed and addressed in academia.

For example, [42] finds that the robustness could be achieved by utilizing relative values of

RSS vectors among different APs rather than absolute values. Also, [43] tries to mitigate the

issue by applying kernel estimation to the signal propagation models of devices with different

WiFi chipsets. While, [44] learns the features of RSS vectors and linear dependency among

them to solve the robustness issue. All these attempts show encouraging results and could be

applied in our method as well to achieve better robustness among devices with diverse hardware

configurations.

21

IX Conclusion

WiFi-based indoor localization technique was developed, which can achieve practical accuracy,

easily deployable and utilizes only existing WiFi infrastructure without requiring any access to

data from mobile devices. All these features of the system allows large scale development for

ubiquitous usage.

Impressive results achieved with already available signal information give hope to new meth-

ods that can utilize unconventional data such as human mobility patterns. In this paper, by

utilizing average speed of walking and environmental constraints, we have achieved to improve

localization accuracy by more than 30% comparing to the state-of-art methods relying on same

information from WiFi infrastructure. Hence, we believe that gaining more insights on how hu-

mans walk give environmental constraints, the systems can achieve greater performances without

disturbing their natural behaviours.

22

References

[1] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location and tracking

system,” in INFOCOM. IEEE, 2000.

[2] S. Liu, Y. Jiang, and A. Striegel, “Face-to-face proximity estimationusing bluetooth on

smartphones,” IEEE Transactions on Mobile Computing, vol. 2, pp. 775–784, 2014.

[3] X. Zhao, Z. Xiao, A. Markham, N. Trigoni, and Y. Ren, “Does btle measure up against

wifi? a comparison of indoor location performance,” in European Wireless. VDE, 2014,

pp. 1–6.

[4] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “Fm-based indoor localization,” in

ACM MobiSys, 2012.

[5] S. Yoon, K. Lee, and I. Rhee, “Fm-based indoor localization via automatic fingerprint db

construction and matching,” in ACM MobiSys, 2013.

[6] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location sensing using

active rfid,” Wireless networks, vol. 10, no. 6, pp. 701–710, 2004.

[7] J. Wang and D. Katabi, “Dude, where’s my card?: Rfid positioning that works with multi-

path and non-line of sight,” ACM SIGCOMM, vol. 43, no. 4, 2013.

[8] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-time tracking of

mobile rfid tags to high precision using cots devices,” in ACM MobiCom, 2014.

[9] W. Zhuo, B. Zhang, S. G. Chan, and E. Y. Chang, “Error modeling and estimation fusion

for indoor localization,” in IEEE ICME, 2012.

[10] Z. Sun, A. Purohit, K. Chen, S. Pan, T. Pering, and P. Zhang, “Pandaa: physical arrange-

ment detection of networked devices through ambient-sound awareness,” in ACM UbiComp,

2011.

[11] W. Huang, Y. Xiong, X.-Y. Li, H. Lin, X. Mao, P. Yang, and Y. Liu, “Shake and walk:

Acoustic direction finding and fine-grained indoor localization using smartphones,” in IEEE

INFOCOM, 2014.

[12] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose: Indoor positioning with

mobile phones and visible light,” in ACM MobiCom, 2014.

23

[13] Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight

indoor positioning with visible light,” in ACM MobiSys, 2015.

[14] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman, “Indoor

location sensing using geo-magnetism,” in ACM MobiSys, 2011.

[15] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, “Maloc: A practical magnetic fingerprinting

approach to indoor localization using smartphones,” in ACM UbiComp, 2014.

[16] J. Xiong and K. Jamieson, “Arraytrack: A fine-grained indoor location system,” in USENIX

NSDI, 2013.

[17] S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization with zero start-up

cost,” in ACM MobiCom, 2014.

[18] A. J. Khan, V. Ranjan, T.-T. Luong, R. Balan, and A. Misra, “Experiences with perfor-

mance tradeoffs in practical, continuous indoor localization,” in IEEE WoWMoM, 2013.

[19] P. Bahl, V. N. Padmanabhan, and A. Balachandran, “Enhancements to the radar user

location and tracking system,” Microsoft Research, vol. 2, no. MSR-TR-2000-12, pp. 775–

784, 2000.

[20] K. Wu, J. Xiao, Y. Yi, M. Gao, and L. M. Ni, “Fila: Fine-grained indoor localization,” in

IEEE INFOCOM, 2012.

[21] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor localization with-

out the pain,” in ACM Mobicom, 2010.

[22] B. D. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian process latent variable

models,” in Proceedings of the 20th International Joint Conference on Artificial Intelligence,

2007.

[23] H. Lim, L.-C. Kung, J. Hou, and H. Luo, “Zero-configuration, robust indoor localization:

Theory and experimentation,” in IEEE INFOCOM, 2006.

[24] A. Goswami, L. E. Ortiz, and S. R. Das, “Wigem: A learning-based approach for indoor

localization,” in ACM CoNEXT, 2011.

[25] A. Kushki, K. N. Plataniotis, and A. N. Venetsanopoulos, “Kernel-based positioning in

wireless local area networks,” IEEE transactions on mobile computing, vol. 6, no. 6, 2007.

[26] J. J. Pan, J. T. Kwok, Q. Yang, and Y. Chen, “Accurate and low-cost location estimation

using kernels,” in International Joint Conference on Artificial Intelligence, 2005.

[27] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “Lte radio analytics made easy and

accessible,” in ACM SIGCOMM, 2014.

24

[28] S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding multipath to revive inbuilding wifi

localization,” in ACM MobiSys, 2013.

[29] K. R. Joshi, S. S. Hong, and S. Katti, “Pinpoint: Localizing interfering radios.” in USENIX

NSDI, 2013.

[30] D. Niculescu and B. Nath, “Vor base stations for indoor 802.11 positioning,” in MobiCom,

2004.

[31] J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson, “Phaser: Enabling phased array

signal processing on commodity wifi access points,” in ACM MobiCom, 2014.

[32] W. Sun, J. Liu, C. Wu, Z. Yang, X. Zhang, and Y. Liu, “Moloc: On distinguishing fingerprint

twins,” in IEEE ICDCS, 2013.

[33] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and E. Steinbach, “Graph-based data fusion

of pedometer and wifi measurements for mobile indoor positioning,” in ACM UbiComp,

2014.

[34] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Lightweight map matching for indoor

localisation using conditional random fields,” in IEEE IPSN, 2014.

[35] J. Seitz, J. Jahn, J. G. Boronat, T. Vaupel, S. Meyer, and J. Thielecke, “A hidden markov

model for urban navigation based on fingerprinting and pedestrian dead reckoning,” in IEEE

FUSION, 2010.

[36] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-effort crowdsourc-

ing for indoor localization,” in ACM MobiCom, 2012.

[37] Y. Gao, Q. Yang, G. Li, E. Y. Chang, D. Wang, C. Wang, H. Qu, P. Dong, and F. Zhang,

“Xins: The anatomy of an indoor positioning and navigation architecture,” in ACM MLBS,

2011.

[38] “Matlab image processing toolbox,” 2017, the MathWorks, Natick, MA, USA.

[39] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Systems, Man,

and Cybernetics Society, vol. 9, no. 1, pp. 62–66, 1979.

[40] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6, p.

345, 1962.

[41] G. Lui, T. Gallagher, B. Li, A. G. Dempster, and C. Rizos, “Differences in rssi readings

made by different wi-fi chipsets: A limitation of wlan localization,” in Localization and

GNSS (ICL-GNSS). IEEE, 2011, pp. 53–57.

[42] J.-g. Park, D. Curtis, S. Teller, and J. Ledlie, “Implications of device diversity for organic

localization,” in INFOCOM. IEEE, 2011.

25

[43] A. M. Hossain, Y. Jin, W.-S. Soh, and H. N. Van, “Ssd: A robust rf location fingerprint

addressing mobile devices’ heterogeneity,” IEEE Transactions on Mobile Computing, vol. 12,

no. 1, pp. 65–77, 2013.

[44] L.-H. Chen, E. H.-K. Wu, M.-H. Jin, and G.-H. Chen, “Homogeneous features utilization to

address the device heterogeneity problem in fingerprint localization,” IEEE Sensors Journal,

vol. 14, no. 4, pp. 998–1005, 2014.

26

Acknowledgements

I would first like to thank my advisor Professor Kyunghan Lee. The door to Prof. Lee’s office

was always open whenever I ran into a trouble spot or had a question during the development of

this work or writing. He consistently allowed this paper to be my own work, but steered me in

the right the direction whenever he thought I needed it. I am forever indebted for his valuable

lessons and generous support throughout my graduate studies.

I would also like to thank the experts who were involved in the evaluation stages of this

research project: Sungyong Lee, Askar Kuvanychbekov, Moeen Mirhosseini. Without their

passionate participation and input, the evaluation could not have been successfully conducted.

I would also like to acknowledge a major help from the members of our Mobile Systems &

Networking lab of the Electrical Engineering and Computer science school at UNIST. Especially,

the quality of work considerably improved thanks to the seniors of our lab: Junseon Kim,

Sungyong Lee, Seongmin Ham. I am gratefully indebted to their very valuable comments and

academic support on this thesis.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study and through

the process of researching and writing this thesis. This accomplishment would not have been

possible without them. Thank you.

27

	I Introduction
	II Related work
	III System overview
	IV Offline phase
	4.1 Converting floor plan image to a graph of nodes
	4.2 Building fingerprint database

	V Online phase
	5.1 Retrieve locations from RSS data
	5.2 Minimum required speed
	5.3 PathT ree construction
	5.4 PathT ree compressor

	VI Implementation
	VII Evaluation
	7.1 Methodology
	7.2 Localization error
	7.3 Fréchet distance error
	7.4 System efficiency

	VIII Discussion
	IX Conclusion
	References
	Acknowledgements

<startpage>10
I Introduction 1
II Related work 3
III System overview 4
IV Offline phase 6
 4.1 Converting floor plan image to a graph of nodes 6
 4.2 Building fingerprint database 8
V Online phase 10
 5.1 Retrieve locations from RSS data 10
 5.2 Minimum required speed 11
 5.3 PathT ree construction 12
 5.4 PathT ree compressor 12
VI Implementation 13
VII Evaluation 16
 7.1 Methodology 16
 7.2 Localization error 16
 7.3 Fréchet distance error 18
 7.4 System efficiency 19
VIII Discussion 20
IX Conclusion 22
References 23
Acknowledgements 27
</body>

