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Abstract

We study six months of human mobility data, including WiFi and GPS traces recorded
with high temporal resolution, and find that time series of WiFi scans contain a strong
latent location signal. In fact, due to inherent stability and low entropy of human
mobility, it is possible to assign location to WiFi access points based on a very small
number of GPS samples and then use these access points as location beacons. Using
just one GPS observation per day per person allows us to estimate the location of, and
subsequently use, WiFi access points to account for 80% of mobility across a population.
These results reveal a great opportunity for using ubiquitous WiFi routers for
high-resolution outdoor positioning, but also significant privacy implications of such
side-channel location tracking.

Introduction 1

Due to the ubiquity of mobile devices, the collection of large-scale, longitudinal data 2

about human mobility is now commonplace [1]. High-resolution mobility of individuals 3

and entire social systems can be captured through a multitude of sensors available on 4

modern smartphones, including GPS and sensing of nearby WiFi APs (access points or 5

routers) and cell towers. Similarly, mobility data may be collected from systems 6

designed to enable communication and connectivity, such as mobile phone networks or 7

WiFi systems (e.g. at airports or on company campuses) [2, 3]. Additionally, large 8

companies such as Google, Apple, Microsoft, or Skyhook, combine WiFi access points 9

with GPS data to improve positioning [4], a practice known as ‘wardriving’. While 10

widely used, the exact utility and mechanics of wardriving are largely unknown, with 11

only narrow and non-systematic studies reported in the literature [5, 6]. As a 12

consequence, it is generally not known how WiFi networks can be used for sensing 13

mobility on a societal scale; this knowledge is proprietary to large companies. 14

In the scientific realm, the mobility patterns of entire social systems are important 15

for modeling spreading of epidemics on multiple scales: metropolitan networks [7–9] and 16

global air traffic networks [10,11]; traffic forecasting [12]; understanding fundamental 17

laws governing our lives, such as regularity [13], stability [14], and predictability [15]. 18

Predictability and stability of human mobility are also exploited by commercial 19

applications such as intelligent assistants; for example Google Now [16] is a mobile 20
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application, which learns users’ habits to, among other services, conveniently provide 21

directions to the next inferred location. 22

Mobility traces are highly unique and identify individuals with high accuracy [17]. 23

Sensitive features can be extracted from mobility data, including home and work 24

locations, visited places, or personality traits [18]. Moreover, location data are 25

considered the most sensitive of all the commonly discussed personal data collected 26

from or via mobile phones [19]. 27

Here, we show that a time sequence of WiFi access points is effectively equal to 28

location data. Specifically, having collected both GPS and WiFi data with high 29

temporal resolution (median of 5 minutes for GPS and 16 seconds for WiFi) in a large 30

study [20], we use six months of data for 63 participants to model how lowering the rate 31

of location sampling influences our ability to infer mobility. The study participants are 32

students with heterogeneous mobility patterns. They all attend lectures on campus 33

located outside of the city center, but live in dormitories and apartments scattered 34

across the metro area at various distances from the university. 35

By mapping the WiFi data, we are able to quantify details of WiFi-based location 36

tracking, which are usually not available to the general public. We find that the 37

geo-positioning inferred from WiFi access points (APs or routers) could boost efficacy 38

in other data collection contexts, such as research studies. In addition, our findings have 39

significant privacy implications, indicating that for practical purposes WiFi data should 40

be considered location data. As we argue in the following sections, this finding is not 41

recognized in current practices of data collection and handling. 42

Methods 43

The dataset. 44

Out of the 130+ participants of the study [20], we selected 63 for which at least 50% of 45

the expected data points are available. The methods of collection, anonymization, and 46

storage of data were approved by the Danish Data Protection Agency, and complies 47

both with local and EU regulations. Written informed consent was obtained via 48

electronic means, where all invited participants read and digitally signed the form with 49

their university credentials. The median period of WiFi scans for these users was 16 50

seconds, and the median period of GPS sampling was 10 minutes. The data spans a 51

period of 200 days from October 1st, 2012 to April 27th, 2013. 52

Known routers and coverage. 53

In the article we use a simple model of locating the WiFi routers. We consider an access 54

point as known if it occurred in a WiFi scan within one second of a GPS location 55

estimation. The shortcomings of this approach and possible remedies are described in 56

more detail in S1 File. 57

We define time coverage as a fraction of ten-minute bins containing WiFi data in 58

which at least one known router was scanned. For example, let us assume that the user 59

has data in 100 out of 144 timebins during a day, and in 80 of these timebins there is a 60

known router visible. Therefore, that user’s coverage for that day is 80%. The average 61

time coverage for a day is the mean coverage of all users who had any WiFi information 62

in that day. This way our results are independent from missing data caused by 63

imperfections in data collection system deployed in the study. 64

In Fig 1 we present three different approaches to sampling, which we describe here in 65

detail. Initial-period sampling. As presented in Fig 1a, we learn the location of the 66

routers sequentially. With each GPS location estimation accompanied with a WiFi scan, 67
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we add the visible access points to the list of known routers. The learning curve can be 68

observed for the first seven days (Fig 1a, left panel) or the first 28 days (Fig 1a, right 69

panel). Random subsampling. In the random subsampling scenario we select a set 70

fraction of available GPS location estimations, each paired with a WiFi scan. Each GPS 71

estimation provides information on the position of all routers seen in the paired scan. 72

This scenario can be realized after the data collection is finished, as the location 73

estimations are used to locate the WiFi scans which happened both before and after 74

said estimations. The results are presented in Fig 1b. Top routers. We select the top 75

routers in a greedy fashion after the data collection is finished. We sort the routers in 76

descending order by the number of user timebins they occur in. We choose the top one 77

router, and then we select the routers which provide the biggest increase in the number 78

of user timbebins covered. Due to high density of access points, each semantic place is 79

described by presence of several routers, but location of only one of them has to be 80

established to find the geographic position of the place. In this sampling method we do 81

not rely on our own GPS data — top routers are found purely based on their occurrence 82

in the WiFi scans, regardless of availability of GPS scans within the one second time 83

delta. The results of such sampling are presented in Fig 1e. 84

Data collection scenarios. 85

Each subplot in Fig 1 contains series coming from three different simulated collection 86

scenarios. In the global scenario, there is a pool of WiFi routers locations estimations 87

coming from all users, and a router is considered known if at least one person has found 88

its location. This scenario simulates the function of such services as for example mobile 89

Google Maps. In the personal scenario each user can only use their own data, a router 90

can be known to them only if they found its location themselves. It simulates collecting 91

data in a disjoint society, where each person frequents different locations. Finally, in the 92

global with no personal data scenario, each user can exploit estimations created by 93

everybody else, but without contributing their own data. 94

Results 95

Ubiquitously available WiFi access points can be used as location beacons, identifying 96

locations based on BSSID (basic service set identifier, uniquely identifying every router) 97

broadcast by APs. These locations are not intrinsically geographical, as the APs do not 98

have geographical coordinates attached. However, since the placement of APs tends to 99

remain fixed, mapping an AP to a location where it was seen once is sufficient to 100

associate all the subsequent scans from the user device with geographical coordinates. 101

See S1 File for details on inferring the geographical locations of routers, as well as 102

identifying (and discarding data from) mobile access points. 103

WiFi networks are ubiquitous. In our population, 92% of all WiFi scans detect at 104

least one access point, and 33% detect more than 10 APs, as shown in Fig 2c. In 105

densely-populated areas, an average of 25 APs are visible in every scan, with population 106

density explaining 50% of the variance of the number of APs, as shown in Fig 2b. WiFi 107

scans containing at least one visible AP can be used for discovering the location of the 108

user, with a typical spatial resolution on the order of tens of meters. 109

We investigate three approaches to using access points as location beacons, all of 110

which enable WiFi-based location tracking even with limited resources: (1) recovering 111

APs’ locations from mobility traces collected during an initial training period 112

(exploiting the long-term stability of human mobility), (2) recovering APs’ locations 113

from randomly sampled GPS updates (exploiting low entropy of human mobility, see S1 114

File for distinction between stability and low entropy), and (3) using only the most 115
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Fig 1. The time coverage provided by the routers with known position
depends on who collects the corresponding location data and when it
happens. In each subplot the orange line describes the scenario where each individual
collects data about themselves and does not share it with others; the blue line
corresponds to a system in which the location of routers discovered by one person is
made known to other users; the green line presents a situation where each individual
can use the common pool of known routers but does not discover access points herself.
a. Stability of location. Learning the location of APs seen during the first seven
(left panel) or 28 (right panel) days, leads to performance gradually decreasing with
time in the personal case (orange line). The histograms of time coverage distribution for
day 190 show that this decline is driven by a growing number of people who spend only
∼10% of time in the locations they visited in the beginning of the observation. The
global approach (blue line) does not show this tendency, which indicates that people
rotate between common locations rather than moving to entirely new places. b, c.
Representativeness of randomly selected locations. Random subsampling with
an average period of 24 hours (less than 1% of all available location estimations) is
sufficient to find the most important locations in which people spend more than 80% of
their time; using an average period of 4 hours (2.5% percent of all available location
data) results in ∼85% coverage. The personal database does not expire since the
location is sampled throughout the experiment, not only in the beginning. d. Limited
number of important locations. Although querying commercial services for WiFi
geolocation is costly, knowing the location of only the 20 most prevalent routers per
person in the dataset results in an average coverage of ∼90%. Since people’s mobility
overlaps, there is a benefit of using a global database rather than treating all mobility
disjointly.

frequently observed APs for which location can be feasibly obtained from external 116

databases. The task is to efficiently assign geographical coordinates (latitude and 117
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Fig 2. WiFi routers are located where people live. a: Map of Greater
Copenhagen Area, divided into parishes with color indicating average number of routers
discovered per scan; rectangle overlay indicates the city center. b: The number of
access points visible in each scan is correlated with the population density (r2 = 0.5).
Even in low population density areas there are several routers visible on average in each
scan. Therefore, knowing the positions of only a subset of routers is enough for precise
location sensing. c: Distribution of number of routers per scan. In our dataset 92% of
scans contain at least one router.

longitude) to particular APs, so they can be used as beacons for tracking user’s location. 118

In the following sections, we refer to time coverage as the fraction of ten-minute 119

timebins, in which at least one router with a known location is observed. 120

Stability of human mobility allows for efficient WiFi-based 121

positioning. 122

Human mobility has been shown to remain stable over long periods of time [13]. We 123

find that participants in our study have stable routines, with locations visited in the 124

first one, two, three, and four weeks of the study still visited frequently six months later. 125

Learning the locations of routers seen during the first seven days (corresponding to 126

∼3.5% of the observations, shown in Fig 1a, left panel) provides APs’ locations 127

throughout the rest of the experiment sufficient for recovering ∼55% of users mobility 128

until the Christmas break around days 75-90. When the location of routers seen by each 129

person is inferred using only this person’s data (the personal-only WiFi database case, 130

shown using an orange line in Fig 1), the information expires with time: there is a 131
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stable decrease in time coverage after Christmas break. This decline is evident both 132

when a week (Fig 1a, left panel) and four weeks (right panel) are used for training, with 133

the time coverage dropping ∼18 percentage points between days 60 and 160. The 134

histograms above each plot show the distribution of time coverage in selected points in 135

time (at 7, 80, 190 days respectively). The distribution for day 190 reveals that the 136

expiry of the personal database validity is driven by individuals who significantly 137

altered routines, with 40% of participants spending only around 10% of time in 138

locations they have visited in the first week. In contrast, when the inferred locations of 139

routers are shared among people (the global database case, represented by a blue line) 140

the information does not expire and shows no decreasing trend during the observation 141

period. This implies that rather than moving to entirely new locations, people begin to 142

visit places that are new to them, but familiar to other participants. The histograms of 143

time coverage distribution in both panels of Fig 1a reveal that the individuals are 144

heterogeneous in their mobility. The coverage in most cases is highly affected in the 145

non-personal case (where the person does not collect their own location information, but 146

data from others is used, marked using green in the figures), but 20% of participants 147

retain a coverage of above 80% throughout the observation period, see Fig 1a, left panel. 148

People living and working close to each other (like students in a dormitory) share a 149

major part of their mobility and thus location of the APs they encounter can be 150

estimated using data collected by others. 151

The demonstrated stability of human mobility patterns over long periods has 152

real-life privacy implications. Denying a mobile application access to location data, even 153

after a short period, may not be enough to prevent it from tracking user’s mobility, as 154

long as its access to WiFi scans is retained. 155

Human mobility can be efficiently captured using infrequent 156

location updates. 157

Sampling location randomly across time (Fig 1b), rather than through the initial period 158

(Fig 1a) provides a higher time coverage, which is retained throughout the observation. 159

With around one sample per day per person on average, the location can be inferred 160

80% of the time in case of global lookup base and 70% in personal case (see Fig 1c, at 161

training fraction of 0.007). 162

The histograms in Fig 1b confirm that distribution of coverage in the non-personal 163

case is bimodal within our population: mobility of some individuals can effectively be 164

modeled using data from people around them, while patterns of others are so distinct 165

they require using self-collected information. The single-mode distribution of coverage 166

in the personal case and the fact that the distribution is unchanged between day 7 and 167

day 190 show the lack of temporal decline when sampling happens throughout the 168

observation period. 169

The GPS sensor on a mobile device constitutes a major battery drain when 170

active [21], whereas the WiFi frequently scans for networks by default. Our results show 171

that GPS-based location sampling rate can be significantly reduced in order to save 172

battery, while retaining high resolution location information through WiFi scanning. 173

Our analyses also point to another scenario where WiFi time series can result in leaks of 174

personal information. Infrequent location data can be obtained from a person’s (often 175

public) tweets, Facebook updates, or other social networking check-ins and then 176

matched with their WiFi records to track their mobility. 177
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Overall human mobility can be effectively captured by top WiFi 178

access points. 179

As previously suggested [15], people’s mobility has low entropy and thus a few most 180

prevalent routers can work effectively as proxies for their location. Fig 1d shows that 181

inferring the location of just 20 top routers per person on average (which, given the 182

median count of 22 000 routers observed per person, corresponds to 0.1% of all routers 183

seen) translates to knowing the location of individuals 90% of the time. Since our 184

population consists of students, who attend classes in different lecture halls in various 185

buildings across the campus, we expect that the number of access points necessary to 186

describe mobility of persons with a fixed work location can be even lower. There are 187

persons in our study, for whom just four access points correspond to 90% of time 188

coverage (see Fig D in S1 File for details). 189

That the mobility of individuals in our sample overlaps is apparent in Fig 1d as the 190

time coverage of three top routers in the personal case is the same as in the global 191

coverage using the total of 80 routers (instead of 189 disjoint routers). 192

As a consequence, a third party with access to records of WiFi scans and no access 193

to location data, can effectively determine the location of each individual 90% of time 194

by sending less than 20 queries to commercial services such as Google Geolocation API 195

or Skyhook. 196

Single-user analysis. 197

To illustrate the ubiquity of WiFi access points and how effectively they can be used to 198

infer mobility patterns, we present a small example dataset containing measured and 199

inferred location information of one of the authors, collected over two days. During the 200

48 hours of observation, the researcher’s phone was scanning for WiFi with a median 201

period of 44 seconds, measuring on average 19.8 unique devices per scan, recording 3 822 202

unique access points. Only one scan during the 48 hours was empty, and one scan 203

yielded 113 unique results. Fig 3a shows the corresponding GPS trace collected with a 204

median sampling period of 5 minutes. When dividing the 48 hours of the test period 205

into 10 minute bins, a raw GPS trace provides location estimation in 89% of these bins. 206

Four stop locations are marked with blue circles and include home, two offices, and a 207

food market visited by the researcher. Fig 3b shows the estimation of this trace based 208

on the inferred locations of WiFi routers, see S1 File for detailed information on the 209

location inference. The four stop locations are clearly visible, but the transitions have 210

lower temporal resolution and errors in location estimations. This method provides 211

location information in 97% of temporal bins. Using WiFi increases overall coverage, 212

but might introduce errors in location estimation of routers which were only observed 213

shortly, for example during transition periods. Fig 3c shows the estimation of this trace 214

based on the locations of top 8 (0.2%) WiFi routers. The four important locations have 215

been correctly identified, but information on transitions is lost. Information in 95% of 216

temporal bins is available. Finally, Fig 3d shows a graphical representation of how much 217

time the researcher spends in any one of the top eight locations during the observation 218

time. Note that the first four locations account for an overwhelming fraction of the 48 219

hours. 220

Knowing the physical position of the top routers and having access to WiFi 221

information reveals the location of the user for the majority of the timebins. The details 222

of trajectories become lost as we decrease the number of routers we use to estimate 223

locations. With too few routers might not be possible to determine which of possible 224

routes the subject chose or how long she took to travel through each segment of the trip. 225

On the other hand, the high temporal resolution of the scans allows for very precise 226

discovery of arrival and departure times and of time spent in transit. Such information 227
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has important implications for security and privacy, as it can be used to discover 228

night-watch schedules, find times when the occupants are not home, or efficiently check 229

work time of the employees. 230

Leaflet | Map data (c) OpenStreetMap contributors under CC-BY-SA | Map tiles by Stamen Design, under CC-BY 3.0

d

a b c

Fig 3. 48 hours of location data of one of the authors, with the four visited
locations visited marked in blue: home, two offices, and a food market.
Even though the author’s phone has sensed 3 822 unique routers in this period, only a
few are enough to describe the location more than 90% of time. a. traces recorded with
GPS; b. traces reconstructed using all available data on WiFi routers locations - the
transition traces are distorted, but all stop locations are visible and the location is
known 97% of the time. c. with 8 top routers it is still possible to discover stop
locations in which the author spent 95% of the time. In this scenario transitions are lost.
d. timeseries showing when during 48 hours each of the top routers were seen. It can be
assumed that AP 1 is home, as it’s seen every night, while AP 2 and AP 3 are offices, as
they are seen during working hours. The last row shows the combined 95% of time
coverage provided by the top 8 routers.

Discussion 231

Our world is becoming progressively more enclosed in infrastructures supporting 232

communication, mobility, payments, or advertising. Logs from mobile phone networks 233

have originally been considered only for billing purposes and internal network 234
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optimization; today they constitute a global database of human mobility and 235

communication networks [13]. Credit card records form high-resolution traces of our 236

spending behaviors [22]. The omnipresent WiFi networks, intended primarily for 237

communication, has now became a location tracking infrastructure, as described here. 238

The pattern is clear: every new cell tower, merchant with credit card terminal, every 239

new private or municipal WiFi network offer benefits to the connected society, but, at 240

the same time, create opportunities and perils of unexpected tracking. Cities entirely 241

covered by WiFi signal provide unprecedented connectivity to citizens and visitors alike; 242

at the same time multiple parties have to incorporate this fact in their policies to limit 243

privacy abuse of such infrastructure. Understanding and quantifying the dynamics of 244

privacy and utility of infrastructures is crucial for building connected and free society. 245

Since the creation of comprehensive databases containing geolocation for APs is 246

primarily carried out by large companies [4], one might assume that WiFi based 247

location tracking by ‘small players’, such as research studies or mobile applications, is 248

not feasible. As we have shown above, however, APs can be very efficiently geolocated 249

in a way that covers a large majority of individuals’ mobility patterns. 250

In the results, we focused on outdoor positioning with spatial resolution 251

corresponding to WiFi AP coverage: we assume that if at least one AP is discovered in 252

a scan, we can assign the location of this AP to the user. This is a deliberately simple 253

model, described in detail in S1 File, but we consider the resulting spatial resolution 254

sufficient for many aspects of research, such as studying human mobility patterns. The 255

spatial resolution of dozens of meters is higher than for example CDR data [13], which 256

describes the location with the accuracy of hundreds of meters to a few kilometers. 257

Incorporating WiFi routers as location beacons can aid research by drastically 258

increasing temporal resolution without additional cost in battery drain. 259

Students live in multiple dormitories on and outside of campus, take multiple routes 260

commuting to the university, frequent different places in the city, travel across the 261

country and beyond. While the students spend most of their time within a few dozens 262

of kilometers from their homes, they also make international and intercontinental trips 263

(see Figs B and C in S1 File for details). Such long distance trips are not normally 264

captured in studies based on telecom operator data. Our population is 265

densely-connected and in this respect it is biased, in the same sense as any population 266

of people working in the same location. We do simulate a scenario in which the 267

individuals do not form a connected group by analyzing the results for personal-only 268

database. We expect the obtained results to generalize outside of our study. 269

Our findings connect to an ongoing debate about the privacy of personal data [23]. 270

Location data has been shown to be among the most sensitive categories of personal 271

information [19]. Still, a record of WiFi scans is, in most contexts, not considered a 272

location channel. In the Android ecosystem, which constitutes 85% of global 273

smartphone market in Q2 2014 [24], the permission for applications to passively collect 274

the results of WiFi scans is separate from the location permission; moreover, the Wi-Fi 275

connection information (ACCESS WIFI STATE) permission is not considered 276

‘dangerous’ in the Android framework, whereas both high-accuracy and coarse location 277

permissions are tagged as such [25]. While it has been pointed out that Android WiFi 278

permissions may allow for inference of sensitive personal information [26], the effect has 279

not been quantified through real-world data. Here we have shown that inferring location 280

with high temporal resolution can be efficiently achieved using only a small percentage 281

of the WiFi APs seen by a device. This makes it possible for any application to collect 282

scanned access points, report them back, and inexpensively convert these access points 283

into users’ locations. The impact is amplified by the fact that apps may passively 284

obtain results of scans routinely performed by Android system every 15–60 seconds. 285

Such routine scans are even run when the user disables WiFi. See S1 File for additional 286
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analysis on data privacy in the Android ecosystem. 287

Developers whose applications declare both location and WiFi permissions are able 288

to use WiFi information to boost the temporal resolution of any collected location 289

information. We have shown that even if the location permission is revoked by the user, 290

or removed by the app developers, an initial collection of both GPS and WiFi data is 291

sufficient to continue high-resolution tracking of the user mobility for subsequent 292

months. Many top applications in the Play Store request Wi-Fi connection information 293

but not explicit location permission. Examples from the top charts include prominent 294

apps with more than 100 million users each, such as Candy Crush Saga, Pandora, and 295

Angry Birds, among others. We are not suggesting that these or other applications 296

collect WiFi data for location tracking. These apps, however, do have a de facto 297

capability to track location, effectively circumventing Android permission model and 298

general public understanding. 299

Due to uniqueness of location traces, users can be easily identified across multiple 300

datasets [17]. Our results indicate that any application can use WiFi permission to link 301

users to other public and private identities, using data from Twitter or Facebook (based 302

on geo-tagged tweets and posts), CDR data, geo-tagged payment transactions; in fact 303

any geo-tagged data set. Such cross-linking is another argument why WiFi scans should 304

be considered a highly sensitive type of data. 305

In our dataset, 92% of WiFi scans have at least one visible AP. Even in the most 306

challenging scenario, when there are no globally shared locations and each individual 307

frequents different places, top 20 WiFi access points per person can be efficiently 308

converted into geolocations (using Google APIs or crowd-sourced data) and used as a 309

stable location channel. These results should inform future thinking regarding the 310

collection, use, and data security of WiFi scans. We recommend that WiFi records be 311

treated as strictly as location data. 312
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Supporting Information Legends

S1 File. Additional details on the properties of the data and the employed
analysis methods. In this Supporting File we present an example method of inferring
the locations of WiFi routers, explain the interplay between the long term stability and
low entropy of human mobility, provide a detailed description of the mobility properties
of the participants (Figs B and C), show the distributions of time coverage of top
routers (Fig D), and explain how Android permission model allows apps to access the
WiFi information of the user.
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