1,720 research outputs found

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe

    Scalable approximate FRNN-OWA classification

    Get PDF
    Fuzzy Rough Nearest Neighbour classification with Ordered Weighted Averaging operators (FRNN-OWA) is an algorithm that classifies unseen instances according to their membership in the fuzzy upper and lower approximations of the decision classes. Previous research has shown that the use of OWA operators increases the robustness of this model. However, calculating membership in an approximation requires a nearest neighbour search. In practice, the query time complexity of exact nearest neighbour search algorithms in more than a handful of dimensions is near-linear, which limits the scalability of FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a modified model that calculates upper and lower approximations of decision classes using the approximate nearest neighbours returned by Hierarchical Navigable Small Worlds (HNSW), a recent approximative nearest neighbour search algorithm with logarithmic query time complexity at constant near-100% accuracy. We demonstrate that approximate FRNN-OWA is sufficiently robust to match the classification accuracy of exact FRNN-OWA while scaling much more efficiently. We test four parameter configurations of HNSW, and evaluate their performance by measuring classification accuracy and construction and query times for samples of various sizes from three large datasets. We find that with two of the parameter configurations, approximate FRNN-OWA achieves near-identical accuracy to exact FRNN-OWA for most sample sizes within query times that are up to several orders of magnitude faster

    Ordered Weighted Average Based Fuzzy Rough Sets

    Get PDF
    Traditionally, membership to the fuzzy-rough lower, resp. upper approximation is determined by looking only at the worst, resp. best performing object. Consequently, when applied to data analysis problems, these approximations are sensitive to noisy and/or outlying samples. In this paper, we advocate a mitigated approach, in which membership to the lower and upper approximation is determined by means of an aggregation process using ordered weighted average operators. In comparison to the previously introduced vaguely quantified rough set model, which is based on a similar rationale, our proposal has the advantage that the approximations are monotonous w.r.t. the used fuzzy indiscernibility relation. Initial experiments involving a feature selection application confirm the potential of the OWA-based model

    Fuzzy Rough Sets for Self-Labelling: an Exploratory Analysis

    Get PDF
    Semi-supervised learning incorporates aspects of both supervised and unsupervised learning. In semi-supervised classification, only some data instances have associated class labels, while others are unlabelled. One particular group of semi-supervised classification approaches are those known as self-labelling techniques, which attempt to assign class labels to the unlabelled data instances. This is achieved by using the class predictions based upon the information of the labelled part of the data. In this paper, the applicability and suitability of fuzzy rough set theory for the task of self-labelling is investigated. An important preparatory experimental study is presented that evaluates how accurately different fuzzy rough set models can predict the classes of unlabelled data instances for semi-supervised classification. The predictions are made either by considering only the labelled data instances or by involving the unlabelled data instances as well. A stability analysis of the predictions also helps to provide further insight into the characteristics of the different fuzzy rough models. Our study shows that the ordered weighted average based fuzzy rough model performs best in terms of both accuracy and stability. Our conclusions offer a solid foundation and rationale that will allow the construction of a fuzzy rough self-labelling technique. They also provide an understanding of the applicability of fuzzy rough sets for the task of semi-supervised classification in general

    A semantical and computational approach to covering-based rough sets

    Get PDF
    • …
    corecore