1,319 research outputs found

    Coexistence of OFDM and FBMC for Underlay D2D Communication in 5G Networks

    Full text link
    Device-to-device (D2D) communication is being heralded as an important part of the solution to the capacity problem in future networks, and is expected to be natively supported in 5G. Given the high network complexity and required signalling overhead associated with achieving synchronization in D2D networks, it is necessary to study asynchronous D2D communications. In this paper, we consider a scenario whereby asynchronous D2D communication underlays an OFDMA macro-cell in the uplink. Motivated by the superior performance of new waveforms with increased spectral localization in the presence of frequency and time misalignments, we compare the system-level performance of a set-up for when D2D pairs use either OFDM or FBMC/OQAM. We first demonstrate that inter-D2D interference, resulting from misaligned communications, plays a significant role in clustered D2D topologies. We then demonstrate that the resource allocation procedure can be simplified when D2D pairs use FBMC/OQAM, since the high spectral localization of FBMC/OQAM results in negligible inter-D2D interference. Specifically, we identify that FBMC/OQAM is best suited to scenarios consisting of small, densely populated D2D clusters located near the encompassing cell's edge.Comment: 7 pages, 9 figures, Accepted at IEEE Globecom 2016 Workshop

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Energy-Efficient Power Control for Contention-Based Synchronization in OFDMA Systems with Discrete Powers and Limited Feedback

    Get PDF
    This work derives a distributed and iterative algorithm by which mobile terminals can selfishly control their transmit powers during the synchronization procedure specified by the IEEE 802.16m and the 3GPP-LTE standards for orthogonal frequency-division multiple-access technologies. The proposed solution aims at maximizing the energy efficiency of the network and is derived on the basis of a finite noncooperative game in which the players have discrete action sets of transmit powers. The set of Nash equilibria of the game is investigated, and a distributed power control algorithm is proposed to achieve synchronization in an energy-efficient manner under the assumption that the feedback from the base station is limited. Numerical results show that the proposed solution improves the energy efficiency as well as the timing estimation accuracy of the network compared to existing alternatives, while requiring a reasonable amount of information to be exchanged on the return channel

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    • …
    corecore