241 research outputs found

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Design and implementation of an uplink connection for a light-based IoT node

    Get PDF
    Abstract. In the wake of soaring demand for shrinking radio frequency (RF) spectrum, light-fidelity (LiFi) has been heralded as a solution to accommodate resources for future communication networks. Infrared (IR) and visible light communication (VLC) are meant to be used within LiFi because of numerous advantages. By combining the paradigm of internet of things (IoT) along with LiFi, light-based IoT (LIoT) emerges as a potential enabler of future 6G networks. With tremendous number of interconnected devices, LIoT nodes need to be able to receive and transmit data while being energy autonomous. One of the most promising clean energy sources comes from both natural and artificial light. In addition to providing illumination and energy, light can also be utilized as a robust information carrier. In order to provide bidirectional connectivity to LIoT node, both downlink and uplink have to be taken into consideration. Whereas downlink relies on visible light as a carrier, uplink approach can be engineered freely within specific requirements. With this in mind, this master’s thesis explores possible solutions for providing uplink connectivity. After analysis of possible solutions, the LIoT proof-of-concept was designed, implemented and validated. By incorporating printed solar cell, dedicated energy harvesting unit, power-optimised microcontroller unit (MCU) and light intensity sensor the LIoT node is able to autonomously transmit data using IR
    corecore