242 research outputs found

    Electron-collisions with molecules of interstellar and plasma interest via the R-Matrix method.

    Get PDF
    Here the ab-initio R-Matrix method has been used to carry out electron-molecule collision calculations on the the molecules of interstellar interest C3N, C2H & CN, and molecules found in industrial plasma applications SiBr, SiBr2 and NaI. These were carried out using the UK Molecular R-Matrix codes, along with the Quantemol expert system for running these codes. Calculations have also been carried out on electron collisions with atomic oxygen using these codes, with details included about the problems faced in running an atomic calculation with the molecular codes. Calculations on each species include comparison of different models, including staticexchange and close-coupling models (with different size CAS tried), various basis sets, and for some species different initial orbitals. These different initial orbitals were either taken from the codes themselves (for SCF orbitals), or the quantum chemistry program MOLPRO (for natural orbitals), for the latter numerous state averaged orbitals were tried with different weightings in order to produce good target energies for carrying into the scattering calculation. Results for all calculations include scattering observables such as eigenphase sums, elastic and excitation cross-sections, bound anionic states and resonance positions and widths. Also a new theory has been developed for calculating rotational cross-sections which includes the spin angular momentum of the incoming scattering electron, this has been implemented into the already existing code ROTLIN, which can calculate rotational cross-sections using the scattering data from an R-Matrix calculation

    Modelling ionised and photodissociated regions

    Get PDF
    The bulk of the mass in star-forming environments is contained in photodissociated regions (PDRs) where the chemistry is controlled by the far ultraviolet radiation field coming from nearby ionizing sources. H II regions can be found throughout active star forming galaxies as they are also controlled by the presence of a nearby ionizing source. In fact, H II regions, PDRs, and molecular clouds are not distinct physical regions, but rather a series of layers that are unified by the transport of radiation from hot stars into cold gas and the flow of cold molecular gas into hot ionized regions. The relative contributions of the ultraviolet radiation field from different gas phases can be estimated from observations of several far infrared forbidden lines such as [C II]158\mum, [O I]145\mum and 63\mum. Fine structure emission line studies provide valuable information on H II and PDR regions and it is well known that they originate in the outer part of both H II and PDR regions. The only exception are the nitrogen lines that clearly come exclusively from ionized regions. With the launch of ISO the far infrared properties of galaxies were observed with greater sensitivity than ever before. This thesis deals with the study of [C II]158\mum, [O I]145\mum, 63\mum and partly CO in external galaxies. In Chapter 3 we investigate the [C II]158\mum, [O I]145\mum and 63\mum emission lines in a sample of external galaxies in order to use them as diagnostics to infer the physical conditions in the gas, such as temperatures, densities and radiation fields. This study was carried out using the photodissociation UCL PDR code, testing PDR model results against ISO LWS observations. In addition, a detailed study of the oxygen self absorption, computed by modelling the emission line profiles with the radiative transfer SMMOL code, was conducted. In Chapter 4 a detailed study of the starburst NGC 4038 has been performed by using both MOCASSIN and UCL PDR. The contribution of [C II] 158\mum, [O I] 63\mum and 145\mum lines coming from the H II region was studied using the 3D ionization MOCASSIN code. We then used the computed radiation field at the ionization front as an input for the photodissociation UCL PDR code and an examination of the oxygen self absorption and a comparison of the CO rotational emission lines with CSO observations, were also presented. Finally, to improve the interpretation of future observations such as those from ALMA and HERSCHEL, a feasibility test on the coupling of the two codes (MOCASSIN and UCL PDR) was performed and the results are presented in Chapter 5. Conclusion and ideas for future work are presented in Chapter 6

    Additional extensions to the NASCAP computer code, volume 1

    Get PDF
    Extensions and revisions to a computer code that comprehensively analyzes problems of spacecraft charging (NASCAP) are documented. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Among the extensions are a multiple electron/ion gun test tank capability, and the ability to model anisotropic and time dependent space environments. Also documented are a greatly extended MATCHG program and the preliminary version of NASCAP/LEO. The interactive MATCHG code was developed into an extremely powerful tool for the study of material-environment interactions. The NASCAP/LEO, a three dimensional code to study current collection under conditions of high voltages and short Debye lengths, was distributed for preliminary testing

    HINDAS: detailed final report

    Get PDF

    The HITRAN2020 Molecular Spectroscopic Database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    The HITRAN2016 molecular spectroscopic database

    Get PDF
    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many, ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided. Published by Elsevier Ltd

    The HITRAN2016 Molecular Spectroscopic Database

    Get PDF
    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems

    Get PDF
    Molecular dynamics (MD) has evolved into a ubiquitous, versatile and powerful computational method for fundamental research in science branches such as biology, chemistry, biomedicine and physics over the past 60 years. Powered by rapidly advanced supercomputing technologies in recent decades, MD has entered the engineering domain as a first-principle predictive method for material properties, physicochemical processes, and even as a design tool. Such developments have far-reaching consequences, and are covered for the first time in the present paper, with a focus on MD for combustion and energy systems encompassing topics like gas/liquid/solid fuel oxidation, pyrolysis, catalytic combustion, heterogeneous combustion, electrochemistry, nanoparticle synthesis, heat transfer, phase change, and fluid mechanics. First, the theoretical framework of the MD methodology is described systemically, covering both classical and reactive MD. The emphasis is on the development of the reactive force field (ReaxFF) MD, which enables chemical reactions to be simulated within the MD framework, utilizing quantum chemistry calculations and/or experimental data for the force field training. Second, details of the numerical methods, boundary conditions, post-processing and computational costs of MD simulations are provided. This is followed by a critical review of selected applications of classical and reactive MD methods in combustion and energy systems. It is demonstrated that the ReaxFF MD has been successfully deployed to gain fundamental insights into pyrolysis and/or oxidation of gas/liquid/solid fuels, revealing detailed energy changes and chemical pathways. Moreover, the complex physico-chemical dynamic processes in catalytic reactions, soot formation, and flame synthesis of nanoparticles are made plainly visible from an atomistic perspective. Flow, heat transfer and phase change phenomena are also scrutinized by MD simulations. Unprecedented details of nanoscale processes such as droplet collision, fuel droplet evaporation, and CO2 capture and storage under subcritical and supercritical conditions are examined at the atomic level. Finally, the outlook for atomistic simulations of combustion and energy systems is discussed in the context of emerging computing platforms, machine learning and multiscale modelling
    corecore