832 research outputs found

    Up-Link Capacity Derivation for Ultra-Narrow-Band IoT Wireless Networks

    Get PDF
    International audienceThanks to its low energy consumption and very long range (upto 50 km in free-space), ultra-narrow-band transmission (UNB) represents apromising alternative to classical technologies used in cellular networks to servelow-throughput wireless sensor networks (WSNs) and the Internet of things(IoT). In UNB, nodes access to the medium by selecting their frequency ina random and continuous way. This randomness leads to new behavior inthe interference which has not been theoretically analyzed, when consideringthe pathloss of nodes randomly deployed around the receiver. In this paper, inorder to quantify the system performance, we derive and exploit two theoreticalexpressions of the outage probability in a UNB based IoT network, accountingfor both interference due to the spectral randomness and path loss due to thepropagation (with and without Rayleigh fading). This enables us to estimatethe network capacity as a function of the path-loss exponent, by determiningthe maximum number of simultaneous supported nodes. We highlight that thebandwidth should be chosen based on the propagation channel properties

    Performance of narrow band internet of things (NBIoT) networks

    Get PDF
    Narrow Band Internet of Things (NBIoT) is a Low Power Wide Area Network (LPWAN) technology that has been standardised by 3GPP in Release 13 to work in cellular networks [15]. The main characteristics of NBIoT are its extended coverage compared to other cellular technologies such as LTE; its high capacity is due to its narrow channel bandwidth of 180 KHz, which also supports the possibility of these devices having a long battery life of up to 10 years, as well as low device complexity - all of which result in low device costs [2]. NBIoT can be deployed in one of three different options, namely: a) standalone, b) in-band and c) guard band deployment mode. These characteristics of NBIoT makes it very useful in the IoT industry, allowing the technology to be used in a wide range of applications, such as health, smart cities, farming, wireless sensor networks and many more [1] [25]. NBIoT can be used to realise the maximum possible spectral efficiency, thereby increasing the capacity of the network. Penetration of NBIoT in the market has dominated other LPWANs like Sigfox and LoRA, with NBIoT having a technology share of close to 50 percent [31]. This study is aimed at exploring the deployment options of NBIoT and determining how network operators can realise the greatest value for their investment by efficiently utilising their allocated spectrum. The main target is to derive the best parameter combination for deployment of the NBIoT network with acceptable error rates in both the uplink and the downlink. Different characteristics of NBIoT were discussed in this study, and the performance of the various approaches investigated to determine their efficiency in relation to the needs of the IoT industry. The error rates of NBIoT, when used in an existing LTE network, were the main focus of this study. Software simulations were used to compare the different parameter settings to see which options provide the best efficiency and cost trade-offs for structuring an NBIoT network. The results of the tests done in this study showed that the error rates are lower for standalone deployment mode than for in-band mode, which is mainly due to less interference in standalone mode than in in-band mode. The results also show that data transmitted in smaller Transport Block Size (TBS) in the Down Link (DL) has less errors than if it’s transmitted in larger blocks. The results also show that the error rate gets lower as the number of subframe repetition increases in the downlink, which is mainly due to the redundancy in sending the same data multiple times. However in the uplink, the results show that the error rates are comparable when the signal has poor quality

    On the Latency-Energy Performance of NB-IoT Systems in Providing Wide-Area IoT Connectivity

    Get PDF

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed
    • …
    corecore