1,585 research outputs found

    GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks

    Get PDF
    One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availability of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available

    Assisting classical paintings restoration : efïŹcient paint loss detection and descriptor-based inpainting using shared pretraining

    Get PDF
    In the restoration process of classical paintings, one of the tasks is to map paint loss for documentation and analysing purposes. Because this is such a sizable and tedious job automatic techniques are highly on demand. The currently available tools allow only rough mapping of the paint loss areas while still requiring considerable manual work. We develop here a learning method for paint loss detection that makes use of multimodal image acquisitions and we apply it within the current restoration of the Ghent Altarpiece. Our neural network architecture is inspired by a multiscale convolutional neural network known as U-Net. In our proposed model, the downsampling of the pooling layers is omitted to enforce translation invariance and the convolutional layers are replaced with dilated convolutions. The dilated convolutions lead to denser computations and improved classification accuracy. Moreover, the proposed method is designed such to make use of multimodal data, which are nowadays routinely acquired during the restoration of master paintings, and which allow more accurate detection of features of interest, including paint losses. Our focus is on developing a robust approach with minimal user-interference. Adequate transfer learning is here crucial in order to extend the applicability of pre-trained models to the paintings that were not included in the training set, with only modest additional re-training. We introduce a pre-training strategy based on a multimodal, convolutional autoencoder and we fine-tune the model when applying it to other paintings. We evaluate the results by comparing the detected paint loss maps to manual expert annotations and also by running virtual inpainting based on the detected paint losses and comparing the virtually inpainted results with the actual physical restorations. The results indicate clearly the efficacy of the proposed method and its potential to assist in the art conservation and restoration processes

    ICKSC :An Efficient Methodology for Predicting Kidney Stone From CT Kidney Image Dataset using Conventional Neural Networks

    Get PDF
    Chronic Kidney Diseases (CKD) has become one among the world wide health crisis and needs the associated efforts to prevent the complete organ damage. A considerable research effort has been put forward onto the effective separation and classification of kidney Stones from the kidney CT Images. Emerging machine learning along with deep learning algorithms have waved the novel paths of kidney stone detections. But these methods are proved to be laborious and its success rate is purely depends on the previous experiences. To achieve the better classification of kidney stone, this paper proposes a novel Intelligent CNN based Kidney Stone Classification (ICKSC) system which is based on transfer learning mechanism and incorporates 8 Layered CNN, densenet169_model, mobilenetv2_model, vgg19_model and xception_model. The extensive experimentation has been conducted to evaluate the efficacy of the recommended structure and matched with the other prevailing hybrid deep learning model. Experimentation demonstrates that the suggested model has showed the superior predominance over the other models and exhibited better performance in terms of training loss, accuracy, recall and precision

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Anomaly detection in brain imaging

    Get PDF
    Modern healthcare systems employ a variety of medical imaging technologies, such as X-ray, MRI and CT, to improve patient outcomes, time and cost efficiency, and enable further research. Artificial intelligence and machine learning have shown promise in enhancing medical image analysis systems, leading to a proliferation of research in the field. However, many proposed approaches, such as image classification or segmentation, require large amounts of professional annotations, which are costly and time-consuming to acquire. Anomaly detection is an approach that requires less manual effort and thus can benefit from scaling to datasets of ever-increasing size. In this thesis, we focus on anomaly localisation for pathology detection with models trained on healthy data without dense annotations. We identify two key weaknesses of current image reconstruction-based anomaly detection methods: poor image reconstruction and overdependency on pixel/voxel intensity for identification of anomalies. To address these weaknesses, we develop two novel methods: denoising autoencoder and context-tolocal feature matching, respectively. Finally, we apply both methods to in-hospital data in collaboration with NHS Greater Glasgow and Clyde. We discuss the issues of data collection, filtering, processing, and evaluation arising in applying anomaly detection methods beyond curated datasets. We design and run a clinical evaluation contrasting our proposed methods and revealing difficulties in gauging performance of anomaly detection systems. Our findings suggest that further research is needed to fully realise the potential of anomaly detection for practical medical imaging applications. Specifically, we suggest investigating anomaly detection methods that are able to take advantage of more types of supervision (e.g. weak-labels), more context (e.g. prior scans) and make structured end-to-end predictions (e.g. bounding boxes)

    Exploring Deep Learning for deformative operators in vector-based cartographic road generalization

    Full text link
    Cartographic generalisation is the process by which geographical data is simplified and abstracted to increase the legibility of maps at reduced scales. As map scales decrease, irrelevant map features are removed (selective generalisation), and relevant map features are deformed, eliminating unnec- essary details while preserving the general shapes (deformative generalisation). The automation of cartographic generalisation has been a tough nut to crack for years because it is governed not only by explicit rules but also by a large body of implicit cartographic knowledge that conven- tional automation approaches struggle to acquire and formalise. In recent years, the introduction of Deep Learning (DL) and its inductive capabilities has raised hope for further progress. This thesis explores the potential of three Deep Learning architectures — Graph Convolutional Neural Network (GCNN), Auto Encoder, and Recurrent Neural Network (RNN) — in their application on the deformative generalisation of roads using a vector-based approach. The generated small- scale representations of the input roads differ substantially across the architectures, not only in their included frequency spectra but also in their ability to apply certain generalisation operators. However, the most apparent learnt and applied generalisation operator by all architectures is the smoothing of the large-scale roads. The outcome of this thesis has been encouraging but suggests to pursue further research about the effect of the pre-processing of the input geometries and the inclusion of spatial context and the combination of map features (e.g. buildings) to better capture the implicit knowledge engrained in the products of mapping agencies used for training the DL models

    A semi-supervised deep learning model for ship encounter situation classification

    Get PDF
    Maritime safety is an important issue for global shipping industries. Currently, most of collision accidents at sea are caused by the misjudgement of the ship’s operators. The deployment of maritime autonomous surface ships (MASS) can greatly reduce ships’ reliance on human operators by using an automated intelligent collision avoidance system to replace human decision-making. To successfully develop such a system, the capability of autonomously identifying other ships and evaluating their associated encountering situation is of paramount importance. In this paper, we aim to identify ships’ encounter situation modes using deep learning methods based upon the Automatic Identification System (AIS) data. First, a segmentation process is developed to divide each ship’s AIS data into different segments that contain only one encounter situation mode. This is different to the majority of studies that have proposed encounter situation mode classification using hand-crafted features, which may not reflect the actual ship’s movement states. Furthermore, a number of present classification tasks are conducted using substantial labelled AIS data followed by a supervised training paradigm, which is not applicable to our dataset as it contains a large number of unlabelled AIS data. Therefore, a method called Semi-Supervised Convolutional Encoder–Decoder Network (SCEDN) for ship encounter situation classification based on AIS data is proposed. The structure of the network is not only able to automatically extract features from AIS segments but also share training parameters for the unlabelled data. The SCEDN uses an encoder–decoder convolutional structure with four channels for each segment (distance, speed, Time to the Closed Point of Approach (TCPA) and Distance to the Closed Point of Approach (DCPA)) been developed. The performance of the SCEDN model are evaluated by comparing to several baselines with the experimental results demonstrating a higher accuracy can be achieved by our proposed model
    • 

    corecore