
 
 
 
 
 
 
 
Kascenas, Antanas (2023) Anomaly detection in brain imaging. EngD thesis. 
 
 
 
https://theses.gla.ac.uk/83832/ 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

mailto:research-enlighten@glasgow.ac.uk


Anomaly Detection in Brain Imaging

Antanas Kascenas

Submitted in fulfilment of the requirements for the
Degree of Doctor of Engineering

School of Computing Science
College of Science and Engineering

University of Glasgow

May 2023



Abstract

Modern healthcare systems employ a variety of medical imaging technologies, such as X-ray,
MRI and CT, to improve patient outcomes, time and cost efficiency, and enable further
research. Artificial intelligence and machine learning have shown promise in enhancing
medical image analysis systems, leading to a proliferation of research in the field. However,
many proposed approaches, such as image classification or segmentation, require large
amounts of professional annotations, which are costly and time-consuming to acquire.
Anomaly detection is an approach that requires less manual effort and thus can benefit
from scaling to datasets of ever-increasing size.

In this thesis, we focus on anomaly localisation for pathology detection with models
trained on healthy data without dense annotations. We identify two key weaknesses of
current image reconstruction-based anomaly detection methods: poor image reconstruction
and overdependency on pixel/voxel intensity for identification of anomalies. To address
these weaknesses, we develop two novel methods: denoising autoencoder and context-to-
local feature matching, respectively.

Finally, we apply both methods to in-hospital data in collaboration with NHS Greater
Glasgow and Clyde. We discuss the issues of data collection, filtering, processing, and
evaluation arising in applying anomaly detection methods beyond curated datasets. We
design and run a clinical evaluation contrasting our proposed methods and revealing
difficulties in gauging performance of anomaly detection systems. Our findings suggest that
further research is needed to fully realise the potential of anomaly detection for practical
medical imaging applications. Specifically, we suggest investigating anomaly detection
methods that are able to take advantage of more types of supervision (e.g. weak-labels),
more context (e.g. prior scans) and make structured end-to-end predictions (e.g. bounding
boxes).
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Chapter 1

Introduction

Medical imaging plays a crucial role in modern healthcare systems by allowing healthcare
providers to visualise the inside of the human body in order to make accurate diagnoses,
develop treatment plans and monitor patients for potential complications. Medical
imaging techniques such as X-ray, CT (computed tomography), and MRI (magnetic
resonance imaging) can allow healthcare professionals to avoid invasive procedures
improving both efficiency and effectiveness of treatments. It is an essential tool in clinical
workflows for improving patient care and outcomes in the modern healthcare system.
Medical imaging technology has been improving at a rapid pace which is reflected in the
following trends:

1. Prevalence: Medical imaging is becoming increasingly prevalent, as new
technologies and techniques are developed [28] and demand is growing. This is
leading to an increase in the number of medical imaging procedures being performed
[98].

2. Applications: Medical imaging is being used in a wider range of applications (e.g.
recent advances such as positron emission tomography and magnetic resonance
imaging fusion systems [20] or portable/handheld imaging systems such as Butterfly
iQ+ [58]). In addition, medical imaging is being used more frequently in
combination with interventional techniques, such as radiation therapy and surgery,
to improve patient care.

3. Effectiveness: Medical imaging technologies and techniques are becoming more
accurate and effective, due to advances in both hardware and software. This is
leading to more accurate diagnoses and more effective treatments for a wide range of
medical conditions (e.g. improved accuracy and reduced workload in breast cancer
screen via use of artificial intelligence interpretation of mammograms [62]).

4. Use of artificial intelligence (AI): There is a growing trend towards the use of

1



CHAPTER 1. INTRODUCTION 2

artificial intelligence in medical imaging, with the goal of improving the accuracy
and efficiency of the diagnostic process.

However, many challenges remain. In particular, wider adoption of AI in medical imaging,
while promising, is held back by issues associated with data including quality, availability,
privacy, security and bias concerns. These concerns especially affect the use of machine
learning (ML) methods that heavily rely on the availability and quality of data for model
training and evaluation.
The most common applications of ML in medical imaging involve supervised training of
deep neural networks for the classification or segmentation of medical scans towards
pathology or anatomy detection and delineation. Training and validation of such models
typically requires annotated data. Data annotation for ML applications in medical
imaging generally requires a lot of time and effort from experienced healthcare experts
(e.g. senior radiologists) making the availability of such annotated datasets scarce and
creation expensive.
These issues are compounded by the fact that many current AI algorithms exhibit brittle
behaviour. Trained models are often more sensitive to the quality of data and annotation
than human experts (e.g. neural networks are vulnerable to adversarial samples that do
not fool humans [74]). As a result, subtle changes in data distribution may result in
significantly worse performance, especially if the ML model is trained on a small and
homogeneous dataset.
Thus, there is increasing interest in AI applications that could be less reliant on human
annotations and operate successfully in environments where data quality can’t be
guaranteed. Anomaly detection (AD) is one such application that is well-positioned in this
regard, both as a standalone application (e.g. for scan triage) and as enabling technology
for further applications (e.g. ensuring expected scan quality for quality-sensitive AI
applications such as pathology classification).

1.1 What is anomaly detection?

Anomaly detection is an open-ended task that has a multitude of potential interpretations
in the context of applying artificial intelligence to medical imaging. Most generally,
anomaly detection refers to the use of AI algorithms to identify abnormalities in medical
images.
Anomaly detection in medical imaging typically involves training an AI model on a large
dataset of images with little, if any, human annotation and then using the model to
identify deviations from the norm in new images once the model is applied (i.e. at test
time).
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Figure 1.1: Samples of anomalous head CT scans displaying scans with (left-to-right) a
haemorrhage, gliosis, motion artefact, prosthetic eye. CQ500 data [18].

There are many types of abnormalities (e.g. pathologies, imaging artefacts, abnormal
anatomy, see Figure 1.1 for samples) and data distributions (i.e. what data is available to
train the model) that may guide the potential applications of anomaly detection. The
modality, anatomy, imaging techniques and regulatory conditions can be factors that
influence data distributions by determining what imaging procedures are performed on
which patients and which data is collected and may be obtained for model training.
Applications themselves may range from the most general case of out-of-distribution
detection that might be defined as anything visible in the scan that is outside the norm to
more narrow cases that are usually more relevant to clinicians such as pathology detection
or localisation.

1.2 Why is anomaly detection important?

Anomaly detection, if effective enough, could help with multiple challenges in current
applications of medical imaging and extend or enable specific AI imaging pipelines.
Firstly, the efficiency of current medical procedures could be improved by enabling quick
and automated scan review for abnormalities and/or pathologies in the target anatomy, or
potential technical issues (e.g. artefacts resulting from patient motion). Such anomaly
indications could save time and reduce the cost of medical imaging procedures even
without explicit diagnostic contributions.
Secondly, medical imaging scans can take extensive amounts of time to read even for
experts. The scan read time is especially relevant for three-dimensional scans (e.g. CT,
MRI) that require the reader to explore and review significantly more information relative
to traditional two-dimensional (2D) images. Thus, effective automated anomaly detection
could direct the focus of the scan reader to regions of interest, as well as function as a
second read to eliminate potential human errors.
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Finally, anomaly detection is related to uncertainty prediction and interpretability of AI
models which remain difficult objectives in the face of rapid AI improvement elsewhere.
There is a need for more robust and reliable AI pipelines in the healthcare setting,
however, current deep learning approaches can still fail to report uncertainty reliably and
fail unexpectedly due to anomalous data. A reliable anomaly detection technology could
help alleviate the concerns of regulators and healthcare providers by catching data
abnormalities in ML pipelines that might otherwise cause more brittle AI models (e.g.
targeted and trained for specific pathologies) to behave unpredictably once deployed.

1.3 Why is anomaly detection difficult?

Anomaly detection is difficult for a number of reasons, including the fundamental
difference in the way it is applied compared to most other machine learning methods.
While many machine learning algorithms are trained on a specific dataset and are
expected to perform well on data that is similar to the training data, anomaly detection
algorithms are expected to function reliably on out-of-distribution data. The sample
independence and identical distribution assumption is one of the core assumptions in
machine learning but the identical distribution part is explicitly violated in anomaly
detection applications by definition. Most machine learning methods and especially deep
learning models tend to behave unpredictably when faced with data that is significantly
different from their training distribution.
The definition of an anomaly is also often open-ended, subjective and dependent on
context. In some cases, an anomaly may be defined strictly as belonging to a specific set
of pathologies (e.g. tumours, fractures). In other contexts, it might be interpreted as
anything that sufficiently deviates from the normal or healthy anatomy. Furthermore, with
any definition, there might still be a gap between detected anomalies and clinically
relevant findings. It is difficult to design methods that detect clinically relevant findings as
little to no annotations are typically available to train the model towards clinical relevance.
The diversity and complexity of anomalies in the medical domain can also make detection
difficult. The abnormalities can vary significantly in size, shape, and appearance, making
it difficult for one algorithm to accurately detect all types. Medical images are often
complex and require specialised expertise to read properly and determine the regions of
interest. Depending on the context, it might be appropriate to detect some anomalies less
accurately than others. The appropriate balance between detection precision and recall
might differ across anomalies as well. Thus, calibrating anomaly scores is difficult as it
generally needs to be done before deployment with little or no anomalous samples.
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1.4 What is the state-of-the-art?

Research on anomaly detection in medical images is still in the early stages. There is a
lack of consensus on definitions of anomalies, the anomaly detection task and evaluation.
Depending on the available data and application in mind, research is split into several
types of anomaly detection. The types may differ in what kind of training data is available
(i.e. mix of normal and abnormal, only healthy, with or without other types of annotation),
what is the target model output (e.g. pixel-level or image-level detection), and the
available options for evaluation (e.g. manual pathology ground truth, image-level labels,
localised anomaly instances).
State-of-the-art methods generally use deep learning neural networks to learn the normal
anatomy. Currently, the best methods are able to detect prominent pathologies (e.g. large
tumours in MRI scans), but the lack of consistent evaluation protocols across research
works makes it hard to track progress.
There is currently no single approach to training a neural network model that outperforms
all other approaches for all types of anomaly. The most established approach uses image
reconstruction error (explored in Chapter 3) and takes advantage of poor neural network
generalisation in out-of-distribution settings to detect anomalies. More recently, explicitly
discriminative anomaly detection methods have shown promising results [119] (explored in
Chapter 4) and generally offer more configurability of model inputs and outputs at the
cost of making more assumptions about the test anomalies. Finally, approaches based on
distance or similarity metrics (e.g. modelling distributions of pretrained features [23]
applied to medical imaging by Logogiannis et al. [56]) attempt to take advantage of rich
feature representations that are becoming more commonplace with the prevalence of
pretrained models and self-supervised tasks.
In this thesis, we mostly focus on the task of training neural network models for anomaly
localisation (i.e. pixel/voxel-level detection) with a training set of healthy data and explore
the implications and relative performance of a select number of approaches.

1.5 Research questions

This thesis explores reconstruction error based and discriminative approaches to anomaly
localisation. We introduce two novel methods to address weaknesses we identify with
currently established reconstruction error based models. We also apply our methods to
uncurated in-hospital data and identify practical issues with data collection and evaluation
of anomaly detection methods. Our research questions are as follows:

1. Methods: Can we design methods to reliably detect diverse anomalies in medical
images?
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2. Evaluation: What are the performance criteria for anomaly detection in medical
imaging?

3. Practicality: What barriers prevent training and deploying useful and applicable
anomaly detection models in clinical practice?

1.6 Thesis overview

The thesis contains three technical chapters. In Chapter 3, we explore autoencoder
anomaly detection methods relying on reconstruction error to detect abnormalities. We
propose a simple but effective denoising autoencoder and discuss the overall weaknesses of
AD methods that rely on image reconstruction.
Chapter 4 investigates a significantly different paradigm of anomaly detection -
classification based AD models. We contrast a simple discriminative approach of synthetic
anomaly segmentation against the previous reconstruction error-based methods, investigate
the downsides and propose a more advanced discriminative method with custom neural
network architecture that rivals the denoising autoencoder baseline from Chapter 3.
Finally, in Chapter 5, we bring the proposed AD methods closer to practicality in two
ways. Firstly, we transfer our methods to a real-world dataset of head CT scans and
employ natural language processing to assemble a training set in a more practical scenario.
Secondly, we clinically evaluate our proposed methods, discuss the evaluation design
choices, review the results and discuss the takeaways in comparison to the typical
quantitative evaluation against the ground truth done in the two previous chapters.



Chapter 2

Background

Anomaly detection in imaging is usually treated as a machine learning task that involves
identifying unusual or abnormal patterns in images. The aim is to be able to detect a wide
range of possible deviations from the training distribution. There are several ways in which
this task can be approached, depending on the available data and goals of the application.

2.1 Anomaly detection task

The three major axes (see Figure 2.1) among which anomaly detection methods differ are
the type of prediction an anomaly detection model is making (i.e. inputs and outputs to
the model), the type of supervision used to train the anomaly detection model (i.e. data
and annotations used for supervision), and the type of evaluation data and metrics used to
estimate the generalisation of the trained model.

2.1.1 AD model inputs and outputs

Anomaly detection methods can differ in the type of inputs and outputs that the model
handles. A method may operate on raw images, on the image feature representation
extracted via a different method (e.g. ImageNet [24] pretrained neural network,
scale-invariant feature transform [59]) or on parts of the image (e.g. classifying regions of
interest). An anomaly detection model may also localise anomalies by producing granular
anomaly predictions (e.g. pixel-level such as most autoencoder approaches [7]) or just
perform detection at the whole image level (more common and practical in computer
vision e.g. Hendrycks et al. [41]).
In this thesis, we mainly focus on pixel-level anomaly localisation, training models with
image data directly as suitable feature representations are difficult to obtain for medical
images.

7
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Prediction type

Inputs Outputs

Raw images

Image slices

Image regions

Precomputed 
representations

Image-level

Pixel/voxel-level

Supervision / training data

Outlier detection

Anomaly presence 
in training data

Novelty detection

Unsupervised

Semi-supervised

Supervision

Weakly supervised 
(image-level GT)

Partial 
pixel/voxel-level GT

Evaluation

Using pathology 
datasets/GT

Using synthetic 
anomalies

Figure 2.1: Classification of anomaly detection tasks according to prediction type, training
data/supervision and evaluation.

2.1.2 AD model training data

The amount of supervision available via annotations can also significantly influence the
appropriate approach to anomaly detection and will depend on the application context. In
the hardest setting, an AD method will operate on training data that may contain
anomalous samples (sometimes called outlier detection) and the method has to be able to
identify the abnormal samples or function with abnormal samples present. An alternate
setup would assume a clean training set and detect new anomalies at test-time (sometimes
called novelty detection).
The settings of outlier and novelty detection are also occasionally classified as
unsupervised and semi-supervised AD respectively [103]. However, this is complicated by
the pixel-level and scan-level distinction. For example, the term “unsupervised anomaly
detection” in anomaly detection literature around medical imaging is often used for
methods that use only healthy data for training but contain no pixel-wise annotations.
There are also more specific settings where other types of annotations can be used for
training of anomaly detection methods including weakly supervised methods (e.g.
scan-level labels are available during training) or semi-supervised pixel-level methods
where some subset of anomalies with dense ground truth are available during training.
In this thesis, we mainly explore anomaly detection settings where only healthy data is
available for training. However, we briefly investigate semi-supervision with some dense
anomaly ground truth during training in Chapters 3 and 4. We discuss the plausibility of
completely healthy training data in Chapter 5.

2.1.3 AD model evaluation

Anomaly detection methods require anomalous data for evaluation as we cannot use only
healthy (or “normal” in general AD context) data to measure anomaly detection and
localisation capabilities. This presents a challenge distinct from most traditional image
analysis settings in medical imaging (e.g. image segmentation) where an arbitrarily



CHAPTER 2. BACKGROUND 9

selected part of the dataset can be held out for evaluation.
Therefore, in the context of medical imaging, we need to be able to partition the available
data into a healthy or mostly healthy subset for training and an anomalous (or mixed)
subset for evaluation. Furthermore, dense labels are needed to evaluate localisation e.g.
dense segmentation annotations, bounding boxes or other finer-than-image-level
annotations.
Unfortunately, such datasets of medical images are currently not available in the public
domain. On the other hand, datasets with pathology or anatomy segmentations are widely
available. There are two ways to repurpose image segmentation datasets for anomaly
localisation evaluation and training. Firstly, if dense pathology annotations are available,
we can separate the healthy subset by excluding the areas containing pathology. We can
then use the healthy subset for training and the dense pathology annotations to evaluate
anomaly localisation performance (e.g. Madat et al. [60]). Secondly, we can optionally
perform the filtering as in the first option but use synthetically generated anomalies for
evaluation (e.g. MOOD2020 challenge used mostly synthetic anomalies for evaluation
[119]).
Both options have significant limitations. The first option assumes that the data contains
no anomalies other than the annotated pathologies which are filtered out from the healthy
subset. Evaluating using only the annotated pathologies is limiting; the goal of anomaly
detection is to find a wide variety of outliers and a metric obtained by evaluating on a
small subset of pathologies with available annotations might not generalise to a wide range
of anomalies that we are aiming to detect at test time.
The second option of using synthetic anomalies heavily relies on the quality of synthetic
anomalies. Producing high-quality anomalies suitable for evaluation is almost as hard as
developing an anomaly detection method itself. In fact, a sufficiently wide variety of
synthetic anomalies could be enough to train a supervised segmentation method and
produce a good anomaly detector (see participants in MOOD2022 [119] and MOOD2021
[63] for examples of such approaches). This approach is further discussed in Chapter 4.
Despite the limitations, quantitative evaluation is important. We thus explore both
options in this thesis.

2.2 Prior work in computer vision

Anomaly detection is a general task in machine learning and thus has been employed in a
variety of settings from financial surveillance [3] to system log analysis [27]. However,
anomaly detection methods are sensitive to the domain context and differ significantly due
to different challenges present in each domain (see Pang et al. [73] and Ruff et al. [87] for a
general overview of methods and challenges across domains). Thus, most general anomaly
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detection methods are difficult to transfer to the domain of medical imaging.
The field of computer vision is a much larger field in terms of research output and often
precedes medical image analysis in applying the latest developments in deep learning
techniques for image analysis. Some anomaly detection methods or ideas developed in the
context of computer vision may be helpful in developing novel approaches for medical
images. Thus, we look at the recent research in anomaly detection in computer vision and
anomaly localisation in particular to find emerging trends in successful methods that may
apply to medical imaging.

2.2.1 Use of generative models

The missing anomaly class in the training of anomaly detection models makes it
challenging to train end-to-end deep learning models for anomaly detection. One
workaround is to use generative models which are generally trained with unlabelled data
either for the learned features or to directly detect anomalies by proxy.
Generative adversarial networks (GANs) [35] have been one of the most popular
approaches to image generation. In a GAN setup, two neural networks are trained (i.e.
generator and discriminator) with opposing objectives. The generator implicitly learns the
distribution of the input data by learning to synthesise samples while the discriminator
learns to distinguish the real data from the synthetic samples produced by the generator.
Intuitively, the trained discriminator should be able to identify abnormal samples. See Xia
et al. [112] for a comprehensive review of GAN applications in anomaly detection. While
most GAN approaches consider sample-level (i.e. image-level) anomalies, some methods
have also been applied to anomaly localisation.
Schlegl et al. [90] have applied GAN training together with an autoencoder framework.
After GAN training, an additional encoder network is trained which maps images to the
latent space of the generator. The encoder is used to map abnormal samples to the latent
representation of the normal version of the sample. The generator is used to produce a
normal image counterpart of the abnormal image. The anomalies are then detected by the
residual error between the two versions of the input image.
Other generative models have also been applied towards anomaly localisation. Normalising
flows [115, 86, 37] have been applied for their flexibility and their ability to efficiently
estimate the likelihood of an image. Transformer architectures have been employed for
reconstruction error based anomaly detection (e.g. inpainting) due to their ability to
model long-range spatial relations [67, 77]. Diffusion models have recently become popular
in computer vision due to their successes in high-fidelity image generation and, in turn,
have been applied to anomaly localisation [111, 109, 89] via reconstruction error between
the original and generated/reconstructed images.
Though generative models provide a powerful way to learn unsupervised representations,
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the learned features are usually inferior to representations learned by supervised or
self-supervised methods [112]. Thus, in this thesis, we focus on self-supervised and other
non-generative methods.

2.2.2 Self-supervised methods

Self-supervision is currently the leading technique in learning unsupervised representations.
A pretext task is formulated to generate labels or other supervisory signals from the data
itself. An example in natural language processing is training a model on unlabelled text
data to predict the masked tokens in a sentence [25]. Pretext tasks are less straightforward
to set up in image data, but recent research in contrastive methods has achieved a lot of
success [54, 68, 36].
Earlier applications of self-supervision to anomaly detection were concerned with
sample-level detection and employed pretext tasks such as geometric transformations [34],
jigsaw puzzles [72] and context prediction [26] to learn feature representations. Anomaly
detection itself was usually done by looking at the maximum logit in the softmax of the
normal classes [41, 42] in the traditional multi-class setting on CIFAR [55] or ImageNet
[24] data. Lower maximum class probability implies less model confidence and a higher
chance of an out-of-distribution sample.
However, the task of anomaly localisation requires either learning a pixel-level
representation or applying sample-level detection techniques at the patch-level to produce
anomaly score heatmap predictions and localise anomalies. Most such anomaly
localisation work has been evaluated on MVTec [12] dataset for industrial defect detection.
The localisation approaches thus ranged from applying traditional one-class anomaly
detection techniques at the patch-level [113] to learning self-supervised patch-level
representations via data augmentation [57] to learning dense representations via synthetic
anomaly segmentation [91]. Overall, self-supervised methods have proven to learn powerful
representations that enable many applications including anomaly detection, especially in
cases where representations from pretrained models are not available.
There are few pretrained models available for medical images due to a large variety of
image modalities and preprocessing techniques as well as the limited availability of diverse
annotated data. Thus, in this thesis, we explore two ways to obtain dense image
representations via self-supervision in Chapter 4. Firstly, we examine the pros and cons of
synthetic anomaly segmentation. Secondly, we design a pretext task specifically for
anomaly detection.
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2.2.3 Transfer learning

Most successful methods for anomaly localisation in computer vision use ImageNet [24]
pretrained models to obtain image feature representations and apply custom anomaly
detection methods on top of it [70]. The use of transfer learning for anomaly detection is
extremely effective because a sufficiently general representation such as one obtained by
training a model on a large number of image classes (e.g. 1000 in the case of ImageNet)
can capture not just the features in the normal data that is available for training or
finetuning but also features that might be specific to the anomalies faced at test time.
Such discriminative features are the reason why AD methods based on transfer learning
are so common and successful. The same cannot necessarily be said for self-supervised
methods where only normal data might be used to learn the features and discriminative
features might not be learned.
Approaches relying on the use of transferred features may use memory banks together
with multi-scale feature pyramids [21], teacher-student knowledge distillation [13], patch
representation distribution modelling via multivariate Gaussians [23] or combinations of
such techniques [85].
While the performance across these methods might differ slightly [70], the quality of the
pretrained features used is likely more important for success.
Comprehensively pretrained models for transfer learning are generally not yet practical in
medical imaging due to differences across imaging modalities, lack of publicly available
data/annotations and the idiosyncracies among tasks where a general representation might
not help. However, the idea behind obtaining discriminative features is key. We explore
ways to design a self-supervised task that learns such discriminative features in Chapter 4.

2.3 Prior work in medical imaging

Research in anomaly detection for medical imaging is often motivated by an assumption
that acquiring healthy data is easier than gathering samples of pathologies or other
abnormalities of interest. However, anomalies in medical images can be quite subtle and
require expertise to identify. Thus, anomaly detection research is in the early stages and
most methods aim to detect and evaluate using one or a few specific pathologies (e.g.
brain tumours). Furthermore, there is a lack of consensus on the appropriate applications
and evaluation protocols thus most works are of exploratory nature.

2.3.1 Sample-level anomaly detection

Sample-level anomaly detection has been applied in a wider set of modalities and generally
employs a more diverse set of methods (see recent surveys [29, 103] for a broader overview)



CHAPTER 2. BACKGROUND 13

as evaluation requires less annotated data (i.e. image-level labels rather than segmentation
ground truth to evaluate localisation).
Methods include GAN-based [108, 38] models, memory bank approaches [14], explicitly
modelling anomaly-normal distribution discrepancy with separate modules [16] as well as
perceptual autoencoders that measure reconstruction error in the representation space [95].
Most such methods are implemented using X-ray data as large datasets with image-level
labels [50, 106] are available for training and evaluation.
However, sample-level detection often lacks interpretability and thus might be less trusted
by healthcare practitioners as scan-level anomaly scores can be hard to interpret, especially
in cases of volumetric scans of CT and MRI where the whole image cannot be quickly
reviewed. Thus, sample-level methods might be more appropriate for global abnormalities
that affect the whole image and where localisation might not be appropriate (e.g. image
quality issues, global texture changes, etc). General purpose interpretability techniques
such as GradCAM [94] and LIME [82] that attempt to add local explanations to model
results have been applied to bridge sample-level AD methods towards localisation.
However, such methods are generally considered imprecise and unreliable for clinical use.
Therefore, in this thesis, we develop methods with anomaly localisation as a goal instead.
Pixel-level anomaly scores (i.e. anomaly localisations) are easier to interpret, easier to
qualitatively evaluate, and provide significantly more information to the user. Localised
detections can also usually be trivially transformed into image-level scores (e.g. by taking
the maximum pixel-level anomaly score across the image) if needed.

2.3.2 Anomaly localisation via reconstruction error

A popular approach to anomaly localisation in medical imaging is to rely on image
reconstruction error. Such approaches typically involve an autoencoder (AE) model that is
trained to reconstruct healthy images during training. The trained autoencoders are then
applied to anomalous data at test time and work under the assumption that anomalous
regions in the image will be reconstructed more poorly than healthy regions as the model
has not seen the anomalous data during training and thus is less likely to generalise well.
Many modifications to the standard autoencoder pipeline have been proposed to improve
performance on the task of anomaly detection, which has the potentially conflicting twin
goals of reconstructing normal regions of the original brain scan with high fidelity, while
reconstructing any anomalous regions with poor fidelity (in order to distinguish them).
Variational autoencoders (VAEs) [120, 9] have been a popular approach. VAEs constrain
the latent bottleneck representation to follow a parameterised multivariate Gaussian
distribution. A further extension proposed by Zimmerer et al. [118] added a
context-encoding task and combined reconstruction error with density-based scoring to
obtain the anomaly scores.
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A variety of other changes to both the architecture and model input have been proposed.
Convolutional autoencoders were introduced [4, 9] for higher capacity spatial bottlenecks
instead of fully-connected (dense) bottlenecks to achieve better reconstruction. Chen and
Konukoglu [17] use constrained autoencoders to improve latent representation consistency
in anomalous images at test time. Bayesian skip-autoencoders [8] use skip connections
with dropout to improve reconstruction and allow uncertainty to be measured via dropout
stochasticity. Scale-space autoencoders [11] were proposed to compress and reconstruct
different frequency bands of brain MRI using the Laplacian pyramid to achieve higher
reconstruction fidelity.
The autoencoder framework of encoder-decoder components and reconstruction error for
anomaly scores has also featured in more complex approaches. The aforementioned
f-AnoGAN [90] has been used for more realistic anomaly removal. Pinaya et al. [76]
combine a vector quantised VAE (VQ-VAE) to encode an image with a transformer model
to resample low-likelihood latent variables in order to produce reconstructions with fewer
reproduced anomalies. Most recently, methods based on a computer vision image
generation technique of iterative diffusion have also been applied towards anomaly
detection [109, 111] via reconstruction error.
Restoration approaches [114, 61] use an iterative gradient descent restoration process at
test time, replacing the reconstruction error with a restoration error to estimate anomaly
scores which, while time-consuming, significantly improves over single-step reconstruction
baselines.
Baur et al. [7] have performed an evaluation of some common autoencoder methods for
anomaly detection in brain MRI, finding VAE with the restoration procedure [114] and
f-AnoGAN [90] to be among the best. However, more recently [64] showed that most
autoencoder-based MRI anomaly detection methods can be outperformed by a simple
thresholding baseline, applied to the FLAIR sequence after histogram equalisation
preprocessing. This training-free approach detected hyperintense brain tumours and
multiple sclerosis lesions better than most anomaly detection approaches that require
healthy data to train and has raised questions about the effectiveness and evaluation of
anomaly detection methods using purely hyperintense lesions.
We explore the reconstruction error based methods, discuss their weaknesses and design a
denoising autoencoder method addressing the weakness of poor quality reconstructions in
Chapter 3.

2.3.3 Discriminative methods

Recent research has taken a different approach to the reconstruction-based models. The
medical out-of-distribution (MOOD) challenge [69] has been running for the last three
years, providing healthy brain MRI and abdomen CT scans for training and requiring the
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participants to submit trained models which are evaluated on a hidden test set containing
a mix of healthy and anomalous scans. The challenge entries are evaluated both at the
sample and pixel levels.
All challenge iterations so far have been won by discriminative approaches to anomaly
detection rather than reconstruction ones. Discriminative approaches directly predict the
anomaly scores for each scan/pixel rather than relying on an indirect measure of
reconstruction error.
Discriminative approaches range from conceptually simple methods of generating and
training to detect synthetic anomalies [99, 19] with the intention to generalise to a wide
range of test anomalies to more advanced methods employing meta-learning [100]. Such
methods have strong connections to traditional image segmentation and self-supervision
that have found success in computer vision. However, it remains to be seen whether
methods generating synthetic samples to train against can really generalise to real
anomalies as a large fraction of the MOOD challenge evaluation consisted of synthetic
abnormalities.
We explore discriminative approaches, discuss their weaknesses, design a novel
discriminative method in Chapter 4 and evaluate on diverse real anomalies in Chapter 5.



Chapter 3

Reconstruction-error based anomaly
detection

3.1 Introduction

Autoencoder deep learning models (AEs) are one of the most common unsupervised
learning methods. AEs are trained to reproduce the model input at its output and
therefore do not require any image annotations to train. The model takes the form of
f(g(x)) = x̂ where f represents the autoencoder model, x represents the input, g
represents an optional corruption function (e.g. noise) and x̂ represents the model output
(i.e. reconstructed output). Thus, AE models are trained by minimising the reconstruction
loss L(x, x̂) which can be any differentiable distance measure (e.g. mean-squared error).
The AE models are generally set up in a way such that reproducing the input is not trivial
(e.g. by limiting model capacity or using a modifying function g) and the resulting AE
learns a meaningful representation of the data. While AEs can sometimes produce useful
output (e.g. upsampling, denoising images) they can be useful in other ways as well. For
example, an AE model with an architecture that includes a representation bottleneck
could be used to obtain a lossy compression method. Furthermore, the AEs are expected
to learn latent representations that encode the contents of the image in a more abstract
and semantically relevant way as a consequence of the compression. The learned latent
representations have been a subject of a lot of research in machine learning, in particular
in the case of the variation autoencoder which we discuss in subsection 3.4.2.
In most cases of AEs, the model can be split into at least two parts: the encoder and the
decoder. Using the compression example, the encoder would compress the input into an
internal AE representation that is smaller than the input and the decoder would in turn
decompress it into the reconstructed output.
A variety of AE model variations have been proposed for different purposes by modifying
different aspects such as the corruption function g, encoder, decoder, bottleneck, and

16
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optimisation objective (i.e. training loss) function. Some AE models have been shown to
be applicable to unsupervised anomaly detection since training autoencoders does not
require densely annotated data (i.e. segmentation labels). In this chapter, we discuss AE
applications to AD and propose modifications to current methods, to address some of the
weaknesses.

3.2 Reconstruction-error for anomaly detection

AE models have been widely adopted [7] for anomaly detection and localisation. Anomaly
detection via AEs exploits one of the core assumptions in supervised machine learning: test
data (i.e. data not used during the training of the model) has to have a similar distribution
to the training data in order for a model to generalise at test time. However, for anomaly
detection, we are aiming to generalise and detect anomalies that have not been seen
during training. Thus, autoencoder-based models generally try to take advantage of the
poor generalisation of deep learning models in out-of-distribution (i.e anomalous) data.
More specifically, AE models are trained on healthy (i.e. normal) data only. The
assumption is thus that AEs will generalise well in reconstructing healthy parts of test
images. However, the abnormal parts of test images will be from a different distribution
than the healthy training data. As a result, the pixelwise or voxelwise reconstruction error
is expected to be higher in abnormal regions and thus the reconstruction error can be used
as the pixelwise anomaly score.

3.3 Brain tumour segmentation challenge data

Anomaly detection in head scans has prior work (see Chapter 2) and multiple publicly
available evaluation protocols. We find tumour detection in head MRI images to be a
suitable intermediate target in developing anomaly detection methods.
We evaluate the anomaly detection performance on the surrogate task of brain tumour
segmentation using data from the BraTS 2021 challenge [66, 5, 6] (see Figure 3.1 for
samples). The dataset is relatively large and contains diverse tumour appearances within
and between MRI sequences. The BraTS challenge has been running for many years and
has grown into a standard benchmark accessible for a variety of supervised (e.g.
segmentation) and unsupervised (e.g. anomaly detection) methods.
The dataset comprises native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (FLAIR) modality volumes for each patient
from a variety of institutions and scanners. The data has already been co-registered,
skull-stripped and interpolated to the same resolution. Labels are provided for tumour
sub-regions: the GD-enhancing tumour, the peritumoural oedema, and the necrotic and
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FLAIR T1 T1Gd T2 Ground truth

Figure 3.1: Samples from the BraTS2021 dataset. The four aligned modalities for each
case are shown in the first four columns. The last column shows the union of the ground
truth provided with the data.

non-enhancing tumour.
We randomly split the dataset into 938 training, 62 validation, and 251 test patients. In
each volume, we consider the union of the tumour sub-region labels to be the anomalous
region. During training of 2D models, we use only slices that do not contain any tumour
pixels, under the assumption that these non-tumour slices represent healthy tissue (see
Table 3.1). For the data input to the models, we concatenate all four modalities at the
channel dimension for each patient. We normalise (rescale) the pixel values in each
modality of each scan by dividing by the 99th percentile foreground voxel intensity. All
slices are downsampled to a resolution of 128×128 (1.62mm/pixel).
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Table 3.1: Patients splits and slice counts in the BraTS2021 dataset.
Data split # Patients # Healthy slices # Tumour slices

Train 938 69,635 0
Validation 62 4,508 0
Test 251 19,027 15,959
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Figure 3.2: Neural network architectures of denoising and variational autoencoders. The
denoising autoencoder (DAE) uses a U-Net [84] style architecture with skip connections.
The spatial autoencoder uses an analogous architecture but without the skip connections.

3.4 Autoencoder baselines

In this section, we present a few of the most popular autoencoder methods applied to
anomaly detection. These serve as baselines to guide our research. The AE models
described in this chapter differ in four ways: input modification, neural network
architecture, training objective, and pixel level anomaly score generation.

3.4.1 Spatial autoencoder

A simple spatial AE (SAE) is a basic autoencoder baseline for AD with imaging data [4,
9]. The model does not modify the input in anyway. The neural network architecture
consists of an encoder, decoder, and a spatial bottleneck between them. More specifically,
we use the DAE model architecture displayed in Figure 3.2 without the skip connections.
The model is trained by minimising the mean squared error (MSE) between the input and
the output of the model. The absolute difference between the model input and output is
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Figure 3.3: Producing anomaly scores from reconstruction errors. Error residuals across
the channels (in this case, MRI modalities) are averaged and smoothed via median filtering
and scaled for visualisation purposes.

used as the (pixelwise) anomaly score. In the case of multiple channels in the input as
with the BraTS2021 data, we use the mean residual across the channels (see Figure 3.3 for
visualisation of this process).
The MSE training objective is computed as follows:

Loss =
1

W ×H

W,H∑ 1

M

M∑
m=0

F ⊙ (Xm − X̂m)
2 (3.1)

where W,H are the slice image dimensions, M = 4 are the scan modalities, F is the
foreground mask indicating pixels with values above 0, Xm is the input slice image and
X̂m is the the model output (i.e. reconstruction).
At test time we produce pixelwise anomaly scores A in a similar fashion:

A(X) =
1

M

M∑
m=0

F ⊙ |Xm − X̂m| (3.2)

We use absolute error for anomaly scores and squared error for training though as both are
monotonic functions, it does not affect the end performance.
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3.4.2 Variational autoencoder

The variational autoencoder (VAE) is a popular AE framework which generally uses a
dense (i.e. non-spatial) bottleneck of significantly lower dimensionality that the SAE. The
bottleneck is constrained during optimisation to conform to a parameterised multivariate
Gaussian distribution by using an additional loss term and by sampling from the
distribution during training. As a result, the VAE is more constrained and generally learns
more semantic features.
An example of a VAE neural network architecture is shown in Figure 3.2. We use the
following training loss:

Loss = βKL[N (µ, σ),N (0, 1)] +
1

W ×H

W,H∑ 1

M

M∑
m=0

F ⊙ (xm − x̂m)
2 (3.3)

where KL(µ, σ) is KL divergence between the bottleneck parameterised multivariate
Gaussian distribution (µ, σ) and unit normal distribution (i.e. µ = 0, σ = 1). β is the KL
divergence loss weighting hyperparameter [43]. As described for the SAE above, at test
time we produce anomaly scores by taking the mean of the difference between the
pixelwise model input and model output (see Equation 3.2). The mean of the bottleneck
parameterised distribution is used at test time.

3.4.3 VAE-restoration

By using the trained VAE model described above we can employ a baseline proposed by
You et al. [114]. An iterative gradient descent restoration process is used at test time,
replacing the reconstruction error with a restoration error to estimate anomaly scores.
The restoration process involves iteratively adjusting the image according to gradients
calculated against a loss consisting of the normative prior learned from healthy images and
a data consistency term. Thus, the model is held frozen but the image is optimised at test
time. In effect, the normative prior pulls the images towards high probability space (i.e.
learned from healthy images) while the data consistency term prevents large changes to
the image resulting in a process that removes the anomalies from an image but leaves the
healthy tissue intact.
However, due to the iterative nature of the restoration procedure, it takes approximately
100 times longer to produce predictions compared to other AE methods.

3.4.4 f-AnoGAN

f-AnoGAN [90] is a Generative Adversarial Network (GAN) [35] based approach that is a
bigger departure from the standard AE framework. It employs a two-stage training
pipeline where the generator and discriminator components are trained first with healthy



CHAPTER 3. RECONSTRUCTION-ERROR BASED ANOMALY DETECTION 22

Table 3.2: Tumour detection performance as evaluated by test set pixel-level area under the
precision-recall curve (AUPRC) and ideal Dice score (⌈Dice⌉). MF refers to the application
of median filtering in post-processing. CC refers to connected component filtering. ±
indicates standard deviation across 3 runs.
Method AUPRC ⌈Dice⌉ ⌈Dice⌉ (+CC filtering)

Thresholding 0.684 0.667 0.679
Thresholding + MF 0.798 0.749 0.750

f-AnoGAN 0.198±0.006 0.316±0.006 0.327±0.007

f-AnoGAN + MF 0.365±0.024 0.449±0.014 0.453±0.015

SAE 0.087±0.001 0.152±0.001 0.152±0.002

SAE + MF 0.151±0.003 0.222±0.003 0.224±0.003

VAE (reconstruction) 0.299±0.002 0.395±0.002 0.405±0.002

VAE (reconstruction) + MF 0.555±0.004 0.548±0.003 0.551±0.003

VAE (restoration) 0.740±0.007 0.685±0.005 0.686±0.005

VAE (restoration) + MF 0.750±0.006 0.689±0.005 0.690±0.005

DAE (ours) 0.816±0.005 0.758±0.004 0.763±0.004

DAE + MF (ours) 0.833±0.005 0.773±0.004 0.774±0.004

data as in traditional GAN setups. Afterwards, a new encoder is trained together with the
frozen generator from the previously trained GAN to reconstruct the training data. As a
result, the encoder is used to project images into the GAN latent space. Images are then
reconstructed by the frozen generator. As described for the SAE above, at test time we
produce anomaly scores by taking the mean of the difference between the pixelwise model
input and reconstruction output (see Equation 3.2).

3.4.5 Intensity thresholding

We follow [64] to obtain results for a simple thresholding baseline that does not require
any training. FLAIR modality volumes are histogram equalised in the foreground and
connected component filtered to then use the resulting intensity values as anomaly scores.
The thresholding baseline relies on the fact that most tumours will appear hyperintense in
the FLAIR modality and will usually be higher intensity than any other tissue in the scan.
While suited only for hyperintense anomalies, this baseline serves as a sanity check on
what performance can be achieved by relying purely on intensity for hyperintense lesions
which are common anomalies of interest in MRI head scans.

3.4.6 Autoencoder baseline experiments

We implement, train, and evaluate the baseline AE methods in 2D for tumour detection
using the BraTS 2021 brain MRI dataset [66, 5, 6].
For spatial autoencoder (SAE) we use the encoder-decoder architecture with three
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Figure 3.4: Sample anomaly score predictions. From easier (top) to more difficult (bottom).
Thresholding baseline shows processed intensity values.

downsampling/upsampling stages. Each encoder stage consists of two weight-standardised
convolutions [78] with kernel sizes of 3 and 64, 128, 256 output channels for the three
stages respectively each followed by Swish activations [79] and group normalisation [110].
Average 2× 2 pooling is used for downsampling. The decoder architecture mirrors the
encoder in reverse, using transposed convolutional layers for upsampling. The architecture
is visualised in Figure 3.2. The spatial bottleneck is of size 16× 16 with 64 channels.
The variational autoencoder is implemented using the same architecture with the
bottleneck parameterising a 128 dimensional Gaussian distribution. We use β = 0.001 as
the KL divergence weight in the VAE training loss.
The VAE-restoration is performed using 100 iterations on individual slices basing our
implementation on public source code1.
We adapt the original public implementation of f-AnoGAN2 for the brain MR data task as
follows. We use an additional generator, discriminator and encoder block to account for
the higher resolution. Strided convolutions and transposed convolutions are used for
downsampling and upsampling respectively. We use a batch size of 32 and learning rates
of 0.001, 0.001, 0.00001 for the generator, discriminator and encoder respectively. The
encoder was trained using κ = 1× 10−8.

1https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-w
ith-a-Normative-Prior

2https://github.com/tSchlegl/f-AnoGAN

https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
https://github.com/tSchlegl/f-AnoGAN


CHAPTER 3. RECONSTRUCTION-ERROR BASED ANOMALY DETECTION 24

Figure 3.5: The relationship between VAE bottleneck dimensionality, anomaly detection
performance (i.e. AUPRC/average precision) and test reconstruction error. While recon-
struction error improves with larger bottlenecks, anomaly detection performance peaks
at dimensionality of 128 since tumours start being reconstructed with larger bottlenecks
which negatively impacts anomaly detection performance.

We evaluate the anomaly detection performance of the methods with two metrics. Firstly,
we measure the area under the precision-recall curve (AUPRC also known as average
precision) at the pixel level computed for the whole test set. AUPRC evaluates anomaly
scores directly without requiring to set an operating point for each method. Secondly, we
calculate ⌈Dice⌉, a Dice score which measures the segmentation quality using the optimal
threshold for binarisation found by sweeping over possible values using the test ground
truth. ⌈Dice⌉ represents the upper bound for the Dice scores that would be obtainable in
a more practical scenario where the threshold needs to be set manually.
The evaluation results can be seen in Table 3.2. There are large differences among the
different autoencoders from f-AnoGAN and SAE performing very poorly to VAE
restoration detecting anomalies significantly better. SAE performs poorly due to the
spatial bottleneck being not restrictive enough resulting in good reconstruction of both
healthy tissue and tumours. The restrictive bottleneck of the VAE overcomes that problem
and performs well with a bottleneck of limited dimensionality. A qualitative comparison
can be seen in Figure 3.4. The VAE performs better than other AE reconstruction-error
baselines but all baseline AEs perform worse than the thresholding baseline.

3.5 Weaknesses of autoencoder methods

The majority of issues with the baseline AE results can be classified into two categories:

3.5.1 Anomaly reconstruction

AE methods with too little restriction may reconstruct too “faithfully” by precisely
reconstructing not only the healthy tissue but also the anomalies. This can be seen in the
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Figure 3.6: Sample reconstructions from SAE and VAE autoencoders. SAE reconstructs
the images well due to a large bottleneck but the anomalies are reconstructed as well
inhibiting anomaly detection via reconstruction error. VAE reconstructions do remove the
anomalies but are of overall lower quality adding noise to the anomaly signal.

SAE outputs (see Figure 3.6) and is likely caused by the convolutional bottleneck in the
architecture. The convolutional bottleneck is of shape 8× 8 with 64 channel dimensions
resulting in 212 bottleneck activations whereas the VAE has a bottleneck with 128
channels of means and standard deviations resulting in 28 activations.
Therefore, either a smaller bottleneck is needed in the architecture or the reconstruction
task needs to be more difficult to force the model to learn more heavily compressed
reconstructions that do not generalise to anomalous regions not seen during training.
However, architectures with smaller bottlenecks have their own issues, as shown by the
results of the VAE experiments.

3.5.2 Poor reconstruction

The baseline VAE methods produce poor image reconstructions (see Figure 3.6) which
result in reconstruction errors that poorly correlate with anomalies we want to detect. The
VAE reconstructions exhibit both high-frequency noise resulting from mismatch of fine
features (e.g. brain convolutions) and mismatch of coarse features (e.g. shape of the
ventricles or the brain itself). The errors resulting from fine feature reconstruction can be
mitigated by specific postprocessing steps. For instance, we find that any smoothing
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operation applied to the reconstruction errors can significantly reduce the noise in the
residuals and consequently improve the performance of all tested baselines. Median
filtering (as used by Baur et al. [7]) is especially effective (see Table 3.2). Furthermore,
more complex morphological postprocessing could also be applied. One example suggested
by Meissen et al. [64] is to perform connected component filtering to discard detected
anomalies that are too small in volume, however, we find that to have only a marginal
benefit in tumour detection in brain MRI (see Table 3.2).
Coarse scale reconstruction errors result from AE architecture restrictions. A lot of AE
architectures (including SAE, VAE and f-AnoGAN) include a bottleneck designed to force
the models to compress their intermediate representations since having no restrictions
would allow trivial solutions (i.e. copying the input to the output). This is also the reason
why more modern autoencoder architectures (e.g. U-Net [84]) that are popular for image
segmentation tasks are generally not used for anomaly detection. While it is possible to
improve the reconstruction of AEs with compression bottlenecks by expanding the
dimensionality of the bottleneck, this can result in worse AD performance as the AEs start
to reconstruct anomalies better as well (see Figure 3.5 for a VAE example and Figure 3.6
for an SAE sample where anomalies are reconstructed well).
U-Net skip connections (see Figure 3.2) could allow much more precise reconstruction.
However, with no compression requirement, such an AE would not learn anything
meaningful and would fail at anomaly detection. Thus, an AE model that does not rely on
representation compression and enables the use of skip connections could potentially
produce much better reconstructions and reduce false positives. We propose a classical
denoising autoencoder (DAE) approach that relies on removing artificial noise instead of
compressing representations in Section 3.6.

3.6 Denoising autoencoder

We explore the classic method of denoising autoencoders (DAEs). In contrast to the SAE
and VAE, the DAE relies on noisy inputs rather than compression through the bottleneck
(in cases of SAE and VAE) to make the reconstruction tasks non-trivial. While DAEs have
been largely ignored in anomaly detection tasks, we find that DAEs produce better
reconstructions than more popular autoencoder models with constrained architectures (e.g.
VAEs), and that careful design of the injected noise allows models to be trained to be
sensitive to subtle intensity changes and generalise to tumour localisation in brain MRI
scans.
We use a U-Net [84] style architecture (see Figure 3.2). The reliance on noise instead of
compression enables use of skip connections in the model architecture which results in
significantly better image reconstructions compared to bottleneck architectures such as the



CHAPTER 3. RECONSTRUCTION-ERROR BASED ANOMALY DETECTION 27

Figure 3.7: The denoising autoencoder anomaly detection method. During training
(top), noise is added to the foreground of the healthy image, and the network is trained
to reconstruct the original image. At test time (bottom), the pixelwise post-processed
reconstruction error is used as the anomaly score.

VAE (see Figure 3.8). However, any dense prediction (e.g. segmentation) neural network
architecture can be easily repurposed for DAEs.

3.6.1 Noise generation

Randomly generated noise is added to each input image and the DAE is tasked with
removing the noise and reconstructing the original input. DAEs perform denoising by
learning to distinguish between healthy brain image patterns and random noise patterns.
Thus, noise generation is essential for successful anomaly detection at test time. We
generate coarse intensity noise by sampling random pixelwise Gaussian (N (0, 0.2)) noise
at a low resolution (16× 16) and bilinearly upsampling it to the input resolution
(128× 128). We then randomly translate (by 0− 128px in both axes) the generated noise
to avoid consistent upsampling patterns. Noise is added to the input foreground i.e. pixels
with values above 0 (background pixels outside of the scan acquisition region are
zero-valued). See Figure 3.9 for examples of generated noise.

3.6.2 Inference and post-processing

The DAE is used to localise anomalies by calculating pixelwise anomaly scores A(x, F )

using M = 4 modalities of image x, reconstruction x̂, foreground mask F masking pixels
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Figure 3.8: Sample healthy brain reconstructions from VAE and DAE models. The DAE
gives more precise reconstructions. The VAE reconstruction quality could be improved
by increasing bottleneck dimensionality, however, this would negatively impact anomaly
detection performance.

with intensities above 0 and of application of median filter fMF :

A(x, F ) = fMF

(
F ⊙

M∑
m

|xm − x̂m|
M

)
. (3.4)

No noise is used at test time. See Figure 3.7 for the DAE pipeline.

3.6.3 Implementation details

We use an architecture similar to the baseline AEs but include U-Net [84] style
skip-connections which eliminate the restrictions in the bottleneck (see Figure 3.2). The
architecture comprises of an encoder and decoder with three downsampling/upsampling
stages. Each encoder stage consists of two weight-standardised convolutions [78] with
kernel sizes of 3 and 64, 128, 256 output channels for the three stages respectively followed
by Swish activations [79] and group normalisation [110]. Average 2× 2 pooling is used for
downsampling. The decoder architecture mirrors the encoder in reverse, using transposed
convolutional layers for upsampling.
Noise is generated by sampling random Gaussian pixelwise noise at the resolution of
16× 16 pixels then bilinearly upsampled to the input resolution of 128× 128 pixels. The
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Figure 3.9: Samples of noise generated by bilinearly upsampling Gaussian pixelwise noise
using different initial resolutions, from 1×1 through to 128×128 which was used for the
DAE model training. The noise is added to the input images and DAE is tasked with
removing it.

generated noise is then randomly translated vertically and horizontally to randomise the
centres of the coarse noise clusters that may occur due to upsampling from very low
resolutions. Noise is generated independently for each image modality.
We use mean L2 reconstruction loss in the foreground as the training objective. Models
are trained for 67,200 iterations with a batch size of 16 slices using Adam [81] with a
cosine annealed maximum learning rate of 0.0001 with a period of 200 iterations.
DAE code is available at https://github.com/AntanasKascenas/DenoisingAE.

3.6.4 Effect of noise design

To examine the effect of noise in DAEs we further investigate the effect of the sampled
noise resolution before upsampling and the σ of the Gaussian distribution used for
sampling noise (see Figure 3.10). To the best of our knowledge, we are the first to examine
the properties of noise coarseness and magnitude for denoising autoencoders.
We find that a reasonably coarse noise is critical, as DAE models trained using standard
pixel-level noise (generated at 128× 128 resolution) or using the opposite extreme of
image-level noise (generated at 1× 1 resolution) perform significantly worse. DAEs seem
to be not as sensitive to the magnitude of the noise (σ of the generating Gaussian
distribution) as long as it is not too small in relation to the pixel intensity range. Further

https://github.com/AntanasKascenas/DenoisingAE
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Figure 3.10: DAE generated noise coarseness and magnitude ablation results on validation
data. Magnitude (σ) ablation uses noise sampled at resolution of 16×16. Coarseness
ablation uses σ = 0.2. Error bars show standard deviation across three runs.

investigation into more complex noise models might be fruitful. It is likely that the
similarity between the generated noise and expected anomalies at test time is key to
improving performance further, but we chose to implement a simple noise process to avoid
overfitting to tumours and preserve generalisation as much as possible. See Chapter 5
where test the DAE generalisation on a different dataset and anomalies.

3.6.5 Results

We find that a relatively simple DAE implementation with an appropriate design of the
noise can produce significantly better results than other AE baselines as well as stronger
baselines of VAE restoration and thresholding (see Table 3.2). We attribute this to
significantly better reconstructions (as qualitatively shown in Figure 3.8 due to lack of a
bottleneck in the neural network architecture and use of skip connections. DAE coupled
with appropriate postprocessing (i.e. median filtering) serves as a simple but strong
baseline for AD methods.

3.7 Semi-supervision of autoencoder methods

Unsupervised anomaly detection is a common approach when only healthy data is
available for model training. However, in practice, it is usually possible to obtain a few
labelled anomalies.
There is currently no straightforward way to add sample anomalies to the training of
autoencoder methods. Contrary to supervised methods (e.g. image segmentation) where
the most straightforward way to improve the performance or fix issues is to add labelled
data addressing the specific issues, there is no analogous way to accomplish that with
autoencoders for anomaly detection. Ideally, we would want a method that is able to take
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Figure 3.11: Standard unsupervised autoencoder training, the proposed semi-supervised
training method and test-time anomaly score calculation. The methods differ in autoencoder
inputs and the calculation of the reconstruction loss for training.

advantage of both unannotated data (i.e. healthy scans) as well as scans where segmented
anomaly ground truth is available. This would allow much more practical applications
with finer control of what is and is not detected as anomalous. This issue stems from the
fact that AE methods produce output that is not directly used for anomaly detection as
reconstruction error is used instead. Thus, the model output and training objective are
not directly related to the desired goal of anomaly detection. We thus explore
workarounds to the problem of including labelled data in the training of AE methods for
anomaly detection.
We propose a method that enables semi-supervised anomaly detection with AEs, by
providing a synthesised pseudo-anomalous image as input but training the AE to minimise
the reconstruction loss between its output and the corresponding healthy source image.
We synthesise the pseudo-anomalous images by inserting augmented labelled anomalies
into healthy images. Thus, the AEs are trained to remove the labelled anomalies from
their reconstruction outputs.

3.7.1 Related work

In general, AEs are trained on healthy data and lack the capability to use labelled
anomalies for semi-supervision.
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Table 3.3: AP scores on the brain tumour dataset. ± indicates standard deviation across
5 runs with different model initialisations and labelled patient subsets if applicable. The
bottom right quadrant indicates where our semi-supervised method is applied.

Unsup. (Semi-)Supervised with labelled tumours

# labelled tumours 0 1 2 5 10 20

Segmentation N/A 0.453
±0.111

0.556
±0.088

0.625
±0.109

0.765
±0.040

0.833
±0.012

Segmentation
w\ synthetic data N/A 0.494

±0.238

0.672
±0.096

0.777
±0.088

0.859
±0.015

0.907
±0.011

SAE + MF 0.121
±0.004

0.582
±0.035

0.609
±0.043

0.682
±0.013

0.713
±0.010

0.717
±0.015

VAE + MF 0.478
±0.005

0.580
±0.003

0.588
±0.006

0.611
±0.005

0.618
±0.008

0.616
±0.006

DAE + MF 0.815
±0.007

0.846
±0.014

0.856
±0.009

0.873
±0.005

0.878
±0.003

0.877
±0.003

Several methods have been developed to deal with semi-supervised anomaly detection
settings in imaging where some labelled anomalies are available [88, 22, 10]. However,
most approaches (e.g Deep SAD [88], MML/DP VAE [22]) are designed to operate on
whole images rather than at the pixel level required to localise anomalies. Little prior
work exists specifically for semi-supervised anomaly localisation and image-level methods
generally transfer poorly to localisation tasks due to significant differences in the amount
of training data, labelling quality, computational requirements and overall nature of the
problem between the tasks.
The most relevant work to our method is proposed by Baur et al. [10] who tackle the
problem of anomaly localisation in brain MRI using a small number of labelled anomalies,
a larger dataset of healthy samples and an unlabelled dataset. Anomaly score maps on
unlabelled data are produced by an unsupervised spatial AE (SAE) trained on healthy
data in the first stage. These anomaly score maps are treated as pseudolabels and are
combined with the labelled anomalies to train a supervised segmentation model in the
second stage to detect multiple sclerosis lesions.
In contrast to Baur et al. [10], our training pipeline does not require a separate set of
unlabelled images containing anomalies and thus the methods cannot be compared fairly.
To the best of our knowledge there are no other works performing semi-supervised
anomaly localisation with AEs.

3.7.2 Method

We extract the abnormal regions from the anomalous images using the anomaly masks
(labels), apply data augmentation to the extracted regions, and then insert them into the
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Figure 3.12: Sample images of inserting tumours into healthy FLAIR images (top row)
to synthesise anomalous images (middle row) with resulting ground truth (bottom row).
These images can then be used for semi-supervised training of AE anomaly detection
methods.

normal images (see Figure 3.11 for visualisation of the process and Figure 3.12 for the
generated samples). This synthesis is inspired by similar “cut and paste” data
augmentation techniques previously applied for supervised segmentation tasks [32].
Data augmentations consist of random rotations, random intensity changes with
multiplication factors in the range [0.85, 1.15], and random vertical and horizontal resizing
with factors in the range [0.75, 1.25]. Abnormal regions are placed so that the centre lies
inside the foreground, however, for simplicity of implementation, we do not further attempt
to keep the anomaly locations to a plausible distribution (e.g. within the brain matter).

3.7.3 Experiments

We explore semi-supervised learning for tumour segmentation. We compare the proposed
semi-supervision against the AE unsupervised baseline and fully-supervised segmentation
baseline. In unsupervised experiments, we use only the healthy slices. In semi-supervised
AE experiments, we use all healthy training slices and tumour slices from a limited
number of patients. In fully supervised experiments we use a U-Net [84] architecture for
segmentation and both normal and anomalous slices from a limited number of patients.
We use two types of supervised segmentation baselines. Firstly, we train a simple
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Figure 3.13: An example case where DAE successfully reconstructs a significant anomaly
resulting in poor anomaly detection.

segmentation model only on the available limited labelled patient scans. Secondly, we use
our pseudo-anomalous data synthesis pipeline to incorporate all training normal slices in
addition to the limited labelled patient scans to train a second supervised model, sampling
labelled tumour slices and pseudo-anomalous generated slices with equal probability.
We perform experiments with three types of AE (SAE, DAE and VAE).

3.7.4 Results

Results are shown in Table 3.3. We see a general improvement in performance as we add
more labelled tumours to the semi-supervised models. However, there are significant
differences among the AEs. The SAE and DAE display significant improvements with
additional labels.
On the contrary, while the dense VAE is regarded as one of the best AEs in an
unsupervised setting [7], it exhibits only small improvements as labelled data is added
with our proposed method. The lack of improvement of VAE models likely reflects its
restricted capacity due to a much smaller bottleneck capacity. VAEs and bottleneck AEs
in general exhibit a trade-off between AD performance and reconstruction quality as the
bottleneck capacity is increased (as seen in Figure 3.5). Semi-supervision, thus, adds
another dimension to the trade-off - a larger capacity bottleneck allows for less noisy
reconstruction errors and greater performance gains via semi-supervision, but less bias and
a tendency to reconstruct even anomalous regions well. Therefore, the proposed
semi-supervision method is more suited for non-bottleneck AEs such as the DAE.
The supervised segmentation baselines are unstable to train in this low-data regime and
exhibit large variance depending on the patient selection for the labelled subset. The
results motivate the use of semi-supervised AE models for abnormality localisation in the
low-data regime even when the anomalies could be attributed to a single class (i.e. brain
tumours). Whilst supervised baselines outperform the AE methods, these are
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Figure 3.14: An image with a tumour and a synthetic texture anomaly of a square of
shuffled pixels. The bright tumour is detected well but the synthetic anomaly, which is
similar in intensity to the healthy tissue, is completely missed by both VAE and DAE
models.

segmentation baselines provided for context and are unlikely to generalise towards the goal
of detecting a wide variety of anomalies at test time without further modifications of the
model and training data. We further explore the generalisation of supervised learning
inspired anomaly detection methods in Chapter 4.

3.8 Conclusion

The denoising autoencoder and proposed semi-supervision method provide strong
baselines for anomaly localisation in the unsupervised and semi-supervised settings
respectively, addressing two of the most significant weaknesses of AE methods to give a
significant improvement over previous methods. However, fundamentally, the DAE still
relies on reconstruction error for anomaly localisation. Whilst, in theory, AE methods are
supposed to not generalise (i.e. reconstruct poorly) to out-of-distribution data (i.e.
anomalous regions), in practice we find that reconstruction is unpredictable rather than
consistently poor in anomalous regions. That is, depending on the architecture, training
data and hyperparameters, an AE model might sometimes reconstruct even anomalous
regions well. At other times, reconstruction in anomalous regions will be poor enough to
use that as the anomaly score. Thus, reconstruction error can be an unreliable signal for
certain anomalies. An example of such AE behaviour can be seen in Figure 3.13.
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Furthermore, not all anomalies are going to stand out by pixel/voxel intensity alone.
Certain anomalies might exhibit different texture patterns while not differing significantly
in terms of pixel/voxel intensity distribution. Such anomalies are unlikely to be detected
by reconstruction-error based AD methods. An example of such a synthetic anomaly can
be seen in Figure 3.14.
Similar concerns have been raised by Meissen et al. [65] concluding that
reconstruction-error might be unsuitable for use as the anomaly signal.
More generally, autoencoder based method are trained in an unsupervised setting and
provide little opportunity to add additional functionality. For example, there are no
obvious methods to add classification between pathological and non-pathological
anomalies or incorporate further patient metadata such as age that would likely be
important in applying anomaly detection in practice.
Finally, anomaly detection methods are likely to be applied as the first stage of a more
extended image analysis pipeline (e.g. as a out-of-distribution check) meaning that AD
methods need to robustly perform across messy inputs and provide well-calibrated scores.
We explore a practical setting in Chapter 5.
Further in this work, we explore alternatives to autoencoder reconstruction-error based
AD where anomaly scores are based on predicted probabilities resulting in more practical
and extendable methods closer to image classification and segmentation approaches rather
than unsupervised learning methods like autoencoders.



Chapter 4

Classification-based anomaly detection

4.1 Introduction

Classification-based anomaly detection methods refer to discriminative models that
directly produce anomaly scores as the model output. In contrast to reconstruction-based
methods such methods do not explicitly rely on assumptions of poor generalisation in
anomalous regions. The scoring difference is a significant one that has the potential to
improve on a few major weaknesses of reconstruction-based methods:

• Less reliance on pixel/voxel intensity which could make the detection of shape or
texture anomalies easier with classification-based methods as such anomalies might
not be reflected in the reconstruction error of autoencoder models.

• Detaching the anomaly score from reconstruction-error (i.e. pixel intensity difference)
allows for more useful anomaly scores. Ideally, the anomaly score would more closely
match the intuitive anomalousness or unexpectedness of an image region rather than
just the reconstruction intensity difference.

• Classification-based methods could open the door to easier integration with
semi-supervision. Adding supervision for certain anomalies could be a
straightforward way to iteratively improve the method after it is deployed and
examples of incorrect predictions are obtained. We have shown in Chapter 3 that
effective semi-supervision is hard to achieve with reconstruction-based methods.

• Finally, classification-based methods share the discriminative nature of image
segmentation and classification methods. Furthermore, learning discriminative
features has commonality with self-supervision research. Recent progress and
popularity of segmentation, classification and self-supervision approaches allows
easier transfer to classification-based anomaly detection methods compared to
reconstruction-based methods.

37
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However, training classification-based anomaly detection models comes with its own
difficulties. Generally, a discriminative model will need at least two different labels in the
training data to be trained. In the context of anomaly detection, we only have healthy
data (i.e. data from a single class or label) during training. Therefore, workarounds are
needed to train discriminative models.
One promising field of research is self-supervised learning which enables models to learn
discriminative feature representations for both imaging (e.g.[40, 36, 116]) and language
processing (e.g.[25, 15]) tasks. While this could allow the training of models on purely
healthy data without further annotations, it does not necessarily follow that the learned
features would be discriminative against the unseen anomalies at test time. As an
example, a self-supervised approach trained on pictures of dogs would be unlikely to learn
features that discriminate against cats as both dogs and cats share a lot of common
features (e.g. legs, ears, fur). Thus, a classification based anomaly detector trained on dogs
would be unlikely to pick up cats as anomalies. An analogous example in medical imaging
would be learning features on healthy brains and failing to detect brain tumours because
the trained model might have not learned features that discriminate between healthy
tissue and brain tumours.
Therefore, a classification based anomaly detection model needs to learn features that can
be discriminative against potential anomalies. While direct learning of high-level features
from anomalous examples is not possible in our anomaly detection setting (i.e. using only
healthy data for training), learning more general lower-level features and their (e.g.
spatial) relationships can still be possible.
In this chapter, we explore a few approaches to learning anomaly-discriminative features in
medical imaging. Firstly, we investigate synthetic anomalies - a simple but in some cases
effective way to adapt standard image segmentation approaches for anomaly localisation
by generating synthetic anomaly samples to train against. Secondly, we explore data
augmentation based discriminative feature learning where anomalous examples are
generated more systematically by using image processing techniques common in data
augmentation methods. We also tackle other arising issues such as inserting synthesised
anomalies into healthy samples and generally preventing discriminative methods from
learning shortcuts to discriminative synthetic samples but not generalising to real
anomalies at test time. Finally, we propose a novel method based on self-supervision and
data augmentation based generation of negatives (i.e. the nonhealthy class for training).

4.2 Synthetic anomaly generation

Medical image segmentation is an established analysis method where dense annotations
are used to train a model to perform pixelwise or voxelwise classification. The resulting
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classification probabilities are analogous to the anomaly scores that we want to obtain in
the anomaly detection context. The simplest adaptation of image segmentation methods
to anomaly detection is to generate synthetic anomalies, insert the anomalies into healthy
images and to train a segmentation model to predict the masks of the inserted anomalies.
Thus, we use synthetic anomalies to adopt a supervised regime that is well-explored and
easy to apply towards anomaly detection which typically requires unsupervised or
self-supervised methods.
Therefore, we generate ad hoc synthetic anomalies and investigate what factors determine
the generalisation to real anomalies which in this case present as brain tumours.
Figure 4.1 shows 14 types of ad hoc synthetic anomalies. We provide a short description
for each one:

1) A uniform disk with a random radius and a random intensity picked from the image
pixel intensity distribution.

2) A non-uniform disk of brighter intensity generated by applying Gaussian filtering to
random Bernoulli pixelwise noise.

3) A random shape made from three overlapping circles of different radii filled with
random pixelwise noise from a Gaussian distribution with the original patch
intensity mean and standard deviation.

4) The same as above but the generated noise is blurred using Gaussian filtering.

5) The same random shape filled by Gaussian filtered (i.e. blurred) original intensity
values.

6) The same as above but with smoothly transitioning edges.

7) The same random shape with multiplicatively increased original pixel intensity
values.

8) The same as above but using multiplicatively decreased pixel intensity values.

9) Same as 6) but using brighter noise.

10) The same random shape using pixel intensities from a randomly translated original
image.

11) The same random shape filled using Gaussian filtered iteratively generated
multi-scale noise.

12) A rounded rectangle shape of random length and rotation filled with brighter
original pixels or blurred Gaussian noise or blurred original pixel intensities.
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Table 4.1: Brain tumour detection performance of baseline methods and synthetic anomaly
segmentation using a U-Net model. SAS refers to synthetic anomaly segmentation.

Method AUPRC ⌈Dice⌉
Thresholding 0.684 0.667
Thresholding + MF 0.798 0.749

DAE 0.816±0.005 0.758±0.004

DAE + MF 0.833±0.005 0.773±0.004

AH-SAS (U-Net) 0.649±0.030 0.613±0.022

AH-SAS (U-Net) + MF 0.651±0.030 0.615±0.022

13) The same random circular shape filled with original pixel intensities modified by
applying a random non-linear intensity transform function.

14) The same random circular shape with original pixel values filled with bright clipped
noise that bleeds over.

4.3 Ad hoc synthetic anomaly segmentation

We train a simple U-Net [84] (see architecture in Figure 4.2) to segment the synthetic
anomalies that are generated and inserted into a subset of the four MRI modalities of the
healthy slices of the training patients. The anomaly masks are produced alongside the
synthetic anomalies and are used as the targets similarly to how segmentation annotations
would be used in a segmentation model.
The model is trained for 51,600 iterations with a batch size of 16 and a learning rate of
0.0001 using the Adam [81] optimiser. We use a binary cross entropy loss multiplied with
a foreground (i.e. nonzero pixels across any of the four modalities) mask to train the
models. Anomaly scores are produced directly by the predicted segmentation probabilities.

4.3.1 Results

Quantitative evaluation can be seen in Table 4.1 and qualitative samples are shown in
Figure 4.3. Quantitatively, the method performs significantly worse than the previously
introduced DAE and the application of median filtering (MF) as a postprocessing step
helps less. Qualitatively, we can see a few distinctions between reconstruction-error based
models and the classification based synthetic anomaly segmentation model. Firstly, the
anomaly scores are significantly less noisy which explains the decreased effectiveness of
median filtering. The predictions are also more binary - there is a lack of uncertain
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Figure 4.1: Sample of ad hoc generated synthetic anomalies. The inserted anomalies are
marked with the red outline.
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Figure 4.2: U-Net architecture used for synthetic anomaly segmentation experiments.
Model output is a binary classification mask predicting the location of anomalies.

predictions which is a known phenomenon of neural networks producing overconfident
predictions especially with out-of-distribution inputs [71]. Secondly, the anomaly scores
seem to be less aligned with the true anomaly shapes. The lack of precision could be
attributed to shape bias in synthetic anomalies that gets applied to predictions on brain
tumours at test time.

4.3.2 Discussion

Synthetic anomaly segmentation is a conceptually simple and flexible approach to anomaly
detection. However, it has significant weaknesses that can limit its potential in practice.
Firstly, in a more theoretical anomaly detection scenario, the space of potential test-time
anomalies is large. It is impractical and, in most cases, practically impossible to
implement and synthesise a significant fraction of potential test anomalies for training. We
might not have much information about the potential anomalies in advance. Thus, there is
no guarantee that synthetic anomaly segmentation will generalise to real anomalies at test
time. The distribution gap between training synthetic anomalies and real test-time
anomalies can be too large and the model might behave unpredictably at test time. We
show a simplified example of such behaviour in Figure 4.4 where a slightly different
anomaly presented at test-time results in an unexpected and hard-to-explain anomaly
score pattern. However, in practice, we will usually have at least some knowledge of the
potential anomalies and well-tuned synthetic anomalies could still be an effective way to
integrate any of that knowledge into the method at training time.
Secondly, complex synthetic anomalies present the concern of models learning shortcuts
that do not generalise. For example, most of our synthesised anomalies share the random
shape generation process. Thus, it might be sufficient for the synthetic anomaly
segmentation model to learn to recognise and detect only the distribution of these shapes
and ignore the rest of the features. The same argument could apply to specific noise
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Figure 4.3: Qualitative comparison between thresholding, VAE, DAE and ad hoc synthetic
anomaly segmentation (AH-SAS) for brain tumour detection from easy cases (left) to
harder ones (right).
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Figure 4.4: Anomaly score predictions from a model trained on synthetic anomalies of
circles with shuffled pixels. Uniform circles represent a slightly different domain of synthetic
anomalies, however, the model fails to generalise.

generation processes or intensity modifications. While we do not see obvious evidence of
this happening in our case, the concern remains - if the anomalies share certain artificial
features, the neural network might find the idiosyncrasies that enable detection without
forcing the model to learn general features. Without general features, the anomaly
detection model is unlikely to generalise to a wide variety of unseen test-time anomalies.
We show a simplified example in Figure 4.4 where we see that the model learns a shortcut
feature (i.e. the pattern of shuffled pixels) that is enough to precisely segment the training
anomalies (i.e. shuffled pixel circles) but completely fails to segment a different anomaly of
a uniform circle even though they share a common feature of the same shape. In this case,
it might be due to known texture vs shape bias in convolutional neural networks [31].
Finally, we only have brain tumours as evaluation anomalies and they may be
representative of just a fraction of anomalies that could be found in MRI brain scans. As
we are already familiar with the appearance of brain tumours in MRI, the synthetic
anomalies that we generate will be biased to reproduce something roughly similar. In a
sense, we might be “overfitting” to brain tumours in the design of our synthetic anomalies.
Thus, the evaluation of our synthetic anomaly segmentation as an anomaly detection
method will be implicitly biased.
As mentioned before, the bias can be a positive if we truly know what the test-time
anomalies will look like. In that case, we could have done even more tuning of the
synthetic anomalies to make them similar to real tumours. For example, by ensuring that
the synthetic patterns present in a similar way across the MRI sequences as real tumours.
However, as we are trying to achieve more general anomaly detection, the current results
might be biased to appear more favourably.
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Figure 4.5: A sample of synthetic anomalies generated with data augmentation based
methods (as opposed to the previous manual an hoc implementions). The red outline
markets the inserted anomalies.

4.4 Data augmentation based synthetic anomalies

The weaknesses of naively generated synthetic anomalies point towards the need for more
effective strategies of anomaly synthesis. We want to generate anomalies that exhibit
lower-level features for a better chance of generalisation to anomalies at test time. We
want to generate diverse anomalies for wider coverage of the potential test-time anomalies.
Finally, we want to avoid any idiosyncrasies (e.g. sharp edges between anomalies and rest
of the image, specific shapes, specific noise patterns) in the synthesised anomalies that
would allow the model to solve the synthetic anomaly segmentation without learning much
about what the normal distribution is like.
Towards these goals, we explore data augmentation based synthetic anomaly generation.
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The standard use of data augmentation is to increase the amount of data in order to
regularise the training and reduce overfitting by generating in-distribution but modified
samples of the training data. Usually, data augmentation for imaging data is achieved by
using a variety of image transformation and processing tools such as scaling, rotation,
brightness or contrast changes, etc. We can employ these tools with different, usually more
extreme, parameters to synthesise near out-of-distribution (i.e. anomalous) samples as
opposed to far out-of-distribution samples that can result from implementing synthetic
anomalies manually.
Data augmentation based anomalies have been receiving increasing attention recently as a
variety of methods are being proposed for synthetic anomaly generation. Tan et al. [99]
have won the Medical Out-of-Distribution Challenge 2020 [119] with a synthetic anomaly
approach reminiscent of mix-up augmentation [117] that has been found effective for
image classification in computer vision. Random patches from the healthy training data
are interpolated on top of healthy images and the model is tasked to predict the
interpolation parameter α. In 2021, the MOOD challenge featured multiple approaches
using variations of synthetic data augmentation based anomalies and the winning solution
[63] implementing a copy-paste [33] inspired method that used colour-jittering and
rotation. Similarly, random patches were augmented and inserted into healthy images.
The model was tasked to segment the inserted synthetic anomalies.
Therefore, we implement a pipeline for generating diverse data augmentation based
anomalies. We generate random shapes composed of multiple overlapping disks and
smooth the edges to prevent the obvious shortcuts due to insertion artefacts (e.g. sudden
intensity or texture changes). To increase diversity, we extract random patches from the
healthy training set and augment them using random affine transformations, brightness
and contrast changes, blurring and flipping. The random patches are then inserted into
healthy images to produce the synthetic anomalies. A sample of these anomalies can be
seen in Figure 4.5. The data augmentation based anomalies are more varied in appearance
than the manual synthetic anomalies produced earlier (i.e. Figure 4.1).
We use the same training and evaluation procedure as with ad hoc designed synthetic
anomalies.

4.4.1 Results

We show quantitative results in Table 4.2. Data augmentation based anomaly
segmentation provides a small improvement over ad hoc synthetic anomalies presumably
due to better anomaly diversity.
Qualitatively (see Figure 4.6, AH-SAS and DA-SAS predictions look similar - regions of
saturated probabilities (i.e. close to 0 or 1) that poorly match the actual tumour shapes.
There doesn’t seem to be a large difference between the mistakes made by AH-SAS and
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Table 4.2: Brain tumour detection performance of baseline methods and synthetic anomaly
segmentation using a U-Net model. AH-SAS refers to ad hoc synthetic anomaly segmenta-
tion and DA-SAS refers to data augmentation based anomaly segmentation.

Method AUPRC ⌈Dice⌉
Thresholding 0.684 0.667
Thresholding + MF 0.798 0.749

DAE 0.816±0.005 0.758±0.004

DAE + MF 0.833±0.005 0.773±0.004

AH-SAS (U-Net) 0.649±0.030 0.613±0.022

AH-SAS (U-Net) + MF 0.651±0.030 0.615±0.022

DA-SAS (U-Net) 0.691±0.027 0.653±0.028

DA-SAS (U-Net) + MF 0.694±0.027 0.656±0.027

DA-SAS models. The similarities and problems are most likely due to similar process of
generating random shapes and inserting the anomalies into healthy images.

4.4.2 Discussion

Data augmentation based anomalies provided a small quantitative improvement in
performance and simplified the synthetic anomaly generation process as different synthetic
anomaly classes were no longer hardcoded but automatically generated on the fly using
data augmentation methods. However, DA-SAS still exhibits similar weaknesses as SAS.
Random shape generation and insertion implementation remains intricate where seemingly
small changes can have a significant impact on downstream tumour detection performance.
Some implicit favourable bias remains a possibility as shapes and insertion are
implemented with the knowledge of brain tumour appearance. Finally, the quantitative
results are still significantly worse than what was achieved with a reconstruction-based
denoising autoencoder method in Chapter 3.
Synthetic anomaly segmentation already has the potential for some of the advantages
outlined in the introduction of this chapter. Synthetic anomalies can be easily adjusted to
train the model to detect texture-based anomalies by including such synthetic anomalies in
the training data. The produced anomaly scores are based on model predicted likelihoods
rather than reconstruction-errors. Finally, semi-supervision and other improvements or
functionality can be transferred from image segmentation research as synthetic anomaly
segmentation is practically identical in terms of model architecture and training setup.
However, the relatively poorer performance on brain tumours indicates that we need to
look for more fundamental improvements to avoid the problems of manual random shape
generation and insertion.
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Figure 4.6: Qualitative comparison between thresholding, DAE, ad-hoc synthetic anomaly
segmentation (AH-SAS) and data augmentation based synthetic anomaly segmentation
(DA-SAS) for brain tumour detection from easy cases (left) to harder ones (right).
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4.5 Context and local feature matching

We found data augmentation based anomaly generation successful in generating diverse
anomalies but anomaly insertion still presents a problem as the model might pick up on
and learn the random shape generation and insertion (e.g. gradual interpolation of the
synthetic anomaly shape into a healthy image) patterns that might not generalise to real
anomalies. Therefore, we want to further reduce the possibility of the model learning these
non-generalising features.
As mentioned previously, low-level features are more suitable for anomaly detection as
they are more likely to be present in unseen anomalies at test-time relative to more
complex high-level features (e.g. patterns exhibited by specific pathologies). However, it is
also likely that a variety of low-level features are present in both healthy and anomalous
regions and alone might not be sufficiently discriminative for good anomaly detection.
Therefore, in addition to low-level local features (i.e. patterns appearing at or very close to
the pixel/voxel at consideration) we might want to model the spatial relationships between
them as well. For example, grey and white matter present by distinct pixel/voxel
intensities in MRI scans and thus either intensity itself is not enough to qualify a specific
image region as anomalous. However, healthy brains exhibit specific spatial relationships
between grey and white matter and a significant deviation from that could indicate an
anomaly. Thus, we try to design a model architecture and a self-supervised task for
anomaly detection that attempts to address these problems.
Firstly, we take advantage of the architecture of convolutional layers in CNNs.
Convolutional layers have a limited receptive field which is determined by the kernel size
hyperparameter. By tracking the kernel sizes and the number of layers we can control
what information is available at every operation in the neural network model. Managing
the information flow across the neurons in the model allows separation of healthy and
synthetic anomaly inputs at every pixel/voxel prediction without presenting the
information about inserted anomaly shape or edges to the model. Preventing the model
from learning such information can improve generalisation as the model is forced to rely
on features that can generalise better to real anomalies.
Secondly, we take advantage of the fact that medical images generally have similar content
and can be registered to a common atlas, thus making pixel/voxel coordinates spatially
meaningful. Furthermore, we can use the fact that most anomalies of interest will be
localised and thus can be separated from the rest of the image which might be otherwise
healthy to model local features, wider context features and the relationship between the
two explicitly.
We next describe the modelling configuration of context and local feature matching
(CLFM) and differences to the previous approach of synthetic anomaly segmentation in
more detail.
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Figure 4.7: The pipeline of context and local feature matching model training and testing
stages. Synthetic negatives are generated for training and classification probabilities are
used as anomaly scores during inference.

4.5.1 Method

The approach to anomaly detection is based on separation of local (i.e. local
neighbourhood) and context (i.e. surrounding image) information. We enforce exclusivity
of information between local and context features by leaving a buffer between the two
regions that ensures contiguous and non-overlapping receptive fields between their
convolutional representations. This exclusivity is required to prevent trivial solutions to
the self-supervised context and local information matching. We then train on the
self-supervised CLFM classification task, requiring the model to learn the matched (i.e.
healthy) pairings of local and context information. In the absence of real anomaly training
examples, we synthesise mismatched (i.e. anomalous) pairs using data augmentation based
transformations. Finally, to present the appropriate balance of local and context
information for a wide range of anomalies, we use a hierarchical approach where we adjust
the receptive field of local information associated with each pixel. We describe each part
of the system below. The pipeline of the components can be seen in Figure 4.7. Some
examples of the relationships between context information, positive local patches and
generated negatives samples as well as the hierarchical configuration stages can be seen in
Figure 4.8.

4.5.2 Local and context feature extraction

We apply a shallow CNN to learn the local features corresponding to each pixel in the
image. The context features are constructed by aggregating the local information across
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Figure 4.8: Examples of image regions dedicated for extracting context information, positive
pair local information and generated negative matches.

the context region i.e. the whole image excluding the local region, with a buffer that
prevents receptive field overlap. We perform the aggregation by linearly projecting the
local features and averaging over the context region.
The requirement for exclusivity between local and context information prevents us from
using standard neural network normalisation methods such as batch or layer
normalisation, which normalise across the whole image, enabling shortcut solutions to our
proposed self-supervised task. Instead, we use a combination of weight standardisation
and L2 normalisation across the channel dimension.

4.5.3 Negative pair generation

For generating negative pairs, we employ a few strategies:

1. Shuffle the patches (i.e. extracted features) across each training image batch to give
out-of-context matches.

2. Extract mismatched patches from an image augmented with intensity
transformations. We use additive intensity transformations in the range of -0.15–0.15
and multiplicative transformations in the range of -1.3–1.3.

3. Extract mismatched patches from a combination of heavily augmented images
randomly selected from the training data. We use intensity transformations,
rotations, flips, resizing, cropping and blurring to generate negatives.
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Figure 4.9: Hierarchical configuration of the CLFM method. Convolutional feature
extractors and classification heads operate at three scales. Scores from each stage are
bilinearly upsampled and combined via a weighted mean.

4.5.4 Pair classification

A classification head is trained to output the match probability of the context and local
information pair at every pixel. The classification head has 3 concatenated pixelwise
inputs: context features, local features, and the x, y, z volume coordinates. The output
probabilities p are used for binary cross-entropy loss (BCE) for training and as anomaly
scores during inference. The pixelwise loss is calculated using the binary pair labels t (1 for
natural pairs in healthy slices, 0 for synthesized negative pairs), averaged over the stage i

brain foreground pixels (i.e. non-zero in any modality) Fi and summed over the stages:

Loss =
3∑

i=1

Wi
1

|Fi|

Fi∑
BCE(p, t)

We use a positive to negative pair ratio of 1 : 2 during training.

4.5.5 Hierarchical configuration

Shallow CNNs with limited receptive fields may struggle to identify larger or more
complex anomalies. Thus, we apply our method in a hierarchical configuration using three
stages (see Fig. 4.9). Each stage bilinearly downsamples the local information learned by
the CNN of the previous stage and applies a new CNN to learn from an effectively
expanded receptive field with respect to the original resolution.
At all scales, context features are then computed and the patch is classified. We then
combine the classification results from the three stages by bilinearly upsampling all of the
results to the original resolution and using a weighted mean where the weight Wi for each
stage i is Wi = 2−i.
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4.5.6 Implementation details

The CLFM model comprises three stages, each made up of a CNN, local-to-context
projection head, and a classification head. The multi-scale (multi-stage) architecture for
learning local information is similar to a standard encoder configuration, with blocks of 2
convolutional layers (the CNNs) connected by bilinear downsampling layers.
More precisely, the feature extractor CNNs comprise two weight standardised [78]
convolutional layers with 128 output channels, a kernel size of 3×3, Swish activations and
L2 normalisation across the channel dimension. The local-to-context projection heads are
convolutional layers of kernel size 1 that project CNN outputs into context averaging
space with 64 dimensions. Finally, the classification head uses the same architecture as the
previously described CNNs but with kernel sizes of 1 and a final convolutional
classification layer of kernel size 1 that projects into a single dimension representing the
context and local information match probability. The model is trained using the binary
cross entropy loss (see Section 4.5.4). We train the model using the Adam optimiser with
a “one cycle” learning rate policy [97] with a maximum learning rate of 0.01 updated every
32 iterations and a batch size of 16 for a total of 64,000 iterations.

4.5.7 Results

We evaluate the CLFM method on the brain tumour anomalies for a comparison to
autoencoder and synthetic anomaly segmentation baselines. Quantitative results (see
Table 4.3) show a significant advantage over data augmentation based synthetic anomaly
segmentation, mostly closing the gap between the reconstruction-error based DAE and the
classification-based CLFM. Qualitatively (see Figure 4.10), we see predictions similar in
appearance to those of data augmentation based synthetic anomaly segmentation with
little noise that is common to reconstruction-error based methods. However, CLFM
exhibits less shape bias than the DA-SAS method, which uses manually designed synthetic
shape generation for training, allowing for more precise tumour segmentations.

4.6 Differences between classification and

reconstruction based AD methods

At the beginning of the chapter, we outlined areas of potential improvement that
classification-based anomaly detection models could provide over reconstruction-based
methods. We now discuss how CLFM fares in these aspects compared to the
reconstruction-based VAEs and DAEs.
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Figure 4.10: Qualitative comparison between thresholding, DAE, data augmentation based
synthetic anomaly segmentation (DA-SAS) and context and local feature matching (CLFM)
for brain tumour detection from easy cases (left) to harder ones (right).
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Table 4.3: Brain tumour detection performance of baseline methods, synthetic anomaly
segmentation and context and local feature matching (CLFM).

Method AUPRC ⌈Dice⌉
Thresholding 0.684 0.667
Thresholding + MF 0.798 0.749

DAE 0.816±0.005 0.758±0.004

DAE + MF 0.833±0.005 0.773±0.004

DA-SAS (U-Net) 0.679±0.034 0.646±0.032

DA-SAS (U-Net) + MF 0.682±0.033 0.648±0.031

CLFM 0.761±0.001 0.696 ±0.001

CLFM + MF 0.814±0.002 0.747±0.001

4.6.1 Reliance on pixel/voxel intensity

Table 4.4: Brain tumour detection performance comparison between a reconstruction-based
method (DAE) and a discriminative method (CLFM) using T1 data only where tumours
are significantly less salient.

Method (T1 data only) AUPRC ⌈Dice⌉
DAE 0.276±0.005 0.314±0.004

DAE + MF 0.301±0.006 0.333±0.005

CLFM 0.333±0.001 0.367±0.002

CLFM + MF 0.464±0.003 0.482±0.002

Reconstruction-based models rely on intensity differences between the input image and the
reconstructed image. This can present issues in detecting anomalies that do not
significantly stand out by intensity alone. While this is not necessarily reflected in the
brain tumour data, a simple synthetic example of such anomaly can be seen in Figure 4.11.
We see that a very simple synthetic anomaly is completely invisible to the
reconstruction-error based methods regardless of the quality of the reconstruction (i.e.
poor in the VAE case and great in DAE case) because the anomaly isn’t based solely on
abnormal change in intensity.
Furthermore, we train the DAE and CLFM models using only the T1 modality where
tumours are significantly harder to detect. Tumours in T1 data appear as darker regions
with no extreme intensity values thus intensity is a less important feature. We show a
quantitative comparison in Table 4.4 with CLFM performing significantly better than the
reconstruction-error reliant DAE.
While detecting anomalies in T1 scans only is perhaps not a realistic scenario, these
results may indicate that CLFM could be a more general model suitable to a wider variety
of anomalies due to the use of explicit scoring of more heterogeneous anomalous regions
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Figure 4.11: An image with a tumour and a synthetic anomaly produced by shuffling pixels
in a square patch. Anomaly is missed by the reconstruction-based methods (i.e. VAE and
DAE) while detected by the classification-based CLFM.

and no reliance on reconstruction.

4.6.2 Semi-supervision

A classification based anomaly detection method like CLFM enables simple addition of
anomaly-annotated data to the training procedure. We can simply use a subset of slices
with annotated tumours and treat the annotated regions the same way as the generated
synthetic negatives. As a result, semi-supervision is enabled with no changes to the model
architecture or the training procedure and minimal changes to the loss function to account
for the new source of negatives.
By contrast, enabling semi-supervision in reconstruction-based methods is difficult (see
Section 3.7) and requires significant changes to the training procedure as well as additional
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Figure 4.12: An image with a large tumour that is well reconstructed by the DAE and
thus poorly detected. The failure case is not present in the CLFM anomaly scores.

data preprocessing and augmentation to achieve improvement that is still conditional on
the model architecture (i.e. poor scaling in architectures with restrictive bottlenecks and
some scaling otherwise).
We quantitatively compare the semi-supervision performance by including a small set of
annotated tumours in the training set of CLFM and using the semi-supervised version of
DAE. The results (see Figure 4.13) show that in addition to straightforward
implementation, CLFM exhibits better scaling with labelled data. Furthermore, we apply
the same data augmentation preprocessing that we used for the DAE in Section 3.7 to
generate a wider variety of tumour samples and more closely compare DAE and CLFM
performance. We see slightly better results from CLFM with data augmented tumours at
smaller labelled patient numbers, however, the improvement seems to slow down compared
to the simple semi-supervision indicating that the extensive processing and data
augmentation might have detrimental effects when more labelled data is available.
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Figure 4.13: Semi-supervised scaling in brain tumour segmentation comparison with
DAE and CLFM. Error bars indicate standard deviation across 5 seeds influencing model
initialisation and labelled patient selection. DA refers to the application of processing and
data augmentation used to generate and insert additional tumours (see Section 3.7.

4.6.3 Transfer of improvements in segmentation/classification

Classification based anomaly detection methods are similar to segmentation and
classification methods in that the goal is to obtain discriminative features that generalise
as well as possible. The same cannot necessarily be said about reconstruction error based
methods as better generalisation can improve anomalous region reconstruction and
decrease anomaly detection performance. As a result, some advances in segmentation and
classification methods can only be transferred to classification based anomaly detection
methods but not reconstruction based methods. Image classification and segmentation is a
significantly larger field than medical image analysis and as better techniques, especially
relating to obtaining general features, are developed, reconstruction-based methods might
be left behind.
One example of such technique is transfer learning. Transfer learning is a method where a
model trained in one domain is used as a starting point for training in another, usually
related, domain. In the case of image classification and segmentation that might mean
pretraining a model on a large dataset with whatever labels are available to obtain a
starting point for the neural network weights which can then be finetuned (i.e. adjusted
via further training) using a target dataset which might be smaller and sparsely annotated.
Depending on the size of the source dataset and its annotations, transfer learning can
provide significant boosts in performance in the target domain relative to training from
scratch (i.e. without taking advantage of transfer learning). Transfer learning is commonly
applied in computer vision where large annotated datasets such as ImageNet [24] are
available.
Using pretraining to obtain features can be extremely useful for anomaly detection as
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discriminative features could be obtained without any available supervision in the target
domain. In fact, many anomaly detection methods in computer vision explicitly rely on
transferred features to achieve successful results. See the benchmark leaderboard [70] on
the MVTec dataset [12] for numerous examples of methods taking advantage of pretrained
ImageNet models.
Applications of transfer learning in medical imaging are not as common as large annotated
source domain datasets are rarely available and domain gaps (e.g. X-ray to MRI) can
make the transfer more challenging. Nonetheless, as the amount of publicly available data
grows and annotation effort accumulates over time, transfer learning is likely to become an
influential technique in medical imaging as it is in computer vision. Alternatively,
pretrained features could be obtained by applying self-supervised learning on large
unlabelled datasets. The learned features might depend on the self-supervision task but,
nonetheless, could still be better than starting from random model initialisation.
Self-supervision addresses the problem of annotated data shortage but still shares the
remaining challenges with transfer learning and has also not seen as much uptake in
medical imaging as in computer vision.
The effectiveness of self-supervision pretraining has recently been tested by Lagogiannis et
al. [56] where a task of constrained contrastive distribution learning for anomaly detection
[102] was used to pretrain the encoder part of the architecture in a wide range of anomaly
detection methods. The differences in performance between randomly initialised models
and pretrained models were mixed among the different methods. However, a few trends
are clear in the results. First, better model weight initialisation did not improve any of the
reconstruction-based methods. Second, better initialisation did significantly improve the
results of CutPaste [57] which employs classification-based model training as part of its
pipeline. Finally, self-supervised pretraining also improved the majority of feature
modelling anomaly detection approaches which rely on transfer learning by using frozen
pretrained encoders (see Section 2.2.3 for further description and examples).
The success of transfer learning either via large annotated datasets or via self-supervision
has been widely observed in computer vision and is becoming more and more relevant in
medical imaging as well. New computer vision self-supervision methods are constantly
being transferred and tested on medical data. Thus, anomaly detection methods that can
benefit from transferred discriminative features are better positioned to take advantage of
these advances.

4.7 Limitations

Our proposed CFLM framework is significantly different from the previously (see Chapter
3) explored reconstruction error based methods. While we have pointed out the
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advantages, they come with some additional difficulty as well. Firstly, CLFM features a
significantly more complex architecture and training procedure, requiring custom
normalisation operations. The autoencoder methods are significantly easier to set up and
train. Secondly, CLFM relies on the boundary mismatch of the local and context regions
during training which may result in less precise boundaries of segmented anomalies as seen
in qualitative examples in Figure 4.10. As CLFM relies on pixel coordinates, it assumes an
approximate registration of images which is an assumption that may often be violated in
practice or requires significant preprocessing. Finally, training of CLFM requires tuning of
the negative generation procedure which may or may not generalise to scans of different
quality, modality, or body area. As in most cases, the advantages of a more extensible
method in CLFM bring more difficult set-up and tuning.

4.8 Conclusion

Classification-based anomaly detection methods are fundamentally different from
reconstruction based methods. While reconstruction based methods exploit the poor
generalisation in imaging of anomalous regions, classification-based methods attempt to
learn features that attempt to generalise and discriminate against anomalous tissue
without any anomaly samples in training.
In this chapter, we described three classification based methods (ad-hoc anomaly
segmentation, data augmentation based anomaly segmentation and CLFM) and compared
them to reconstruction based methods (VAE and DAE). We found that reconstruction
based methods rely on intensity patterns more and as a result can produce slightly more
precise segmentations in MRI brain tumour data. Additionally, the methods presented in
this chapter require negative synthesis which is unlikely to match the patterns in authentic
tumour or other pathology images due to complex tissue interactions.
However, we have shown that CLFM can produce only slightly worse quantitative results
while providing important advantages (e.g. detection of texture anomalies, easier and
better semi-supervision and easier transfer of research in image segmentation and
classification). We expect these advantages to become more significant in more realistic
scenarios.
All evaluation so far has relied on brain tumours and associated densely labelled ground
truth. While brain tumours are heterogeneous in appearance, they represent a single class
from a variety of potential anomalies that we want to detect in brain images. The
implementation of anomaly detection pipelines described so far has required a healthy
training dataset and dense anomaly annotations for evaluation at test time. These
requirements are in stark contrast to most public medical imaging datasets where images
are usually grouped by pathology, none or few healthy subjects are available, annotations
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only for select pathologies are included and anomalous data is often discarded during the
collation of the dataset. Thus, it is hard to find data among public sources to reliably
develop and evaluate anomaly detection methods.
In the next chapter, we explore a more realistic and challenging scenario for applications
of anomaly detection. We start with a real-world dataset of diverse computed tomography
(CT) head images with some associated metadata and very limited annotations available.
We attempt to transfer the best methods developed so far to this significantly different
domain and explore the unforeseen issues arising in data wrangling, method
implementation and evaluation.



Chapter 5

Anomaly detection in the wild

5.1 Introduction

It is a common finding in the development of machine learning application pipelines that a
research algorithm might not transfer to a practical setting and may fail either partially
(i.e. exhibiting significantly worse performance) or fully (i.e. producing arbitrary outputs).
The transfer failures can happen due to a variety of reasons, for instance, data distribution
shift (e.g. input data produced by different hardware sensors, data distribution has shifted
due to the time interval since data collection), data preprocessing failures (e.g. research
data preprocessing not reproduced faithfully in the application pipeline), or poor usability
(e.g. significant prediction latency, an impractical balance between true positives and false
positives, required inputs not yet available when output is most needed).
Failure modes are especially important in anomaly detection applications due to the
inherent properties of the task. Anomaly detection algorithms are focused on working at
the tails of the data distribution where generalisation is especially brittle. In addition,
evaluation is often limited during the research phase since exhaustive anomaly samples are
usually not available. Thus, applying anomaly detection in practice poses significant
challenges with unexpected problems along the whole transfer pipeline from task definition
and data collection to deployment and integration of outputs.
The algorithms developed in the previous chapters so far have only been tested on a single
anomaly class (i.e. brain tumours) and a single heavily preprocessed dataset (i.e. filtered,
cleaned, co-registered and intensity-normalised) from a research-focused brain tumour
segmentation challenge (BraTS [66, 5, 6]). This limited evaluation leaves many
unanswered questions.
In this chapter, we attempt to apply the anomaly detection algorithms developed in the
previous chapters to in-hospital head CT data. The data in this chapter comes from stroke
patients and has not been preprocessed. It contains a variety of naturally occurring
anomalies caused by pathologies, unusual anatomy, scanning artefacts or heterogeneous

62
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1. Automatic radiology report labelling

2. Scan/report filtering

2.1 Filtering for scans with no 
labelled findings

2.2 Filtering out follow-up 
scans/reports

2.3 Technical scan quality review

3. Scan preprocessing

4. Model training and inference

5. Bounding box generation

6. Evaluation

Figure 5.1: Anomaly detection pipeline described in Chapter 5 for the use of the ICaird
dataset to validate our methods (DAE and CLFM) introduced in prior chapters. The
pipeline includes data filtering and preprocessing, model inference as well as postprocessing
for human evaluation via bounding boxes.

hardware and scan protocols. We describe the development of the whole pipeline including
data filtering, preprocessing, collation (i.e. balancing train/evaluation data splits among
scans, patients and pathologies), annotation, and quality control, algorithm modifications,
multifaceted evaluation including domain transfer to a different dataset, as well as the
challenges faced in each step. We visualise the major steps of the pipeline in Figure 5.1.
Finally, we analyse the results and are able to draw conclusions regarding the issues in
practically applying anomaly detection methods relative to what we found using the
BraTS data in the previous chapters.

5.2 Assembling a training set for anomaly detection

The experiments in the previous chapters used a filtered pseudo-healthy dataset (i.e.
assumed-healthy 2D slices from pathological scans) to train the anomaly detection
methods. Such filtering is not a practical strategy as we required the ground truth to
perform it (i.e. ground truth is not generally available). We find a few public datasets
containing healthy data (e.g. IXI [49], Cam-CAN [101], HCP [104] datasets) but virtually
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Table 5.1: Data contamination experiment results using BraTS2021 data. Numbers indicate
Area under the Precision-Recall Curve (AUPRC).

Contamination (% tumour slices in training data)
Method 0% 1% 5% 10%

DAE 0.833 ±0.005 0.239±0.040 0.190±0.009 0.186±0.007

CLFM 0.814±0.002 0.657±0.011 0.391±0.010 0.321±0.011

no such datasets that contain a variety of pathologies. This is explained by the fact that
most current machine learning applications in medical imaging focus on the detection and
localisation of pathologies, using annotated datasets to do supervised learning. Thus, the
majority of public datasets are focused on a narrow set of pathologies. While we may
expect healthy images to be easier to collect in more practical settings (e.g. routine scans),
collating a suitable training set for anomaly detection can still raise its own issues.
We have been working under the assumption of having a clean dataset of healthy scans to
use for training. However, collecting a purely healthy dataset might mean that some
human annotation effort is needed to filter out the pathological cases. In fact, this has led
to some disagreement in the anomaly detection field on whether terminology of
“unsupervised learning” (e.g. Baur et al. [7]) or “semi-supervised learning” (e.g. Meissen et
al. [64]) is more appropriate in the scenario of training only using healthy data but with
no dense annotations (e.g. segmentations). The distinction is also sometimes made by
distinguishing outlier detection (anomalies are present in the training dataset but
unannotated) from novelty detection (only healthy data in the training dataset) [1],
however, often the terms are used interchangeably.
Nevertheless, part of the motivation for applying anomaly detection is the much smaller
expected annotation effort relative to more traditional supervised approaches. Therefore,
we should try to determine how important healthy/pathological annotations are to achieve
effective anomaly detection and how a sufficient training dataset can be obtained in the
most efficient manner. In the next section, we measure the impact of contaminating the
training data with anomalies.

5.2.1 Impact of training data contamination

We can investigate how the cleanliness of the training data impacts the anomaly detection
performance using the BraTS data where we do have access to the ground truth and are
able to include some of the pathological slices in the training data. Therefore, we train
both CLFM and DAE models with a range of pathological patients (i.e. patients where we
include the slices containing annotated tumour tissue) in addition to the usual set of
healthy slices from all other training patients where tumour slices are excluded. More
specifically, we train using datasets which include the tumour slices from 10, 60 and 120
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patients which represent approximately 1%, 5% and 10% of the total number of slices in
the training data. As we are testing the effect of healthy data contamination, we do not
use any of the tumour ground truth but treat the tumour pixels as healthy.
Results on BraTS2021 data (see Table 5.1) show that the CLFM method appears to be
significantly more robust to contamination than the DAE. However, even relatively small
amounts of training data contamination can significantly diminish the anomaly detection
performance of both methods. We note that these results might not be representative of
the general case due to the weaknesses of using solely bright tumour anomalies for
evaluation. However, it points towards the importance of constructing an appropriate
training set for training anomaly detection datasets. Therefore, we need to explore
methods to ensure the training data is as clean as possible to achieve the best results.

5.3 iCAIRD GG&C NHS dataset: Head CT

In this chapter, we use head CT scans obtained through a collaboration with the
Industrial Centre for Artificial Intelligence Research in Digital Diagnostics (iCAIRD)1.
The data has been sourced from hospitals in the Greater Glasgow & Clyde (GG&C) area
in Scotland and comprises all patients who were diagnosed with a stroke in the period
2013-2018. The data is pseudonymised and we obtain access onsite via the West of
Scotland Safe Haven within NHS Greater Glasgow and Clyde via the Safe Haven Artificial
Intelligence Platform (SHAIP) [107]. We have obtained ethical approval to use this data2.
The data was originally collected by identifying hospital admissions which were assigned
International Classification of Diseases (ICD-10)3 codes relating to stroke diagnoses, and
then selecting medical data from the stroke event hospital admission as well as the
documentation from 18 months prior and all prior images held at the GG&C. In total, the
dataset contains information about 15,882 stroke events from 10,143 patients and includes
CT images, radiology reports, clinical documents and structured clinical data. We use
16,559 head CT images available from 7,122 patients for the purpose of this work and refer
to this as the iCAIRD dataset.

5.3.1 Radiology report NLP for normal scan selection

Free-text radiology reports are available alongside most of the head CT images in the
iCAIRD dataset. The reports vary in depth and exposition reflecting the style and
seniority of the reporting radiologists, but generally describe the radiographic findings and
clinical impressions of the associated CT image. Therefore, the reports contain

1https://icaird.com
2West of Scotland Safe Haven ethical approval number GSH19NE004
3https://www.who.int/standards/classifications/classification-of-diseases

https://icaird.com
https://www.who.int/standards/classifications/classification-of-diseases
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Table 5.2: List of report labels extracted from radiology reports using the method of
Schrempf et al. [93]. We do not exclude scans with associated positive/uncertain labels
which are underlined from our healthy training set, since we decide that scans with only
these labels (and no others) are “normal for age”.
Radiographic findings
artefact, collection, compression, dilation, effacement, herniation, hyperdensity,
hypodensity, loss of differentiation, malacic changes, mass effect, midline shift, oedema,
swelling.

Clinical impressions
abscess, atrophy, aneurysm, calcification, cavernoma, cerebral small vessel disease, con-
genital abnormality, cyst, evidence of surgery/intervention, fracture, gliosis, haemorrhage,
hydrocephalus, ischaemia, infection, tumour, vessel occlusion, lesion, pneumocephalus.

information that can help distinguish scans of healthy and pathological patients. However,
the free text in the reports is only loosely structured and contains a variety of synonyms,
acronyms and other conventions that make it difficult to extract information relating to
the status of the scan. There have been attempts to automatically extract the scan-level
labels from the reports using rule-based [47] and deep learning [92] natural language
processing (NLP) methods.
In particular, we use the automatic labelling model developed by Schrempf et al. [93]
which was trained on 357 manually labelled non-contrast head CT radiology reports in
addition to synthetic data and outputs labels for 14 radiographic findings and 19 clinical
impressions. See Table 5.2 for the list of labels. Each label is assigned one of the 4 classes:
positive, negative, uncertain or not mentioned.
As a first step, we can use the automatically extracted labels to filter the iCAIRD dataset
by only including scans where the associated radiology report contained no positive
findings. While this does not guarantee that the scan is healthy and anomaly-free (i.e.
anomalies might not be mentioned in a report of type “No change since last scan.” or the
report might be mislabelled by the NLP model), the labels can eliminate the obvious
pathologies (i.e. haemorrhages, ischaemia, tumours) that comprise the majority of the
dataset.

5.3.2 Assembling data for training and evaluation

Defining Normal vs Abnormal: We aim to obtain a training set that is as healthy as
possible in order to detect as many anomalies as possible at test time. However, since the
dataset is from an elderly stroke population (mean age of 72 years), reports without any
positive findings (labels) are rare. Therefore, there is a trade-off between how aggressively
we filter versus the size of the final training set. Hence, we include scans for which the
associated reports contain only findings/impressions that are commonly found in an



CHAPTER 5. ANOMALY DETECTION IN THE WILD 67

Table 5.3: Data filtering steps towards obtaining a healthy training set.
Filtering step Images Patients

Initial Data cohort 16,559 7,122
After filtering on report labels from Schrempf et al. [93] 2,350 1,788
After filtering out follow-up scans 1,020 961
After technical scan quality review 996 939
Healthy training set 804 757

elderly population, specifically calcification, atrophy, cerebral small vessel disease and
hypodensity (the latter is highly correlated with atrophy and small vessel disease).
Applying this more generous definition of “Normal” leaves a set of 2,350 scans from 1,788
patients (see Table 5.3).

Filtering out follow-up scans: Upon closer manual inspection we find that many
reports are non-exhaustive (note these are free text rather than structured reports),
appearing not to list all of the findings present in the scan. This most commonly occurs
for follow-up scans where the associated report assumes knowledge of earlier scan reports,
usually not explicitly re-listing all findings. An example such report would be “No
progression compared to previous scan from 10/22/2021.”. Thus, absence of positive or
uncertain labels does not necessarily equate to absence of pathology. Therefore we further
filter down the remaining cases using keywords and pattern matching using spaCy [44],
removing reports which contain references to previous imaging and comparisons. This
keyword filtering leaves 1020 scans from 961 patients.

Technical scan quality review: Finally, we perform a manual review by non-experts
to filter out scans with significant acquisition issues which eliminates a further 24 scans
mostly containing issues such as bone reconstruction instead of typical tissue
reconstruction, significant artefacts, and severely degraded scan quality). We use 804 scans
from the remaining 996 cases as our healthy training data.

Selecting and annotating the test data

In addition to the filtered healthy training data, we use a selected set of annotated scans
with haemorrhages, ischaemia and tumours labels to quantitatively evaluate the methods.
The annotation workflow consisted of several steps: curation, annotation, review and
quality assurance. The resulting data was split into Test and Training sets as described
below.

Test set: The test set contains voxelwise annotations for 114 scans of which 104, 23 and 4
contain haemorrhage, ischaemia and tumour ground truth respectively. We use the union
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of the three pathologies for evaluating the anomaly detection methods.

Training data for supervised baselines: We further reserve 129 scans annotated with
116 haemorrhage, 30 ischaemia and 6 tumour annotations for training the supervised
baseline.

Test scan selection: For haemorrhage and ischaemia cases, the primary source was the
Scottish Stroke Care Audit (SSCA) records for which we had access for the stroke episodes
in the dataset; these records were searched for stroke episodes classed as “haemorrhagic”,
“ischaemic”, or “haemorrhagic transformation”. For cases of tumours and rarer
haemorrhages (epidural and subdural), a combination of ICD-10 code and free text
searches of the Scottish Morbidity Records (SMRs) and radiology reports (e.g. ,
“extradural”, “extra-dural”, “extra dural”, “epidural”, “edh”, “subdural”, and “sdh”) was used.
We then excluded scans acquired prior to 2016 for image compression reasons.

Test scan annotation and review: Three GG&C clinicians (one Consultant
Neuroradiologist and two senior Radiology trainees) have been recruited to perform
pixel-level annotation, following an annotation protocol. For the selected cases, all
haemorrhage, ischaemia and tumour lesions present were annotated, including any
surrounding regions of oedema for haemorrhagic lesions. All Annotators received training
by a clinical researcher on the same 4 cases. The Consultant Neuroradiologist acted also
as reviewer. 40% of cases were randomly selected for review to ensure consistency in the
quality of work and annotators also had the option of sending any of the remaining 60%
for review when they required a second opinion. After loading and reviewing the
Annotator’s work, the Reviewer would either provide written feedback to the Annotator or
make revisions to the annotations themselves.

Quality Assurance: On completion, all cases underwent a manual quality check. This
was to ensure adherence to the image annotation protocol, confirm that the correct labels
are associated with each mask, identify accidental pen streaks, and address any comments
made by the Annotator or Reviewer.

Preprocessing

We rigidly register the CT scans to a reference volume and crop to a fixed field-of-view
which includes only the head region of the scan. Volumes are then resampled to 2mm3

resolution and windowed to Hounsfield Unit (HU) values from 0 to 80. As for the MRI
data used in previous chapters, intensities are rescaled to a range of [0, 1]. We use random
flipping and affine transformation data augmentation for the training of all methods.
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Table 5.4: 3D DAE architecture and training specification.
Number of U-Net stages 3
Convolution output channels in each stage 32, 64, 128

Optimiser Adam [81]
Learning rate schedule OneCycleLR [97] with max_lr = 0.001
Training loss L2 reconstruction error
Training batch size 3
Training duration 25,600 iterations

Table 5.5: 3D CLFM architecture and training specification.
Number of stages 3
Convolution output channels in each stage 32, 64, 128
Context embedding dimensionality 32
Intensity embedding dimensionality 8
Coordinate embedding dimensionality 8

Optimiser Adam [81]
Learning rate schedule OneCycleLR [97] with max_lr = 0.001
Training loss Binary cross-entropy healthy data against

synthetic negatives
Training batch size 3
Training duration 32,000 iterations

Transformations for negative generation random intensity shift, factor scaling, con-
trast, noise, blur, spike, bias field, flip and
affine transformations.

5.4 Model adaptations for AD in 3D head CT

A number of changes were required to adapt the previously described methods to the new
dataset. We describe the adaptations of the CLFM and DAE models below. Notably, the
iCAIRD data contains full 3D scans and as such we no longer have the need to separate
healthy and unhealthy slices in each scan. Therefore, both DAE and CLFM models were
translated from 2D to 3D.

DAE adaptations: The DAE architecture translation was a straightforward
replacement of 2D submodules with their 3D counterparts (e.g. 2D convolutions to 3D
convolutions). We adapted the noise generation to 3D instead of generating a different
noise for each slice. The 3D DAE architecture and training specifications are described in
Table 5.4
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CLFM adaptations: The CLFM architecture modules were likewise translated to 3D.
Notably, the context aggregation in 3D is done across the whole scan instead of a single
slice. We exclude the local region as before although it is now a local cube instead of a
square patch. Along with the initial testing experiments we found that the custom L2
activation normalisation used in CLFM causes significant problems in detecting intensity
anomalies when the input data has a single channel (i.e. this did not apply to BraTS
data). To resolve the issue without changing the normalisation function we add a learnt
intensity embedding layer which is applied before the rest of the model architecture
consisting of a 1x1x1 convolution and a Swish [79] activation.
The negative generation code for CLFM also had to be rewritten for 3D inputs. For the
CLFM, we use TorchIO [75] for the majority of data augmentation based negatives. More
specifically, we use randomised noise, blur, spike artefact, bias artefact, flip, affine and
gamma intensity change transforms provided by TorchIO. Additionally, we implement
randomised contrast, additive, and multiplicative intensity transformations as a part of the
negative generation process (see Section 4.5 for more details on the method pipeline).
The final 3D CLFM architecture and training specifications are described in Table 5.5.

VAE baseline adaptations For the VAE baseline approach, we follow the methodology
from Chapter 3 use the DAE architecture with no skip connections. We use a bottleneck
with dimensionality of 128 for the 3D VAE. For its training objective, we compute the sum
of mean L2 reconstruction error and KL-divergence with a weight of β = 0.001.

5.5 Quantitative evaluation

We run the anomaly detection experiments with 3D DAE and CLFM models as described
in addition to VAE reconstruction [120] and restoration [114] baselines.
The results on the iCAIRD test set are presented in Table 5.6. In contrast to results on
brain tumours and MRI scans, the CLFM performs better than the DAE and VAE
baselines according to both metrics on the iCAIRD dataset. There is also a larger spread
in the distribution of results, indicating that the iCAIRD anomaly detection task is likely
more complex than brain tumours in MRI scans, where a simple thresholding baseline
already achieved good results. Such thresholding baseline is not practical in CT data due
to bright hyperintense healthy regions (e.g. skull) and hypointense anomalous lesions (e.g.
ischaemia).
We also include a supervised baseline (nn-UNet [48]) for context trained on 129 annotated
scans, which gives a surprisingly modest improvement over the best anomaly detection
approach (CLFM).
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Table 5.6: Pathology detection performance as evaluated on iCAIRD 3D Head CT Haem-
orrhage/Ischaemia/Tumour test set. Metrics are the test set wide voxel-level area under
the precision-recall curve (AUPRC) and ideal Dice score (⌈Dice⌉). Mean results reported
across 3 runs ± standard deviation.
Method AUPRC ⌈Dice⌉

VAE (reconstruction) [120] 0.382±0.003 0.432±0.005

VAE (restoration) [114] 0.542±0.012 0.537±0.011

DAE 0.693±0.004 0.674±0.003

CLFM 0.756±0.002 0.710±0.001

nnU-Net (supervised baseline) [48] 0.817±0.002 0.786±0.004

5.6 Qualitative evaluation

We qualitatively evaluate the results in two ways. Firstly, we compare the distribution of
scan-level anomaly scores between healthy and abnormal data. Secondly, we visually
inspect the anomaly score heatmaps produced by the VAE, DAE and CLFM methods.

5.6.1 Distribution comparison
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Figure 5.2: Distribution contrast of maximum voxel anomaly scores (across the scan)
produced by DAE and CLFM models between healthy and unhealthy scans according to
the labels. We see a significant difference in distributions produced by CLFM and DAE
models due to their different methods of producing the anomaly scores.

We have a separate set of 192 healthy scans that were not used for model training. Thus,
we can compare the predicted anomaly score distribution of these scans to the distribution
of all the scans labelled with at least one positive “unhealthy” label (see 5.2) by the NLP
labelling model [93]. We can also contrast the distributions with specific positive labels.
Figure 5.2 shows the distribution contrast across healthy and unhealthy scans according to
scan-level anomaly scores. Scan-level anomaly scores were assigned using the simplistic
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technique of selecting the voxel with the maximum anomaly score.
We see a significant distribution difference with both models, however, differences in
behaviour are also apparent. DAE has a tighter distribution of healthy scans but CLFM
separates a larger portion of the scans labelled positively with the “unhealthy” labels.
The data samples in this dataset could not be shared due to access restrictions. However,
visually examining the most anomalous scans (per CLFM scores) and associated reports at
the tail of unhealthy distribution we find severe cases of infarction, haemorrhage, surgical
intervention, and gliosis among other pathologies but also a few cases of failures in
preprocessing (e.g. poor registration). More, interestingly, inspecting the most anomalous
healthy scans (manual filtering was not done for healthy scans that were not part of the
training) we find cases where filtering according to the NLP labels has failed - examples of
post-contrast scans, failed preprocessing, and poor scan quality.
We further look at distribution comparisons with scans labelled by specific labels. Figure
5.3 shows distribution differences between healthy scans and haemorrhage, ischaemia,
tumour, artefact, midline shift and cyst labels. We see differences in how distributions are
separated according to label. For example, ischaemia is less separated than most other
labels, most likely due to cases of ischaemia often being more complex than other labelled
pathologies (e.g. haemorrhage, tumour). The density is often similar to normal brain
tissue and detection relies on other features (e.g. blurriness, loss of grey/white matter
differentiation). Differences between models are also apparent - CLFM produces better
separation in most cases.
However, such scan-level distribution analysis has many weaknesses. Firstly, we are using
maximum voxel anomaly score to obtain a scan-level score and discarding location
information which eliminates information about the localisation quality. There is also no
guarantee that abnormal scans are detected as abnormal due to the assigned label. The
scan preprocessing failures or other out-of-distribution issues may cause part of the
distribution difference as most of these were filtered from the healthy data. Additionally,
some of the labels are correlated which makes the per-label analysis difficult to interpret.
For example, scans labelled with midline shift seem to be differentiated well by both DAE
and CLFM models. However, inspecting the scans manually, we see that the midline shift
itself is generally a subtle change, usually only a 5-10mm shift of brain tissue and rarely
represented in the anomaly score heatmaps. Scans labelled with midline shift are by
definition severe cases involving a large area of ischaemia and/or haemorrhage pushing the
rest of the brain against the skull causing them to be detected as significantly anomalous.
Secondly, DAE anomaly scores are based on reconstruction error which, as discussed
before (see Section 4.1), do not necessarily correspond to the anomalousness but typically
the contrast of the anomaly (e.g. haemorrhages typically have larger anomaly scores than
ischaemia with the DAE). Thus, sorting scans by anomaly score may be sensible for the
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likelihood-based CLFM but makes less sense for reconstruction-based models like the DAE.
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Figure 5.3: Distribution contrast of maximum voxel anomaly scores produced by DAE and
CLFM models on healthy non-training scans and scans labelled positive for select labels.
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Input Supervised VAE rec. VAE DAE rec. DAE CLFM

Figure 5.4: Samples from the qure.ai CQ500 dataset showing, from left to right: sample
model input (Input), outputs from a supervised binary segmentation model (Supervised),
VAE reconstruction (VAE rec.), VAE anomaly scores (VAE), DAE reconstruction (DAE
rec.), DAE anomaly scores (DAE) and CLFM anomaly scores (CLFM).



CHAPTER 5. ANOMALY DETECTION IN THE WILD 76

5.6.2 qure.ai CQ500: Head CT

We are unable to share samples from the iCAIRD dataset but instead use the publicly
available CQ500 dataset from qure.ai [18] for anomaly heatmap samples of the head CT
methods as the data contains similar pathologies (i.e. haemorrhages, ischaemia). As the
CQ500 dataset contains a different patient population (India for CQ500 and Scotland for
iCAIRD data), it represents some domain transfer for the algorithms resulting in
qualitatively slightly worse performance. Additionally, CQ500 data does not contain any
voxel-level ground truth and could not be used for quantitative evaluation.
Figure 5.4 shows the anomaly score reconstructions (for VAE, DAE) and anomaly score
heatmaps for VAE, DAE and CLFM models on samples from the qure.ai CQ500 dataset.
Additionally, we show the outputs from a binary segmentation model trained to detect
haemorrhages, ischaemia and tumours.
We see that easier anomalies (e.g. significant haemorrhages) are reliably detected by all
three methods (VAE, DAE, CLFM) with different precision of the segmentation. CLFM
predictions tend to overestimate due to the contribution of its last architecture stage using
a large receptive field for local/context regions. This may also sometimes result in "boxy"
predictions such as in the second row in Figure 5.4. There are further differences in subtler
anomalies. Ischaemia is not detected as reliably by reconstruction error-based methods
(VAE, DAE) due to lower anomaly intensity contrast to healthy tissue. Oedema proves
difficult for the same reason. However, the CLFM is less affected due to less reliance on
image intensity. All methods struggle with subtler subdural collection cases as seen in the
last example.

5.7 Clinical evaluation

5.7.1 Motivation

The quantitative and qualitative evaluation reported so far has a few significant
limitations. Firstly, we focused on a limited set of three pathologies: haemorrhage,
ischaemia and tumour for which ground truth was available. Secondly, we have used
pixel-level metrics to gauge the localisation accuracy. Pixel-level segmentation metrics do
not necessarily capture anomaly localisation quality in a way that is relevant for anomaly
detection applications where the approximate localisation of as many anomaly instances as
possible might be more important.
Additionally, so far we have evaluated heatmap model outputs (e.g. in Figure 5.4) directly.
However, the heatmaps might be difficult to interpret and evaluate for users and require
looking at the images and heatmaps in parallel. Thus, a simpler interface would likely be
necessary for a practical anomaly detection application. The clinical evaluation was thus
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Figure 5.5: Images showing a sample scan (left) from the CQ500 dataset with haemorrhage
and ischaemia (green bounding boxes), the respective heatmap produced by CLFM (middle-
left), extracted anomaly detection masks (middle-right), and masks converted to bounding
boxes respectively (right).

designed to evaluate detected anomaly instances via bounding boxes rather than
heatmaps, making it easier to quantify how many and which anomalies were detected.
Finally, our proposed methods (DAE and CLFM) work in significantly different ways.
However, the quantitative and qualitative evaluation has not shown a clear difference in
performance (i.e. DAE had a slight advantage in MRI and CLFM had an advantage in CT)
and was too limited to reveal differences in the kinds of anomalies each method favours.
Thus, evaluation in a more realistic setting could give more insight into the specific
differences between the methods. Therefore, we decided to display the anomaly predictions
to clinicians for evaluation, exposing the predictions only to the level of bounding box
detections (see Section 5.7.2) within an intuitive user interface (Section 5.7.3) in which we
asked evaluators to rate the accuracy according to a few different aspects.

5.7.2 Bounding box generation

Bounding box proposals were the chosen detection format for clinical evaluation, as we
wanted to evaluate approximate localisation; additionally, we felt that a bounding box
would be fast for an evaluator to assess compared to a pixel-level segmentation. While the
proposed models are operating in 3D we have decided to not use 3D bounding boxes (i.e.
cuboids) and instead represent anomaly detections as a stack of 2D bounding boxes where
each axial slice of a 3D scan would have a separate 2D bounding box. Stacks of 2D
bounding boxes allowed more precise localisation making evaluation of the localisation
quality easier and were more suitable for use with a 2D image viewer.
An algorithm was developed to transform heatmaps into sets of instance masks which in
turn would be converted into sets of 2D axial slice bounding boxes. Converting heatmaps
to instance masks is a lossy and imperfect process which requires implementing heuristics
and manual tuning of parameters for best results. We developed a single algorithm to
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extract bounding boxes from heatmaps produced by both DAE and CLFM models for a
fair comparison. We describe the algorithm below. The process is visualised in Figure 5.5.

1. For the purpose of equalising heatmap values between DAE and CLFM methods,
DAE heatmaps are scaled by a factor of 5× to roughly match the range [0,1] of the
CLFM heatmaps.

2. Seed points are generated using 3D max pooling with a kernel size of 9x9x9 voxels
and stride of 1.

3. Seed points are filtered to eliminate duplicates, points with voxel anomaly scores
below 0.25 and points within 9 voxels from a higher seed point.

4. Each remaining seed point is then used to generate a binary mask using a flood fill
algorithm [30, 96] multiple times with four different tolerances sampled uniformly in
the range between 0.05 and the seed point value. This procedure generates a set of
four 3D candidate masks for each seed point.

5. Each candidate mask is assigned a candidate anomaly score Cs = VmaxU
1.5W 0.015

where U represents masked region uniformity defined as
U = (Vmean − Vmin)/(Vmax − Vmin), Vmax, Vmean and Vmin represent the maximum,
mean and minimum heatmap values in the masked region respectively and W

represents the total mask weight defined by the sum of heatmap voxel values in the
masked region.

6. Candidate masks with Vmax < 0.4 or Cs < 0.7 are filtered out.

7. Remaining candidate masks are then considered in order of decreasing Cs. Candidate
masks with more than 1% overlap with the union of previous masks are discarded.

8. The remaining 3D pixel-level masks are then converted into stacks of 2D rectangle
bounding boxes by taking the bounding box around each 2D axial slice of the 3D
mask.

As a result of applying the bounding box algorithm, we obtain a set of detected anomaly
instances each represented by a set of 2D bounding boxes. For each scan, we generate a
separate set of anomaly instances using the heatmaps generated by DAE and CLFM
models. Each anomaly instance has an associated score Cs that can be used to rank the
instances from most to least confident.
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Figure 5.6: Evaluation interface inside a Jupyter notebook featuring an image viewer,
medical report information, interface to navigate to and evaluate each box, add false
negatives and navigate across scans.

.

5.7.3 Evaluation interface

We implemented an evaluation interface to showcase the bounding boxes corresponding to
predictions from the DAE and CLFM models. The goal was that evaluators should be
able to easily view and browse the anomaly predictions within the context of the original
image, as well as assigning ratings, all within one application. A custom implementation
of the UI was required as the GG&C data was only accessible to the SHAIP [107]
environment where traditional image viewer software could not be used or customised for
evaluating bounding boxes.
We used Jupyter notebooks [53], interactive widgets [51] and matplotlib [45] interactive
plots [46] to assemble the evaluation interface (see Figure 5.6. The interface was designed
with the purpose of classifying each bounding box, assessing its localisation quality, listing
potential false positives (i.e. undetected anomalies), leaving additional comments,
navigating across a set of scans and tracking evaluation progress. The design of the
interface was tuned with the feedback of a clinical researcher.
We now describe each part of the evaluation interface in more detail.
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Image viewer

The scans with overlaid bounding boxes were visualised in axial, coronal and sagittal 2D
views to accommodate the evaluators with a more complete representation of the scans
that they are used to. Each view allowed navigating through respective slices via the
mouse scroll wheel independently. The views were synchronised via mouse button click.
Bounding box overlay could be hidden via a toggle button.
The scans were shown at 1mm resolution (which may or may not be lower than the
original image resolution) for consistency and due to network limitations i.e. the interface
was accessed through a remote desktop connection. The CT scans were displayed with the
windowing matching the data preprocessing (i.e. 0-80 HU) which was chosen to hone in on
the dynamic range of soft tissue brain structures.

Bounding box evaluation menu

A bounding box evaluation section (BBES) of the interface was designated for each
bounding box present in the currently viewed scan. BBES contained a numerical bounding
box label (in order of decreasing Cs), a button that navigates to the central point of the
detected anomaly in all three views and two dropdown boxes.
The first dropdown is dedicated to evaluating the anomaly detection accuracy. Each
bounding box can be rated. In successful cases where an anomaly is present there are
options to select the relevant sentence of the report or alternatively to select “Anomaly not
in report” if the radiology report omitted to mention the anomaly. In failure cases there is
the option of “Bounding box does not contain anomaly” (i.e. False positive).
The second dropdown box is dedicated to evaluating the anomaly localisation accuracy.
Each bounding box which has been rated as containing an anomaly in the first dropdown
is supplied with options on a three-point scale (“Good”, “Partial”, “Bad”). For cases of false
positive detections, “Not applicable” is automatically assigned.

False Negative menu

The false negative menu allows to select a sentence from the report and add associated
point coordinates by clicking on one of the image views. The false negatives are then
logged in a list which contains a submenu for each added false negative. The submenu
contains a button that navigates the image viewer to the associated false negative point
and marks it in the image. The added false negatives can also be removed by another
button in the respective submenu.
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Figure 5.7: Bounding box counts across the different bounding box anomaly scores Cs.

Comment box

The comment box allows free text comments to either explain evaluation choices and/or
assumptions as well as add any other additional information.

Scan navigation menu

The menu at the bottom of the interface allows easy navigation across the scans for
evaluation. The evaluation interface state is automatically saved after any action and is
preserved when navigating across the scan.

5.7.4 Evaluation protocol

A reference for evaluation instructions was designed by a clinical researcher and provided
in a form of an evaluation protocol providing a walkthrough for the interface, flowcharts of
expected evaluation workflow and examples for response calibration. The instructive parts
of the evaluation protocol are provided in Appendix A.

5.7.5 Evaluation results

Scans were evaluated by three clinicians; one radiology consultant and two radiology
trainees in their final year prior to applying for consultant posts. The evaluation was
completed over a period of two months with each evaluator annotating 50 scans twice for
CLFM and DAE models. The scan order was randomised and no other indication of which
model produced the bounding boxes was shown to the evaluators.
We randomly selected 100 previously unseen scans for evaluation. Of these, 25 scans were
annotated by all 3 evaluators and the remaining 75 scans were split equally. Therefore,
each evaluator was assigned 50 scans, of which 25 were overlapped to assess evaluator
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Figure 5.8: Bounding box level and sentence level precision across the different percentile
thresholds of bounding box anomaly score Cs.

agreement. In the following analysis, we use aggregated results from 100 scans for each
model (i.e. 25 scans from each of the three evaluators and another 25 of the overlapping
scans for which we used annotations from evaluator #2).
Using our bounding box extraction methodology, the DAE model proposed significantly
more bounding boxes overall but they tended to be smaller in volume. See Figure 5.7 for
the distributions across the bounding box anomaly scores Cs for both methods. The
significant difference in counts fits with our qualitative observation that the heatmaps
produced by CLFM model are smoother, and contain fewer, more extensive areas of
predicted anomalousness. Alternatively, the bounding box extraction algorithm could have
been tuned for each method individually to equalise the proposed bounding box
distributions and prevent the total counts from affecting the evaluation.
The following sections introduce metrics that serve as approximations limited by our
evaluation protocol. A strictly accurate evaluation would require more work from our
evaluators as well as more assumptions about the definition of an anomaly than what we
have been working with so far. We consider this a preliminary evaluation of the algorithms
which can also inform a more clinically aligned and practical definition of “anomaly”. As it
is, we have used the radiology reports as our reference for what anomalies are clinically
significant though they do not represent the full context and findings in each scan. For
time and cost efficiency, our protocol was to designed to avoid requiring annotators to
comprehensively re-read the scans, do any image annotation, or provide precise
classifications of anomalies in favour of a larger evaluation set of scans.



CHAPTER 5. ANOMALY DETECTION IN THE WILD 83

Anomaly detection precision

We aim to evaluate how many of the proposed bounding boxes by each model actually
contain focal anomalies, akin to the precision metric in binary classification. In order to
estimate precision we need to define positive predictions and negative predictions. We
evaluate precision at two levels: bounding box level and sentence level.
For bounding box level precision, we treat bounding box predictions as positive when they
were associated with a sentence in the report or marked as “Anomaly not in report”, and
for which the bounding box localisation quality was evaluated as “Good” or “Partial”. The
remainder of the predictions constitutes negative predictions. We also consider the
precision metric at different thresholds of the bounding box anomaly score Cs. Thus, we
define the bounding box level precision as:

Pbbox(Cs >= s) =
# Positive bounding box predictions at threshold s

# Total bounding box predictions at threshold s

At maximum precision, we would see all proposed bounding boxes be well localised and
associated with an anomaly. However, it may be the case that multiple bounding boxes
localise the same anomaly and bounding box level precision might not capture the
diversity of anomalies that are detected.
For sentence-level precision, we define the positive predictions as the number of unique
sentences associated with the proposed bounding boxes above the chosen threshold. We
define sentence-level precision as:

Psentence(Cs >= s) =
# Unique sentences among positive bounding boxes at threshold s

# Total bounding box predictions at threshold s

In this case, we assume that different sentences refer to different anomalies and thus
sentence level precision would better reflect the number of different anomaly instances that
were detected. However, bounding boxes that localise anomalies which were not mentioned
in the report and thus do not have an associated sentence assigned by an evaluator get
omitted. Thus, some anomalies might be excluded from the sentence-level metric. Rare
cases where multiple anomalies are mentioned in the same sentence may also result in
underestimation.
Figure 5.8 shows curves across the bounding box anomaly score Cs threshold for both
bounding box level and sentence level precision. We find there is little difference between
the two metrics and thus we consider sentence-level precision in further analysis. Part of
the reason for the lack of difference is that bounding boxes for anomalies that were not in
the report turned out to be rare (see Figure 5.9 and constitute a small fraction of the
overall positive predictions.
Generally, we see CLFM performs slightly better in terms of precision, likely aided by the
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Figure 5.9: Bounding box level and sentence level precision across the different percentile
thresholds of bounding box anomaly score Cs.
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Figure 5.10: Sentence level recall and F1 scores across the different percentile thresholds of
bounding box anomaly score Cs.

fact that CLFM generally proposed fewer bounding boxes. Interestingly, the DAE
precision goes down towards the most strict threshold which is unexpected since we would
expect the bounding box anomaly score to correlate strongly with the model confidence in
the detected anomaly. This may indicate that bounding box anomaly scores which in part
rely on the model heatmap output intensity (see Section 5.7.2) might not be as reliable
towards estimating the detection confidence which is a problem with reconstruction error
based models that we discuss in Chapter 3 and try to address with classification based
models such as CLFM described in Chapter 4.
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Anomaly detection recall

We aim to estimate how many of the anomalies present in a scan are detected on average.
We do not have an exhaustive list of anomalies for each scan as this would require major
annotation effort, which complicates such estimation. However, we did ask the evaluators
to note the false negatives if relevant findings are mentioned in the report but not detected
by the bounding boxes (see evaluation protocol in Appendix A). Thus, we can use the
combination of true positive bounding boxes and the list of false negatives to estimate the
total number of anomalies in each scan. We define true positives in the same way as we
did for precision. Thus we define sentence level recall as

Rsentence(Cs >= s) =
# Unique sentences among positive bounding boxes at threshold s

# Unique sentences among all bounding boxes and false negatives

The recall metric reflects how exhaustively anomalies are picked up. Figure 5.10 shows the
sentence level recall curves across the bounding box anomaly scores Cs. We see that DAE
generally has better recall, most likely due to proposing significantly more bounding boxes
overall. At the most generous threshold, the models retrieve about 40% to 60% anomalous
sentences which indicates that there remains plenty of room for improvement.

Anomaly detection F1 scores

To gauge the balance between precision and recall we estimate the F1 score which is
defined as the geometric mean between precision and recall.

F1 =
2

1
precision + 1

recall

We use the sentence level metrics defined previously to calculate a sentence level F1 score.
Figure 5.10 shows the F1 score curve across the thresholds of bounding box anomaly score
Cs. We are interested in the peak points along each curve that represent the optimal
operating threshold. DAE and CLFM peak F1 scores come out as 0.417 and 0.432. Thus,
the balanced performance is very similar between both models despite their significantly
different modelling principles.
We also see that for both models the peaks are relatively “sharp” indicating that selecting
the right threshold may be an important consideration in a practical setting that we have
not explored earlier as we used metrics that do not require setting a threshold (i.e.
AUPRC, ⌈Dice⌉).
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Figure 5.11: Distribution of labels associated with the positive bounding box predictions
across the DAE and CLFM models.

Sentence label distribution

We are also interested to see if there are further differences between the methods that
earlier metrics haven’t revealed. It is possible that DAE and CLFM perform better on
different sets of anomalies. We thus investigate the sentences associated with the bounding
box predictions marked positive by the evaluators. We use the same NLP model used to
generate the healthy training set [93] (see Section 5.3.1) to examine the labels assigned to
the sentences associated with positive bounding box predictions at the F1-optimal
threshold for each model.
Figure 5.11 shows the label distribution comparison between the DAE and CLFM models.
We see few significant differences; the distribution is largely determined by the anomaly
prevalence in the test scans, with ischaemia and haemorrhage being present most
commonly. More meaningful differences might present in less frequent anomalies but the
low sample size prevents from drawing any significant conclusions.

Bounding box quality

So far we have considered positive bounding box predictions in cases where the bounding
box localisation quality was evaluated as “Good” or “Partial”. We are interested to see if
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Figure 5.12: Positive bounding box prediction average anomaly localisation quality across
the thresholds of bounding box anomaly scores Cs.

there is a difference between the models in average localisation quality. Thus, we assign
the numerical scores of 0, 1, 2 to “Bad”, “Partial” and “Good” localisations respectively and
calculate the average localisation score across all positive bounding box predictions.
Figure 5.12 shows the average bounding box localisation score across thresholds of
bounding box anomaly score Cs. We see that CLFM generally produces better localised
anomalies on average which may explain the better pixel-level metrics we saw in Section
5.5. We also see that the localisation quality does not correlate with the threshold for the
DAE, which is a similar phenomenon to that observed with precision metrics.

Evaluator agreement

Finally, we look at the consistency of the evaluators. We look at the difference in F1 scores
across the three evaluators. Figure 5.13 shows the difference over bounding box anomaly
scores Cs. We see a consistent difference among the evaluators with the same bias across
the DAE and CLFM models. The average standard deviation across all thresholds was
0.041 and 0.040 for DAE and CLFM respectively. The standard deviation at peak F1 was
0.054 and 0.039 for DAE and CLFM respectively.
As the standard deviation across evaluators is larger than the difference in peak F1

recorded between DAE and CLFM we cannot conclude a significant advantage in
sentence-level metrics of one model over the other in this evaluation.

5.8 Conclusion

In this chapter, we have applied our anomaly detection algorithms described in earlier
chapters (i.e. DAE from Chapter 3 and CLFM from Chapter 4 to a more practical setting
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Figure 5.13: Sentence based F1 scores over the overlapping set of scans across for the three
evaluators.

of uncurated in-hospital head CT data. We went through the steps of assembling a
training dataset for anomaly detection, generalising our models to 3D CT data and
performing a multifaceted evaluation. Each step has raised significant challenges and
generated lessons for practical anomaly detection applications of the future.
We have used associated radiology reports for collation of a healthy training set and
evaluation of detected anomalies. Using radiology reports and an NLP model for report
labelling allowed to avoid spending annotator resources for obtaining training data.
However, the iCAIRD data is strongly biased towards pathological cases. Only a small
percentage of all scans ended up being used for training due to aggressive filtering of
scans/reports.
We have also found that contamination of the training data with pathological cases might
significantly affect the performance of the trained models. Thus, filtering and quality
control of the training data is a necessary step that might involve manual annotation or
multimodal data (i.e. as we have done in this chapter by making use of associated
radiology reports). No contamination of the healthy training data might be difficult to
insure without comprehensive manual annotation. The sensitivity of different anomaly
detection methods to training data contamination remains an underexplored research
question which can influence which algorithm may be more suited for a particular setup in
availability of data and annotations.
A large factor complicating both the data preprocessing and evaluation is the extensive
scope and tricky definitions inherent to the task of anomaly detection. While we were
aiming towards a more practical setting, we have not explicitly specified the intended
application of our methods. Consequently, the preprocessing and evaluation were designed
to preserve the generality in anomaly detection. The generality of detected anomalies is
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desirable though it can make it difficult to measure the relevant performance. Thus, the
tradeoff between anomaly generality and practicality of quantitative evaluation must be
considered. A narrower scope (i.e. better application specification) might allow for better
design of the whole anomaly detection pipeline from assembling training and evaluation
data (e.g. focusing on a certain subset of pathologies) to designing better evaluation
procedures (e.g. metrics in tune with the purpose of the application).
We explored three different approaches to evaluation. Quantitative evaluation based on
pixel-level metrics favoured CLFM but may assign most “weight” to precise localisation of
large anomalies. Qualitative model output comparisons have revealed the differences in
the heatmaps produced by DAE and CLFM but make it difficult to assess the average
performance across many scans. The clinical evaluation involved moving from evaluating
heatmaps to assessing anomaly instances captured by bounding boxes. The analysis of 100
evaluated scans revealed different performance profiles of DAE and CLFM methods but
similar overall performance. While bounding boxes are likely closer to a practical
application of anomaly detection, the conversion from heatmaps to bounding boxes lacks a
straightforward solution and heuristic based conversion employed in this chapter may lose
a lot of information contained in the heatmaps. Each type of evaluation exhibits
significant weaknesses. Evaluation of anomaly detection methods for practical applications
is still an unsolved problem which may constitute a large part of the difficulty in improving
anomaly detection methods further. Initiatives like the Medical-out-of-distribution
challenge [69] may be essential to push the consensus of the anomaly detection research
community towards more application-specific evaluation procedures.



Chapter 6

Conclusion

In this thesis, we have explored the problem of anomaly localisation in medical images
from multiple perspectives including designing different ways to structure the anomaly
detection task for deep learning, discovering weaknesses of current state-of-the-art
approaches and identifying issues with evaluation. Current commonly applied
reconstruction-based methods (e.g. variation autoencoders) exhibit poor reconstructions
and are overly reliant on pixel/voxel intensity as the anomaly distinguishing factor. To
address the poor reconstruction we have proposed a denoising autoencoder (DAE) (see
Chapter 3) trained with a coarse noise with a U-Net architecture including skip
connections for significantly improved reconstruction. To address overreliance on pixel
intensity we have proposed a context-to-local feature matching (CLFM) model (see
Chapter 4) incorporating a novel architecture and generation of data-augmentation based
negatives for training. Finally, we brought anomaly detection research closer to practical
applications by applying our methods to real-world uncurated head CT data and designed
a clinical evaluation for comparison of our proposed methods highlighting the difficulties in
evaluation in anomaly detection research. In this chapter, we summarise the findings and
takeaways, and suggest promising directions for future research.

6.1 Reconstruction error based anomaly detection

Reconstruction error based anomaly detection methods generally work by training a model
to reconstruct inputs with healthy data, relying on the assumption that anomalous data
will be reconstructed poorly at test time due to the distribution difference and
non-generalisation of the deep learning model. Autoencoder models have been commonly
applied for anomaly detection via reconstruction error in medical imaging.
AE models have to implement the deep neural network architecture in a way that prevents
trivial reconstruction solutions (e.g. copying of input to output). Most prior work enforces
compressed representations in the model, usually via bottlenecks in the neural network
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architecture. However, severely compressed representations such as those typically used in
standard convolutional autoencoders or variational autoencoders can result in generally
poor reconstructions which, in turn, can prevent the detection of subtler anomalies.
We have proposed to avoid overly compressed representations and instead corrupt the
input with noise, giving the network the task of removing the noise to reconstruct the
original image [52]. Such a denoising autoencoder allows the use of neural network
architectures with long-range skip connections. Skip connections enable significantly
better reconstructions. Additionally, we find that reducing the spatial resolution of the
noise is required for the denoising autoencoder to perform well. With appropriate noise
coarseness and intensity parameters, the denoising autoencoder achieves state-of-the-art
performance for tumour localisation in brain MRI scans. Qualitatively, the DAE reliably
detects prominent anomalies such as tumours and the reliance on intensity differences
usually results in good anomaly segmentations of such anomalies.
However, while relying on reconstruction error as an anomaly signal can be effective for
even subtle abnormal intensity changes, it has a few significant downsides as well. Firstly,
the magnitude of the reconstruction error does not necessarily reflect the certainty about
the anomalousness but rather just the difference between the expected and observed
pixel/voxel intensities. Secondly, texture anomalies with similar intensity to normal tissue
might be missed by reconstruction error based anomaly detection methods. Therefore,
different methods might be needed for the detection of more diverse anomalies.

6.2 Classification based anomaly detection

Classification based or discriminative methods fundamentally differ from reconstruction
error based methods in that they predict the anomaly scores directly with the model
outputs. However, samples from both healthy and anomalous classes are needed to train
the discriminative methods, which raises a challenge since only healthy data is available
for training anomaly detection methods in the data configuration explored in this thesis.
We explore a few methods for generating negative samples for discriminative model
training. Results of ad hoc synthetic anomaly segmentation models show that the
synthetic negative samples do not have to be extremely close to the appearance of the real
anomalies to generalise. However, synthetic anomalies generally allow for “shortcut”
learning where discriminative methods may learn to discriminate synthetic anomalies via
certain features (e.g. boundaries between healthy tissue and inserted synthetic anomalies)
that limit the generalisation and may fail to discriminate real anomalies.
We have proposed two approaches to address issues with simple ad hoc synthetic anomaly
generation. Firstly, manual design of synthetic anomalies is prone to overfitting; data
augmentation based synthetic anomaly generation can produce a wide diversity of
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synthetic anomalies with a lower risk of overfitting. Secondly, we have proposed a context
to local feature matching method that limits the possible learning “shortcuts” (i.e. by
avoiding the need to insert synthetic anomalies into health images), generalises the
synthetic negative generation to multiple spatial resolutions (i.e. negatives are generated
at multiple stages), extends the data transformations used to generate negatives (i.e. by
including representation shuffling across image locations), and models spatial relationships
between features explicitly (i.e. by using pixel/voxel coordinates explicitly).
The CLFM method exhibits multiple advantages over reconstruction error based methods
including less reliance on pixel/voxel intensities for detection of anomalies, easier and more
effective semi-supervision if labelled anomalies are available, and better alignment with
established segmentation and classification methods which allows easier research transfer
and performance improvements in the future. Thus, we see classification based anomaly
detection methods are likely becoming more prevalent as more data becomes available and
the need for more flexible models rises with demand for specific applications of anomaly
detection.

6.3 Anomaly detection in the wild

To test our proposed methods (DAE and CLFM) in a more practical setting we have
transferred the models from head MRI scans to head CT data. The transfer involved
adapting models to work with CT data, moving from 2D models to 3D and evaluation
from just tumour ground truth to haemorrhage, ischaemia and tumours as well as
additional evaluation methods.
We trained our models on head CT data held in situ at hospitals in Scotland which raised
challenges not present in typically curated and annotated public datasets. We have used
the associated radiology reports to assemble training and test sets since the data was
otherwise unannotated. Prior research in NLP models for radiology report labelling [93]
was used to assign labels to each scan which were then used to assemble a training set of
healthy scans.
The DAE and CLFM models were successfully trained on the head CT data and evaluated
using multiple methodologies. Firstly, we used some available voxel level ground truth for
haemorrhages, ischaemia and tumours to quantitatively compare the methods, with both
models significantly improving over older variational autoencoder methods and performing
closer to the supervised segmentation baseline trained on 129 fully annotated scans.
Secondly, qualitative comparisons of raw prediction heatmaps and distribution
comparisons across associated report labels have shown that methods can reliably detect
significant pathologies but can still struggle or completely miss more subtle anomalies that
require more clinical expertise. Finally, we designed and ran a clinical evaluation involving
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a custom-built interface and recruiting three evaluators with radiology experience to assess
the quality of detected anomalies expressed as bounding boxes rather than raw predicted
heatmaps.
While our proposed models have shown major improvements over older methods, the
transfer and evaluation using a real-world dataset and a more practical evaluation have
revealed multiple further challenges that anomaly methods will need to overcome in the
future.
The reliance on clean healthy data for training of anomaly detection methods might be an
unrealistic assumption as data can often be contaminated to an unknown degree. Anomaly
detection methods should also be able to take advantage of any associated data that may
be available (e.g. scan request text, or sparse labelling of anomalies).
The difficulty in evaluating anomaly detection methods is inherent to the task. A
representative set of evaluation data might never be available. The current approach of
reusing ground truth developed for segmentation tasks might be suitable for the most
common pathologies but is likely not enough to estimate the performance on the long tail
of possible anomalies. Thus, novel methods to evaluate the generalisation of anomaly
detection methods might be needed.
Finally, the medical imaging anomaly detection research community lacks a clear vision of
the types of applications of anomaly detection. As the methods keep improving on
traditional benchmarks, more specific task definitions are needed to navigate towards
applications that can be useful in clinical practice. The bounding box interface used to
showcase and navigate to detected anomalies might be one example of moving towards
anomaly detection pipelines that are more user-friendly.

6.4 Future research directions

As a result of the experiments and observations throughout the thesis, we offer the
following suggestions for promising directions for future work on anomaly detection
systems that may move the research closer to valuable clinical applications.

6.4.1 Flexible supervision

The academic interest in anomaly detection is mostly concerned with the unsupervised
part of the problem as that opens up the possibilities of collecting large datasets and
avoiding annotation costs. This is exacerbated by the success of large unsupervised or
self-supervised models in other domains (e.g. DALL-E [80], diffusion models [83] in
computer vision and GPT-3 [15] in natural language processing) where internet-scale data
is easy to collect. However, extremely large datasets are rare in medical imaging and it
might be difficult to learn to detect subtle anomalies without further supervisory signals.
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While we have briefly explored semi-supervising anomaly detection models with
segmentation ground truth, there are many further opportunities to integrate additional
information to help train better anomaly detection models. Weak labels (i.e. image-level
labels similar to the ones we extracted from radiology reports in Chapter 5) or annotation
with limited localisation information (e.g. region of the brain, point coordinates, scribbles,
bounding boxes) are examples where current anomaly detection methods might not be
able to take advantage of the extra supervision.
While incorporating more supervision gets further away from the academic approach to
anomaly detection, it might allow engineering anomaly detection applications that are
more reliable and useful in practice even if some generality is lost.

6.4.2 Anomaly detection with more context

When it comes to subtler anomalies that require more clinical expertise to detect, a single
scan might not be enough information to reach the performance of clinicians. In practice,
we see humans taking advantage of patient history, prior scans or additional clinical
variables to identify regions of concern in new scans.
Thus, we might need to develop techniques to detect anomalies with context beyond that
of a single scan. A common example in radiology reports examined in the experiments of
Chapter 5 is radiologists relying on prior scans of the patient to determine the brain
changes and decide whether they are anomalous. More comprehensive context for anomaly
detection might help to define anomalies better to ease the training and evaluation of
models. For example, the application of detecting brain changes in subsequent scans via
anomaly detection models might be a more specific task with concrete outcomes (i.e.
detecting notable changes for further inspection) that would likely be more reliable,
consistent and clinically relevant than detecting anomalies from a single scan without
further information about the patient.
The additional patient context in anomaly detection inputs might also require multimodal
models and datasets (e.g. see Acosta et al. [2] for a review) which is an active and
promising area of research. However, public multimodal datasets are rare partly due to
additional difficulty in preserving privacy making current research opportunities somewhat
limited.

6.4.3 Structured predictions

As we consider more supervision and context for anomaly detection models, we move
closer to more traditional segmentation methods. However, key differences remain. Firstly,
we care more about drawing attention to instances of anomalous regions rather than
assigning them to a specific symptom or pathology. Secondly, we are interested in
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approximate regions rather than precise segmentation masks.
As a result, we might want to consider restructuring anomaly detection models towards
outputs that are more suited toward such anomaly detection applications rather than raw
anomaly score heatmaps as is usually done in current works.
We have explored the conversion of anomaly score heatmaps into bounding box instances
in Chapter 5 as a postprocessing step. However, as has been shown numerous times in
deep learning research, end-to-end models have a higher ceiling - they are eventually able
to learn more and produce better results. Thus, anomaly detection models with more
structured predictions such as bounding box instances might be more amenable to relevant
metrics (e.g. precision, recall) for evaluation and easier to integrate into practical
applications.
The object detection and localisation literature in computer vision might be a good
example of such structured end-to-end models such as Mask R-CNN [39] and YOLOv7
[105]. However, the training of such models in the mostly unsupervised case of anomaly
detection is an unsolved problem.

6.5 Final remarks

As machine learning applications spread widely through healthcare systems across the
globe, there remains a demand for methods without the need for extensive and
time-consuming annotations from healthcare professionals. In this thesis, we have explored
one such application - anomaly detection. Most deep learning research in medical imaging
in its early days has come downstream from computer vision, however, there are
opportunities for applications specifically developed to be integrated into modern clinical
workflows. Anomaly detection can be a flexible technique and could be applied in a
number of areas if planned and configured appropriately. A few examples include
incidental findings (e.g. using AD in the background for missed findings), image quality
control (e.g. monitoring images for artefacts or otherwise corrupted data that may throw
off more specialised image analysis methods) or faster scan review (e.g. automatic
region-of-interest highlighting/navigation). Further research and collaboration with
healthcare professionals show promise for improved patient outcomes and healthcare
system efficiency.
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Appendix A

Clinical evaluation protocol

The bounding box evaluation protocol was presented to all three evaluators at once to
achieve consistent evaluation across evaluators, models and scans. Additionally, a separate
set of sample scans were annotated by the presenting clinical researcher as further training.
Evaluators were free to ask for clarifications at any time during the evaluation but were
asked to not share or discuss evaluation decisions among themselves.
Figure A.1) shows the instructions presented to evaluators including which anomalies
should be considered and specific workflows in relation to the evaluation interface.
Figure A.2 shows the examples of evaluation decisions presented to the evaluators
regarding grading the anomaly localisation accuracy as well as undetected anomalies (false
negatives) and bounding boxes which do not contain anomalies (false positives).
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Figure A.1: Instruction part of the anomaly detection clinical evaluation protocol.
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Figure A.2: Example part of the anomaly detection clinical evaluation protocol.
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