1,970 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Unsupervised routine discovery in egocentric photo-streams

    Full text link
    The routine of a person is defined by the occurrence of activities throughout different days, and can directly affect the person's health. In this work, we address the recognition of routine related days. To do so, we rely on egocentric images, which are recorded by a wearable camera and allow to monitor the life of the user from a first-person view perspective. We propose an unsupervised model that identifies routine related days, following an outlier detection approach. We test the proposed framework over a total of 72 days in the form of photo-streams covering around 2 weeks of the life of 5 different camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted F-Score for all the users. Thus, we show that our framework is able to recognise routine related days and opens the door to the understanding of the behaviour of people

    Ensemble Methods for Anomaly Detection

    Get PDF
    Anomaly detection has many applications in numerous areas such as intrusion detection, fraud detection, and medical diagnosis. Most current techniques are specialized for detecting one type of anomaly, and work well on specific domains and when the data satisfies specific assumptions. We address this problem, proposing ensemble anomaly detection techniques that perform well in many applications, with four major contributions: using bootstrapping to better detect anomalies on multiple subsamples, sequential application of diverse detection algorithms, a novel adaptive sampling and learning algorithm in which the anomalies are iteratively examined, and improving the random forest algorithms for detecting anomalies in streaming data. We design and evaluate multiple ensemble strategies using score normalization, rank aggregation and majority voting, to combine the results from six well-known base algorithms. We propose a bootstrapping algorithm in which anomalies are evaluated from multiple subsets of the data. Results show that our independent ensemble performs better than the base algorithms, and using bootstrapping achieves competitive quality and faster runtime compared with existing works. We develop new sequential ensemble algorithms in which the second algorithm performs anomaly detection based on the first algorithm\u27s outputs; best results are obtained by combining algorithms that are substantially different. We propose a novel adaptive sampling algorithm which uses the score output of the base algorithm to determine the hard-to-detect examples, and iteratively resamples more points from such examples in a complete unsupervised context. On streaming datasets, we analyze the impact of parameters used in random trees, and propose new algorithms that work well with high-dimensional data, improving performance without increasing the number of trees or their heights. We show that further improvements can be obtained with an Evolutionary Algorithm

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust
    corecore