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ABSTRACT

Anomaly detection has many applications in numerous areas such as intrusion detection,

fraud detection, and medical diagnosis. Most current techniques are specialized for detect-

ing one type of anomaly, and work well on specific domains and when the data satisfies

specific assumptions. We address this problem, proposing ensemble anomaly detection

techniques that perform well in many applications, with four major contributions: using

bootstrapping to better detect anomalies on multiple subsamples, sequential application of

diverse detection algorithms, a novel adaptive sampling and learning algorithm in which

the anomalies are iteratively examined, and improving the random forest algorithms for

detecting anomalies in streaming data.

We design and evaluate multiple ensemble strategies using score normalization, rank

aggregation and majority voting, to combine the results from six well-known base algo-

rithms. We propose a bootstrapping algorithm in which anomalies are evaluated from mul-

tiple subsets of the data. Results show that our independent ensemble performs better than

the base algorithms, and using bootstrapping achieves competitive quality and faster run-

time compared with existing works.

We develop new sequential ensemble algorithms in which the second algorithm per-

forms anomaly detection based on the first algorithm’s outputs; best results are obtained by

combining algorithms that are substantially different. We propose a novel adaptive sam-

pling algorithm which uses the score output of the base algorithm to determine the hard-to-

detect examples, and iteratively resamples more points from such examples in a complete

unsupervised context. On streaming datasets, we analyze the impact of parameters used

in random trees, and propose new algorithms that work well with high-dimensional data,

improving performance without increasing the number of trees or their heights. We show

that further improvements can be obtained with an Evolutionary Algorithm.



ENSEMBLE METHODS FOR ANOMALY DETECTION

By

Zhiruo Zhao
B.S. Northwestern Polytechnical University, 2011

M.S. Syracuse University, 2013

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer and Information Science and Engineering (CISE)

Syracuse University
December 2017



Copyright c© 2017 Zhiruo Zhao

All rights reserved



ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisors, Prof. Kis-

han G. Mehrotra and Prof. Chilukuri K. Mohan, for the continuous support of my

Ph.D study and related research. I thank them for encouraging my research and for

guiding me to be a researcher throughout my Ph.D journey. I am also thankful for

the excellent examples they have provided as successful researchers and scientists.

I would also like to thank for my dissertation defense committee members:

Prof. Vir Phoha, Prof. Qinru Qiu, Prof. Sucheta Soundarajan, and Prof. Ramesh

Raina, for their time, interests and insightful comments.

My special thanks to Prof. Soundarajan and Prof. Reza Zafarani for giving

me valuable feedbacks at our weekly research meeting. And all the professors at

Syracuse University who have helped me throughout my graduate study.

I thank for all my lab mates and friends at our department, they are among the

most brilliant people I have ever met. I would never forget all the discussions we

have, all the fun projects we have worked on, and the support you gave me during

my study.

I am grateful to my parents, who have raised me with a love of science and

engineering and been supportive for all my pursuits. And my fiance, Qiuwen

Chen, who has always been loving and caring.

iv



TABLE OF CONTENTS

Acknowledgments iv

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Existing Detection Algorithms . . . . . . . . . . . . . . . . . . 3

1.2.1 Density Based Anomaly Detection Algorithms . . . . . . . . . . . 3

1.2.2 Rank Based Anomaly Detection Algorithms . . . . . . . . . . . . . 9

1.2.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Streaming Anomaly Detection Algorithms . . . . . . . . . . . . . 12

1.3 Ensemble Methods in Machine Learning . . . . . . . . . . . . . . . . . . . 13

1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Benchmark Static Datasets . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2 Streaming Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Independent Ensemble Methods for Anomaly Detection 24

2.1 Independent Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Justification for Independent Ensemble Methods . . . . . . . . . . 26

v



2.1.2 Benefits of Ensembles - A Toy Example . . . . . . . . . . . . . . . 27

2.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Random Feature Bagging . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Random Data Bagging . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 A Bootstrapping Approach – Proposed Algorithm . . . . . . . . . . 34

2.3 Final Results Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Review of Earlier Methods . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Different Types of Combination Methods . . . . . . . . . . . . . . 37

2.4 Evaluation of Independent Ensemble Methods . . . . . . . . . . . . . . . . 41

2.4.1 Performance over Different Combination Methods . . . . . . . . . 41

2.4.2 Performance for Bootstrapping Methods . . . . . . . . . . . . . . . 44

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Sequential Ensemble Methods for Anomaly Detection 50

3.1 Single-layer Sequential ensemble algorithms . . . . . . . . . . . . . . . . . 52

3.1.1 Sequential Application of Two algorithms - A Sieve Method . . . . 52

3.1.2 Sub-sampling and Sequential Method . . . . . . . . . . . . . . . . 53

3.2 Multi-layer Sequential Ensembles . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Evaluation of Sequential Ensemble Algorithms . . . . . . . . . . . . . . . 55

3.3.1 Detection accuracy with the top ranked β observations . . . . . . . 55

3.3.2 Relationship between Detection Rate and β on Synthetic Datasets . 56

3.3.3 Relationship between detection rate and β on real-world datasets . . 57

3.3.4 Evaluation of Sequential-1 Method . . . . . . . . . . . . . . . . . 58

3.3.5 Sub-sampling Approach (Sequential-2 Method) . . . . . . . . . . . 61

3.3.6 Evaluation for Multi-layer Sequential Method . . . . . . . . . . . . 64

3.3.7 Selection of Pair of Algorithms for Sequential Application . . . . . 65

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



4 Adaptive Sampling and Learning for Anomaly Detection 67

4.1 Boosting Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Justification with local density-based kNN algorithms . . . . . . . 71

4.2.2 Decision Boundary Points . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Sampling Weights Adjustment . . . . . . . . . . . . . . . . . . . . 74

4.3 Final Outputs Combination with Different Weighting Schemes . . . . . . . 74

4.4 Adaptive Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . 80

4.5.3 Effect of Model Parameters . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Ensemble Methods for Anomaly Detection on Streaming Data 84

5.1 Anomaly Detection for Streaming Data . . . . . . . . . . . . . . . . . . . 85

5.2 Analysis of Random Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Performance of Random Trees and Number of Features . . . . . . . 89

5.2.2 Deriving the Number of Trees and Height of Trees using Theory of

Coupon Collector Problem . . . . . . . . . . . . . . . . . . . . . . 90

5.2.3 Discussion on Score Combination . . . . . . . . . . . . . . . . . . 95

5.2.4 Building Detection Trees using Feature Clustering . . . . . . . . . 98

5.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Evolutionary Algorithm for Partitioning Data Space . . . . . . . . . . . . . 106

5.3.1 How to partition the data space to separate outliers . . . . . . . . . 106

5.3.2 Space-partitioning Forest . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.4 Preliminary Results for EA . . . . . . . . . . . . . . . . . . . . . . 114

vii



5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Conclusion and Future Work 117

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 120

viii



LIST OF TABLES

1.1 Summary of the benchmark datasets used for static data analysis . . . . . . 20

2.1 Summary of results for all methods over all datasets . . . . . . . . . . . . . 46

2.2 Comparison between work in [75] and Bootstrapping: m = 0.1, k = 5,

δ = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Bootstrapping performance over different combination methods: averaged

over different values of m = 0.1, 0.3, 0.5, 0.7, 0.9 . . . . . . . . . . . . . . 48

2.4 AUC score over all datasets for different sampling rate m . . . . . . . . . . 49

3.1 Summary of Sequential-1 algorithm for different β values when k=5 . . . . 61

3.2 AUC Comparison for Seq2 an Seq1 when β = 0.3, γ = 0.1; the algorithms

(COF, RADA) is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Multi-layer sequential compared with sequential-1 method, β = 0.3 and

k = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Average correlation between pair of algorithms over all datasets . . . . . . 65

3.5 Performance (AUC score) over different pair of algorithms . . . . . . . . . 66

4.1 Performance Comparison: Averaged AUC over 20 Repeats . . . . . . . . . 81

4.2 Performance over Sum of AUC Rankings with Different Combination Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Rank of anomaly for different combination approaches . . . . . . . . . . . 98

5.2 Correlations between features for data shown in Figure 5.8 . . . . . . . . . 100

ix



5.3 Averaged AUC for Bankruptcy Dataset over 30 trials . . . . . . . . . . . . 106

x



LIST OF FIGURES

1.1 Distance-based based outlier detection algorithm fails to capture o2 because

its distance is not large enoughx – from [18] . . . . . . . . . . . . . . . . 5

1.2 LOF fails to detect outliers – from [65] . . . . . . . . . . . . . . . . . . . . 6

1.3 For k = 3, the SBN-path of x is {x, x1, x2, x3}, the SBN-trail is {e1, e2, e3} 7

1.4 LOF assigns low score to q and r when clusters of different densities are

present – from [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Using ranks of friendship in social network to test the popularity – from [37] 10

1.6 Density-based algorithm assigns higher score to B than A – from [37] . . . 11

2.1 Independent Ensemble for Anomaly Detection . . . . . . . . . . . . . . . . 25

2.2 Detection power of different algorithms [37, 38, 65] . . . . . . . . . . . . . 28

2.3 Toy example with three outliers . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Outliers may only be detectable on different projections of feature space [44] 29

2.5 Expected 5-NN distance for two spheres with radius r = 1, in a 2D Eu-

clidean space, containing 1000m (circles) and 100m (triangles) objects uni-

formly distributed (0 < m < 1 is the sampling rate) [75] . . . . . . . . . . 33

2.6 An illustration for breadth first approach . . . . . . . . . . . . . . . . . . . 40

2.7 AUC Performance comparison over all methods for different datasets . . . 43

3.1 Framework for sequential ensemble method . . . . . . . . . . . . . . . . . 52

3.2 Multi-layer sequential model . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Synthetic dataset: outliers are generated on circle with R = 4σ . . . . . . . 58

xi



3.4 Relationship between detection rate and β on synthetic data . . . . . . . . . 59

3.5 Relationship between detection rate and β on real-world data . . . . . . . . 60

3.6 Performance of subsampling approach when samples are drawn from Dβ

for different values of β, for three datasets. . . . . . . . . . . . . . . . . . 62

4.1 2D example with 3 outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Zoomed Score Histogram Example . . . . . . . . . . . . . . . . . . . . . . 76

4.3 AUC Performance Comparison with Base Algorithm (LOF) over Different k 79

4.4 AUC Performance vs. Number of Iterations . . . . . . . . . . . . . . . . . 82

5.1 An illustration of detecting the deviations in a data stream [8] . . . . . . . . 85

5.2 An illustration of dataspace partition by one HSTree [64] . . . . . . . . . . 86

5.3 A framework for streaming anomaly detection . . . . . . . . . . . . . . . . 88

5.4 Variation of AUC with the number of noisy features in the syn-1 and syn-2

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Variation of AUC with the number of trees used in the syn-1 and syn-2

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Variation of AUC with the height of the trees used in the syn-1 and syn-2

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Numerical results for the number of trees and tree height . . . . . . . . . . 96

5.8 A synthetic data where feature are interacted . . . . . . . . . . . . . . . . . 99

5.9 Two cases with outlier in different positions with respect to normal data . . 101

5.10 Performance comparison for our feature clustering method and random

trees method on a synthetic dataset . . . . . . . . . . . . . . . . . . . . . . 104

5.11 Performance comparison for our feature clustering method and random

trees method for number of trees and height of trees on a synthetic dataset . 105

5.12 An illustration of individual representation used in EA . . . . . . . . . . . 108

xii



5.13 Cost computation for two trees with different degrees of separation of out-

liers from the other data points . . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 Evolution of solution quality with number of iterations, with different strate-

gies for synthetic dataset, when pc = 0.6 . . . . . . . . . . . . . . . . . . . 111

5.15 Evolution of solution quality with number of iterations, for different values

of crossover probability for synthetic data, pm = 0.2 . . . . . . . . . . . . . 112

5.16 Evolution of solution quality with number of iterations, for different values

of elitism e with different for synthetic dataset . . . . . . . . . . . . . . . . 113

5.17 Results of using EA on a synthetic dataset . . . . . . . . . . . . . . . . . . 114

5.18 Synthetic dataset with 4 clusters, outliers are inserted in between . . . . . . 115

xiii



1

CHAPTER 1

INTRODUCTION

Ensemble learning methods have many applications in machine learning and data min-

ing area, especially in the context of classification. In classification problems, ensemble

methods have been proven to be effective and robust over the base individual learners both

empirically and theoretically. But few such works exist in the context of unsupervised

anomaly detection. In this dissertation, we explore the application of ensemble learning

methods for anomaly detection on both static and streaming datasets.

In this chapter, we first introduce the general concept of anomaly detection, then review

some state-of-the-art detection algorithms which we apply (as components of ensembles)

throughout this dissertation. Next, we describe the datasets and metrics we use to evaluate

the algorithms described in this dissertation.

1.1 Anomaly Detection

Anomaly detection, also known as outlier detection, is one of the most widely studied

among different research and application areas. In fact, the discussion of outlier detection

in data sets can be traced back to the 18th century when Bernoulli questioned the prac-

tice of deleting the outliers [14]. In recent surveys, the problem of finding anomalies is
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often described as the problem of finding patterns in data that do not conform to expected

behavior [20]; or of finding data objects with behaviors that are very different from expec-

tation [33]. Such patterns or data objects are the so-called anomalies or outliers.

Anomalies are usually associated with security threats, financial fraud, medical failure,

system failures, etc. One of the most widely applicable areas for anomaly detection is

detecting intrusions. For example, the financial losses by the respondent companies due

to network attacks were over 130 million dollars in 2005 [52]; and according to a security

report, more than 90% respondents experienced cyber-attacks in 2015 [56]. WannaCry

ransomware attack, a worldwide cyberattack, launched on May 12 2017, was reported to

have infected more than 2 million computers in over 150 countries [13, 21]. Therefore,

detecting anomalies is a very critical problem.

Researchers have developed many anomaly detection methods over the years, based on

statistics, machine learning, and information theory techniques. Each of the algorithms has

an explicit or implicit assumption regarding what types of observations fall in the category

of anomalies. Therefore, each algorithm has been developed to target a specific class of

problem. However, in reality, the types of anomalies in a dataset can be of various kinds and

hence cannot be detected by a single anomaly detection algorithm. To achieve better and

more robust solutions, the application of ensemble learning is needed. Ensemble learning

in the context of classification has been well explored both empirically and theoretically;

Oza and Tumer [50] provide a survey of these techniques. However, as pointed out in

[9, 74], the study of ensemble learning in the field of anomaly detection is still an open

research problem. In the following, we first describe some of the existing state-of-the-art

anomaly detection algorithms, and then introduce the current status of ensemble learning

in anomaly detection.



3

1.2 Review of Existing Detection Algorithms

In this section we first describe recent density and rank based algorithms that we apply in

ensemble methods.

The common theme among the three density based algorithms (LOF, COF, and INFLO)

is that an anomaly score is assigned to an object based on density comparison of the object

with its k nearest neighbors; an object is considered an anomaly if its anomaly score is

greater than a pre-defined threshold. The other algorithms are based on the notion of rank,

and use the concept that if k nearest neighbors of an object consider the object as one of

their close neighbors, then it is less likely to be an anomaly.

1.2.1 Density Based Anomaly Detection Algorithms

The density based anomaly detection algorithms assume a symmetric distance function

dist, with dist(x, y) = dist(y, x), where x, y ∈ D are two observations from the dataset.

An important notion for various algorithms is Nk(x), the set of k nearest neighbors (k-NN)

of a point x ∈ D [18]. To find the k nearest neighbors, first define the k-distance of any

observation x as:

k-dist(x) = dist(x, y),

where y ∈ D is the kth nearest neighbor of x such that [18]:

• |{z ∈ D \ {x} | dist(z, x) < dist(y, x)}| < k, and

• |{z ∈ D \ {x} | dist(z, x) ≤ dist(y, x)}| > k − 1.

The set of k nearest neighbors of x is defined as:

Nk(x) = {y ∈ D \ {x} | dist(x, y) ≤ k-dist(x)}. (1.1)

The reverse nearest neighborhood of an object x, Rk(x), is defined to be the set of
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points y such that x is among the k nearest neighbors of y, i.e.,

Rk(x) = {y ∈ D | x ∈ Nk(y)}. (1.2)

Note that Nk(x) has at least k objects but Rk(x) may be empty, because x may not be

in any of the k-NN sets of any of its k nearest neighbors.

LOF (Local Outlier Factor)

Local outlier factor (LOF), proposed in [18], captures the degree of outlierness of an object

based on its local neighbors. It was proposed to solve a problem in global distance-based

method [40] as illustrated in Figure 1.1, the distance-based method correctly identifies o1

as an outlier but fails to identify o2 because its distance is not large enough. LOF, on the

other hand, assigns an outlier score for each object based on its local neighbors, and can

successfully detect such outliers. The computed LOF score of an object x is essentially the

average of the ratio of the local reachability distance of an object with the average distance

to the object’s k nearest neighbors Nk(x). To calculate the LOF score of each point in a

given dataset D of a given k value, one should follow the steps given below:

• Calculate the k nearest neighborhood set Nk(x) of each object x ∈ D.

• Calculate the local reachability density of each object x ∈ D:

lrdk(x) =

[∑
y∈Nk(x)

reach-distk(x, y)

|Nk(x)|

]−1

where reach-distk(x, y) = max{k-dist(y), dist(x, y)} is the reachability distance

of x from y.
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Fig. 1.1: Distance-based based outlier detection algorithm fails to capture o2 because its
distance is not large enoughx – from [18]

• Calculate the local outlier factor (LOF) score of each object x ∈ D:

LOFk(x) =

∑
y∈Nk(x)

lrdk(y)

lrdk(x)

|Nk(x)|

LOFk(x) captures the degree of x’s outlierness from its k-NN neighborhood. If

x’s local reachability density is very low while its k nearest neighbors y ∈ Nk(x)

densities are high, then, x gets assigned a high LOF score, indicating that x is a

potential outlier.

As a result, LOF score > 1 indicates that the object is potentially an outlier, whereas if

LOF is≤ 1 then the object’s local density is as large as the average density of its neighbors,

i.e., it is a non-outlier. LOF is considered to be the best method among NN approach, unsu-

pervised SVM approach, and Mahalanobis based approach in the area of network intrusion

detection [43]. Though it was proposed over ten years ago, it is still widely used in many

recent applications. LOF has been used for fault process detection in a plant-wide process
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monitoring system [45]; LOF was used to reduce the false alarm rate in their false data in

the application of solar photovoltaic (PV) systems [71]; more recently, LOF was adopted

in WiFall [69], an automatic fall detection system, to detect the anomalous wireless signal

and to contribute to elders’ health care and facilitate injury rescue.

COF (Connectivity-based Outlier Factor)

After LOF, many other local kNN -based algorithms were proposed. Connectivity-based

Outlier Factor (COF), proposed in [65], attempts to solve one of the deficiencies that LOF

fails to detect outliers when the dataset contains clusters of different shapes, as shown in

Figure 1.2.

Fig. 1.2: LOF fails to detect outliers – from [65]

To solve this problem, [65] proposed an alternative method for local density calculation

which considers the “connectivity” – how an object connects to its neighbors, and use

relative isolation to indicate whether an object is deviating from others. This connectivity

is defined by set-based nearest path (SBN) and set-based trails (SBT). To calculate a COF

score for each object x ∈ D for a given k, one can follow the steps given below:

• Define the shortest distance between elements of two non-empty, disjoint sets A and
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B, as:

set-dist(A,B) = min{dist(x, y) : x ∈ A, y ∈ B}1

• Calculate the k nearest SBN-path starting from x1: < x1, x2, ..., xk > such that xi+1

is the nearest neighbor of set {x1, ..., xi} in set {xi+1, ..., xk}, for 1 ≤ i ≤ k − 1.

In general, the SBN-path is generated in an iterative expansion manner starting from

SBN(x) = {x}; in each iteration, the nearest neighbor object is added to SBN(x).

In other words, the SBN-path of object x is an ordered list of x’s nearest neighbors.

• The set-based nearest trail (SBN-trail) w.r.t a SBN-path p =< x1, x2, ..., xk > is

defined as a sequence < e1, e2, ..., ek−1 > such that ei = (y, xi+1) where y ∈

{x1, ..., xi}, |ei| = set-dist({x1, ..., xi}, {xi+1, ..., xk}). |ei| is called the cost de-

scription of edge ei. An illustration of a SBN-trail is shown in Figure 1.3.

Fig. 1.3: For k = 3, the SBN-path of x is {x, x1, x2, x3}, the SBN-trail is {e1, e2, e3}

• Calculate the average chaining distance from x to Nk(x):

AC-distNk(x) =
1

k − 1
·
k−1∑
i=1

2(k − i)
k

· |ei|

1Note that this is not formally a metric since it does not satisfy the triangle inequality.
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the AC-dist is the average of the weighted distances in the cost description of the

SBN-trail. In the SBN-trail, if the edges closer to x have larger cost descriptions than

the edges far away from x, then, the closer edges contribute more in the calculation

of AC-dist.

• Calculate the COF score for each x ∈ D:

COFk(x) =
|Nk(x)| · AC-distNk(x)(x)∑
y∈Nk(x)

AC-distNk(y)(y)
.

The COF score of an object x indicates how x deviates from the objects it connects to,

compared with its k nearest neighbors. An object with higher score is considered to be a

potential outlier.

INFLO (INFLuential measure of Outlierness by symmetric relationship)

Another variation of LOF was proposed by [38], which addressed the problem that LOF

fails to detect outliers when more than one cluster is present in the dataset, and different

clusters have different densities. As shown in Figure 1.4, when q is slightly closer to a

dense cluster than p, then p will be assigned a higher LOF score. INFLO proposes to

use not only the k-nearest-neighborhood but also the reverse-nearest-neighborhood (RNN)

(Rk(x)), defined in Equation (1.2). INFLO score is calculated as follows:

• Calculate Nk(x) and Rk(x) for each x ∈ D.

• Calculate the local density of each object:

den(x) = [k-dist(x)]−1
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Fig. 1.4: LOF assigns low score to q and r when clusters of different densities are present
– from [38]

• Get the k-influential-space for each object x ∈ D:

ISk(x) = Nk(x) ∪Rk(x)

• Calculate the INFLO score as:

INFLOk(x) =

∑
y∈ISk(x)

den(y)

|ISk(x)|
· [den(x)]−1

Therefore, for each object, INFLO compares its local density to that of both its kNN and

RNN .

1.2.2 Rank Based Anomaly Detection Algorithms

RBDA (Rank Based Detection Algorithm)

Rank Based Detection Algorithm (RBDA) [37] exploits the mutual closeness of an object

to its neighbors. In Figure 1.5, for example, Jack and Eric rank each other high in their

list of friends while Bob is not considered as friend by his friends. Therefore, Bob is not

as popular in this social network. These personal friends are essentially the local nearest

neighbors in the dataset, and the friendship rank measures how far away an individual
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Fig. 1.5: Using ranks of friendship in social network to test the popularity – from [37]

deviates from its friends. This mutual closeness is measured by friendship in a social

network, while it is measured by the distance function in a generic dataset. The following

steps describe RBDA:

• Calculate Nk(x) for each object x ∈ D.

• For each pair of objects (x, y) ∈ D, the rank of y respect to x is defined as:

rx(y) = |{z : d(x, z) < d(x, y)}|.

Rank measures how ‘close’ y is to x; if there are fewer observations between x and

y, then, y is ‘close’ to x, i.e. rx(y) is very small.

• Calculate the RBDA score for each object x as the averaged rank with respect to its
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Fig. 1.6: Density-based algorithm assigns higher score to B than A – from [37]

kNN :

RBDAk(x) =

∑
y∈Nk(x)

ry(x)

|Nk(x)|
.

RBDA has an advantage in detecting outliers when clusters with different densities exist

in the dataset, unlike the density based algorithm that misidentifies the point at a cluster

boundary as an outlier as shown in Figure 1.6.

RADA (Rank with Averaged Distance Algorithm)

RADA [36] adjusts the rank of each object x by the averaged distance from its k nearest

neighbors. The function for measuring outlierness of an object x is defined as:

RADAk(x) = RBDAk(x)×
∑

y∈Nk(x)
d(x, y)

|Nk(x)|
.
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1.2.3 Statistical Methods

Statistical anomaly detection methods detect an anomaly which is suspected of being par-

tially or wholly irrelevant because it is not generated by the stochastic model assumed [11].

In general, a statistical anomaly detection model fits a statistical model for the normal ob-

servations, and marks any observation that does not fit in with the given model as an outlier.

Detailed discussion of statistical anomaly detection techniques can be found in [20,52]. We

introduce one of the popular techniques in detail in this section, namely, the Gaussian Mix-

ture Model.

Gaussian Mixture Model (GMM)

GMM is one of the most frequently used parametric models for detecting anomalies when

there is no prior knowledge of the density distribution [42]. GMM is a probabilistic model

which assumes that all observations are generated from N gaussian distributions but with

unknown parameters, known as the mixture components. Each multivariate component is

represented by a parameter set

θi = {µi ,Σi}

where µi and Σi are the mean vector and the covariance vector for the ith mixture model, re-

spectively. The set of parameters {θ1, ..., θN} is estimated using Expectation-Maximization

(EM) algorithm [23]. EM algorithm might converge to a local maximum; to overcome this

problem, multiple trials of GMM are executed in our implementation.

1.2.4 Streaming Anomaly Detection Algorithms

A datastream is defined as an infinite sequence of data points [59]:

DS = {(x1, t1), ..., (xn, tn), ...},
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where data xi arrives at timestamp ti. Recent research papers in [32, 59] discuss the chal-

lenges and open problems in detecting anomalies for streaming data. Anomaly detection

techniques developed for datastreams should have the following features:

• online: an observation should be identified as an anomaly at the time it arrives;

• temporal context: an observation should be compared with its temporal context (e.g.

within a time period);

• incremental learning: a detection model should be adjustable incrementally;

• concept drift: a model should be able to detect anomalies under the presence of

distribution change; and

• multi-dimensional: a model should be able to apply fast detection on multi-dimensional

datastreams.

Over the years, many online anomaly detection techniques have been proposed, including

statistics-based methods [70] which incrementally learn a probabilistic model and deter-

mine whether an observation is an anomaly compared to the learnt model. The incremental

LOF [55] was the online version of LOF, which computes the neighborhood in an incremen-

tal way, and reduces the time complexity for detection from O(n2) to O(n log n). Though

many detection methods have been proposed, there are few ensemble methods on stream-

ing data. The recent work proposed in [64] applies the concept of random forest in the

context of streaming anomaly detection, and reports good performance in both accuracy

and time complexity. We will discuss these streaming methods in detail in Chapter 5.

1.3 Ensemble Methods in Machine Learning

Ensemble methods are widely used in the field of data mining and machine learning, espe-

cially in the context of classification and clustering. Ensemble methods are considered to
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be among the best data mining techniques in many of the data mining competitions. Vitaly

Kuznetsov said in NIPS 2014 that “This is how you win ML competitions: you take other

peoples’ work and ensemble them together.” [4]. As a matter of fact, using ensemble meth-

ods to solve data mining problems is becoming one of the most popular techniques. For

example, in 2009 Netflix launched a 1 million dollar competition for user rating prediction

and the team “The Ensemble” achieved the highest accuracy [5, 72]; in 2009-2011 KDD

cups, all the first place and second place winners used ensemble methods [72]; the 2016

KDD cup winning team used the gradient boosted decision trees which is an ensemble

method which combines the results of a collection of weak predictors, typically decision

trees [60]. However, as Charu C. Aggarwal mentioned in [9], “ Compared to the clustering

and classification problems, ensemble analysis has been studied in a limited way in the

outlier detection literature.”

A particular algorithm may be well-suited to the properties of one data set and be suc-

cessful in detecting anomalous observations of the particular application domain, but may

fail to work with other datasets whose characteristics do not agree with the first dataset.

The impact of such mismatch between an algorithm and an application can be alleviated

by using ensemble methods where multiple algorithms are pooled before a final decision

is made. Mathematically, ensemble methods help by addressing the classical bias-variance

dilemma, at least in the classification context.

Recently, a few researchers have studied ensemble methods such as anomaly detection

and distributed intrusion detection in Mobile Ad-Hoc Networks (see Cabrera et al. [19]).

Others have studied supervised anomaly detection using random forests and distance-based

outlier partitioning (see Shoemaker and Hall [62]). In the semi-supervised case, one pos-

sible approach is to convert the problem to a supervised anomaly detection by exploit-

ing strong relationships between features; Tenenboim-Chekina et al. [66] and Noto et

al. [49] provide two different approaches to accomplish this goal. Pevny et al. [54] pro-

pose anomaly detector processing for a continuous stream of data, which requires high
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acquisition rate, limited resources for storing the data, and low training and classification

complexity. The key idea is to use bagging on multiple weak detectors, each implemented

as a one-dimensional histogram. In these approaches the word ‘ensemble’ has a different

connotation.

In this dissertation, we propose and evaluate different ensemble methods for anomaly

detection on static and streaming datasets. We evaluate our methods with respect to many

real-world benchmark datasets. We now describe the evaluation metric and datasets we use

throughout the entire dissertation, then, discuss our contribution and summarize the content

for each chapter.

1.4 Evaluation Metrics

In this dissertation, we mainly use Area Under Curve (AUC) as the evaluation metric. The

details are described below:

A Receiver Operating Characteristic (ROC) was originally used for radar signal analy-

sis during World War II [31], to measure the power of rader receiver operators [24]. It has

a wide range of applications in signal detection [26], biomedical informatics [41], clinical

medicine performance [76], etc. Detailed descriptions can be found in [27, 34]. More re-

cently, ROC curve has become one of the most popular performance metrics in the area of

machine learning [51], it plots the true positive rate vs. the false positive rate. The ROC

curve provides an illustration of detection power in a 2-dimensional space, however, we of-

ten need a single scalar value to simplify the evaluation process. Therefore, the area under

the ROC curve (AUC) is used to reduce the ROC curve to a single-valued number [34]. A

perfect detection algorithm reaches an AUC score of 1.0 while a random guess for two class

problem is 0.5. In machine learning, the positive class is often considered to be the class of

interest, therefore, in our work, positive class is the anomaly class (outliers), denoted asO,

and the negative class is the normal class (inliers), denoted as I. While the set of predicted
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outliers is denoted as Ô, predicted inlier set is denoted as Î. Therefore, the True Positive

Rate (TPR) and False Positive Rate (FPR) are calculated using:

TPR =
|Ô ∩ O|
|O|

and FPR =
|Ô ∩ I|
|I|

.

1.5 Dataset Descriptions

In this section, we describe first the benchmark static datasets we use for ensemble algo-

rithms evaluation in Chapters 2, 3, and 4. Then, we describe the streaming datasets we use

for Chapter 5.

1.5.1 Benchmark Static Datasets

• Abalone dataset (Abalone) [46] : This dataset was used originally for predicting

the age of abalones from physical measurements. We keep the 7 numerical features

and choose the minority classes as outliers, and downsampled the two major classes

(class 9 and class 10) as the inliers.

• Smartphone-Based Recognition of Human Activities and Postural Transitions

Data Set (ACT) [57] : This dataset collects data from 30 volunteers wearing smart-

phones. There are three static postures (standing, sitting, lying) and three dynamic

activities (walking, walking downstairs and walking upstairs), as well as postural

transitions that occurred between the static postures (stand-to-sit, sit-to-stand, sit-

to-lie, lie-to-sit, stand-to-lie, and lie-to-stand). The 3-axial linear acceleration and

3-axial angular velocity values from the sensors data are used for classification, with

561 features and 12 classes. To construct our outlier detection evaluation dataset, we

consider the class with the least number of instances (sit-to-stand) as outlier points

and the class with most number of instances (standing) as inlier points.
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• EEG dataset (EEG) [46] : All data is from one continuous EEG measurement with

the Emotiv EEG Neuroheadset. The duration of the measurement was 117 seconds.

The eye state was detected via a camera during the EEG measurement and added later

manually to the file after analyzing the video frames. It has two states: eye-close and

eye-open. We downsample the eye-close class as the outlier class.

• Glass dataset (Glass) [39] : The original glass identification dataset from UCI ma-

chine learning repository is a classification dataset. The study of classification of

types of glass was motivated by criminological investigation. At the scene of the

crime, the glass left can be used as evidence, if correctly identified. This dataset

contains features regarding several glass types (multi-class). Here, class 6 is a clear

minority class, as such points of class 6 are marked as outliers, while all other points

are inliers.

• Ionosphere dataset (Iono) [46] : The Johns Hopkins University Ionosphere dataset

contains 351 data objects with 34 features; all features are normalized in the range

of 0 and 1. There are two classes labeled as good and bad with 225 and 126 data

objects respectively. There are no duplicate data objects in the dataset. To form the

rare class, 116 data objects from the bad class are randomly removed. The final

dataset has only 235 data objects with 225 good and 10 bad data objects.

• KDD 99 dataset (KDD) [35] : KDD 99 dataset is available from DARPA’s intru-

sion dataset evaluation program. This dataset has been widely used in both intrusion

detection and anomaly detection area, and data belong to four main attack categories.

In our experiments, we select 1000 normal connections from test dataset and insert

14 attack-connections as anomalies. All 41 features are used in experiments. The

dataset is available at [3].

• Lymphography dataset (Lympho) [44] : The original lymphography dataset from

the UCI machine learning repository is a classification dataset. It is a multi-class
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dataset having four classes, but two of them are quite small (2 and 4 data records).

Therefore, those two small classes are merged and considered as outliers compared

to the other two large classes (81 and 61 data records).

• NBA Basketball dataset (NBA) [1] : This dataset contains Basketball player statis-

tics from 1951-2009 with 17 features. It contains all players statistics in regular

season and information about all star players for each year. We construct our out-

lier detection evaluation dataset by selecting all star players for year 2009, use their

regular season stats as the outlier data points, and select all the other players stats in

year 2009 as normal points.

• Packed Executables dataset (PEC) [53] : Executable packing is the most com-

mon technique used by computer virus writers to obfuscate malicious code and

evade detection by anti-virus software. This dataset was collected from the Malfease

Project to classify the non-packed executables from packed executables so that only

packed executables could be sent to universal unpacker. In our experiments, we select

1000 packed executables as normal observations, and insert 8 non-packed executa-

bles as anomalies. All 8 features are used in experiments. The dataset is available

at [2].

• Popularity (Pop) dataset [28] : This dataset contains features of articles published

by Mashable in a period of two years. The original goal in the paper was to predict

whether a news is popular or not in the social network. In the original paper [28],

they threshold the number of shares to be 1400 to indicate whether a post is popular.

For our experiments, we randomly down sampled 10 data points from the Popular

class and mark them as outliers. Inliers are from the class non-popular.

• Statlog (Landsat Satellite) dataset (Sat) [46] : This dataset consists of the multi-

spectral values of pixels in 3x3 neighborhoods in a satellite image. The original

usage was to predict the class associated with the central pixel in each neighborhood.



19

To construct the outlier detection dataset, we downsampled class 4 (damp grey soil

class) as the outlier, and class 7 (very damp grey soil class) as the inliers.

• Wine dataset [61] : This dataset has 13 features and 3 classes. To construct an outlier

detection dataset, class 2 and 3 are used as inliers and class 1 is downsampled to 10

instances to be used as outliers. These data are the results of a chemical analysis of

wines grown in the same region in Italy but derived from three different cultivars.

The analysis determined the quantities of 13 constituents found in each of the three

types of wines.

• Wisconsin Breast Cancer Dataset (WIS) [46] : This dataset contains 699 instances

and has 9 features. There are many duplicate instances and instances with missing

feature values. 236 instances are labeled as benign class and 236 instances as ma-

lignant. In our experiments the final dataset consisted 213 benign instances and 10

malignant instances as anomalies.

1.5.2 Streaming Datasets

In this section, we describe the datasets we used for evaluating our streaming ensemble

methods in chapter 5.

1. Http Dataset [64] : The KDD99 dataset can be divided into different subsets by

the most basic feature ‘service’. Http is one of the subsets, in which the continuous

features are transformed by taking a log function. This dataset is constructed using

567,497 ‘http’ service data and contains 0.4% anomalies.

2. CoverType Dataset [46, 64] The original ForestCover/Covertype dataset is used for

predicting the forest cover types from the cartographic variables. The original dataset

has 54 features including the quantitative variables, binary wilderness areas and bi-
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nary soil type variables. However, the outlier detection dataset is constructed by the

10 quantitative features. There are 286,048 data and 0.9% anomalies are inserted.

3. Polish Companies Bankruptcy Dataset [73] This dataset is collected from the

Emerging Markets Information Service (EMIS), which collects the information about

emerging markets. The dataset contains financial information about the Polish com-

panies from 2000-2013. We use the 5th year dataset which contains companies that

are bankrupted after one year. This dataset has 64 financial features about 5910 total

companies, of which, 410 companies were bankrupted during the predicting period.

1.6 Our Contribution

Anomaly detection ensembles has been categorized into two classes: independent learning

and sequential learning, depending on how the base learners are used [9]. In this disser-

tation, we explore and propose new algorithms for independent, sequential and adaptive

learning. We study the application for ensemble methods in two contexts: static datasets

and streaming datasets. For static datasets, we select the state-of-the-art unsupervised

anomaly detection algorithms as our base algorithms and design different ensemble meth-

ods. For streaming anomaly detection, we study both unsupervised and semi-supervised

anomaly detection techniques.

• In Chapter 2, we first discuss the usage of independent ensemble methods for un-

supervised anomaly detection. We consider three ensemble approaches using: (1)

normalized scores, (2) rank aggregations, and (3) majority voting. We select 6 dif-

ferent state-of-the-art unsupervised anomaly detection algorithms for ensembles, and

our evaluation on different benchmark datasets show that using independent ensem-

bles results in better performance than most of the base algorithms. In particular,

using minimum ranking method achieves the best and most robust solutions. We

then propose to use the bootstrapping idea for anomaly detection, i.e., taking multi-
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ple samples of the dataset, obtain anomalies for each sample, and combine the results.

This algorithm is comparable with existing works but has a lower computation cost.

Finally, we discuss how to combine model-level ensembles and data-level ensembles,

by boosting together to reach more robust decisions.

• In Chapter 3, we describe new sequential ensemble algorithms where the outputs of

the first algorithm are further refined by another algorithm to detect anomalies. It has

been argued that an anomaly detection algorithm performs better on a subsample of

the dataset. We incorporate the sampling concept in proposed sequential methods. To

select two (or more) algorithms, we propose to use the algorithms which have higher

diversity among themselves as the base algorithms. In this chapter, we consider

several minor variations of anomaly detection based on the sieve method which takes

the output from one base algorithm to filter out the non-anomalous observations, then

compare the suspect anomalies with a second algorithm.

• Boosting is considered as an example of iterative sequential learning; in particular,

AdaBoost [29] has gained popularity in the classification context. However, boosting

has not been used for unsupervised anomaly detection. In Chapter 4, we propose a

novel adaptive learning algorithm for unsupervised outlier detection which uses the

score output of the base algorithm to determine the hard-to-detect examples, and it-

eratively resamples more points from such examples in a completely unsupervised

context. Finally, we propose several methods to combine the results from each itera-

tion.

• The random forests algorithm has shown better performance than single decision

trees in the classification context [17]. Recently, a random forest approach has been

proposed for anomaly detection [64]. However, this approach suffers from several

deficiencies: (1) parameters are chosen based on empirical learning, and (2) this

method does not perform well on high-dimensional data. In Chapter 5, we first an-
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alyze the impact of parameters used in random trees, from both empirical and the-

oretical points of view. Our main contribution is building better random forests for

anomaly detection, achieved by : (1) determining the appropriate number of trees

of heights based on our mathematical analysis, (2) feature clustering to build ran-

dom forests without increasing the number of trees or tree heights, in order for the

approach to be applicable to datasets with large number of features, and (3) apply-

ing an Evolutionary Algorithm to further improve performance of the randomly built

trees.

• In Chapter 6, we review and summarize the accomplishments of this dissertation.

Then, we discuss the possible future works and improvements over the existing study.
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CHAPTER 2

INDEPENDENT ENSEMBLE METHODS

FOR ANOMALY DETECTION

Independent ensemble methods combine the decisions from multiple base learners to reach

a more robust and accurate final decision. In this chapter, we discuss the application of

independent ensemble methods in the context of anomaly detection from both theoretical

and empirical perspectives. We review and summarize some of the recent works using

ensemble methods for anomaly detection. Then, we propose a bootstrapping algorithm

based on the conclusion that using subsamples from the dataset will reach higher detection

rate [75]. Results show that our bootstrapping algorithm provides competitive detection

accuracy with much less computational cost. To combine the results from different base

components, multiple combining strategies can be applied, including score based, ranking

based and other approaches. While most existing works only apply a simple score aver-

aging strategy, we explore the usage of rank aggregation and propose to apply a majority

voting rule for the final result combination.
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2.1 Independent Ensembles

In ensembles, the final decision is jointly decided by multiple base components. Inde-

pendent ensembles harness the independence between the base learners to achieve a lower

error rate. The base components of independent ensembles can be constructed using in-

stantiations of base algorithms, using subsets of datasets, and using different projections

of dataset on feature space. After obtaining all the outputs from each component, the next

step is final output combination where the outputs are combined to achieve a better solution.

An illustration of the independent ensemble approach is shown in Fig 2.1. There are T

base components, each of which could be a different algorithm, or the same algorithm but

with different parameter settings or initiation [10]. The entire dataset D is taken, while a

separate data transform function gi is applied for the ith base component. For example, if

g is a random subsampling approach as in [75], then gi(D) is a random sample from the

dataset D and serves as the input for the ith base component. Each base component outputs

a result vector Resi indicates the results made at component i. A combination function f

is applied to Resi, i = 1...T to make the final decision Resfinal; the combination function

could be averaging, minimum, etc.

Fig. 2.1: Independent Ensemble for Anomaly Detection
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2.1.1 Justification for Independent Ensemble Methods

The concept of using ensemble methods to achieve a better decision can be traced back to

the famous Condorcet’s Jury Theorem [58] which was first proposed by the Marquis de

Condorcet in his 1785 essay on the Application of Analysis to the Probability of Majority

Decisions [22]. The theorem says that when a jury of T voters need to reach a decision

by majority voting, if the probability of each voter being correct is p and the final decision

being correct is p?, then it follows that:

• If p > 0.5, then p? > p.

• If the number of votes approaches infinity, then p? approaches to 1.0 if p > 0.5

The theory has two assumptions, that each vote should be independent and there should

exist only two outcomes, for example, to convict or not. This can be easily adopted to

independent ensembles for anomaly detection since:

• all votes (detection algorithms) are independent with respect to each other; and

• the decision outcome for anomaly detection falls into binary classes: whether an

observation is an anomaly or is not.

As a result, from Condorcet’s Jury Theorem, it follows that applying independent ensemble

methods for anomaly detection could lead to a more robust and stronger decision than

the single detection result. However, Condorcet did not give a mathematical proof. A

theoretical justification is provided by Hoeffding’s Inequality that as the number of base

learners becomes very large, the generalization error goes to zero [72].

Consider a binary classification problem where the label of object x from the ith classi-

fier is Hi(x) ∈ {+1,−1} . Suppose we have T classifiers which are independent with each

other. Define p as the probability that the decision made by one of the members in the jury

is correct. As a result, each classifier has a classification error 1−p. After combining these
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T classifiers, the final decision for each object is represented as:

H(x) = sign
( T∑
i=1

hi(x)
)

The final decision makes an error if more than half of the T classifiers make errors. By

Hoeffding’s Inequality, the generalization error of an ensemble is [72]:

Error =

bT/2c∑
i=0

(
T

i

)
(p)i(1− p)T−i ≤ exp

(
− 1

2
T
(
2(1− p)− 1

)2)

This guarantees that as the number of base learners increases, the generalization error is

exponentially decreasing.

2.1.2 Benefits of Ensembles - A Toy Example

In unsupervised anomaly detection, each algorithm makes an assumption about what is an

anomaly. For example, in density-based detection algorithms, the observations in a low-

density area are identified as anomalies. Fig 2.2 shows examples of the illustrations of data

on which different algorithms are successful.

To show how to ‘cancel’ the bias of each algorithm in detecting anomalies, we construct

a very simple toy example with three outliers, shown in Figure 2.3(a). Figure 2.3(b) shows

the ROC curve for different algorithms. Each algorithm successfully captures 2 out of 3

outliers but fails to detect the other one. However, all outliers are captured by applying an

ensemble using the minimum method which is defined in Equation (2.4) in Section 2.3.

2.2 Data Transformation

One of the requirements of the independent ensemble approaches is that the decisions made

from each base component should be mutually independent. However, when we apply

anomaly detection on the same dataset, the base components are inherently dependent due
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(a) INFLO correctly detects q (b) COF correctly detects o1

(c) RBDA correctly detects A

Fig. 2.2: Detection power of different algorithms [37, 38, 65]

to the reason that they share the same dataset. To reduce this dependence, different data

transformation techniques can be applied. In this section, we review two of the existing

data transformation functions including feature bagging [44] and random subsampling [75],

then, we propose our new bootstrapping algorithm.

2.2.1 Random Feature Bagging

Feature bagging [44] is the first work to formally describe the application of an ensemble

approach for unsupervised anomaly detection, motivated by two observations relevant to

outlier detection: 1) outliers might only be detectable from a subspace or projection of

feature space; 2) in high dimensional space, distances become sparse and outliers are dif-

ficult to distinguish from the normal observations. This is shown in Figure 2.4, where the

two outliers A and B can only be detected on different projections of feature spaces. This

effect may occur when different types of outliers exist in the dataset. Another problem is

the famous curse of dimensionality: in Euclidean space, as the dimensionality increases,

the distances between data points are less distinguishable from each other [15]. When the

dimensionality d of the feature space becomes very large, the ratio of the difference in min-
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(a) Toy example with 3 outliers (b) Evaluation: ROC Curves of independent
methods (INFLO, LOF, RBDA and COF) vs. en-
semble method (ens)

Fig. 2.3: Toy example with three outliers

imum and maximum Euclidean distance from data points to the centroid, and the minimum

distance itself, tends to zero, i.e.:

lim
d→∞

E(
distmax − distmin

distmin
)→ 0.

A recent article [63] shows that classification performance reduces significantly when in-

creasing the dimensionality but not the number of training samples. To solve the afore-

Fig. 2.4: Outliers may only be detectable on different projections of feature space [44]

mentioned problems, this work applies subsampling on the feature space as shown in Al-
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gorithm 1. By contrast to the standard bagging approach, instead of randomly sampling

from the data distribution, this approach draws random samples from the feature space and

keeps all the data points. In the tth iteration, all data samples are preserved, but Nt features

are drawn uniformly from the entire feature space FS.

Algorithm 1 Feature Bagging Approach
Data: Dataset D with d− dimensional feature space FS

Input: A set of anomaly detectors A = A1, ..., AT

Result: A vector of anomaly scores H

Normalize dataset D

for t = 1, ..., T do
Nt = U{dd/2e, d− 1};

FSt = randomly pick Nt features from FS without replacement;

Ht = apply detection algorithm At on FSt, get a score vector for each object;

end

Final output: H = COMBINE(H1, ..., HT )

The detection algorithm used in the original paper [44] is the same over T iterations,

which is LOF. For the final COMBINE function, it discussed two combination methods:

cumulative sum and breadth first approach, which we discuss in detail in Section 2.3. The

paper showed that the approach outperforms LOF in many datasets especially when there

exist noisy features; also cumulative sum outperforms breadth first combination.

2.2.2 Random Data Bagging

Bagging (Bootstrap aggregating) is one of the most used independent ensemble methods,

and has been widely used in the classification context. Bagging was first proposed by Leo

Breiman [16] where he proposed to improve the classification accuracy by building classi-

fiers on random subsamples of training set. In Section 2.2.1, we have discussed Bagging
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on the feature space. In this section, we discuss the Bagging approach by first summarizing

Zimek’s [75] paper and then propose a new Bootstrapping algorithm.

Benefits from Detecting Outliers by Random Subsampling

The work in [75] proposed to use random subsampling methods for unsupervised anomaly

detection to reduce the false detection rate. This method draws a random sample s from the

dataset D, and for all observations x ∈ D, an anomaly detection algorithm is performed

on {x} ∪D. This step is repeated multiple times and the final score is an average over all

iterations. Zimek et al. [75] argues that by doing so, the benefits come from two aspects:

1. the density estimate for each sample will be more robust; 2 subsampling will increase

the ‘gap’ between then. We now discuss the first benefit. Consider a scenario in which the

true (but unknown) density distribution of inliers from dataset D are generated from f , so

that the estimated density of object x is

f̂D(x) = f(x) + εD(x),

where εD is the sample error of estimation. When multiple samples are taken, the expected

density of x is

E{f̂D(x)} = E{f(x)}+ E{εD(x)} = f(x) + E{εD(x)}

Then, if the errors εD(x) are independent between multiple subsamples, the estimation of

x will maintain the same order of true density f(x) since in this case E{εD(x)} is zero.

However, since there is no guarantee that the errors are the same over multiple samples,

Zimek’s [75] paper argues that using their random subsampling method will not cause

ranking inversion between inliers and outliers, but increasing the ‘gap’ between them, this

is a more important finding as summarized in below.

In a d-dimensional sphere of radius r containing n uniformly distributed points, the
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expected Euclidean distance from a point to its k nearest neighbors, defined as E{kdist}

is:

E{kdist} = r

(
k

n

)1/d

Now, suppose we have two spheres in the data space with n1 and n2 objects. Suppose

n1 << n2, therefore, the sphere with n2 observations stands for the inliers, while the other

one contains the outliers since outliers lie in sparse area. The expected kNN distances for

the two spheres with n1 and n2 objects are:

E{kdist1} = r

(
k

n1

)1/d

; E{kdist2} = r

(
k

n2

)1/d

;

Taking a fraction 0 < m < 1 of samples from the dataset D:

E{kdist′1} = r

(
k

n1 ×m

)1/d

; E{kdist′2} = r

(
k

n2 ×m

)1/d

;

The difference between the sampled distance and the original is:

∆1 = E{kdist′1} − E{kdist1} = r

(
k

n1

)1/d(
1−m1/d

m1/d

)
(2.1)

∆2 = E{kdist′2} − E{kdist2} = r

(
k

n2

)1/d(
1−m1/d

m1/d

)
(2.2)

The expected kNN distance in the sampled space increases as a function of sampling

rate m:
∆1

E{kdist1}
=

∆2

E{kdist2}
=

1−m1/d

m1/d
(2.3)

Equations (2.1) and (2.2) justify that the expected k-NN distance after sampling will be

larger for a sparse sphere than a dense one, which means that when n1 < n2, we have

∆1 > ∆2. This is equivalent to say that the sampling distances for outliers will grow

more from normal objects since outliers lie in the sparse area while normal objects are in
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Fig. 2.5: Expected 5-NN distance for two spheres with radius r = 1, in a 2D Euclidean
space, containing 1000m (circles) and 100m (triangles) objects uniformly distributed (0 <
m < 1 is the sampling rate) [75]

the denser areas. This effect can be seen in Figure 2.5, where two spheres with the same

radius are represented, but the one shown with circles is denser than the one shown with

triangles, and the expected distances after sampling grow faster for the sparse sphere as

the sampling rate decreases. These findings justify the attempt to improve outlier detection

with a sampling technique, Algorithm 2 describes this procedure.

Algorithm 2 Random Subsampling
Data: Dataset D

Input: Sampling rate 0 < m < 1; An anomaly detector A

Result: A vector of anomaly scores H

for t = 1, ..., T do
Dt = randomly pick m× |D| data points from D;

for x ∈ D do
Ht(x) = anomaly score of x obtained by applying detection algorithm A on x∪Dt;

end

end

for x ∈ D do
H(x) = 1

T

∑T
i=1Ht(x)

end



34

This approach uses the same base algorithm (LOF and its variants) for each iteration,

and empirical results show that when the sampling fraction is 0.1, the anomaly detection

performance is the best.

2.2.3 A Bootstrapping Approach – Proposed Algorithm

In statistics, bootstrapping techniques are commonly used for estimating the properties

(mean, variance, confidence intervals, etc.) of the population using multiple samples [25].

Bootstrapping is a resampling method where multiple samples are drawn each time. The

commonly used bootstrap method is the .632 method, which has been used to construct the

training set and testing set for classification problems [33]. On resampling n points with

replacement n times, 63.2% observations are presented in the training set while the other

36.8% observations are left for testing set. The number .632 comes from the approximate

that (1 − 1
n
)n approaches e−1 = 0.368 for a large n. In our method, we explore different

resampling rates.

As shown in [75], applying distance-based outlier detection techniques on a subsampled

data space will result in better performance than on the original dataset. They evaluate

every point against the random subsample to avoid the chance that some objects will not

be sampled. However, we argue that given enough number of random samples that the

probability of missing an observation is very small; therefore, using a simple Bootstrapping

approach will result in similar performance but be more efficient.

In our method, we select a subsample without repeating an observation. Hence, if we

wish to select a proportion of m, 0 < m < 1, then the probability of not selection in a

sample is (1−m). The probability that each point is not drawn from T random samples is:

(1−m)T .

The probability that all points occur at least once in the T samples is, assuming that T ×
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m×N >> N :

(1− (1−m)T )N .

We want this probability to be greater than 1 − δ, where 0 < δ < 1 is a small number. To

obtain the number of samples T , we derive the following:

{1− (1−m)T}N ≥ (1− δ)

1− (1−m)T ≥ (1− δ)1/N

T ≥ log1−m{1− (1− δ)1/N}

For example, if δ = 0.001, m = 0.1, and N = 1000, then we need to sample 132 times to

achieve desired contraints.

The algorithm is very simple and shown in Algorithm 3. As shown later in the evalua-

tion section, this simple Bootstrapping approach exhibits the aforementioned subsampling

effect for improving anomaly detection, and is faster than the approach in [75] since one

loop is eliminated from the algorithm.
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Algorithm 3 Bootstrapping Approach
Data: Dataset D

Input: Sampling rate m, 0 < m < 1; A set of anomaly detectors {A1, ..., AT}

Result: A vector of anomaly scores H

for t = 1, ..., T do
Dt = by randomly select m× |D| data points from D;

Ht = anomaly scores of the datapoints in Dt are obtained by applying detection algo-

rithm At;

end

for x ∈ D do
H(x) = 1

T

∑T
i=1Ht(x)

end

2.3 Final Results Combination

Most anomaly detection algorithms output a score for each object indicating the degree of

that object being an anomaly. Although different algorithms output scores with different

scales, we assume here w.l.o.g. that in all cases the larger the score, the higher the prob-

ability that an object is an anomaly. How to combine the final scores to achieve a better

result is very important in ensemble methods. Next, we review some of the most popular

combination approaches and propose some new ideas.

2.3.1 Review of Earlier Methods

Feature bagging [44] is considered as the first ensemble approach for unsupervised anomaly

detection [9]. In their approach, each base component is constructed by applying the same

base algorithm on a random projection of the entire dataset on feature space. The pa-

per evaluated two different combination approaches: cumulative sum and breadth first ap-

proach. The cumulative sum approach is the same as averaging approach and is the most
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popular combination method in most existing works [18, 44, 75]. The work in [18] eval-

uates different combination methods such as using the maximum score output, using the

LOF algorithm but with different values of k, the number of nearest neighbors.

2.3.2 Different Types of Combination Methods

Score Based Combination Methods

The score averaging method combines anomaly scores for each observation, first normal-

ized to be between 0 and 1. Let αi(x) be the normalized anomaly score of ∈ D, according

to algorithm i. Then the normalized score, averaged over all T base components, is ob-

tained as follows:

α(x) =
1

T

T∑
i=1

αi(x).

The maximum score combination method selects the maximum score output from the T

base components for each object. It was shown in [18] to perform better than the minimum

score and averaging score approach.

α(x) =
T

max
i=1

αi(x)

Rank Based Combination Methods

Since each algorithm outputs anomaly scores in different scales, the required score normal-

ization in a score-based combination method may be biased. Using rank based methods,

we can overcome this problem.

The minimum ranking approach considers the minimum rank of each object as the fi-

nal output, instead of using the score output. Let the anomalous rank of x, assigned by

algorithm i, be given by:

ri(x) = |D| − |{y|αi(y) < αi(x)}|.
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A smaller rank implies that the observation is more anomalous. The minimum rank method

assigns

rank(x) = min
1≤i≤T

ri(x). (2.4)

Thus, if object x is found to be the most anomalous by at least one algorithm, then the

Min-rank method also declares it to be the most anomalous object. If all six algorithms

give substantially different results, six different points may have the same rank.

The averaging ranking approach is similar to score averaging approach but considers

the mean value of rankings over different base learners. The results obtained from this

approach is not an integer anymore, we denote it as rank′. For any object x, the smaller

the rank′(x), the more it is considered anomalous.

rank’(x) =
1

T

∑
1≤i≤T

ri(x).

Majority Voting Rule Methods

As discussed earlier, the majority voting rule has a solid foundation, supporting the argu-

ment that the final combination reaches more robust decisions. Majority voting rules have

been widely applied in the area of ensemble-based classification. However, the concept of

majority voting has rarely been applied in the context of unsupervised outlier detection.

We propose to use a majority voting rule in which the basic idea is to throw away

the outputs that are inconsistent with the rest of the base components. The challenge for

designing a majority voting rule for unsupervised anomaly detection is that most anomaly

detectors output a score instead of a clear decision. Since the number of anomalies (rare

events) should be very small, we consider the ranked top τ% as the ‘true’ anomalies for
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each base learner, therefore the decision for each object x from the ith component is:

Hi(x) =


1, if ri(x) ≤ τ%× |D|

0, otherwise.
(2.5)

The final vote for each object x is:

V (x) =
T∑
i=1

Hi(x). (2.6)

The final decision for whether an object x is anomalous is:

H(x) =


1, if V (x) > T/2

0, otherwise.
(2.7)

When Equation (2.6) is used, the ranks of objects should be in descending order, i.e., truly

anomalous objects should have more 1’s than 0’s. A binary decision is output using Equa-

tion (2.7). In our evaluation, we denote the method using Equation (2.6) as majority, while

the results obtained by Equation (2.7) as majority bin since it output a binary decision.

The weighted majority voting approach: In the previous combination methods, each

learner is assigned an equal weight. By doing so, each algorithm gets to vote for the final

decision. However, given the assumption that most base learners are accurate at detecting

anomalies, we assign more weight to the algorithms that agree more with the majority,

hence there is a potential that the final decision reaches ‘closer’ to the truth. The weight

assignment is based on the idea that if a base learner detects the same set of anomalies as

the majority, it gets a higher weight than the one that often disagrees with the majority. To

do so, we design a weight assignment wi for each base algorithm i as:

wi =

∑
x∈D I(Hi(x), H(x))∑

x∈DH(x)
(2.8)
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where Hi(x) is the decision of the ith algorithm about whether x is an anomaly, as defined

in Equation (2.5). H(x) is the decision reached by majority, as defined in Equation (2.7).

I is a function defined as:

I(x, y) =


1, if x = y;

0, otherwise.

After such assignment, the algorithms that agree more often with the majority will be as-

signed a higher weight than the others.

Other Combination Methods

The breadth first approach [44] sorts all the results obtained from different base algo-

rithms in descending order, then selects the next object that has the highest anomaly score

from all the base algorithms, in a breadth first searching order. An illustration is shown in

Fig 2.6 with three base algorithms. ALG1 ranks x as most anomalous, z as second, and

y as the third, i.e. r1(x) < r1(z) < r1(y). For ALG2, it has r2(x) < r2(y) < r2(z),

while in ALG3, r3(z) < r3(x) < r3(y). To obtain the final result, the method ‘scans’ each

algorithm horizontally, in the figure. It finds the first anomaly obtained by ALG1, which is

x, then, it goes horizontally to ALG2, which is x again, when it reaches ALG3, the second

anomaly z is output; then, the method continues in the next row, z is already obtained as

anomaly, so it is ignored, the third anomaly is y obtained by second row of ALG2. The

final output is x, z, y.

Fig. 2.6: An illustration for breadth first approach
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2.4 Evaluation of Independent Ensemble Methods

The datasets we use in this section are summarized in Table 1.1. For each dataset, we vary

k values from 1 to 25 for the kNN based algorithms. For GMM, we execute 25 random

trials.

2.4.1 Performance over Different Combination Methods

We plot the AUC scores (defined in Section 4.5) for variant individual and ensemble meth-

ods, using boxplots for each dataset in Figure 2.7. We observe that among the individual

base algorithms, RADA performs the best. The reason is that RADA itself is an ensem-

ble which considers both distances and ranks for detecting anomalies. However, on some

datasets, e.g., on NBA and SAT datasets, GMM performs better than RADA, which shows

that if we choose RADA in all cases, then it does not perform well on these datasets. Using

ensemble methods, on the other hand, might not beat the best individual base algorithm in

all the cases, but it generates more robust solutions than the individual base algorithms. To

summarize these results, we show the AUC scores for each dataset in Table 2.1, we observe

that the combination method min rank generates the best AUC at 0.832 ± 0.179 while the

best base algorithm RADA generates 0.828± 0.217. We also observe that though weighted

methods are not the best, but they are perform better than the pure averaging methods:

weighted score has AUC at 0.791 ± 0.214 while the pure mean score has 0.781 ± 0.233;

weighted rank reaches 0.778 ± 0.202 while mean rank has 0.774 ± 0.204. Also, we ob-

serve that when the base methods are all not performing well, for example, on Popularity

dataset, while RADA gets an AUC of 0.628 and it is not the best among all the base al-

gorithms, however, using our ensemble method min rank achieves an AUC at 0.843 which

indicates that using an ensemble can achieve more robust results than a single algorithm.
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(a) Abalone (b) Activity

(c) EEG (d) Glass

(e) Ionosphere (f) Lympho
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(g) NBA (h) Pec

(i) Popularity (j) Sat

(k) Wine (l) Wisconsin

Fig. 2.7: AUC Performance comparison over all methods for different datasets
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2.4.2 Performance for Bootstrapping Methods

Performance vs. Previous Work

We compare our proposed bootstrapping method with Zimek’s work [75], where they use

25 iterations and sample rate m = 0.1 to obtain the best performance. Therefore, for the

first set of experiments, we use these settings for Zimek’s method and use δ = 0.0001 for

our bootstrapping method. Results shown in Table 2.2 shows that for all the datasets, the

averaged AUC is about the same for both methods, but our method is much faster than

Zimek’s since we do not examine each object with respect to the sample in each iteration.

Performance using different Combination Methods

We evaluate the performance of different combination methods compared to the bootstrap-

ping algorithm. For these experiments, k = 5 is used and we vary the sampling rate m

to be 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. For each dataset, we calculated the averaged

AUC score and show the results in Table 2.3. Results show that max score combination

gives us the best performance, while min rank gives us the second best performance. In

comparison, our previous results in Table 2.1 showed that using min rank results in the best

ensemble method. Recall that the reason we use ranking based method is to avoid the score

normalization problem; in bootstrapping algorithm, the base method is of the same scale

(we use LOF for all the experiments), therefore, both max score and min rank give good

results.

Performance vs. Sampling Rate

To examine the relationship between performance and different sampling rate, we de-

sign the following experiments. We fix the combination method to be max score, since

it generates the best performance in our previous section. Then, for each sampling rate

m = 0.1, 0.3, 0.5, 0.7, and 0.9, we repeat our algorithms 20 times and compare the aver-
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aged AUC score in Table 2.4. As in Zimek’s work [75], we also find that using a small

sampling rate tends to generate better performance.

2.5 Conclusion

In this chapter, we have evaluated multiple independent ensemble methods for unsuper-

vised anomaly detection. We have used three different types of anomaly detection algo-

rithms including density-based, rank-based, and statistical-based algorithms as the base

learners. Instead of the commonly used score averaging method for final results com-

bination, we proposed and evaluated multiple combination approaches based on scores,

rank aggregation, and majority rule voting. We also proposed weight assignment for dif-

ferent methods based how much they agree with the majority voting rule. Our empirical

study shows that using minimum ranking combination generates the best ensemble perfor-

mance. Recently, sampling based methods were proposed for anomaly detection, which

was justified in the previous work both theoretically and empirically to be very effective

for anomaly detection. We proposed a bootstrapping method which adopted the idea of

random subsampling and achieves comparable results while reducing the runtime signifi-

cantly. We then proposed to combine the results from our previous combination techniques

and bootstrapping algorithms; our evaluation shows that using maximum score or minimum

rank generates the best performance among all the combination methods.
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Table 2.2: Comparison between work in [75] and Bootstrapping: m = 0.1, k = 5, δ =
0.001

Base Algorithm Zimek bootstrap
dataset AUC avg AUC std AUC time (sec) avg AUC std AUC time (sec)
activity 0.528 0.989 0.003 52901 0.990 0.001 184
abalone 0.980 0.983 0.002 1151 0.981 0.003 15
eeg 0.710 0.990 0.002 3768 0.990 0.002 31
glass 0.457 0.781 0.012 181 0.785 0.019 5
iono 0.895 0.965 0.010 250 0.960 0.010 7
lympho 0.978 0.975 0.009 93 0.965 0.010 4
nba 0.690 0.851 0.033 1722 0.840 0.019 20
pec 0.664 0.887 0.024 7406 0.893 0.009 49
popularity 0.820 0.707 0.042 7566 0.689 0.029 51
sat 0.398 0.434 0.053 1079 0.428 0.039 14
wine 0.734 0.999 0.001 73 0.997 0.002 4
wisconsin 0.744 0.974 0.004 197 0.973 0.004 6
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Table 2.4: AUC score over all datasets for different sampling rate m

Sampling rate m avg AUC std AUC
0.9 0.759 0.175
0.7 0.796 0.190
0.5 0.811 0.199
0.3 0.862 0.179
0.1 0.863 0.146
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CHAPTER 3

SEQUENTIAL ENSEMBLE METHODS

FOR ANOMALY DETECTION

In Chapter 2, we discussed the usage of independent ensemble methods for unsupervised

anomaly detection. One of the assumptions one needs for using independent ensemble

methods is that the base components in ensembles are independent of each other, which,

however, might be difficult to attain in reality. Introducing randomness into ensembles, as

in the subsampling approach, decreases the dependence between learners; however, due to

the reason that they are perturbations of the same general idea, there exists inherent depen-

dence between the base learners. Hence, other approaches, which take such dependence

into consideration, needed to be explored. Sequential learning, on the other hand, exploits

the dependence between base components. In this chapter, we focus on exploiting the di-

versity between the learners and how to improve one algorithm’s performance by applying

another algorithm to its outputs. The general idea of sequential learning is like a pipeline:

the following algorithms’ inputs are generated from the former algorithms’ outputs. It can

be traced back to 1977 Tukey’s Twicing’s ensemble of two linear regression models [68],

where he used the first regression model to fit the original data and the second for the resid-

uals. The concept of sequential learning in classification was first brought up by Freund and
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Schapire in their famous AdaBoost [29] paper. We discuss boosting learning in Chapter 4.

Sequential ensembles are not yet well-explored in the literature of outlier detection [9,

10]. One of the previous works [12] is considered a sequential ensemble method applied

in the area of intrusion detection. In their work, they first apply association rule mining

on the original internet traffic data to find the frequent itemsets and assume them to be

normal (attack-free) data; then, they use these connections as the clustering seed points in

the next clustering step to find more robust clusters of normal points for outlier detection.

Another method was proposed in [48] which recursively explores the statistically relevant

feature subspaces, and combines the results at the end. These methods are instances of

sequential data-centered ensemble methods in the outlier detection context, but there is no

previous work done in the area of sequential model-centered context as reported in [9].

In this chapter, we propose several algorithms that adopt the idea of sequential ensemble

methods involving both data-centered and model-centered techniques. The base models

(algorithms) we use are the recently proposed two families of outlier detection algorithms:

density-based and rank-based outlier detection, as reviewed in Section1.2; in order to select

diverse algorithms used in sequential ensemble, we examine the similarities between each

pair among them, and propose that using diverse learners generate better ensemble results.

To introduce ensemble diversity at the data-level, we adopt the subsampling approach pro-

posed in Zimek et al. [75] such that drawing multiple subsamples from the dataset and

combining the output as the final outlier detection is more efficient than detection on the

whole dataset.

We categorize our proposed sequential ensemble methods into two classes: single-layer

sequential and multi-layer sequential, in which each layer generates a decision for anomaly

detection. For single-layer methods, we start off with the original dataset, then apply multi-

ple algorithms where the subsequent algorithm’s inputs are generated from the most recent

algorithm’s outputs. For multi-layer methods, an intermediate result is generated from a

previous ensemble model, then another algorithm uses these results as inputs for the final
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stage of anomaly detection.

3.1 Single-layer Sequential ensemble algorithms

A generalized framework for sequential applications using multiple base algorithms is il-

lustrated in Figure 3.1. T base algorithms can be applied, and at each step, algorithm

ALGi is applied and an intermediate result Resi is generated. A transformation function

g can be applied to Resi to generate the input Di for the next algorithm ALGi+1. Though

multiple base algorithms can be used in sequential ensembles, we mainly explore a two-

step sequential learning where the second algorithm tends to ‘correct’ the first algorithm’s

errors.

Fig. 3.1: Framework for sequential ensemble method

In this section, we describe our proposed two-phase sequential ensemble algorithm for

unsupervised anomaly detection.

3.1.1 Sequential Application of Two algorithms - A Sieve Method

The first approach of sequential applications is that we use the output of one algorithm

on the original dataset D, extract a subset of D, and use another algorithm on the ex-

tracted dataset. Our argument is that similar algorithms are likely to make similar errors;

by sequentially applying two substantially different algorithms, the second algorithm may

‘correct’ the previous one’s errors and thus provide better results. As in the previous chap-

ters, for each object in the dataset the ranks are calculated using the anomaly scores. In the

sequential method, we run the first algorithm on the whole dataset, and obtain the ranks of

all observations. Next we consider the dataset Dβ obtained by retaining most anomalous
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fraction (β) of D i.e., those that suspected to contain most or all anomalies. The second

detection algorithm calculates the anomaly scores of all objects in D with reference to Dβ .

In the following discussion, this algorithm is referred to as Sequential-1, and is described

in Algorithm 4.

Algorithm 4 Sequential-1 Algorithm
Data: Dataset D

Result: a vector of scores H associated with each of the objects in D

Score vector HA is obtained by applying algorithm A on D;

Rank vector RA = {rA(x) | ∀x ∈ D}; objects are sorted in decreasing order of HA.

Dβ = {x | rA(x) < β · |D|} ; i.e. retrieve the top ranked data.

for all x ∈ D do
H(x) = calculate the anomaly score of x by applying algorithm B on dataset {x}∪Dβ;

end

return H

3.1.2 Sub-sampling and Sequential Method

As described in Chapter 2, Zimek et al. [75] have argued that anomaly detection perfor-

mance on a subsample of the dataset could be better than detection performance on the

whole dataset. They select a random sample from the dataset D and evaluate the anomaly

score of each object in D with reference to the data in the sample; they repeat the above

experiment multiple times and report that the average score gives much better performance.

In our second sequential approach, we take a random subsample of percentage γ from Dβ

and evaluate the anomaly score of each x ∈ D using another algorithm with respect to the

subsample. As in Zimek et al. [75], we repeat this T times and evaluate the average score,

used in the final anomaly ranking. This algorithm is referred as Sequential-2, is described

in Algorithm 5.
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Algorithm 5 Sequential-2 Algorithm
Data: Dataset D

Result: a vector of scores H associated with each of the objects in D

Score vector HA is obtained by applying algorithm A on D;

Rank vector RA = {rA(x) | ∀x ∈ D}; objects are sorted in decreasing order of HA.

Dβ = {x | rA(x) < β · |D|} ; i.e. retrieve the top ranked data.

for all x ∈ D do

for i = {1, ..., T} do
Dγ = randomly pick γ · |Dβ| objects from Dβ;

Hi(x) = apply algorithm B on dataset {x} ∪Dγ; i.e. obtain the score of x from the

ith iteration;

end

end

for ∀x ∈ D do
H(x) = 1

T
ΣT
i=1Hi(x);

end

return H

3.2 Multi-layer Sequential Ensembles

In the previous sections, we start off our detection process with input of the entire dataset

D, then, refine the results in later steps sequentially. There is another possibility for se-

quential application, i.e., the so-called multi-layer sequential methods. An illustration of

the framework is shown in Figure 3.2, where we have a two-layer structure. At the first

layer, it is equivalent to our previous independent ensemble methods such that T indepen-

dent base algorithms are applied on thie same dataset D, a consensus function f can be

applied to generate the first-layer decision. The first-layer application generates diverse en-

sembles on model level since it combines the results from multiple base algorithms. Then,
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a data transformation function g is applied based on the results generated from f , in our

experiments, we use the subsampling function as g to generate ensemble diversity on the

data layer. A new data sample D′ is generated from g · f , for the second layer algorithm

ALG2 to apply on. Final result Resfinal is used for final decision.

Fig. 3.2: Multi-layer sequential model

3.3 Evaluation of Sequential Ensemble Algorithms

In both of our algorithms, we select the top ranked β · |D| observations as those suspected

to contain anomalies. As a result, β is an essential parameter in our algorithms, before we

discuss our evaluation results, we first consider how to select a reasonable value for β.

3.3.1 Detection accuracy with the top ranked β observations

Unlike classification or clustering, there is no clear decision boundary for most anomaly

detection algorithms, instead they often output a score that indicates the degree of out-

lierness. The first question we are interested in is how to determine whether a detector is

accurate in successfully detecting most/all anomalies.
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The ith anomaly detection algorithm ALGi outputs a real valued score for each object

x, denoted as αi(x), and the rank of that object is defined as:

ri(x) = |D| − |{y|αi(y) < αi(x)}|.

In theory, the true anomaly should have the least rank, for example, if there are 5% anoma-

lies, they should be ranked as the topmost 5% by a perfect detection algorithm. Although

unsupervised detection algorithms often suffer from high false positives/negatives (due to

the lack of training labels, or because other assumptions fail to hold), we should expect that

a reasonable detector must identify the true anomalies within the top ranks. For instance, if

there are 5% anomalies in the dataset, a detector might not be perfect, but it should be able

to rank the easy-to-detect anomalies in the top 2%, and the rest of the 3% in the topped

10%, in order for it to be considered to be an accurate detector. Denoting the relevant

fraction as β, we expect the following for an accurate algorithm ALGi:

Pr(ri(x) > |D| · β|x ∈ O) < f(β),

where O is the set of anomalies, |D| is the number of observations in dataset D, f is a

function of β. In theory, the number of anomalies should be decreasing as β increasing

since most anomalies should be ranked in the topped percentage. In the following, we

analyse the relationship between β and detection rate on both synthetic and real-world

datasets when ground truth is available.

3.3.2 Relationship between Detection Rate and β on Synthetic

Datasets

To study the relationship between detection accuracy and β, we first construct a synthetic

dataset. Where the normal observations are drawn from a 2D Gaussian distribution with
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µ = 0, and σ = 1, then we randomly generate 1% of the dataset to be anomalies that lie on

the circle whose radius R of the circle is proportional to σ. Each anomaly point i(xa, ya) is

generated by:

 xa = R× cos(2πφ) + µ

ya = R× sin(2πφ) + µ
(3.1)

where φ ∼ U(0, 1), µ = 0.

The idea of generating such datasets is to evaluate the relationship between β and num-

ber of anomalies for easy-to-detect or hard-to-detect anomalies. If the anomalies lie farther

away from the gaussian cluster, they are easier to detect. For example, the synthetic dataset

shown in Figure 3.3 has 1% outliers on a circle with radius of R = 4σ and those outliers

are considered to be easy-to-detect. We created two synthetic datasets with R = 3σ and

R = 4σ, the intuition is that the latter should be easier to detect than the former, which

should be reflected in the relative ranks in the two cases. From the Figure 3.4(b), we ob-

serve that all the anomalies are detected within top 5% when R = 4σ for all algorithms,

which indicates that the base algorithms are very accurate in detecting the easy-to-detect

anomalies. However, as R decreases to 3σ, the detection difficulty increases the anomalies

are detected within 30% for INFLO and COF, captured within 20% for LOF and RBDA,

but RADA does much better since all the anomalies are captured within the top 5%.

3.3.3 Relationship between detection rate and β on real-world datasets

We now evaluate how the different base detectors work on real-world datasets. We observe

from Figure 3.5 that most of the anomalies are detected within the top 20%. However, in a

dataset D, number of anomalies are often few. Thus if we apply the commonly used top N

method, and use a threshold to 20% for identifying anomalies, we still suffer a high false

positive.

Above discussions show that the real outliers and some false positives are mixed within
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Fig. 3.3: Synthetic dataset: outliers are generated on circle with R = 4σ

the top-ranked data points, requiring another algorithm to discriminate among these. Our

sequential algorithms proposed in Algorithm 4 and Algorithm 5 intend to solve this prob-

lem. In the following, we evaluate both of our algorithms on multiple benchmark datasets.

3.3.4 Evaluation of Sequential-1 Method

In our empirical study, we observe that COF or LOF followed by RADA generates the best

results among all the combinations for sequential algorithms. The reason is that RADA is

from a different family of algorithms from LOF and COF, also, in general RADA generates

the best solutions among all the individual algorithms in general as shown in the Chapter 2

in Table 2.1. This shows that using a more accurate and diverse algorithm as the second
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(a) R = 3.0σ

(b) R = 4.0σ

Fig. 3.4: Relationship between detection rate and β on synthetic data

algorithm to ‘correct’ first algorithm’s errors has the potential of detecting more anomalies

than application of individual algorithm.

Our empirical study shows that when β ranges from 0.1 to 0.3, the pairs (LOF, RADA)

and (COF, RADA) perform best. In most datasets, the Sequential-1 algorithm results in

better detection performance than each of the individual algorithms. Note that on abalone

dataset, the base algorithms are already very accurate, therefore, by applying sequential

method, it is difficult to get higher accuracy.
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(a) abalone dataset

(b) ionosphere dataset

(c) wisconsin dataset

Fig. 3.5: Relationship between detection rate and β on real-world data
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Table 3.1: Summary of Sequential-1 algorithm for different β values when k=5

k=5 Base Algorithms β = 0.1 β = 0.2 β = 0.3
Dataset LOF COF RADA L-R C-R L-R C-R L-R C-R
Abalone 0.980 0.962 0.991 0.948 0.964 0.973 0.977 0.975 0.976
Activity 0.528 0.534 0.413 0.962 0.998 0.764 0.702 0.754 0.727
Eeg 0.710 0.467 0.846 0.987 0.930 0.987 0.965 0.971 0.857
Glass 0.457 0.492 0.691 0.826 0.817 0.853 0.855 0.911 0.920
Iono 0.895 0.869 0.949 0.692 0.767 0.923 0.949 0.972 0.969
Lympho 0.978 0.718 0.966 0.191 0.928 0.539 0.945 0.685 0.851
Nba 0.690 0.573 0.896 0.941 0.884 0.826 0.896 0.788 0.912
Sat 0.398 0.399 0.369 0.851 0.354 0.305 0.322 0.487 0.336
Pec 0.664 0.678 0.971 0.995 0.995 0.996 0.996 0.995 0.994
Popularity 0.820 0.447 0.664 0.558 0.545 0.355 0.614 0.399 0.633
Wisconsin 0.744 0.418 0.900 0.961 0.978 0.975 0.975 0.965 0.977
Wine 0.734 0.382 0.955 0.999 0.993 0.790 0.995 0.731 0.977

3.3.5 Sub-sampling Approach (Sequential-2 Method)

To evaluate if p ∈ D is an anomaly Zimek et al. [75] have proposed to repeatedly (typically

25 times) draw a sample of size 100 ×θ% from the original dataset D. We select a sample

of size 100 ×θ% from Dα and, as in their approach, compute the anomaly score for each

object with respect to the sub-sampled data. Zimek et al. have argued that the performance

will be good when random sampling is performed 25 times or more. Our experiment indi-

cates that it is sufficient to use as few as 5 subsamples from Dα. We use k = 2 and LOF to

provide initial rankings and evaluate the performance for multiple values of α = 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 to measure the effect of this parameter1. For comparison, we

run each experiment 100 times; Figure 3.6 represents the corresponding box-plots for AUC

scores.

Comparison of Sequential-1 and Sequential-2

Now we compare the performance in AUC score for Sequential-1 algorithm and Sequential-

2 algorithm. We choose γ = 0.1 because in our previous evaluations for bootstrapping that

1When α=1.0, our approach is equivalent to Zimek’s random selection from the whole dataset.
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(a) AUC of Wisconsin

(b) AUC of KDD

(c) AUC of PEC

Fig. 3.6: Performance of subsampling approach when samples are drawn from Dβ for
different values of β, for three datasets.

drawing multiple samples with sampling rate 0.1 is the best. We draw 10 subsamples from

the top β = 0.3, and repeat Sequential-2 algorithm 30 times for each data set. The results
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Table 3.2: AUC Comparison for Seq2 an Seq1 when β = 0.3, γ = 0.1; the algorithms
(COF, RADA) is used

Data Set Sequential - 2 Sequential - 1

Abalone 0.947 ± 0.022 0.976

Act 0.995 ± 0.002 0.727

Eeg 0.974 ± 0.010 0.857

Glass 0.724 ± 0.035 0.920

Lympho 0.892 ± 0.063 0.851

Iono 0.830 ± 0.028 0.969

Nba 0.934 ± 0.017 0.912

Sat 0.645 ± 0.089 0.336

Pec 0.986 ± 0.002 0.994

Pop 0.814 ± 0.049 0.633

Wine 0.987 ± 0.011 0.977

Wisconsin 0.978 ± 0.004 0.977

are summarized in Table 3.2. The bold numbers show that if the performance of Sequential-

2 algorithm is at least µ+ σ improvement from Sequential-1 algorithm. We notice that for

almost half of the data sets that the performance of Sequential-1 algorithm is similar (or

better) to Sequential-2 algorithm. However, on Sat data set where Sequential-1 cannot

improve the base method much but using multiple samples, i.e., Sequential-2 approach,

increases the AUC from the best base performance 0.399 (shown in Table 3.1) to 0.645.

We consider the anomaly detection problem on such data sets as the difficult problems,

and using multiple subsampling can help improve the sequential ensemble more. Though

using Sequential - 2 algorithm is more time consuming (multiple subsamples), the execu-

tion on each subsample anomaly detection can be easily adopt to a parallel computation

environment.
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3.3.6 Evaluation for Multi-layer Sequential Method

In this section, we evaluate the performance of a multi-layer sequential algorithm; see

Figure 3.2. We consider two algorithms at first layer, in particular, LOF and COF, followed

by RADA. The outputs of LOF and COF on the entire datasetD, are ensembled as follows:

• Denote the top β × 100% of the two algorithms’ outputs, based on the scores, as S1

and S2.

• Next, we take the union (S1 ∪ S2) and remove the duplicates.

• The resulted set is used for anomaly detection by algorithm RADA; we do not use

sub-sampling.

The AUC of each dataset is summarized for both methods in Table 3.3.

Table 3.3: Multi-layer sequential compared with sequential-1 method, β = 0.3 and k = 5

DataSet Multi-seq Seq - 1 (L - R) Seq - 1 (C - R)
Abalone 0.983 0.975 0.976
Act 0.727 0.754 0.727
Eeg 0.922 0.971 0.857
Glass 0.902 0.911 0.920
Iono 0.972 0.972 0.969
Lympho 0.826 0.685 0.851
Nba 0.832 0.788 0.912
Pec 0.998 0.995 0.994
Pop 0.496 0.399 0.633
Sat 0.445 0.487 0.336
Wine 0.847 0.731 0.977
Wisconsin 0.960 0.965 0.977
AVG 0.826 0.803 0.844
STD 0.184 0.201 0.195

We notice that for 6 out of 12 dataset Seq-1 (C-R) performs the best, for 4 out of 12

datasets Seq-1(L-R) performs the best and in three out of 12 Multi-layer has the best per-

formance (for dataset Iono Multi-seq and Seq-1 (L-R) have the same AUC value. In brief,

it appears that multi-sequential approach has limited advantage over the Seq-1 approach.
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Table 3.4: Average correlation between pair of algorithms over all datasets

LOF INFLO COF RBDA RADA
LOF 1.000 0.910 0.622 0.666 0.559
INFLO 0.910 1.000 0.566 0.636 0.536
COF 0.622 0.566 1.000 0.482 0.390
RBDA 0.666 0.636 0.482 1.000 0.874
RADA 0.559 0.536 0.390 0.874 1.000

3.3.7 Selection of Pair of Algorithms for Sequential Application

It has been argued that diversity of algorithms is very important [9, 74] when combining

different anomaly detection algorithms. Since correlation coefficient provides a measure of

similarity, we employ it towards this goal. We calculate the Pearson correlation coefficient

between each pair of algorithms using the associated score vectors. Table 3.4 summarizes

the average correlation between every pair of algorithms over nine different datasets. Al-

though all correlation coefficients are large, the smallest average value corresponds to COF

and RADA. In other words, we expect that, in general, COF followed by RADA (or in

reverse order) should give good performance. Largest average correlations are observed

between three algorithms of rank-family, i.e., between RBDA, RADA, and ODMR; imply-

ing that selecting two algorithms among these will not perform as well as if one is chosen

out of these three and the other from the distance based algorithm.

We note that the pair (COF, RADA) has the least average correlation and therefore

compare the performance of sequential application of these two algorithms with sequen-

tial application of the pair (RBDA, RADA). Table 3.5 summarizes the results, bold items

represent superior performance.

We observe that, using AUC metric, pair (COF, RADA) performs better than the pair

(RBDA, RADA) for five out of nine datasets, worse for two, and equal for two.
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Table 3.5: Performance (AUC score) over different pair of algorithms

DataSet (COF, RADA) (RBDA, RADA)
PEC 0.996 0.988
Wisconsin 0.993 0.989
KDD 0.991 0.991
Iris(1) 1.000 0.816
Iris(2) 1.000 1.000
Iono(1) 0.973 0.805
Iono(2) 0.989 0.979
Eeg 0.983 0.987
Segment 0.980 0.985

3.4 Conclusion

In this chapter, we proposed new sequential ensemble algorithms where the second algo-

rithm builds upon the findings of the first algorithm. We consider single-layer sequential

methods based on the sieve method which takes the output from one base algorithm to filter

out the non-anomalous observations, then compare the suspect anomalies with a second al-

gorithm. Our empirical study suggests that either LOF or COF followed by RADA achieve

very good performance in most cases. It has been argued that an anomaly detection algo-

rithm performs better on a subsample of the dataset. We incorporate the sampling concept

in this proposed sequential methods. In our multi-layer sequential method, we propose to

use both LOF and COF at the first layer, then combine the outputs from both algorithms as

the inputs for next layer algorithm, namely RADA, results in similar performance but lower

variance. To select two (or more) algorithms to apply in sequential methods, we propose to

use the algorithms which have higher diversity among themselves as the base algorithms.
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CHAPTER 4

ADAPTIVE SAMPLING AND LEARNING

FOR ANOMALY DETECTION

The popular ensemble methods for generating more accurate classifiers are bagging and

boosting. In Chapter 2, we have evaluated different bagging approaches for anomaly de-

tection. In this chapter, we discuss the application of boosting ensemble techniques for

unsupervised anomaly detection.

4.1 Boosting Approaches

A well-known ensemble boosting approach is the ‘AdaBoost’ supervised classification al-

gorithm [29], which trains T rounds of weak learners over the training set, in each round

focusing on the ‘hard’ examples from the previous round, then combines their outputs by

weighted majority voting. AdaBoost calls a ‘booster’ in each round to draw a subsample

Dt from D with a set of sampling probabilities, initially uniform. A weak learner or base

method ht is trained over Dt, then the probabilities for inclusion in the next sample are

increased for incorrectly classified examples. After T rounds, each weak learner ht is as-

signed with a weight αt which is lower if error is higher. The final decision output is made
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by applying weighted majority voting over all ht for t = 1, 2, ..., T . The training error

will be substantially reduced if all the weak learners perform better than random guessing.

AdaBoost has gained considerable popularity for its elegance and performance.

Algorithm 6 AdaBoost Algorithm
Input: Labeled training dataset D = {(x1, y1), ..., (xN , yN )}, and detection algorithm A.

Initialize the weight vector: w0
xi = 1/|D| for each point xi;

for t = 1, 2, ..., T do
1. Set:

pt = wt/
∑

iw
t
xi

2. DrawN observations fromD using pt, remove the duplicates, denote this set of observations

as Dt

3. Execute algorithm A on Dt, compute ht(xi) ∈ [0, 1] for each object xi

4. Calculate the error at ht,

εt = ΣN
i=1p

t
i · |ht(xi)− yi|

5. Calculate weight of ht to be

βt =
ε

1− ε

5. Set the new weights vector to be:

wt+1
xi = wti · β

1−|ht(xi)−yi|
t

end

Output: Make the final decision

H(xi) =

 1, if ΣT
t=1(log βt)

−1ht(xi) ≥ 1
2ΣT

t=1(log βt)
−1

0, otherwise

For clustering problems, an Adaptive Clustering algorithm was proposed in [67], with

an adaptive sampling ensemble method for better partition generation. They use a consis-
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tency index to determine the sampling probability and adaptively focus more on points in

regions with inconsistent cluster labels. A consensus function is used for the final decision

output, using an agglomerative algorithm applied on the co-association similarity matrix.

Empirical study has shown improved performance compared to the classical k-means clus-

tering algorithm.

The application of ensemble methods for unsupervised outlier detection is an emerging

research topic, addressed in only a few works so far, such as [6, 9, 39, 44, 74]; of these the

work in [6] is the only attempt to apply AdaBoost to solve the outlier detection problem.

Their proposed method converts the outlier detection problem to an AdaBoost-solvable

classification problem by drawing some number of points from an underlying distribution,

and marking them as outliers, whereas all the points in the original data set are considered

to be inliers. Their resampling method is based on minimum margin active learning by

iteratively assigning lower sample rejection probabilities to points with low margin values,

because they have less consistency. The weights for each classifier are adjusted by the

classification error rate in each subsample.

By contrast to the above approaches, we propose a novel adaptive learning algorithm

for unsupervised outlier detection which uses the score output of the base algorithm to

determine the ‘hard’ examples, and iteratively resamples more points from such examples

in a completely unsupervised context. The method is evaluated on multiple well-known

datasets, and our simulations show better results than the base algorithm as well as other

existing outlier detection approaches.

The next section describes the adaptive sampling approach. This is followed by dis-

cussing the combination method and the proposed algorithm. Experimental simulations

and results on benchmark problems are then presented.
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4.2 Adaptive Sampling

The main idea of adaptive sampling is to give greater emphasis to the examples that are hard

to identify. To extract such examples from the data set, we need to answer two questions:

1. How can we determine whether an object cannot be easily classified as an inlier or

an outlier?

2. How can we combine the outputs from different iterations?

In this section, we focus on the first question. We first review how classification and clus-

tering ensemble methods can be used to determine the hard-to-identify objects and adjust

their sampling weights. We then discuss our proposed adaptive sampling method for outlier

detection.

The popular ensemble classification method AdaBoost is adaptive with respect to the

training errors of various weak hypotheses, and successively (in each iteration) increases

sampling probability for points with a high error rate.

In the adaptive clustering ensemble approach, clustering consistency is used to estimate

the difficulty of assigning a clustering label to an object. Objects near cluster boundaries

are assigned higher sampling probabilities, and the boundaries are successively refined in

later iterations.

In AdaBoost, the classification decision boundaries are refined gradually by resampling

the objects that are more likely to be near the decision boundaries. Adaptive clustering is

also focused on refining cluster boundaries. The outlier detection problem is more difficult:

unlike classification and clustering, there is no clear boundary in outlier detection. Instead,

most outlier detection algorithms output a score for each object indicating the probability

of that object being an outlier; we now discuss our proposed method to use outlier scores

to determine the ‘decision boundary’ in outlier detection adaptive learning.
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4.2.1 Justification with local density-based kNN algorithms

Local density based methods consider the outlier score of a point o to be proportional to the

density of its k nearest neighbors over the local density of o. The outlier score Score(o) of

an object o can be rewritten as follows:

Score(o) ∝ DENk(Nk(o))

denk(o)
,

where Nk(o) is the set of k nearest neighbors of o, denk(o) is the local density of o, and

DENk(Nk(o)) is the averaged local density of o’s k nearest neighbors. For an inlier i,

Score(i) ≈ 1; for an outlier o, Score(o)� 1.

Many algorithms have been proposed to solve the outlier detection problem in an unsu-

pervised context, but all have high false positive rates. An algorithm misidentifies an inlier

p to be an outlier when p’s neighborhood is dense; then Score(p) is high due to other inliers

in this neighborhood.

Likewise, if an outlier q is in a sparse neighborhood, other outliers in this neighborhood

force the score of q to be small; and therefore q is declared to be an inlier.

Our sampling approach aims to sample more from the ‘boundary’ area, in order to

resolve such problems.

In our approach, we remove the obvious inliers and obvious outliers from the dataset.

The benefits from such sampling are: (1) removal of the outliers from Nk(q) will increase

denk(Nk(q)); (2) removal of the inliers from Nk(p) will decrease denk(Nk(p)). Hence,

after such subsampling, the ‘boundary’ points can be separated better, while the obvious

outliers remain identifiable.
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(a) Data Space

(b) Score histogram in log-scale

Fig. 4.1: 2D example with 3 outliers
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4.2.2 Decision Boundary Points

Many outlier detection algorithms assign a score for each object, roughly indicating the

relative probability of the object being an outlier (or inlier). Objects with higher scores are

considered more likely to be outliers.

Most existing outlier detection algorithms perform well on capturing the obvious out-

liers, but may fail to capture the hard-to-detect outliers. We use the state-of-the-art local

density based anomaly detection algorithm LOF [18] in the following as our base detection

algorithm.

A simple example is illustrated in Figure 4.1a, where non-anomalous (inlier) data points

occur within a two-dimensional Gaussian cluster, outside which three outliers have been

inserted: points p, q, and r. We apply the LOF anomaly detection algorithm with k = 3,

obtain outlier scores for each object, and normalize the scores to be in [0,1]. The histogram

for normalized scores in log-scale is shown in Figure 4.1b.

We observe that the object on the left top corner (p) is the most obvious outlier among

all of the three outliers, and was assigned the highest outlier score as shown Figure 4.1b;

this illustrates that the detection algorithm performs very well when detecting the easy-to-

detect outliers.

Next, we address how to use the score space to distinguish potential outliers and inliers.

We use the obvious and often used method: choose a threshold θ such that all objects with

an outlier score greater than θ will be identified as outliers and all other objects are marked

as inliers; θ determines the decision boundary. In the example of Figure 4.1b, if we choose

θ = 0.3, then two real outliers p,q are identified, but five false positives are introduced, and

we have one false negative r (undetected outlier). Points near the threshold boundary are

hard to identify, i.e., whether they are true outliers.

Our approach is to re-evaluate such points that are near a decision boundary. In the

following, we describe our method of how to adjust the sampling weights.
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4.2.3 Sampling Weights Adjustment

As stated above, we consider normalized scores for each object x such that Score(x) ∈

[0, 1]; Score(x) ≈ 0 identifies a clear inlier, Score(x) ≈ 1 identifies a definite outlier, and

Score(x) ≈ θ, implies that x is more likely to be a boundary point, where θ ∈ [0, 1] is an

appropriately chosen threshold.

Most false positives and false negatives are expected to occur at boundary points, with

existing algorithms. In our approach, a new weight is assigned to each object o, roughly

measuring the expectation that it is a boundary point, as follows:

WB(x) =


Score(x)

θ
, if Score(x) < θ,

1−Score(x)
1−θ , if Score(x) ≥ θ.

(4.1)

This weight assignment increases sampling probability for boundary points and de-

creases the sampling probability for points that are easy to detect (clear inliers and outliers).

Instead of iteratively refining the boundaries as in classification or clustering problems,

we iteratively re-evaluate the points near the boundaries in outlier detection, in order to

reduce the number of false positives.

4.3 Final Outputs Combination with Different Weight-

ing Schemes

It is very important in ensemble methods to determine how to combine different outputs

from all the weak learners (individual modules). A commonly used method is weighted

majority voting in which the weight of a learner is assigned by measuring the quality of its

results. At iteration t, where t = {1, 2, ..., T}, for object x, if a learner’s output is ht(x),
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the final output is denoted by:

H(x) =
T∑
t=1

βtht(x)

where βt indicates how important the learner ht is in the final combination. In classification,

one can use the trained error as an indication of how well a learner performed. The absence

of labeled training data makes it difficult to measure the goodness of a clustering or outlier

detection algorithm in an ensemble approach. If the outputs from all the iterations are

independent, we can use the correlation between them as an indication of how well one

individual learner performs. However, in the adaptive learning process, the input of each

learner is dependent on the previous one, and this makes the process of selection of weights

(for each learner) even harder. We now propose heuristics for how to assign weights βt to

the different learners and evaluate them empirically.

The problem of measuring how well a learner performs in an iteration is essentially

the question of how many ‘real’ outliers were captured in that iteration. Obviously, the

objects with higher scores are more anomalous than the ones with lower scores. But a more

pertinent question is that of determining the size of the gap between scores of anomalous

vs. non- anomalous objects.

In Figure 4.2, we show the zoomed histograms of normalized scores for two datasets:

(1) with no outlier and (2) for the same dataset with 3 outliers inserted. We observe that

the outliers get larger scores, and also the gap in scores between the inliers and outliers

increases. In Figure 4.2a, the ‘gap’ is from 0.7 to 0.8 while in Figure 4.2b, the ‘gap’ is from

0.6 to 0.9. Using these concepts, we have evaluated three alternative weight assignments

for βt:

a) The simplest approach is to take the arithmetic average for all values of t. Thus, we

assign:

βt = 1/T ; for each t ∈ {1, 2, ..., T}
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(a) Dataset without Outliers

(b) Dataset with 3 Outliers

Fig. 4.2: Zoomed Score Histogram Example

b) Select a score threshold θs, and at each iteration t, calculate at= the number of objects

with score greater than θs. Using this, we assign:

βt = 1− at
|Dt|

where |Dt| is the size of the sample in the tth iteration .

c) At each iteration t, obtain the histogram of the score output, calculate the ‘gap’ bt
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between the right-most bin and the second right-most bin, and set:

βt =
bt + 1
T∑
t=1

bt + 1

.

4.4 Adaptive Sampling Algorithm

The algorithm begins by giving equal sampling weight to all points in the original dataset

D, such that for every point xi, w0
xi

=1/|D|. At each iteration, we draw N observations

following the sampling distribution pt. In the set of observations, duplicates are removed

and the scores are re-evaluated; the resulting set of observations is denoted as Dt. We

adjust the sampling weights for all the points inDt as mentioned above, and normalize their

sampling weights, dividing by the sum of all the sampling weights in Dt; for unsampled

data, the sampling weights remain unchanged. This process continues for t = 1, 2, ..., T .

The result of our sampling makes the sampling weights for possible boundary points

(hard-to-identify points) higher in the following iterations, so the ‘effective’ sample size

will decrease over iterations. To prevent the sample size from reducing too fast, we select

N = 2|D| in our experiments. Details of the algorithm (Algorithm 7) are shown below.
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Algorithm 7 Adaptive Sampling Algorithm
Input: Dataset D, detection algorithm A.

Initialize the weight vector: w0
xi = 1/|D| for each point xi;

for iteration t = 1,2,...,T:

1. Set:

pt = wt/
∑

iw
t
xi

2. Draw N observations from D using pt, remove the duplicates, denote this set of observations as

Dt

3. Run A on Dt, get a score vector Scoret, normalize the scores to [0,1]

4. ht(xi)= normalized score of xi

5. Set the new weights vector to be:

wt+1
xi = (1− α) ∗ wtxi + (α) ∗WB(xi);

where

WB(xi) =


Score(xi)

θ , if Score(xi) < θ,

1−Score(xi)
1−θ , if Score(xi) ≥ θ.

Output: Make the final decision

H(xi) =
T∑
t=1

βtht(xi)

4.5 Experiments and Results

This section describes the datasets used for simulation, simulation results, and discussions

of model parameters. In our results, the AUC defined in Section is used for evaluation.



79

(a) Wisconsin Dataset (b) Activity Dataset

(c) NBA Dataset (d) KDD Dataset

(e) PEC Dataset

Fig. 4.3: AUC Performance Comparison with Base Algorithm (LOF) over Different k
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4.5.1 Dataset Description

Five well-known datasets were used in our simulations, which are defined in Section 1.5.1.

4.5.2 Performance Comparisons

We evaluated our ensemble approach with base algorithm LOF for different k values (the

number of local neighbors). In Figure 4.3, we plot AUC for various k values, where the

x-axis shows the ratio of k to the size of the dataset. A solid line shows the AUC values

for base algorithm LOF, and a box plot shows the results of our ensemble approach using

βt = 1− at
|Dt| , using 25 iterations in this experiment. Results show that for all k values, our

approach outperforms the base algorithm for all the 5 datasets. The ensemble approach has

large variations when k is small, which decreases as k increases.

We also compared our proposed ensemble approach with the Active-Outlier approach

proposed in [6], Feature Bagging approach proposed in [44], and HiCS (high contrast sub-

space) outlier detection method proposed in [39]. In Active-Outlier approach, [6] propose

to use AdaBoost with decision tree classifier (CART) as the base classifier, and the synthetic

outliers are generated from a specific distribution (Uniform, Gaussian). In Feature Bagging,

we use the same number of ensemble members and use LOF as base method. In HiCS, we

use LOF as base method. Feature Bagging and HiCS approaches are implemented in ELKI

toolbox [7], results for three different k values are reported. In our ensemble approach, we

do not add any additional observations; we use LOF as the base outlier detection algorithm

with α = 0.2, τ = 0.95 and results are reported for three different values of k. For fair

comparison, we use the same number of iterations in all methods.

Table 4.1 presents the averaged AUC for performance over 20 repeats. Active-Outlier

approach is denoted as ActOut, Feature Bagging is denoted as FB, while our proposed

ensemble approach is denoted as Adaptive. As can be seen that the performance of our

proposed ensemble approach is better in almost all cases and increases as k increases.
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4.5.3 Effect of Model Parameters

Effect of Number of Iterations:

In Fig. 4.4, we plot the AUC value versus the number of iterations for a synthetic dataset

and a real dataset. As we can see, on the synthetic dataset, performance stabilized after 10

iterations and on the real dataset, performance stabilized after 20 iterations.

(a) Synthetic Dataset (b) Real Dataset

Fig. 4.4: AUC Performance vs. Number of Iterations

Effect of Combination Approach:

The simulations for comparing different possible combination approaches were set up as

follows:

1. For each dataset, for each k value, apply the algorithm with each of the three different

combination approaches.

2. Repeat the whole process 20 times, report the mean of AUC.

3. For each dataset, for each k value, rank the AUC performance of each combination

approach, so the best one will have a rank of 1, the worst one has a rank of 3.

4. For each dataset, calculate the sum of the above ranks for each combination approach,

so the best one has the lowest sum.
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In Table 4.2, we summarize the accumulated sums of AUC rankings over all different k

values for the three approaches and denoted as Suma,Sumb, and Sumc respectively. The

one with best detection performance will have the lowest Sum over the three different

combination approaches.

Table 4.2: Performance over Sum of AUC Rankings with Different Combination Ap-
proaches

DataSet Suma Sumb Sumc

WIS 42 33 73
NBA 55 52 43
ACT 41 27 73
PEC 59 45 33
KDD 33 41 57

We observe that combination approach a ranks once as the best, twice as the second,

and twice as the third; combination approach c ranks twice as the best, three times as the

third; while the combination approach b ranks twice as the best, three times as the second

and none as the third. So we can say that combination approach b, where βt = 1 − at
|Dt|

outperforms the other two combination approaches over the 5 datasets we considered.

4.6 Conclusion

In this chapter, we have proposed a novel adaptive sampling approach for unsupervised

outlier detection. We use the normalized score output to select a decision boundary where

the hard-to-detect anomalies are contained, design a sampling weight assignment function

which re-draw and re-evaluate the points in such boundaries iteratively. We then design

three combination approaches for combining the score output from each iteration, results

show that by assigning more weights on iterations output more skewed scores that best

performance are achieved. Simulation results on five well-known data sets show the relative

success obtained with the new approach, compared to the LOF base algorithm as well as

other recent approaches.
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CHAPTER 5

ENSEMBLE METHODS FOR ANOMALY

DETECTION ON STREAMING DATA

In the previous chapters, we discussed how to use ensembles of various algorithms for

detecting anomalies in static datasets. In this chapter, we focus on how to use random

forests based methods to improve the anomaly detection rate for streaming datasets.

The key concept in a current work [64] is to build a random forest where in each tree, at

any internal node, a feature is randomly selected and the associated data space is partitioned

in half. To improve the efficiency of a forest, we make the following contribution in this

chapter:

• We give mathematical justification of required tree height and number of trees by

casting the problem as a classical coupon collector problem in Section 5.2.2.

• We design a majority voting score combination strategy in Section 5.2.3.

• We apply feature clustering to group the correlated features together in order to find

the anomalies jointly determined by subsets of features in Section 5.2.4.

• To better partition the data space for anomaly detection, we adopt an Evolutionary

algorithm to maximize the chance of separating anomalies in Section 5.3.
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5.1 Anomaly Detection for Streaming Data

Consider a data stream arriving at time stamps t1, t2, ..., tn, ..., where each data Xt is a high-

dimensional data point containing d features and a label; i.e. Xt = (x1t , x
2
t , ..., x

d
t , label),

where label ∈ {normal, abnormal} but is unknown. The problem of finding anomalies

from streaming data is to separate the data points with label = abnormal from the ma-

jority data points with label = normal. We use F to denote the set of features, namely,

F = {fi|i = 1, ..., d}. By definition, abnormal points are fewer than the normal points.

As discussed in the previous chapters, in unsupervised anomaly detection, labels are un-

known, and the task is to find a set of rules to separate anomalous observations from normal

observations.

A recent survey for anomaly detection on temporal data can be found in [32]. In [8],

Aggarwal proposes a statistical profiling method for detecting the deviations for new data

observations from the expected values. This method builds a regression model for the

historical data, and compares the observed values with expected values for anomaly detec-

tion. An illustration can be found in Figure 5.1, in which ŷt+1 is the predicted values for

datastream at time t+ 1, and yt+1 is the observed value.

Previous work in Half-Space Trees [64] adopts an ensemble method which combines

Fig. 5.1: An illustration of detecting the deviations in a data stream [8]
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results from a set of T full binary trees. To build a full binary tree, a feature from F is

randomly selected at each node and the existing space is partitioned in two equal parts..

Note that each feature can be selected multiple times. An illustration can be found in

Fig. 5.2. In the figure, the data space is shown on the left, while a full binary tree is built

on the right. The tree has 7 nodes, each tree path forms a partition. For example, tree

leaf node IV is associated with a region in the dataspace withfeature value Y < 0.25, and

there are 2 such points; tree leaf node VI is associated with a region with X < 0.5 and

Y < 0.5, and there are 33 such points. The idea is that a point in a (leaf) node’s region with

more observations should be less anomalous than a point in the region of a leaf with fewer

observations.

Fig. 5.2: An illustration of dataspace partition by one HSTree [64]

The basic idea of this method is to partition the data space into random half-space and

the points belonging to sparse partitions are possible anomalies. Tan et al. [64] proposed

to use mass profile associated with each tree node to record the number of points falling

in that partition. A mass profile for each node contains two parts: node.latest is used for

recording the newly arrived information during the testing phase and node.reference is used

for for anomaly detection obtained from training data. Batch learning is used for streaming

anomaly detection, node.reference is used for recording the information for the last batch,

therefore, each newly arrived observation is compared with this information while this

observation is updated in the latest profile. This method has three phases: tree building,

training and testing, as described below:
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• Tree building:

in this phase, T full binary trees with height of h are built without any data;

• Training:

for each tree:

– the first φ data are taken to construct the reference mass profile for each node;

– set the latest mass profile to 0 for each node;

these steps are repeated for the T trees;

• Testing:

for each observation x, for the ith tree, i = 1, ..., T :

– x is fed into ith tree, along the path followed by x, update each node’s latest

mass profile, node.latest, by increasing it by 1; when it arrives at a leaf node,

calculate the anomaly score for x as:

scorei(x) = node.reference ∗ 2node.height. (5.1)

The final anomaly score for x is an average over the T trees:

Score(x) =
T∑
i=1

scorei(x).

For each set of φ data points, for each node, swap their node.reference and node.latest,

set node.latest = 0; when a new observation arrives, continue the testing procedure.

This method has shown its advantage in detecting anomalies compared to other state-of-

the-art detection algorithms, and is competitive with supervised learning methods. How-

ever, the authors confine the evaluations to low-dimensional data streams [64]; and this

method has the following deficiencies:
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• the tree height and the number of trees are selected without any mathematical justifi-

cation;

• final score combination is simple averaging although the detection power of each tree

is different;

• if the number of noisy features is large, more tree nodes are needed for detecting

anomalies; and

• in our view, some anomalies can only be jointly determined by a subset of features,

consequently, building random trees over entire feature space might be wasteful.

Also, a different systematic approach to build trees will be beneficial over random trees

generation.

Fig. 5.3: A framework for streaming anomaly detection

5.2 Analysis of Random Trees

In this section, we first analyse how random trees perform when number of features in-

creases. Then, we derive the expected number of trees and height of trees using the theories

from coupon collector problem. Next, we design two score combination methods for the

final decision making process which alleviate a problem of using score averaging. Finally,
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we propose to apply feature clustering to group the correlated features together, then build

random trees with respect to the features within each feature cluster, and our evaluations

on both synthetic and real-world datasets show improvement over building random trees

on the entire feature set.

5.2.1 Performance of Random Trees and Number of Features

We believe that the performance of random forest will decrease if the number of features

increase (if the number of trees and their heights remain fixed). We construct two synthetic

datasets to illustrate this problem. We choose two datasets which are used in [64]. Http

dataset contains 567,497 data points, 3 features and 0.4% of them are anomalies, Cover-

Type dataset contains 286,048 data points, 10 features and 0.9% of them are anomalies,

as described in Chapter 1.5.2. To illustrate performance deterioration, we continuously add

noisy features which are drawn from a uniform distribution to the two data sets. With noisy

features added to Http dataset and CoverType dataset, we denote them as syn-1 and syn-

2, respectively. In the following experiments, we use the AUC (defined in Section 4.5) to

measure the performance of anomaly detection algorithms.

We designed 3 sets of experiments:

• We fix the number of trees and tree height, vary the number of noisy features and

compute the AUC performance as the number of noisy features increases. The re-

sults, shown in Figure 5.4, indicate that when the number of noisy features increases,

the performance decreases.

• We fix the number of noisy features to be 40, fix the tree height, and vary the number

of trees, then compute the AUC. The results, shown in Figure 5.5, indicate that we

need more trees to detect anomalies in the presence of noisy features.

• We use the original dataset, and fix the number of trees used, vary the tree height and

compute AUC. The results, shown in Figure 5.6, indicate that performance increases
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when trees are ‘taller’.

From these results, we conclude that the number of trees and associated heights should

be determined carefully and consistent with the number of features. We give theoretical

justification of how to select these numbers in Section 5.2.2.

(a) Performance with syn-1

(b) Performance with syn-2

Fig. 5.4: Variation of AUC with the number of noisy features in the syn-1 and syn-2
datasets

5.2.2 Deriving the Number of Trees and Height of Trees using

Theory of Coupon Collector Problem

In the previous section, we observe that the performance of random trees will be decreasing

when the number of features increases. In this section, we intend to derive a relationship
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(a) Performance with syn-1

(b) Performance with syn-2

Fig. 5.5: Variation of AUC with the number of trees used in the syn-1 and syn-2 datasets

between the number of trees and height of trees required in term of number of features

present in a dataset by casting the random trees to coupon collector problem.

Number of Nodes Needed with Noisy Features

Not all features are informative, only a subset I of F are meaningful whereas F \ I are

spurious. Let m = |F | be the total number of features, and k = |I| be the number of

informative features, so m − k = |F | − |I| is the number of noisy features which are not

contributing to anomaly detection. In constructing a random forest, at each node, a feature

is randomly selected from m features. The probability that an informative feature will be
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(a) Performance with syn-1

(b) Performance with syn-2

Fig. 5.6: Variation of AUC with the height of the trees used in the syn-1 and syn-2 datasets

selected at each tree node is:

Pr(SelectInform) = k/m.

If h is the height of each tree, then the number of nodes in it is node(treesi) = 2h − 1

since treesi is a complete binary tree. Let F(treesi) be the number of informative features

covered by tree treesi, then

F(treesi) ∼ B(2h − 1, k/m).
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The expected number of informative features selected is (2h − 1) k
m

will be small if k
m

is

small. If we wish to construct an ensemble of trees such that each informative feature is

presented at least in one tree, then, we need more nodes to cover more informative features.

If the heights of trees are the same, then we will need more trees in our forest to cover as

many informative features.

We now discuss how to find the expected number of trees and height for the trees when

the number of features are fixed.

The coupon collector’s problem - Analysis of tree height

In the coupon collector’s problem [47], there are d types of coupons and they are drawn at

random at each trial. Let r be the number of trials for one to collect at least one copy of

each of the d types of coupons. The goal of the coupon collector’s problem is to find out

what is the relationship between r and d.

The similarity between the random trees and the coupon collector’s problem is that if

we treat each feature as a type of coupon, each detection path in the tree can be treated as

an experiment with n trials – where n is the number of nodes in a random tree of height

h. If an anomaly is jointly described by d features, each tree should capture at least one

copy of each of the d features. To study the relationship between the number of nodes n

and number of features present, we adopt the theoretical results for the coupon collector’s

problem.

We show that when the tree height is

h = log2(βd ln d+ 1),

the probability that at least one of the features is not captured is bounded by d−(β−1), where

β > 1.

Let Xd be a random variable defined to be the number of nodes required to collect at
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least one copy of each type of the d features. The expected number of nodes is

E[Xd] = d

d∑
i=1

1

i
= dHd

where Hd is the harmonic sum [47].

Let σni be the event that feature i is not selected nuin n nodes, the probability of this

event is:

Pr[σni ] = (1− 1

d
)n ≤ e−

n
d ,

for n = βd ln d, this bound is d−β , where β > 1 is a constant.

Thus, the probability that at least one of the features is not captured in the n nodes is

Pr[∪di=1σ
n
i ] ≤

d∑
i=1

Pr[σni ] ≤
d∑
i=1

d−β = d−(β−1),

for a random tree with number of nodes n = βd ln d, consequently, the tree height h =

log2(n+ 1) = log2(βd ln d+ 1).

Number of trees T for a given tree height h and number of features d

Given tree height h, each tree has n = 2h − 1 nodes. For T such trees, the total number of

nodes is nT . Number of trees T is chosen such that the probability that each feature occurs

at least in one of the T trees should be larger than 1− ν. From the results from the coupon

collector problem, we have:

Pr(Xd = k) =
d−1∑
j=0

(−1)j
(
d− 1

j

)
(1− 1 + j

d
)k−1.
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It is desired that:

1− (1− Pr[d ≤ Xd ≤ nT ]) ≥ 1− ν (5.2)

Pr[d ≤ Xd ≤ nT ] ≥ 1− ν (5.3)
nT∑
i=d

Pr(Xd = i) ≥ 1− ν (5.4)

nT∑
i=d

d−1∑
j=0

(−1)j
(
d− 1

j

)(
1− 1 + j

d

)k−1
≥ 1− ν (5.5)

This is a combinatorial problem, and numerical solutions are shown in Figure 5.7.

5.2.3 Discussion on Score Combination

One of the most important issues in designing an ensemble algorithm is output combina-

tion. In this section, we use the mass profile as the anomaly scores. As described before,

the smaller the score is, the more anomalous the observation is. Although the method is

designed to handle streaming data processing, however for the purpose of evaluation, we

evaluate the score assignment and compare the performance for each observations within

the same batch.

In the previous paper [64], the final score for each object is averaged among all the ran-

dom trees. However, as we see later, each tree has different power of capturing anomalies,

therefore, simple averaging might diluting the final result. For example, if we have three

trees with height of 2, the scores for each tree can be represented as a vector of length 4.

Then, consider a dataset with 100 objects, and we build three trees where the score outputs

from them are: (33,33,33,1), (60,20,15,5), (25,50,20,5), where the bold font represents the

leaf node that contains the anomaly. If we consider the simple arithmetic average, then, the

leaf with a score of 60 will significantly affect the final result though two out of three trees

say the point is an anomaly. This effect indicates that we need other score combination

methods other than simple arithmetic averaging. In this section, we discuss two combina-
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(a) Y-axis is nT , X-axis is 1− ν

(b) Y-axis is nT , X-axis is number of dimensions

Fig. 5.7: Numerical results for the number of trees and tree height

tion methods, including the minimum score method and the majority voting method.

The minimum method

In Chapter 2, we observe that using a minimum ranking method for independent results

combination generates the best performance. However, as we evaluated in Section 2.4.2

that when the base algorithm is the same, then, using maximum score method gives the best
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performance. We use the minimum score method because in the previous algorithms, the

higher the score is, the more anomalous the observation; while in random trees algorithm,

lower score indicates a higher degree of anomalousness. As before, the idea of adopting

a minimum approach is that an object will be detected as an anomaly even if one of the

random trees say so. Such an approach would be beneficial when the system allows some

false positive but requires low false negative rate. The final score for each object x over T

random trees is:

Minimum(x) =
t

min
i=1

scorei(x)

where scorei(x) is the anomaly score for x on the ith random tree as defined in Equa-

tion (5.1).

Majority voting approach using score discretization

The output for each object is a numeric score. In order to adopt the majority voting ap-

proach, we need to discretize the score before the combination.

We now discuss how to find the cutoff point for discretizing the score vector to a binary

representation. If data is uniformly distributed, without any anomalies, then the number of

objects at each level would be uniform. For example, if we have 100 objects and 4 leaves,

the score vector would be (25,25,25,25) and no anomalies can be detected. Anomalies are

expected to be associated with a leaf node with a very small number of observations, while

the normal objects are grouped densely together. We use the η-quantile as an indication

for anomalies, denote as qη. For example, if we use 5% quantile as a cutoff point, then the

vector (50,44,2,4) will be converted to (0,0,1,1). The converted score for each object x is

calculated below:

b(x) =


1, if score(x) < qη;

0, otherwise.

The result obtained from majority voting of each object x is denoted by Majority(x), and
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can be calculated in below:

Majority(x) =


1, if

∑T
i=1 bi(x) > T/2

0, otherwise.

Where bi(x) is the converted binary output for x in the ith tree.

Experimental Results

We tested three different combination approaches on a synthetic dataset with 5000 obser-

vations and one anomaly introduced. We use 5 random trees and height = 5. We select

η = 5%. Majority gives us the best result as shown in Table 5.1.

Table 5.1: Rank of anomaly for different combination approaches

Avg Minimum Majority
RANK 508 321 240

5.2.4 Building Detection Trees using Feature Clustering

The advantages of building random trees are: (1) they are very fast, (2) they do not require

any prior knowledge about the data distribution. In the previous section, we analyzed how

the random trees will perform with high-dimensional features. In this section, we discuss

why random trees fail in situations where some anomalies can only be detected by one

subset of features, and other anomalies are better detected by other subsets of features.

Consider the example in Fig.5.8, where anomalies are represented with red triangles, while

the normal observations are shown with blue dots.

Features 0, 1, and 2 are strongly correlated while 4,5, and 6 are strongly correlated,

but the two subsets are not correlated. The correlation matrix is represented in Table 5.2.

Also note that an anomaly can only be detected with certain combination of features. To

find such anomalies which can only be captured using the correlated features, we propose
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Fig. 5.8: A synthetic data where feature are interacted

a two step approach in which we first group the correlated features together, then apply the

random trees detection algorithm in each feature cluster separately. We first discuss how

to measure whether a tree can potentially detect anomalies using an information theoretic

technique.

If an observation o is a true anomaly, i.e. is most anomalous, then, there exists some

partition such that the neighborhood of o has the lowest density (most sparse) compared

to normal observations. Assume the cells obtained from the HS tree offer such a partition;
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Table 5.2: Correlations between features for data shown in Figure 5.8

feature 0 1 2 3 4 5
0 1.00 0.97 0.99 0.03 0.03 0.03
1 0.97 1.00 0.98 0.04 0.04 0.03
2 0.99 0.98 1.00 0.03 0.03 0.03
3 0.03 0.04 0.03 1.00 0.98 0.99
4 0.03 0.04 0.03 0.98 1.00 0.98
5 0.03 0.03 0.03 0.99 0.98 1.00

then, there exists a tree depth h such that the cell containing o has the smallest number of

observations (namely, the probability of it being anomaly is the largest).

For simplicity, we consider a dataset with only two featuresX and Y that are uniformly

distributed. First we consider the worst case when the true anomaly cannot be detected over

all possible partitions, that is when all cells have the same probability, that is whenX and Y

are independent. Consider a toy example with tree depth = 2, where each dimension is split

into two parts, the probability of each cell is 0.25, and the anomaly (orange observation)

cannot be detected. In this case, data has the most uncertainty, that is H(X, Y ) = H(X) +

H(Y ). Now we consider the best case where all normal observations fall in one dense

cell and the anomaly falls in any other cell. In this case, there is no data uncertainty, i.e.

H(X, Y ) = 0.

Therefore, we use the following measure to evaluate the discriminative power of each

tree:
H(X, Y )

H(X) +H(Y )
.

In general, for a tree with m features and height = h, we measure:

H(X1, X2, ..., Xm)∑m
i=1H(Xi)

This measurement will be lower when anomalies can be detected from the normal obser-

vations.
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(a) tree leaves with most uncertainty (b) tree leaves with least uncertainty

Fig. 5.9: Two cases with outlier in different positions with respect to normal data

Effect of dependency on tree

For simplicity, we now consider the effect of linear dependency in a problem with two

features. In this case, H(X, Y ) = H(X) +H(Y )− I(X;Y ), and

H(X, Y )

H(X) +H(Y )
= 1− I(X;Y )

H(X) +H(Y )
,

therefore, the discriminative power is negatively correlated with the mutual information

between X and Y .

Why use feature clustering?

Given m features, we want to partition the feature spaces into different cells such that each

cell contains features that are highly dependent with each other. Therefore, the intra-tree

dependency will be maximized for the trees built on each partition.

The problem of selecting k meaningful feature sets from m features can be represented

as an optimization problem:
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argmax
FS

k∑
i=1

∑
X∈FSi

I(X;λi)

where λi is the representative feature from the feature set FSi.

As a result, the problem of partitioning the feature spaces is similar to the classical

clustering problem. The only difference is that instead of using the classical Euclidean dis-

tance, we use the feature dependency as a similarity metric.

The Affinity Propagation (AP) [30] algorithm identifies exemplars among data points and

forms clusters of data points around these exemplars. It operates by simultaneously consid-

ering all data points as potential exemplars, and exchanging messages between data points

until a good set of exemplars and clusters emerges. We use Affinity Propagation in our

work, given the following advantages compared to k-means clustering:

• AP accepts similarity matrix instead of distance matrix, so that no conversion is

needed.

• AP finds actual feature exemplar while k-means finds the ‘mean’ in a cluster which

may not be a data point.

• AP does not require initial set of exemplars and users do not need to explicitly specify

the number of clusters.

5.2.5 Experimental Results

For the synthetic data shown in Fig 5.8, after we apply clustering, the cluster labels are

(0,0,0,1,1,1), which means features 0,1 and 2 are clustered together while features 3,4, and

5 are clustered together. We measure the ranks of the anomalies and also the AUC score.

We build 10 trees using all of the 6 features and 5 trees each for the two feature clusters

for fair comparison. Results are shown in Figure 5.10, in which the results obtained from
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feature clustering are indicated with “clus”. For the same number of trees and the same

height of trees, feature clustering results in better solutions than purely random trees.

In Section 5.2.2, we justified that we need more number of trees or ‘taller’ trees to cover

more features. By applying feature clustering, for each cluster, the number of features are

decreased. We design two sets of experiments to compare the performance of our clustering

based algorithm and random trees algorithm:

• Fix the height of each tree, vary the number of trees used for our method and random

trees method. Results, shown in Figure 5.11(a), indicate that our method outperforms

random trees on all values of T , i.e. number of trees used.

• Fix the number of trees used, vary the height of each tree, result shown in Fig-

ure 5.11(b) indicate that our method outperforms random trees method and becomes

very stable when the height of tree is ‘taller’, i.e., h = 7.

We apply our clustering based algorithm on the Polish Bankruptcy dataset which has

5910 companies, 410 bankrupted companies (anomalies) became bankrupted after one

year, as described in Section 1.5.2. Since there are many missing values in the original

dataset, we replace missing values by different methods: column mean, column median

and replace by the nearest neighbor by sorting based on gross profit. To compare the per-

formance with Tan et al.’s work, we perform two sets of experiments:

• Using 50 trees in total, each tree of height 10; for our method, 50 trees are equally

distributed in each cluster.

• Using 100 trees in total, each tree of height 15; for our method, 100 trees are equally

distributed in each cluster.

These experiments are repeated 30 times for each of the different methods to fill in the

missing value. Results in Table 5.3 show that we are able to increase the AUC performance

by at least around 20% for all the three datasets, after missing values are replaced. We

observe from the results that:
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(a) Rank of anomalies

(b) AUC

Fig. 5.10: Performance comparison for our feature clustering method and random trees
method on a synthetic dataset
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(a) AUC comparison when height of trees is fixed

(b) AUC comparison when number of trees is fixed

Fig. 5.11: Performance comparison for our feature clustering method and random trees
method for number of trees and height of trees on a synthetic dataset

• Our method achieves better results when using the same cost of building trees.

• The clustering cost is less than 5% of the overall time.
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Table 5.3: Averaged AUC for Bankruptcy Dataset over 30 trials

Mean Median Sorted
random clus random clus random clus

t=50,h=10 0.436 0.602 0.452 0.689 0.527 0.564
t=100,h=15 0.556 0.709 0.554 0.709 0.581 0.656

5.3 Evolutionary Algorithm for Partitioning Data Space

Currently, in our model, when we build detection trees, each tree denotes a random par-

tition. In each partition, features are selected randomly and then split into half. We want

to further improve the partition generation process given that picking up irrelevant features

might dilute the general detection performance, and instead of splitting the feature into half

spaces, we want to find a better split point where extreme values (anomalies) can be better

separated from the normal data.

5.3.1 How to partition the data space to separate outliers

Outliers reside in the sparse parts of a dataset, while the normal observations in the denser

area. For a dataset D, we want to find a partition = {c1, ..., cp} which best separates the

anomalies from the normal objects, i.e., the normal objects are grouped together in some

partitions while each outlier is separated with one partition. We define:

Density({c1, ..., cp}) =

p∑
i=1

density(ci) (5.6)

Claim: All the outliers are separated in a data space DS if Density d is the maximum over

the data space DS.

Proof by contradiction: Suppose d is maximum and there exists at least one outlier not

separated.

∃o ∈ Outliers such that o is grouped with a normal group N and form a partition N ′ =

{o} ∪ N . By definition, density(N ′) < density(N ) since outlier lies in a low density
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area. Let the Density over DS \ N ′ be d0 = d − density(N ). There exists a partition

{DS \ N ′, o,N } such that the cost over it is

d1 = d0 + density(N )

= d− density(N ′) + density(N )

> d

which contradicts the assumption that d is the maximum possible density.

In order to find the best partition for a dataset with n data points, it requires O(2n) time

complexity. Therefore, we consider EA as the optimization tool to find the best partitions.

5.3.2 Space-partitioning Forest

Each detection tree partitions the data space into parts where the normal objects are grouped

in denser areas, and outliers reside in sparse parts. Finding one optimal tree may suffer from

over-fitting problem. To avoid over-fitting, we aim at building a collection of T space-

partitioning trees, i.e. a space-partitioning forest. Therefore, for T full binary trees of the

same height h, the query for each data object is O(T · h).

Individual Representation

The goal is to find a collection of trees to better capture anomalies. Each individual is a

collection of T trees, and each tree is represented in its level-order traversal representation.

Each tree of height h (start from 1) consists of 2h − 1 interior nodes, each interior node is

represented as a tuple: (attId, splitVal), represents the id of the feature and the cutoff value

at that node. Thus, each tree of height h is represented as a vector of nodes:

< node1, node2, ..., node2h−1 >
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Fig. 5.12: An illustration of individual representation used in EA

Each individual is a collection of T trees, is a set of T such vectors. An illustration can be

found in Figure 5.12.

Cost function

We defined a density function in Equation (5.6) for a partition {c1, ..., cp}. To estimate the

density inside a node, we use the maximum distance from any data point in the node to

the centroid as an approximate. Then, we use minimizing the max distance to maximize

density over each sub-partition (node):

MaxDist(node) = Max{distance(centroid(node), node.datai), i = 1...|node.data|}

Cost function of each tree is defined as the averaged maximum distances among all its leaf

nodes:

cost(tree) =
1

2H

2H∑
l=1

MaxDist(leafl).

Each individual in EA is defined as a collection of T trees. The cost of an individual is

defined as follows:

cost(individual) =
1

T

T∑
i=1

cost(treei)

This cost function is to be minimized.

We first want to examine the effectiveness of our cost function in finding anomalies.
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The following figures show two partitions created from two different detection trees.

(a) Cost is higher when outlier is partitioned with normal objects

(b) Cost is lower when outlier is separated

Fig. 5.13: Cost computation for two trees with different degrees of separation of outliers
from the other data points

We notice in Figure 5.13 that when cost is high, anomalies cannot be separated using

the partition generated. For example, in the tree build in Figure 5.13(a), there are 101 data

points generated, each tree leaf contains 15, 50, 34 and 2 points respectively; the partitioned

data space is shown in the left, the cost for this tree is equal to (2.6+2.5+3.7+0.1)/4 = 2.225

while the tree built in Figure 5.13(b) partitions the outlier from the normal observations

and has a cost of (2.6+2.5)/4 = 1.275, which is lower than before. This illustrates the

effectiveness of our cost function in separating anomalies from normal objects.
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Mutation

The idea of mutation is to not change the individual drastically, instead we modify one (or a

few) nodes in one tree to keep the diversity. In order to find better solutions, we discard the

offspring which gives us higher cost. Intuitively, this will lead to a hill-climbing searching

procedure which could be computationally expensive, therefore, we add some constraints

in our mutation procedure such that we set a counter and constrain it to be less than N

times to find a better mutant. In our experiment, we tried N = 0, 1, 5 and N ∝ current

generation. When N ∝ current generation used, it means we want finer tuning at the end

of convergence. We observe that using the last strategy has higher cost reducing rate than

the others. The results for a synthetic data are shown in Fig 5.14.

Algorithm 8 Mutation
Input: mutation rate pm, individual individual, current generation gen

Output: return a mutated individual

counter = 0 ;

prevCost = cost(individual) ;

mutant = randomly change one node from a random tree in individual ;

while counter < N and cost(mutant) >= prevCost do
Increment counter ;

mutant = randomly change one node from a random tree in individual ;

prevCost = cost(individual) ;

end

Crossover

In our algorithm, each individual is a set of independent detection trees. For crossover,

we apply single-point crossover on the two parents sets. For example, for two individuals

{T1, T2} and {T3, T4}, after applying single-point crossover, we may obtain two offspring

{T1, T4} and {T2, T3}.
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Fig. 5.14: Evolution of solution quality with number of iterations, with different strategies
for synthetic dataset, when pc = 0.6

The cost over iterations for different crossover probability pc is shown in Fig 5.15.

Selection

We add elitism in our selection procedure. Which means in each iteration, we retain the

best individuals (a fixed fraction e of the population size) in the next iteration. For parents

selection, we use fitness proportion selection (inverse of cost). The cost over iterations

for different e is shown in Fig 5.16, using e of 0.2, 0.4, or 0.8 seems to give reasonable

performance, rather than a value of e that is too large or too small.

5.3.3 Algorithms

The overall algorithm is shown in Algorithm 9.
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Fig. 5.15: Evolution of solution quality with number of iterations, for different values of
crossover probability for synthetic data, pm = 0.2

Algorithm 9 Evolutionary Algorithm
Input: population size N , mutation probability pm, crossover probability pc

Output: return the possible best individual

Pop = generate N random initial individuals ;

isTerminated = False ;

best = None ;

while not isTerminated do
C = {cost(i)|∀i ∈ Pop} ;

Pop’ = ∅ ;

while |Pop′| < n do
parents = select(Pop, C) ;

offspring = reproduce(parents, pc, pc) ;

add offspring to Pop’ ;

end

Pop = Pop’ ;

isTerminate, best = testTermination(Pop, best)

end

return best
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Fig. 5.16: Evolution of solution quality with number of iterations, for different values of
elitism e with different for synthetic dataset

Algorithm 10 testTermination
Input: a population Pop, the best individual best previously seen

Output: a tuple (isTerminated, individual) where isTerminated is True if terminate,

individual is the best individual returned

individual = argmini{cost(i)|∀i ∈ Pop} ;

if reach maximum generation then
return (True, individual) ;

end

else

if |cost(individual)− cost(best)| < δ then
return (True, individual) ;

end

else
return (False, individual) ;

end

end
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5.3.4 Preliminary Results for EA

In this section, we show some preliminary results for comparison of using EA to generate

the random trees with pure random trees generation. We generate a synthetic dataset in

which the normal data are drawn from a Gaussian distribution while outliers are uniformly

distributed, the data is shown in Fig 5.17a. The results of using the EA are shown in

Fig 5.17b. We observe that EA successfully finds all the outliers (AUC score is 1.0) when

it converges.

(a) synthetic data – normal data from gaussian, outliers uni-
formly distributed

(b) Cost vs AUC for using EA to generate random trees

Fig. 5.17: Results of using EA on a synthetic dataset
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Fig. 5.18: Synthetic dataset with 4 clusters, outliers are inserted in between

Another synthetic dataset is shown in Fig 5.18. In this experiment, we want to see

whether EA can better separate the outliers which are in between clusters, as compared

to pure random trees. In our experiments, we fix the tree height to be 4 for both random

and EA-generated trees. We observe that when using 10 trees, the AUC is 0.64 for ran-

dom while is 0.94 for EA. We also notice that in our experiment that when we use large

tree height and number of trees, the improvement of using an EA over random tree is not

very significant. The reason is that if given enough tree cost (i.e. tree height and num-

ber of trees), the probability of covering all combinations of all features is high (discussed

inpmSection 5.2.2).

5.4 Conclusion

In this chapter, we first reviewed the status of ensemble methods for streaming anomaly

detection. We give a justification for the number of trees and tree heights one should use

for random forest in Section 5.2.2, by converting this problem to the coupon collector
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problem. For anomalies which are only detectable from a set of correlated features, we

propose to apply feature clustering first, then build random trees on each of the clusters. Our

evaluations on both synthetic and real-world datasets show performance improvements.

To better separate data space for detecting anomalies, we propose to use (instead of pure

randomly partition datasets using random trees) an Evolutionary Algorithm for minimizing

partitioning cost based on the assumption that anomalies lie in the sparse area than normal

observations. Our preliminary results show that using EA-based approach, anomalies can

be better separated from the entire dataset.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, we studied the application of ensemble learning in the context of

anomaly detection for both static and streaming datasets. Chapters 2, 3, and 4 discussed

how to design ensemble algorithms for static datasets while Chapter 5 introduced our solu-

tion for detecting anomalies on streaming data.

In this chapter, we summarize the results in previous chapters, and propose directions

for future research.

6.1 Summary

In Chapter 2, we focused on two aspects: (1) how to design different strategies for combin-

ing decisions from different base algorithms; and (2) how to introduce ensemble diversity

by detecting anomalies on multiple subsamples from the datasets. We design and evalu-

ate multiple strategies using score normalization, rank aggregation and majority voting, to

combine the results from 6 state-of-the-art base detection algorithms. Our evaluation on

multiple real-world benchmark datasets show that by using ensembles, we achieve better

detection performance than most of the base algorithms. By using minimum ranking and

maximum score, we are able to achieve the best accuracy among all the algorithms. Us-
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ing our proposed bootstrapping methods, we achieve results competitive with the current

approach, but with a much more less computational cost.

In Chapter 3, we design a two-phase sequential method where two algorithms are used.

The first algorithm is used to select a subset of observations in which most anomalies are

suspected to be contained. Another algorithm is then executed such that all the observations

are evaluated with respect to such subsets. Our evaluation results show that by selecting the

top ranked observations, we are able to reach better solutions than base algorithms. Also,

best results are obtained by combining algorithms that are substantially different.

In Chapter 4, a novel adaptive sampling and learning approach was designed and eval-

uated. In this approach, the score output of the base algorithm is used to determine the

hard-to-detect examples, and iteratively resamples more points from such examples in a

completely unsupervised context. The results show that using this idea, we achieved better

solution than base algorithms and other ensemble methods.

In Chapter 5, we analyze the deficiencies of a recent anomaly detection algorithm based

on the concept of random trees. We gave both theoretical and empirical analysis addressing

how to choose parameters used in the model. Then, we proposed to partition the feature

space into similar clusters, followed by independently constructing multiple random trees.

Our evaluations on both synthetic and real-world datasets show a better detection accuracy.

Instead of randomly separating the data space for finding anomalies, we proposed to use

Evolutionary Algorithms in which the objective is to group the normal observations in

denser area, such that the anomalies can be separated more efficiently. Our preliminary

results show a potential performance improvement using this new approach.

6.2 Future Work

For the independent ensembles, currently, we have mainly explored combining the results

from the nearest-neighborhood-based algorithms. A potential extension is to use other
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learning algorithms such as Neural Networks and Support Vector Machines. Another di-

rection is using probabilistic models for combining the decisions. The challenge is how to

convert a raw score to a probability indicating the anomalousness of an object.

In our empirical evaluation, we observed that the base algorithm RADA achieves the

best performance among all the individual base algorithms. Therefore, in our sequential

learning, by using RADA as the second algorithm, we obtained best results among all

the algorithms pairs. Meanwhile, we noticed that using a worse algorithm in the second

stage generated worse performance. One of the future works should address how to select

a more accurate algorithm among all the base algorithms to use as the refined approach.

This might be difficult in a pure unsupervised context, however, if a small sample from

the dataset contains labels, then one can perform a test on the labeled subsample first, then

select the algorithms to use for sequential learning.

For sequential learning, currently, we explore the sequential learning, where the second

algorithm is applied to the first algorithm’s outputs. Multi-layer sequential learning can be

explored as follows: at the first stage, a decision is generated from independent ensemble;

at the next layer, subsampling is done with respect to the independent ensemble decision;

next, another layer of decision-making involves applying another detection algorithm. This

leads to a more complex algorithm that may generate more refined results.

For the streaming anomaly detection, we currently update our model parameters only

considered the data distribution drift. We used a batch based method which updates the

model periodically. The model update for data distribution is easier than model update with

feature space drift. Since our method begins with feature clustering (preprocessing), if the

feature space drifts, then our model needs to be able to modify the feature clusters under

concept drift automatically. Also, the current evaluations with Evolutionary Algorithms

are done on separating anomalies on data space. It would be worth exploring whether an

Evolutionary strategy can be designed to update model parameters in a streaming context.
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