133 research outputs found

    A Multi-In and Multi-Out Dendritic Neuron Model and its Optimization

    Full text link
    Artificial neural networks (ANNs), inspired by the interconnection of real neurons, have achieved unprecedented success in various fields such as computer vision and natural language processing. Recently, a novel mathematical ANN model, known as the dendritic neuron model (DNM), has been proposed to address nonlinear problems by more accurately reflecting the structure of real neurons. However, the single-output design limits its capability to handle multi-output tasks, significantly lowering its applications. In this paper, we propose a novel multi-in and multi-out dendritic neuron model (MODN) to tackle multi-output tasks. Our core idea is to introduce a filtering matrix to the soma layer to adaptively select the desired dendrites to regress each output. Because such a matrix is designed to be learnable, MODN can explore the relationship between each dendrite and output to provide a better solution to downstream tasks. We also model a telodendron layer into MODN to simulate better the real neuron behavior. Importantly, MODN is a more general and unified framework that can be naturally specialized as the DNM by customizing the filtering matrix. To explore the optimization of MODN, we investigate both heuristic and gradient-based optimizers and introduce a 2-step training method for MODN. Extensive experimental results performed on 11 datasets on both binary and multi-class classification tasks demonstrate the effectiveness of MODN, with respect to accuracy, convergence, and generality

    Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks

    Full text link
    Throughout history, the development of artificial intelligence, particularly artificial neural networks, has been open to and constantly inspired by the increasingly deepened understanding of the brain, such as the inspiration of neocognitron, which is the pioneering work of convolutional neural networks. Per the motives of the emerging field: NeuroAI, a great amount of neuroscience knowledge can help catalyze the next generation of AI by endowing a network with more powerful capabilities. As we know, the human brain has numerous morphologically and functionally different neurons, while artificial neural networks are almost exclusively built on a single neuron type. In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors. Since an artificial network is a miniature of the human brain, introducing neuronal diversity should be valuable in terms of addressing those essential problems of artificial networks such as efficiency, interpretability, and memory. In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron. Then, we review studies of designing new neurons for artificial networks. Next, we discuss what gains can neuronal diversity bring into artificial networks and exemplary applications in several important fields. Lastly, we discuss the challenges and future directions of neuronal diversity to explore the potential of NeuroAI

    Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern Recognizers

    Full text link
    This PhD thesis is focused on the central idea that single neurons in the brain should be regarded as temporally precise and highly complex spatio-temporal pattern recognizers. This is opposed to the prevalent view of biological neurons as simple and mainly spatial pattern recognizers by most neuroscientists today. In this thesis, I will attempt to demonstrate that this is an important distinction, predominantly because the above-mentioned computational properties of single neurons have far-reaching implications with respect to the various brain circuits that neurons compose, and on how information is encoded by neuronal activity in the brain. Namely, that these particular "low-level" details at the single neuron level have substantial system-wide ramifications. In the introduction we will highlight the main components that comprise a neural microcircuit that can perform useful computations and illustrate the inter-dependence of these components from a system perspective. In chapter 1 we discuss the great complexity of the spatio-temporal input-output relationship of cortical neurons that are the result of morphological structure and biophysical properties of the neuron. In chapter 2 we demonstrate that single neurons can generate temporally precise output patterns in response to specific spatio-temporal input patterns with a very simple biologically plausible learning rule. In chapter 3, we use the differentiable deep network analog of a realistic cortical neuron as a tool to approximate the gradient of the output of the neuron with respect to its input and use this capability in an attempt to teach the neuron to perform nonlinear XOR operation. In chapter 4 we expand chapter 3 to describe extension of our ideas to neuronal networks composed of many realistic biological spiking neurons that represent either small microcircuits or entire brain regions

    Compensação digital de distorções da fibra em sistemas de comunicação óticos de longa distância

    Get PDF
    The continuous increase of traffic demand in long-haul communications motivated the network operators to look for receiver side techniques to mitigate the nonlinear effects, resulting from signal-signal and signal-noise interaction, thus pushing the current Capacity boundaries. Machine learning techniques are a very hot-topic with given proofs in the most diverse applications. This dissertation aims to study nonlinear impairments in long-haul coherent optical links and the current state of the art in DSP techniques for impairment mitigation as well as the integration of machine learning strategies in optical networks. Starting with a simplified fiber model only impaired by ASE noise, we studied how to integrate an ANN-based symbol estimator into the signal pipeline, enabling to validate the implementation by matching the theoretical performance. We then moved to nonlinear proof of concept with the incorporation of NLPN in the fiber link. Finally, we evaluated the performance of the estimator under realistic simulations of Single and Multi- Channel links in both SSFM and NZDSF fibers. The obtained results indicate that even though it may be hard to find the best architecture, Nonlinear Symbol Estimator networks have the potential to surpass more conventional DSP strategies.O aumento contínuo de tráfego nas comunicações de longo-alcance motivou os operadores de rede a procurar técnicas do lado do receptor para atenuar os efeitos não lineares resultantes da interacção sinal-sinal e sinal-ruído, alargando assim os limites da capacidade do sistema. As técnicas de aprendizagem-máquina são um tópico em ascenção com provas dadas nas mais diversas aplicações e setores. Esta dissertação visa estudar as principais deficiências nas ligações de longo curso e o actual estado da arte em técnicas de DSP para mitigação das mesmas, bem como a integração de estratégias de aprendizagem-máquina em redes ópticas. Começando com um modelo simplificado de fibra apenas perturbado pelo ruído ASE, estudámos como integrar um estimador de símbolos baseado em ANN na cadeia do prodessamento de sinal, conseguindo igualar o desempenho teórico. Procedemos com uma prova de conceito perante não linearidades com a incorporação do ruído de fase não linear na propagação. Finalmente, avaliamos o desempenho do estimador com simulações realistas de links Single e Multi canal tanto em fibras SSFM como NZDSF. Os resultados obtidos indicam que apesar da dificuldade de encontrar a melhor arquitectura, a estimação não linear baseada em redes neuronais têm o potencial para ultrapassar estratégias DSP mais convencionais.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways.

    Get PDF
    While sensory representations in the brain depend on context, it remains unclear how such modulations are implemented at the biophysical level, and how processing layers further in the hierarchy can extract useful features for each possible contextual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can, within physiological constraints, implement contextual modulation of feedforward processing. Such neuron-specific modulations exploit prior knowledge, encoded in stable feedforward weights, to achieve transfer learning across contexts. In a network of biophysically realistic neuron models with context-independent feedforward weights, we show that modulatory inputs to dendritic branches can solve linearly nonseparable learning problems with a Hebbian, error-modulated learning rule. We also demonstrate that local prediction of whether representations originate either from different inputs, or from different contextual modulations of the same input, results in representation learning of hierarchical feedforward weights across processing layers that accommodate a multitude of contexts

    Infomorphic networks: Locally learning neural networks derived from partial information decomposition

    Full text link
    Understanding the intricate cooperation among individual neurons in performing complex tasks remains a challenge to this date. In this paper, we propose a novel type of model neuron that emulates the functional characteristics of biological neurons by optimizing an abstract local information processing goal. We have previously formulated such a goal function based on principles from partial information decomposition (PID). Here, we present a corresponding parametric local learning rule which serves as the foundation of "infomorphic networks" as a novel concrete model of neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised and memory learning. By leveraging the explanatory power and interpretable nature of the PID framework, these infomorphic networks represent a valuable tool to advance our understanding of cortical function.Comment: 31 pages, 5 figure

    Brain-Inspired Computational Intelligence via Predictive Coding

    Full text link
    Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with the error backpropagation learning algorithm. However, the ubiquitous adoption of this approach has highlighted some important limitations such as substantial computational cost, difficulty in quantifying uncertainty, lack of robustness, unreliability, and biological implausibility. It is possible that addressing these limitations may require schemes that are inspired and guided by neuroscience theories. One such theory, called predictive coding (PC), has shown promising performance in machine intelligence tasks, exhibiting exciting properties that make it potentially valuable for the machine learning community: PC can model information processing in different brain areas, can be used in cognitive control and robotics, and has a solid mathematical grounding in variational inference, offering a powerful inversion scheme for a specific class of continuous-state generative models. With the hope of foregrounding research in this direction, we survey the literature that has contributed to this perspective, highlighting the many ways that PC might play a role in the future of machine learning and computational intelligence at large.Comment: 37 Pages, 9 Figure
    corecore