
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
8
5
1
6
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
7
.
8
.
2
0
2
3

RESEARCH ARTICLE NEUROSCIENCE OPEN ACCESS

NMDA-driven dendritic modulation enables multitask
representation learning in hierarchical sensory processing
pathways
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While sensory representations in the brain depend on context, it remains unclear
how such modulations are implemented at the biophysical level, and how processing
layers further in the hierarchy can extract useful features for each possible contex-
tual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can,
within physiological constraints, implement contextual modulation of feedforward
processing. Such neuron-specific modulations exploit prior knowledge, encoded in
stable feedforward weights, to achieve transfer learning across contexts. In a network of
biophysically realistic neuron models with context-independent feedforward weights,
we show that modulatory inputs to dendritic branches can solve linearly nonseparable
learning problems with a Hebbian, error-modulated learning rule. We also demonstrate
that local prediction of whether representations originate either from different inputs,
or from different contextual modulations of the same input, results in representation
learning of hierarchical feedforward weights across processing layers that accommodate
a multitude of contexts.

dendritic computation | contextual adaptation | multitask learning | contrastive learning |
self-supervised learning

Sensory processing in the brain is commonly thought of as proceeding through an
increasingly abstract and invariant hierarchy of representations (1, 2). According to this
view, neurons have a fixed tuning to specific stimuli: In early sensory areas, neurons
identify basic features such as lines, gratings (3), or simple auditory waveforms (4),
while neurons further in the processing stream are selective to faces (5, 6), speakers
(7), or words (8). Artificial neurons in feedforward network models also exhibit such
receptive field properties, and similarity between responses in these networks and in
sensory brain regions lends support to this view of sensory processing (9, 10). However,
the activity of sensory neurons is not driven purely by bottom-up inputs but is also
modulated by internal mental states (11). These modulating inputs, relayed by top-down
connections from various cortical areas (Fig. 1A), communicate high-level information
about behavioral context (12–14), task demands (15–17), expectations (18–20), motor
commands (19, 21, 22), and memory (23, 24).

While it is attractive to assume that such top-down connections to sensory areas adapt
feedforward processing to the many contexts that may occur in natural environments, the
computational utility of modulating neurons at all levels in the processing stream remains
poorly understood. Such modulations induce a dependence on the contextual state in
sensory representations at any given processing layer. Consequently, the next processing
layer in the hierarchy has to be connected in such a way that it can extract useful features,
not only for each possible sensory input but also for each possible contextual state.
Most artificial neural network approaches that seek to implement multitask learning
avoid this complication by defining separate output networks for each task, on top
of a common trunk that generates a context-independent representation of the inputs
(25, 26). Nevertheless, the pervasiveness of contextual modulation in sensory processing
indicates that this adaptation is an important component of cortical computation,
and reshapes the functional mapping of sensory processing pathways (Fig. 1B) (27).
While some authors have explored modulations to early processing layers (28–31), their
networks were trained through error backpropagation in a purely supervised fashion.
Unsupervised, representation-based learning is considered more biologically plausible
(32–34), but has not been applied to context-modulated representations.

Biophysically, the way in which modulations to sensory neurons are implemented
remains unknown. A probable constraint is that contextual modulations have a longer
time-scale than rapid feedforward processing, where volleys of action potentials propagate
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A B C

HGFED

Fig. 1. Contextual modulation of neurons in sensory processing pathways. (A) Top-down connections from prefrontal and motor areas relay high-level
information to early sensory processing neurons [adapted from Gilbert et al. (11), LGN: lateral geniculate nucleus of the thalamus, V1-4: visual area 1-4, MT:
medial temporal area, IT: inferior temporal cortex, PL: parietal lobe, FEF: frontal eye field, PF: prefrontal cortex]. (B) We hypothesize that high-level information
from prefrontal and motor areas modulates the activity of early sensory neurons, enhancing response properties of neurons with task-relevant receptive fields.
These modulations induce a task-dependent functional remapping of sensory processing pathways built on fixed, task-agnostic feedforward connectivity. (C)
At the biophysical level, we investigate two plausible candidate mechanisms that could implement quasi-tonic neuron-specific modulations: somatic shunting
inhibition and dendritic NMDA spikes. (D) L5 PC model configuration to investigate somatic shunting: feedforward and shunting (orange) inputs target the
somatic compartment (teal). (E) The somatic response to identical feedforward inputs (Top, green, Gaussian burst of 175 inputs), for three modulation levels
resulting in zero, one, or two output spikes. (F ) L5 PC model configuration to investigate dendritic modulation: modulatory inputs target up to 38 (also corrected
in SI Appendix, methods) dendritic compartments (blue, locations 1, 2, and 3 are the dendritic sites plotted in G), whereas feedforward inputs target the somatic
compartment (teal). (G) Somatic responses (Left, teal) to identical feedforward inputs (Top, green, Gaussian burst of 40 inputs), for three different levels of
dendritic modulation (Right, blue) resulting in zero, one, or two output spikes. (H) Comparison of effective conductance changes, as measured at the soma,
between shunt and NMDA modulation for the three modulation levels shown in (E and G).

rapidly through the processing hierarchy (35, 36), their trajecto-
ries modulated by the contextual inputs. With durations of 50 to
100 ms, dendritic nonlinearities convert branch-local correlated
inputs into sustained somatic depolarizations that outlast somatic
action potentials by up to two orders of magnitude (37). A major
driver of such dendritic spikes is the N-Methyl-D-Aspartate
(NMDA) receptor present at excitatory synapses to cortical
pyramidal cells (PCs) (37, 38), which furthermore has been
associated with the integration of signals originating from within
the brain itself (39). While dendritic NMDA spikes thus appear
a suitable candidate to modulate the neuronal output according
to self-generated task context (31), they have not been shown to
do so in network computations with biologically realistic neuron
models.

Here, we study the modulation of feedforward processing in
networks of biophysically realistic neurons. By assessing effective

membrane conductance changes, we find that NMDA spikes can
modulate the neuronal input–output (IO) relation in a manner
compatible with physiological evidence. We then study the com-
putational features of neuron-specific modulations in abstract
feedforward network models and show that these modulations
allow networks without task-specific readout components to solve
multiple tasks. We find that feedforward weights that extract
useful information from modulated layers can indeed be learned
because multitask performance increases with network depth.
This in turn allows the network to learn new tasks by adapting
solely the modulating synapses, and inspired us to ask whether un-
supervised learning principles exist for feedforward weights that
support multitask learning through neuron-specific modulations.
We then show that context-modulated representations promote
self-supervised learning across a hierarchy of processing layers, by
providing a form of data augmentation for contrastive learning
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that allows deeper processing layers to extract general, high-
level features, without the need for error backpropagation across
layers. Thus, instead of being a complication, such modulations
could constitute an integral feature of cortical learning. Finally,
while the contextual modulations in abstract models are trained
through gradient descent on a classification loss, we show that
our approach translates to biologically realistic spiking models
equipped with a Hebbian, error-modulated learning rule for the
contextual synapses.

Results

Biophysical Implementation of Neuron-Specific Modulations.
As NMDA spikes can convert branch-local correlated inputs into
sustained depolarizations at the soma, they constitute a plausible
candidate mechanism for implementing contextual adaptation.
However, other candidate mechanisms may be plausible as
well. A sustained increase in input rate of a specific group of
synapses could implement a similar modulation, but would rely
on a precise network mechanism to generate such firing rates.
Dendritic Ca2+-spikes also implement sustained depolarizations,
and could in principle have a similar effect on the somatic output
as NMDA spikes (40). Finally, both -aminobutyric acid A
and B (GABAA & GABAB) receptors could exert influence on
the neuronal IO relation through regulation of dendritic spikes
(41–44). Here, we assessed whether contextual modulations
would rather be implemented by dendritic or somatic afferents
(Fig. 1C ), and we did so in a biophysically realistic layer 5 (L5)
PC model (45). We compared the proposed primary mechanism
for dendritic modulation—NMDA spikes—with a possible
mechanism for somatic modulation—shunting inhibition by
fast-spiking interneurons that target the perisomatic region (46).

Conceptually, we think of the type of feedforward processing
studied here as the first wave of spikes that propagates through the
sensory hierarchy, e.g., following the emergence of a new feature
in the visual field. Response latencies in higher cortical areas, such
as in the prefrontal or the inferior temporal cortex, are 130 to
150 ms (35, 36). For this reason, we examined conditions where,
for identical feedforward input, the modulatory afferents change
the number of somatic outputs between zero and two spikes, as
subsequent spikes would be unlikely to drive this short-latency
component of the sensory response. Similarly, the feedforward
inputs themselves were implemented as short Gaussian bursts,
with a width of 6 ms. Since the somatic modulatory mechanism is
inhibitory, we tuned the number of feedforward inputs per burst
so that two output spikes were emitted without modulatory input
(175 feedforward inputs), and increased the number of shunt
inputs until all output spikes were prevented (Fig. 1 D and E).
Conversely, as the dendritic mechanism is excitatory, we tuned
the number of feedforward inputs per burst so that no output
spikes were emitted without modulatory input (40 feedforward
inputs), and increased the number of inputs eliciting dendritic
NMDA-spikes until two output spikes were emitted (Fig. 1 F
and G).

An experimentally testable measure that distinguishes between
the candidate mechanisms is the change in effective conductance
of the neuron. The time course of this conductance can be
measured in voltage clamp by repeating the same input pattern
at different holding potentials and is given by the slope of the
current-voltage relationship at all time points (47). Experimental
studies estimated effective conductance changes of 1 to 10 nS
(47, 48). In the case of somatic modulations through shunting
inhibition, our simulations showed that the effective conductance

change required to modulate the output firing from two to
zero spikes is between 100 and 150 nS, values far outside
the experimentally measured range (Fig. 1H ). Conversely, the
effective conductance change for modulating output firing from
zero to two spikes with dendritic NMDA-spikes is between 1
and 10 nS. This demonstrates that dendritic NMDA-spikes are
a biologically plausible candidate to implement neuron-specific
modulations (Fig. 1H ), on which we will focus in the remainder
of this work.

Neuron-Specific Modulations as Bias and/or Gain Changes.
Conceptually, neuron-specific modulations can be thought of
as changing the slope and/or threshold of the neuronal IO
relationship. In abstract neuron models of the form

y = �(g wT x + b), [1]

this can be implemented through modulations of gain g and bias
b, with g primarily affecting the slope and b exclusively affecting
the threshold. Here, y represents the neuronal activation, � the
activation function, w the feedforward weight vector, and x the
feedforward input vector. Note that although y typically stands
for the average neuronal firing rate, here, we interpret it rather as
the average number of somatic output spikes in response to a short
burst of feedforward inputs. In this case, the ReLU activation
function �(x) = max(x, 0) is a reasonable choice (Fig. 2 A
and C ).

We maintained the same input configuration to the L5 PC
model as before (Fig. 1F ) and constructed IO curves for different
levels of modulation by varying the number of feedforward
inputs. We then modeled the effect of modulation on the IO
dependency either as gain or bias adaptation. To fit these curves,
we retained the thresholds—computed as the points where
the interpolation line crossed the mid-point between discrete
values—as the fit points (Fig. 2A). We then fitted all obtained
curves, either with a curve-specific gain and shared bias (Fig.
2 B, Left) or with a curve-specific bias and shared gain (Fig.
2 B, Middle), by minimizing the sum-of-squares error for all
modulation levels together (SI Appendix, Methods). We found
that the accuracy of both bias-modulated and gain-modulated
fits, as quantified by the residual sum-of-squares error (Fig. 2E),
could be improved substantially by introducing a constant xshift
parameter

y = �(g (wT x − xshift) + b)

= �(g wT x + (b− g xshift)),
[2]

resulting in concerted additive and multiplicative modulation by
gain changes. This fit produced the most accurate representation
of the modulatory effect (Fig. 2 B, Right and E). Together, these
considerations suggest a conceptual picture of sensory neurons
where perisomatic feed-forward inputs are modulated by top-
down inputs impinging onto dendritic subunits (Fig. 2F ). These
modulatory inputs increase IO slope and decrease IO threshold.
For completeness, we note that somatic modulation through
shunting inhibition was better fitted by pure gain modulation
than bias modulation (Fig. 2C–E, configuration as in Fig. 1D), in
agreement with prior work (46), and that introducing a constant
x-shift parameter also decreased the residual markedly.

Multitask Learning with Task-Dependent Modulations to
Individual Neurons. In feedforward neural network architec-
tures, implementing task switching by providing neuron-specific
modulations to the neurons in the hidden layers is a departure
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A B

C D

E

Fig. 2. Conceptualizing neuron-specific modulations in abstract neuron models. (A) Number of output spikes, averaged over ten trials, for two example levels
of modulation. Modulation levels are determined by the number of compartments with NMDA spikes (no. of NMDAs—light blue is without NMDA spikes, dark
blue with 34 compartments with NMDA spikes). The x-axis shows the number of excitatory feedforward inputs (>0) or inhibitory feedforward inputs (<0).
The thresholds (blue) where the number of emitted spikes increases are taken as the points where the linear interpolation crosses the mid-point between
discrete values. We use these thresholds as fit points for the ReLU characterizing the neuronal IO relationship (dashed lines show these fits, performed here
for each modulation level separately for illustrative purposes). (B) ReLU fits to obtained threshold values (as explained in A) for eight modulation levels with a
curve-specific gain and shared bias (Left), a curve-specific bias and shared gain (Middle), and a curve-specific gain, shared bias, and additionally a shared x-shift
(Right). We fitted all these modulation levels together by minimizing the sum-of-squares error. (C and D) Same as (A and B), but for modulation through somatic
shunting. (E) Residual sum-of-squares error for the eight modulation levels, computed for the three cases shown in B (blue) and D (orange). (F ) Proposed
conceptual model of a neuron participating in sensory feedforward processing: perisomatic feedforward inputs (green) are modulated by dendritic subunits
(blue), resulting in a concerted change of slope and threshold of the neuronal IO curve.

from the standard approach, in which task-specific output units
are trained on top of a shared trunk network (Fig. 3A) (25, 26).
We therefore first assessed whether multitask learning in this
manner is even computationally feasible, and learned task-specific
gains to the individual neurons in feedforward networks together
with feedforward weights, x-shifts, and biases that were shared
across tasks. All parameters were optimized through supervised
error backpropagation.

To demonstrate that neuron-specific modulations can success-
fully change the functional mapping of feedforward processing
pathways, we trained networks with one or four hidden layers
to solve 48 binary classification tasks on two-dimensional inputs.
These networks, each with a single set of feedforward weights, but
task- and neuron-specific gains, solved all 48 tasks, demonstrating
that such modulations achieve multitask learning (Fig. 3B and
SI Appendix, Fig. S1A). The deeper network was more accurate
(less black area in Fig. 3B and SI Appendix, Fig. S1A), indicating
that multilayer architectures with neuron-specific modulations
are computationally useful.

To more thoroughly test neuron-specific modulations on a
dataset that is both sufficiently rich in tasks and sufficiently simple
to subsequently combine with biophysical models, we converted
the EMNIST dataset (49) into a multitask learning problem
(multitask EMNIST) by defining a one-vs-all classification
task for every class in the original dataset (47 tasks, Fig.
3C ). We found that implementing neuron-specific modulations
through independent gain and bias changes achieved the same
performance as a task-specific readout, and that combined gain
and bias changes through a constant x-shift resulted in a slightly
reduced performance (Fig. 3 D and E). Qualitatively, the same
behavior was observed for both investigated forms of neuron-
specific modulations: performance increased with network depth
(Fig. 3D), and performance increased strongly with layer size (Fig.
3E). Hyperparameters, such as learning rates, were optimized

for each method and architecture separately (SI Appendix, Fig.
S1B). Note that we have also implemented other neuron-specific
modulations (SI Appendix, Fig. S1C ), but the minute differences
between modulation types could not be decoupled fully from
choices such as network architecture, task design, and training
method.

In the brain, mounting evidence suggests that top-down inputs
dynamically select salient features from a stable feedforward
connectivity (24). Our framework can replicate this strategy
by making use of prior knowledge, encoded in the learned
feedforward weights, and learn previously unseen tasks purely
with neuron-specific modulations. By dividing our dataset in a
subset of tasks to pretrain shared parameters and the remaining
subset of tasks to be learned only with task-specific parameters,
we were able to transform our multitask problem in a transfer
learning problem. For networks with one hidden layer, we
found that all approaches achieve similar transfer learning.
For networks with more than one hidden layer, our approach
transferred much better to the remaining tasks than networks
with task-specific readouts (Fig. 3F ). Presuming that with more
hidden layers, networks become increasingly adept at filtering out
task-irrelevant information, we hypothesized that task-specific
readouts for new tasks have no access to information that was
not relevant for the original tasks. Conversely, neuron-specific
modulations to early layers could recover such information,
leading to improved transfer learning.

Unsupervised Weight Matrices for Networks with Neuron-
Specific Modulations. So far our supervised results have demon-
strated that a network with a single set of feedforward weights, and
contextual modulations to individual neurons, can solve many
tasks. However, much of the learning in the brain is thought to
proceed in an unsupervised fashion (50, 51). While unsupervised
learning has been studied thoroughly in combination with a
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Fig. 3. Multitask and transfer learning in feedforward networks. (A) The networks solve multiple tasks with a shared set of feedforward weights (green), either
through different sets of neuron-specific modulations (Left) or different readout neurons (Right). In multitask learning (Top), shared parameters (feedforward
weights, green) are trained on multiple tasks in concert with task-specific parameters for each of those tasks. In transfer learning, shared parameters are frozen
(bright blue), and new task-specific parameters are learned for the new tasks (purple). (B) 10 (out of 48, SI Appendix, Fig. S1A) exemplars of a two-dimensional
classification multitask dataset solved with neuron-specific modulations. Correctly classified samples are plotted in blue and orange, while incorrectly classified
samples are plotted in black. The network architecture contains one hidden layer (Left) or four hidden layers (Right) with 50 neurons per layer, followed by a
single output unit. (C) EMNIST is converted to a multitask learning problem by defining a one-vs-all classification task for every class in the original dataset. (D)
Performance of networks with a task-specific readout and no neuron-specific modulations (red, triangle), independently learnable task-specific gain and bias
(green, square) and task-specific gain together with a shared x-shift and bias (blue, circle) as a function of the number of hidden layers (25 neurons per layer).
Performance is measured by averaging over all tasks, and by additionally averaging over five initialization seeds (error bars show standard deviation of task
performance across seeds, averaged over all tasks). (E) Same as in D but for a varying number of units per layer in networks with two hidden layers. (F ) Transfer
vs. multitask learning performance. Networks are pretrained on various subsets of tasks with the normal multitask approach, yielding test performances on the
pretraining tasks (full line, small marker size). Shared parameters are then frozen and only the task-specific parameters are trained on the remaining, unseen
tasks. This transfer learning approach yields test performances for the transfer tasks (averages and standard deviations computed across 128 seeds, dotted
lines, large marker size). Each hidden layer consists of 100 units, and multitask performances of the equivalent architecture on the full set of tasks are shown
on the Right. Colors and markers for the different algorithms as in (D).

supervised readout on the hidden representation (33, 52), it
has yet to be combined with neuron-specific modulations. We
therefore investigated how to find unsupervised feedforward
weight matrices that facilitate the construction of task-specific
decision boundaries through supervised learning of the neuronal
gains.

To explain our approach, we note that the decision of any given
neuron in the feedforward pathway to become active represents
a decision boundary on the sensory input space. Locally, this
boundary is characterized by its normal vector (SI Appendix,
Methods), which captures the input features that the neuron uses
to make a decision about whether to become active, and is always
a linear combination of the input weight vectors to the network
(Fig. 4A). A necessary condition to be able to construct a given
decision boundary is that its normal vectors can all be constructed

with the feedforward weight matrices (Fig. 4B). Our rationale,
thus, is that neuron-specific modulations select a concatenation
of decision boundary segments with constructible normal vectors
that optimally approximates the desired decision boundary. By
consequence, input weight vectors are preferentially constrained
to the subspace of the data, so that all constructible normal vectors
also lie within this subspace (Fig. 4C ). When there is no a priori
information on the decision boundaries that might be drawn
through the data, a reasonable heuristic for the constructible
normal vectors is that they approximate the set of difference
vectors between data samples. In turn, decision boundaries can
be seen as a concatenation of segments with normal vectors that
are close to difference vectors between nearby, but differently
classified data samples (Fig. 4D). Consequently, by aligning
the set of constructible normal vectors of the network to the
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F

Fig. 4. Properties of feedforward weights for networks to perform well in concert with neuron-specific modulations. (A) The normal vectors associated with
segments of the decision boundary capture the local features that the network uses to make decisions about data sample identities (note that with ReLU units,
the decision boundary consists of linear sections). In any network architecture (here, a single hidden layer, Inset), these normal vectors are weighted sums of
the input weight vectors to the first layer neurons. (B) To learn a multitude of tasks with the same feedforward weights, task-relevant normal vectors to the
decision boundaries must be constructible with the network. (C) Normal vectors to decision boundaries must be constrained to the subspace of the input
data. Normal vectors outside this subspace have components orthogonal to it, which do not add useful directions for decision boundaries. (D) Generic decision
boundaries can be constructed by concatenating segments with normal vectors close to difference vectors between close, but differently classified data points.
(E) Combining considerations A–D, we investigate loss functions that minimize the difference between, on the one hand, difference vectors between data points
and, on the other hand, their projections on the subspace spanned by the weight vectors to the first layer neurons. (F ) Performance on multitask EMNIST
(averaged over five initialization seeds) as a function of layer size for networks with neuron-specific modulations and feedforward weights given by ΔPMD
(purple diamonds), ΔSD (gray circles), ΔPCA (blue triangles), and random projections (RP, red triangles).

set of difference vectors between data samples, we ensure that
constructible normal vectors lie within the data subspace, and
that they constitute useful putative decision boundary directions.

To achieve such alignment, we minimized the residual minc∥∥ΔxT − cTW
∥∥

2 between any given difference Δx and its
optimal reconstruction as a linear combination of input weight
vectors (the rows of the input weight matrix W , Fig. 4E) with
respect to W for a representative set of differences

argmin
C,W

‖ΔX − C W ‖2 . [3]

In this reconstruction loss, ΔX is a matrix with as rows the
difference vectors and C the matrix with as rows the optimal
coefficients c. We note that supervised training of weights and
gains also decreased the residual of the reconstruction loss, and
reached a much lower value in case of multitask learning than
for task-specific networks (SI Appendix, Fig. S2). We minimized
Eq. 3 in three different ways (SI Appendix, Table S1 and Fig.
S3A). First, in the matrix W that optimizes Eq. 3 without
regularizer or constraint (for lower hidden layer dimensionality k
than input dimensionality n), the rows are given by the principal
components of ΔX (ΔPCA), and this problem can be solved
in a biologically plausible manner through Hebbian learning
rules (32). Second, to encourage alignment between input weight
vectors and difference vectors, we asked that any given Δx can be
expressed with few weight vectors. We achieved this by adding an
L1-regularization term � ‖C‖1 to Eq. 3. Thus, Eq. 3 became the
canonical sparse dictionary learning problem (ΔSD) (53, 54),
which can also be solved by neural networks with biologically
plausible Hebbian learning rules (33). Finally, we encouraged
input weight vectors to capture local pixel correlations. We
achieved this by placing an L1 constraint on

∥∥wj:
∥∥

1 ≤ � on
the rows of W , next to an L1 constraint

∥∥c:j∥∥1 ≤ � for the
columns of C . This doubly constrained minimization is known
as the penalized matrix decomposition (ΔPMD) (55).

We then froze these feedforward weight matrices W and
embedded them in a network architecture with a single hidden
layer of gain-modulated neurons, with shared x-shift and bias.
The hidden neurons targeted a single gain-modulated output unit

through identical feedforward weights, and task-specific gains
were trained in a supervised fashion. We found that solving Eq. 3
for differences between data samples instead of the data samples
themselves generally resulted in a performance increase when
combined with neuron-specific modulations to solve multitask
EMNIST (SI Appendix, Fig. S3B). Assessing the relationship
between input dimensionality (n = 784) and dimensionality
of the hidden layer (number of hidden neurons k), we found
that ΔPCA performed well for low numbers of hidden neurons,
but that task performance saturated quickly and decreased for
k ≥ 100 (Fig. 4F, blue). This result is in agreement with our
theoretical considerations: When the effective dimensionality
of the data is reached, further orthogonal components do not
contribute usefully to the decision boundary, as they lie outside
of the subspace of the input data. In contrast, using random
projections (RP) in W by sampling from a Gaussian distribution
resulted in performances that increase strongly with k (Fig. 4F,
red). This can be understood by considering that with increasing
numbers of random vectors, it becomes more likely that their
linear combinations can approximate difference vectors between
data points. Finally, we found that ΔPMD reached the highest
performances for all k (Fig. 4F, purple). These weight vectors
being sparse likely facilitates learning performant sets of neuron-
specific modulations, as up- or down-regulating a specific hidden
neuron influences only a localized area of the input space. By
consequence, neurons with receptive fields in other areas of the
input space do not need readjustment, whereas neurons with
nonlocal receptive fields would need to be readjusted. In these
optimizations, the shared x-shift and bias, as well as the learning
rate, were optimized through an evolutionary algorithm for each
configuration separately (SI Appendix, Fig. S3C ).

Task-Modulated Contrastive Learning for Stacking Processing
Layers. Sensory processing in the brain is thought to proceed in
a hierarchical manner through a number of processing layers
(9, 10). Deep artificial networks also implement hierarchical
processing through a stack of layers, the learning of which is
orchestrated by error backpropagation (56, 57). Nevertheless,
the question of whether this algorithm could plausibly be imple-
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mented in the brain is still a matter of debate (58), in contrast
to representation learning approaches such as PCA (32) or SD
(33), which have biologically plausible implementations. These
representation learning approaches, however, do not extract
higher-order features when stacked in a deep network (52).
Furthermore, by introducing neuron-specific modulations to the
hidden processing layers, the representation learning problem
becomes even more complex, as now the hidden representations
depend on task modulation.

We propose a representation learning algorithm that does not
rely on error backpropagation between layers, and where the task
dependence of the hidden representations is an integral feature
that improves generalization. As we have shown above, sparse
feedforward connectivity is beneficial in concert with neuron-
specific modulations. We therefore applied our algorithm to a
convolutional architecture (Fig. 5A), which by design features

localized receptive fields adapted for visual processing (59).
Our representation learning approach takes inspiration from
a successful contrastive learning (CL) algorithm (60). In this
algorithm, augmentations (e.g., occlusions, rotations, scalings,
and combinations thereof) are applied to the input data and
the convolutional feedforward network creates hidden represen-
tations thereof. A multilayer perceptron (CL-MLP)—applied
to these hidden representations—is trained in concert with
the convolutional feedforward weights to maximize similarity
between representations if they originate from augmentations
of the same input sample; conversely to maximize contrast if
they originate from different input samples. In the original
formulation (60), the CL-MLP is applied once at the end of
the feedforward pathway, and weight changes are orchestrated
across layers by error backpropagation of the CL loss. Here,
we constructed our networks layer by layer by applying this

A C

DB

E F

Fig. 5. Hierarchical stacking of task-modulated convolutional layers. (A) We train a stack of gain-modulated convolutional layers on multitask CIFAR-10 and
multitask STL-10 using a contrastive learning (CL) objective. Each layer consists of a CL multilayer perceptron (CL-MLP, yellow) to implement the CL objective,
a set of convolutional feedforward weights (purple), and an output unit (blue) to learn the task-specific gains. In this task-modulated contrastive learning
(TMCL) paradigm, no error gradients flow back between layers. (B) To learn the convolutional feedforward weights to the next layer (orange arrow), the
CL-MLP maximizes contrast between representations in the last learned layer that originate from different data samples, and similarity between representation
that originate from augmentations (occlusions, scalings, rotations, and combinations thereof) of the same data sample to which, additionally, different
task modulations are applied (green arrows represent the feedforward pathway up until the last learned layer). (C) Performances averaged over five
initialization seeds on multitask CIFAR-10 (Left) and multitask STL-10 (Right) for the gain-modulated networks (with shared x-shift), with filters trained by:
error backpropagation (red), TMCL (blue), contrastive learning without similarity maximization across task modulations (CL w/o task-similarity, green), given by
random projections (RP, black), or RP stacked on top of a TMCL layer (gray). (D) Multitask CIFAR-10 (Left) and multitask STL-10 (Right) performances of TMCL
for networks with four layers, where during the TMCL phase similarity was maximized only over a subset of tasks, and the x-axis value denotes the no. of
tasks in the subset (ten random but distinct subsets where evaluated for each number of tasks). Median performance, orange; box denotes [Q1,Q3] over the
ten subsets, max. whiskers extent is five times the interquartile range (i.e., Q3–Q1), circles denote values outside of the max. whisker extent. Note that no.
of tasks = 1 is the same as CL w/o task-similarity. (E) UMAP projections of the hidden, task-modulated representations from CIFAR-10 for the TMCL-trained
network. Color code as in the legend, except that the class to be recognized is black (“dog” for task 5 and “truck” for task 9). (F ) Same as E, but for the CL-trained
network without task-similarity.
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algorithm in a layer-wise fashion. Hence, a local CL-MLP
minimized the CL loss to learn the feedforward weights between
the previous and the current layer, and no error gradients
propagated across layers (Fig. 5A, see SI Appendix, Methods for
details). After this CL phase, we learned task-specific gains for the
hidden neurons in the current layer through a task-independent
output unit (OU) that maximized classification performance in a
supervised manner (Fig. 5A, blue). To train feedforward weights
to the next layer in the next CL phase, the task modulations
learned in the previous layers were treated as additional data
augmentations, across which similarity had to be maximized
(Fig. 5B).

We tested our task-modulated contrastive learning (TMCL)
algorithm on multitask CIFAR-10 (61) and multitask STL-10
(62), and found that network performance, averaged over all
tasks, increased with the number of layers (Fig. 5C, blue). To
establish a performance envelope, we tested equivalent network
architectures trained in a fully supervised manner through end-
to-end error backpropagation (Fig. 5C, red). The performance
of networks with RP started at lower values and did not
increase as much, or even decreased, across layers (Fig. 5C,
black). Similarly, stacking RP layers on top of a TMCL layer
did not increase performance across multiple layers (Fig. 5C,
gray). Finally, removing similarity maximization across task
representations from TMCL also abolished the performance
increase with stacking (Fig. 5C, green). We furthermore assessed
network performance while using different numbers of tasks over
which to maximize similarity. For each number of tasks, we
selected ten random but distinct subsets containing that amount
of tasks. During the CL phase, only those tasks were different
across representations originating from the same sample. We then
evaluated network performance across all tasks and found that
performance increased with subset size (Fig. 5D), indicating that
maximizing similarity across many tasks improves generalization.

Finally, we visualized how the network constructs and
modulates hidden representations, to investigate whether high-
level information was extracted across layers. We applied the
uniform manifold approximation and projection [UMAP, (63)],
a nonlinear visualization method, to TMCL-generated hidden
representations. In the first layer, at most a general distinction
between manmade objects (red shades) and animals (blue shades)
could be observed, while in the fourth layer individual classes
appeared in a localized pattern (Fig. 5E). Such localized patterns
were also found with error backpropagation (SI Appendix, Fig.
S4A), but could not be distinguished for CL without task-
similarity (Fig. 5F ) or for RP (SI Appendix, Fig. S4B).

Spiking Networks with Biophysically Realistic Dendritic
Branches Learn Task Switching Online. We have shown in this
paper that networks of ReLU neurons can learn to implement
multitudes of tasks with a form of gain modulation that models
the impact of dendritic NMDA-spikes on somatic output. It
remains to be shown, however, that inputs to biophysically
realistic dendritic branches—eliciting NMDA-spikes—can in-
deed modulate the spiking output of neurons in an orchestrated
manner and to a sufficient degree of precision, so that the
network as a whole can solve many tasks. To demonstrate this, we
maintained a structure similar to the model with one hidden layer
investigated previously (Fig. 4), but replaced the gain-modulated
ReLU neurons with spiking models that have realistic dendritic
subunits. We simplified the L5 PC model (SI Appendix, Fig. S5)
using the method developed in our previous work (64), obtaining
a model that was computationally sufficiently inexpensive to

permit the network to be run over long timescales, thus allowing
us to present a large amount of inputs. The output neuron was
a single compartment model, obtained by only fitting the soma
of the full L5 PC model, whereas the hidden layer consisted of
100 neurons, each equipped with 40 dendritic compartments
where context-modulating AMPA+NMDA synapses impinged
(Fig. 6A, blue). Feedforward weights to the somata of the hidden
neurons were given by the ΔPMD, ΔSD, PCA, or RP matrices.
We think of the feedforward weights to the output neuron as
being unspecific, perhaps a direct connection path to a brain
area trying solve tasks with low-level information. Before the
specific weights in such a path are learned, the targeted brain
area can already solve tasks by providing global error-feedback
to dendritic contextual synapses in the early sensory area. We
therefore implemented these weights as being uniform, but with
some Gaussian variability (�/� = 0.1, see SI Appendix, Methods
for the precise value for �). All feedforward synapses (to the
hidden neurons and to the output neuron) were static, whereas
the context-modulating synapses to the dendritic compartments
were subject to plasticity to learn the various tasks.

Learning at the dendritic synapses was orchestrated by an
online error-weighted Hebbian plasticity rule during a con-
tinuous stream of inputs (Fig. 6B). Because of our choice of
architecture, with similar weights from all hidden neurons to
the output neuron, this learning rule approximately follows the
error gradient of the classification loss (SI Appendix, Methods).
For each data sample, the pixel intensities were converted into
short, Gaussian bursts of spikes (width of 6 ms), with spike
numbers proportional to pixel intensity. These spikes were fed
into feedforward synapses, whose weights were scaled according
to the matrices computed in the previous section. Conversely,
the task context was encoded by a wide Gaussian burst (width
of 20 ms), consisting of on average 60 spikes if the context was
active and zero spikes otherwise. The first of the feedforward
spikes opened a 50-ms window in which the output neuron had
to either generate an output spike— in response to a random
sample — or generate no output spike — in response to a sample
from the class to be recognized. In case of erroneous firing, a global
error signal (Fig. 6B, red) was relayed to the dendritic synapses
of the hidden neurons. This error signal was then multiplied by
a low-pass filter of the somatic spike output (Fig. 6B, green), a
low-pass filter of the presynaptic spike input (Fig. 6B, blue), and
a learning rate modulation (Fig. 6B, purple) based on a low-pass
filter of the local dendritic voltage (Fig. 6B, black).

This network architecture solved multitask EMNIST, and
tasks that are demonstrably not linearly separable, such as
XOR (SI Appendix, Fig. S6). Initially, the output neuron fired
indiscriminately but learned to spike correctly during the target
intervals (Fig. 6C and SI Appendix, Fig. S6 C and D, shaded
boxes). Assessing network performances averaged over all 47
tasks (Fig. 6D), we found that performance differences observed
between alternative feedforward matrices for the artificial network
architecture (Fig. 4F ) were exacerbated, with RP performing
barely better than chance level. Thus, in the noisy and imprecise
spiking system, it is all the more important that the feedfor-
ward weight matrix consists of localized receptive fields, well-
adapted to the input data. Our ΔPMD matrix achieves this
for multitask EMNIST. Finally, we assessed the somatic and
dendritic activity after learning in the same hidden neuron, for
the same feedforward input, across different tasks (Fig. 6E, in the
ΔPMD-network). We found that between zero and three output
spikes were emitted, depending on the precise dendritic state.
Thus, this network successfully learned multitask EMNIST by
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A B

EDC

Fig. 6. Dendritic branches learn to solve multitask EMNIST through a biologically plausible learning rule. (A) To simulate a feedforward network consisting of
neurons with biophysically realistic dendritic subunits for a sufficiently long time, we reduce the L5 PC and synapse configuration shown in Fig. 1F (64). We
then connect these neurons to an output neuron—implemented as a single-compartment reduction of the same model— that learns to spike in response to
a random sample and to remain silent in response to a sample from the class to be recognized. (B) Weight changes of dendritic synapses (brown, Bottom) are
computed as the product of a global error signal (red), a low-pass filter of the postsynaptic spikes (green), a low-pass filter of the presynaptic spikes (blue) and a
voltage-dependent learning rate modulation (purple). (C) Voltage trace of the output neuron before learning (Top) and after learning (Bottom), for the network
with the ΔPMD feedforward weight matrix, during an examplar one-vs-all task (not spiking in response to “two”). Note that the apparent variability in spike
amplitude is due to the recording time step of 1 ms. (D) Performance on multitask EMNIST of the resulting model for the different feedforward weight matrices,
labels as in Fig. 4F. (E) Somatic voltage (teal) and a subset of dendritic voltages (blue) in a representative hidden neuron, for the same feedforward input [i.e.,
the input weights (Top, Left) that scale the synaptic inputs originating from a randomly chosen data sample (Top, Right)] and five example tasks (Left to Right).
Similarly to C, variability in spike amplitude is due to a recording time step of 1 ms.

expressing a different dendritic state for each task. These learned
dendritic states modulated rapid feedforward processing to solve
a multitude of tasks, supporting our central hypothesis.

Discussion

In this work, we have proposed dendritic NMDA-spikes as a
mechanism for contextual adaptation, and have shown that they
can modulate the neuronal output in a manner compatible
with the biological constraints. The resulting neuron-specific
modulations can reshape the functional mapping of sensory
networks according to task context, without relying on changes
to the feedforward weights. As individual NMDA-spikes in
dendritic branches contribute only a small amount to the
somatic depolarization, the ensemble of branches implements
a graded modulation of the somatic output. In turn, this allows a
Hebbian, error-modulated plasticity rule to orchestrate gradient-
based learning of the dendritic synapses to a sufficient degree of
accuracy, so that the network as a whole can solve many tasks.
We have also shown that task modulations to hidden layers can

augment sensory representations, facilitating the extraction of
high-level features through contrastive learning without relying
on the backpropagation of errors across processing layers.

While the component of TMCL that learns task modulations
can be implemented in a biologically plausible fashion, as shown
through our network model with realistic dendritic subunits,
the contrastive learning step in our study relies on precise error
backpropagation through the CL-MLP. However, a contrastive
learning algorithm has recently been proposed in the context
of predictive coding that relies solely on Hebbian learning rules
(34). This algorithm shows that contrastive learning could be
implemented in a self-supervised manner, by neurons connecting
locally to principal feedforward cells, and using gaze information
to assess whether similarity or contrast has to be maximized.

Aside from the somatic channels and NMDA receptors, the
membrane of the L5 PC model was fully passive, as this was
the only technically feasible way to implement simulations with
multitask learning. As a consequence, the contribution of apical
contextual inputs to the somatic voltage may be underestimated
in our L5 PC model. By modeling the active properties of the
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L5 PC cell through a full complement of Ca2+, Na+, and K+

channels distributed in the apical dendrite (45), we nevertheless
demonstrated that dendritic modulation through both apical
and basal NMDA inputs into active dendrites can be captured
in our general framework (SI Appendix, Fig. S7). Thus, Ca2+-
spikes could provide complementary modulation by amplifying
NMDA-spikes in the apical compartments. Finally, our results do
not exclude GABAA and GABAB receptor-mediated regulation
of dendritic spike generation as another contextual signal.

Our work suggests that top-down dendritic modulation can
complement feedforward activity to nudge neural responses to-
ward desired activities. If consistent across contexts, a modulation
thus constitutes a target for the feedforward input, yielding
a natural relation to theories of dendritic error representation
(65–67). This potential combined role of dendrites for error
representation and contextual modulation is corroborated by
some early evidence (68).

A puzzling observation, first discovered in high-level areas
(69, 70) and later also in early sensory regions (71–73), is
that the participation of a neuron in the representation of a
sensory stimulus changes over time. This representational drift
raises questions about the framework of classical representation
learning, and about how stable perception can be achieved
(74, 75). As we show, changes to the sensory representation could
help in extracting high-level information in further processing
layers. The drift itself could be a manifestation of changes in
the internal mental state—encoded on dendritic trees and thus
invisible in most imaging experiments.

Feedforward processing needs to be rapid, for instance, to
initiate evasive action when a threat is identified, while contextual
modulation likely proceeds on a slower time scale, for instance
to bias the feedforward pathway toward detection of relevant
threats given an environment. We have linked this difference
in time scales to the underlying biophysical processes: the short
duration of somatic spikes (1 to 5 ms) and by extension the whole
feedforward pathway (100 to 150 ms) (35, 36) in comparison
to the duration of dendritic spikes [50 to 100 ms, or possibly
longer (37, 76)]. These temporal scales match the frequency
bands associated with feedforward processing (gamma, 60 to 80
Hz) and top-down processing (alpha–beta, 10 to 20 Hz) observed
across a large range of tasks and stimuli (77–82).

Another interesting aspect of dendritic NMDA-spikes is that
they function as branch-local, semi-independent feature detectors
(83). In the brain, the contextual signal to a neuron is likely a rich
combination of cross-modal information, recurrent information
about the recent past, and top-down signals about high-level
goals, behavioral state, and environment characteristics. Spatially
segregated feature detection allows neurons to robustly infer
context from all these different signals by preventing spurious
activations by random subsets of inputs (84). Local recurrent
connections target basal and proximal apical dendrites (85, 86),
and may relay information about the recent past as a context
for the present. Axons carrying top-down signals primarily target
L1, indicating that the apical tree is an important locus for the
integration of contextual information (87). To a lesser extent,
these axons also target L5 and L6 (88, 89), indicating that
contextual information provided by local recurrent circuitry may
still be augmented by top-down modulations.

Taken together, our work reframes feedforward processing
in the brain as a fundamentally adaptable process, steered
dynamically by contextual inputs that modify the dendritic state.
Our theory matches environmental constraints to the underlying
biophysical layout, and may help to explain diverse observations,

such as the frequency bands associated with feedforward and
top-down processing, and the apparent instability of sensory
representations.

Materials and Methods

The L5 PC model (45) was equipped with membrane parameters to reproduce
the amplitudes of glutamate-uncaging evoked NMDA-spikes in L5 PC dendrites
and somata. The model was then targeted by excitatory synapses to the dendritic
compartments featuring both AMPA and NMDA receptors, while current-based
feedforward synapses impinged on the soma. Simulations were performed
using NEAT (64) and NEURON (90). With a custom PyTorch (91) data sampler,
we then ensured that the data for multitask learning was balanced across tasks
and task-classes. The IO relation of an abstract network layer with task-specific
gain & shared x-shift & bias, was described by

y = �
(
g(l)

t � (W(l) x− x(l)
shift) + b(l)

)
, [4]

with as shared parameters the weight matrix W(l), the x-shift x(l)
shift and the

bias b(l), and as task-specific parameters the gains g(l)
t . � was the ReLU

activation and l = 1, . . . , L the layer index. We then employed five learning
schemes for the parameters: i) multitask learning through supervised error
backpropagation on all parameters (Fig. 3), ii) transfer learning by freezing the
shared parameters (pretrained in the multitask setup) and supervised error
backpropagation on the task-specific parameters (Fig. 3), iii) unsupervised

learning of W(1), combined with supervised learning of g(1)
t (Fig. 4, in

these simulation x(1)
shift and b(1) were scalar and treated as metaparameters,

SI Appendix, Fig. S3C). iv) In the convolutional setup (Fig. 5), the analogue of
W(l) is the set of convolutional filters, which were trained through layer-local

task-modulated contrastive learning, while gains g(l)
t of each layer were trained

through layer-local supervised learning. v) In the biophysical network setup
(Fig. 6), each entry of W(1)—pretrained through (iii)—was proportional to the
weight of a single feedforward synapse. Feedforward synapses then remained
frozen, while the AMPA+NMDA synapses in the dendritic compartments were
learned in an online fashion through a Hebbian, error-modulated learning
rule. Full simulation details and mathematical derivations can be found in SI
Appendix, Methods.

Data, Materials, and Software Availability. Computer code and intermedi-
ate simulation data have been deposited in Zenodo (https://doi.org/10.5281/
zenodo.7870103) (92).
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