115 research outputs found

    Hidden fuzzy Markov chain model with K discrete classes

    Get PDF
    International audienceThis paper deals with a new unsupervised fuzzy Bayesian segmentation method based on the hidden Markov chain model, in order to separate continuous from discrete components in the hidden data. We present a new F-HMC (fuzzy hidden Markov chain) related to three hard classes, based on a general extension of the previously algorithms proposed. For a given observation, the hidden variable owns a density according to a measure containing Dirac and Lebesgue components. We have performed our approach in the multispectral context. The hyper-parameters are estimated using a Stochastic Expectation Maximization (SEM) algorithm. We present synthetic simulations and also segmentation results related to real multi-band data

    Hidden fuzzy Markov chain model with K discrete classes

    Get PDF
    International audienceThis paper deals with a new unsupervised fuzzy Bayesian segmentation method based on the hidden Markov chain model, in order to separate continuous from discrete components in the hidden data. We present a new F-HMC (fuzzy hidden Markov chain) related to three hard classes, based on a general extension of the previously algorithms proposed. For a given observation, the hidden variable owns a density according to a measure containing Dirac and Lebesgue components. We have performed our approach in the multispectral context. The hyper-parameters are estimated using a Stochastic Expectation Maximization (SEM) algorithm. We present synthetic simulations and also segmentation results related to real multi-band data

    Simultaneous motion detection and background reconstruction with a conditional mixed-state markov random field

    Get PDF
    In this work we present a new way of simultaneously solving the problems of motion detection and background image reconstruction. An accurate estimation of the background is only possible if we locate the moving objects. Meanwhile, a correct motion detection is achieved if we have a good available background model. The key of our joint approach is to define a single random process that can take two types of values, instead of defining two different processes, one symbolic (motion detection) and one numeric (background intensity estimation). It thus allows to exploit the (spatio-temporal) interaction between a decision (motion detection) and an estimation (intensity reconstruction) problem. Consequently, the meaning of solving both tasks jointly, is to obtain a single optimal estimate of such a process. The intrinsic interaction and simultaneity between both problems is shown to be better modeled within the so-called mixed-state statistical framework, which is extended here to account for symbolic states and conditional random fields. Experiments on real sequences and comparisons with existing motion detection methods support our proposal. Further implications for video sequence inpainting will be also discussed. © 2011 Springer Science+Business Media, LLC.postprin

    Evidential Markov chains and trees with applications to non stationary processes segmentation

    Get PDF
    The triplet Markov chains (TMC) generalize the pairwise Markov chains (PMC), and the latter generalize the hidden Markov chains (HMC). Otherwise, in an HMC the posterior distribution of the hidden process can be viewed as a particular case of the so called "Dempster's combination rule" of its prior Markov distribution p with a probability q defined from the observations. When we place ourselves in the theory of evidence context by replacing p by a mass function m, the result of the Dempster's combination of m with q generalizes the conventional posterior distribution of the hidden process. Although this result is not necessarily a Markov distribution, it has been recently shown that it is a TMC, which renders traditional restoration methods applicable. Further, these results remain valid when replacing the Markov chains with Markov trees. We propose to extend these results to Pairwise Markov trees. Further, we show the practical interest of such combination in the unsupervised segmentation of non stationary hidden Markov chains, with application to unsupervised image segmentation.Les chaînes de Markov Triplet (CMT) généralisent les chaînes de Markov Couple (CMCouple), ces dernières généralisant les chaînes de Markov cachées (CMC). Par ailleurs, dans une CMC la loi a posteriori du processus caché, qui est de Markov, peut être vue comme une combinaison de Dempster de sa loi a priori p avec une probabilité q définie à partir des observations. Lorsque l'on se place dans le contexte de la théorie de l'évidence en remplaçant p par une fonction de masse m, sa combinaison de Dempster avec q généralise ainsi la probabilité a posteriori. Bien que le résultat de cette fusion ne soit pas nécessairement une chaîne de Markov, il a été récemment établi qu'il est une CMT, ce qui autorise les divers traitements d'intérêt. De plus, les résultats analogues restent valables lorsque l'on généralise les différentes chaînes de Markov aux arbres de Markov. Nous proposons d'étendre ces résultats aux arbres de Markov Couple, dans lesquels la loi du processus caché n'est pas nécessairement de Markov. Nous montrons également l'intérêt pratique de ce type de fusion dans la segmentation non supervisée des chaînes de Markov non stationnaires, avec application à la segmentation d'images

    Detection of Macula and Recognition of Aged-Related Macular Degeneration in Retinal Fundus Images

    Get PDF
    In aged people, the central vision is affected by Age-Related Macular Degeneration (AMD). From the digital retinal fundus images, AMD can be recognized because of the existence of Drusen, Choroidal Neovascularization (CNV), and Geographic Atrophy (GA). It is time-consuming and costly for the ophthalmologists to monitor fundus images. A monitoring system for automated digital fundus photography can reduce these problems. In this paper, we propose a new macula detection system based on contrast enhancement, top-hat transformation, and the modified Kirsch template method. Firstly, the retinal fundus image is processed through an image enhancement method so that the intensity distribution is improved for finer visualization. The contrast-enhanced image is further improved using the top-hat transformation function to make the intensities level differentiable between the macula and different sections of images. The retinal vessel is enhanced by employing the modified Kirsch's template method. It enhances the vasculature structures and suppresses the blob-like structures. Furthermore, the OTSU thresholding is used to segment out the dark regions and separate the vessel to extract the candidate regions. The dark region and the background estimated image are subtracted from the extracted blood vessels image to obtain the exact location of the macula. The proposed method applied on 1349 images of STARE, DRIVE, MESSIDOR, and DIARETDB1 databases and achieved the average sensitivity, specificity, accuracy, positive predicted value, F1 score, and area under curve of 97.79 %, 97.65 %, 97.60 %, 97.38 %, 97.57 %, and 96.97 %, respectively. Experimental results reveal that the proposed method attains better performance, in terms of visual quality and enriched quantitative analysis, in comparison with eminent state-of-the-art methods
    corecore