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Abstract

Quantification of white matter hyperintensities (WMH) is necessary to understand

their role in several neurological diseases. Measurements such as volumetric esti-

mations need to be accurate enough to provide valid insights. Consequently, robust

and accurate segmentation of WMH is needed. Modern machine learning techniques

such as Deep Learning (DL) have made important advances in this field, showing

unprecedented performance in segmentation. However, their applicability in realistic

clinical scenarios is still questioned due to their lack of generalization capabilities

when trained on limited amounts of data. This problem could be more notable in

segmentation of anomalies such WMHs. Therefore in this thesis, I focus on the

three main challenges that make the task of WMHs segmentation more difficult: i)

Inter-modality heterogeneity –the number and type of modalities to analyzed WMHs

can vary from center to center, where less expensive to acquired modalities could

not be always available for every single patient; ii) morphological heterogeneity

–WMHs present diverse shapes and appearances, therefore, learn invariant features to

these variations requires large and morphological diverse datasets; iii) intra-modality

heterogeneity –scanners or acquisition protocols can be different from one center

to another, therefore, segmenting images acquired at a different center than the one

used for model training can result in an inaccurate segmentation.

In this thesis, I proposed different approaches to tackle the aforementioned

challenges. Firstly, I address inter modality-heterogeneity; I proposed an efficient

strategy to leverage information from all available modalities (at the training stage)

with the ultimate end of improving segmentation performance on models that only

can use more simplistic modalities as input. Next, I proposed a data augmentation
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approach to increase morphological variability in the training sets; Thus, models

can learn features that are robust to this type of variation. To deal with intra-

modality heterogeneity, I proposed two different approaches for unsupervised domain

adaptation. The first approach proposed a simple but effective strategy based on

Knowledge Distillation (KD) to transfer information from labeled (source domain) to

unlabeled data (target domain). The second approach extends this idea by introducing

data augmentation and consistency training to encourage robustness to different levels

of noise on the data. I believe that the proposed methodologies offer an important

contribution to the medical imaging field by providing solutions that improve the

performance of Deep Learning approaches in realistic clinical settings.
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Chapter 1

Introduction

1.1 Motivation

White Matter Hyperintensities (WMHs) are constantly analyzed in medical images

because of their correlation with aging and several neurological disorders such as

cognitive impairment, stroke, and dementia. Obtaining quantitative measures of

WMHs is a crucial step in the study of these relationships and requires substantial

effort from radiologists which have to manually delineate those anomalies on images.

Computer vision and machine learning techniques have shown to be essential in

the development of automatic delineation (a.k.a segmentation) solutions. For an

automatic method to be accepted in clinical settings, it has to be computationally

efficient, accurate, and robust under different conditions of resolution, noise, image

artifacts, and the inherent variability in the presentations of the pathology of study.

Several challenges make segmentation of WMHs difficult. WMHs are highly di-

verse in morphology, appearance, and locations in the brain. Moreover, acquisition

protocols, scanners, or modalities chosen to imaging WMHs change from case

to case producing several image appearances. In addition, current public WMHs

datasets used to train segmentation models are usually composed of a few sam-

ples which come from the similar populations or were acquired with the same

scanners/acquisition protocols.

In the past few years, modern techniques such as Deep Neural Networks have proved

to be the state-of-the-art for several medical imaging tasks including registration, im-
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age classification, and segmentation [Lundervold and Lundervold, 2019]. However,

despite the impressive success of such methods, in the absence of large annotated

datasets, most current deep learning-based methods lack generalization capabilities

when deployed on data which differs from the one used on training sets. This is

a critical barrier that limits their applicability in clinical practice, where it is very

likely these methods would be deployed on data with different characteristics (e.g.

due to differences in acquisition protocols, modalities, scanner type, pathology, and

demographics).

The focus of this thesis is the development of methodologies that improve the

applicability of deep learning segmentation methods to clinical settings by making

them robust to variations in WMH morphology and generalizable to realistic shifts

in the data distribution.

1.2 Challenges in WMH segmentation
Deep neural networks (DNN) have become the first choice for the segmentation of

WMH. The top-three performing methods in the 2017 MICCAI WMH segmentation

challenge1 relied on some form of DNNs. However, most segmentation methods

lack the ability to generalize to shifts in the data distribution. They are designed

under the assumption that training and testing sets come from the same domain (e.g.

scanner, modality, machine protocol etc.). However, this kind of homogeneity on

data does not represent a realistic scenario, as in practice it is uncommon to have

access to labeled data from a new center to retrain a model. Thus, a pre-trained model

from a given domain can in many cases, have its performance reduced drastically

when deployed on data which differs significantly from the training set. Therefore,

achieving this generalization depends mostly on the available training data’s ability

to represent the expected heterogeneity in test cases. However, as opposed to other

visual applications, acquiring medical images is time-consuming, expensive, and

requires special equipment. Consequently, current retrospective datasets hold a

limited number of training samples with homogeneous properties. Besides those

1http://wmh.isi.uu.nl

http://wmh.isi.uu.nl
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datasets deficiencies, the segmentation of WMH faces additional challenges that

need to be addressed to achieve more robust and generalizable models.

• Inter-Modality heterogeneity: The segmentation of WMHs benefits from

complementary information provided by different sequences. Consequently,

segmentation approaches ideally aim to combine sequences such as T1-w and

fluid-attenuated inversion recovery (FLAIR) –Those modalities are able to

encode most of the information provided for other modalities such as T2-w

and PD-w for WMHs analysis. However, in clinical practice, the combination

of modalities for each case of study is heterogeneous with some modalities

missing. For example, for a given patient only the T1-w scan could be acquired,

either because it is faster or because they are generally acquired at a higher

resolution. The heterogeneity of available models limits the practicality of sys-

tems where cases with missing modalities have to be discarded for evaluation

or training.

• Morphological heterogeneity Particularly, WMHs vary largely in shape,

locations, and appearance. For proper generalization performance of Deep

neural networks, the learned features should be invariant under particular

morphology variations of the input. However, learning invariant features to

cope with these variations is difficult if the data used to train the models is

composed of few samples with insufficient variability among them.

• Intra-Modality heterogeneity Deep learning models that assume independent

identically distributed data require that training and test sets come from a

similar domain (e.g., scanner, machine protocol) in order to guarantee good

learning [Perone et al., 2019]. However, this assumption does not hold in

practice as acquisition parameters and/or protocols vary from clinic to clinic

producing several image appearances. Such differences result in shifts between

the training (source) and test (target) sets distributions, which leads to a

performance decrease when the model is applied to unseen domains. Although

this problem can be alleviated by retraining on labeled data from the new
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domain, this solution is neither practical nor scalable. Therefore, there is

a need to develop strategies that learn to generalize well to the target data

without the need of additional labeling work. Achieving this objective requires

efficient domain-adaptation strategies between labeled and unlabeled training

sets.

1.3 Thesis Overview and Contributions
As previously described there are critical challenges that make it difficult to train

models that generalize well to unseen data. This thesis aims to provide solutions that

overcome those challenges with the ultimate aim of obtaining robust segmentation

models for WMHs. From the technical point of view, some hyper-parameters

such as model architecture, optimizer selection, loss and/or regularization functions

influence to some degree the model capability of the generalization. Besides the

above mentioned variables, this work highlight however, that generalization relies

in big proportion on the data which the model learns from. Therefore, I argue that

model generalization can be strongly benefited by smart utilization of the data at

hand. Consequently, most of the contribution of this work focuses on leveraging the

available training data to extract the maximum amount of information that allows us

to overcome the aforementioned challenges on the segmentation of WMHs.

In Chapter 2, I summarize the background required to put the later work in

context with medical and technical domains, so readers who are not familiar with

these topics can follow the remaining Chapters.

The remaining Chapters present the contributions of this thesis. Approaches

presented in Chapter 3 and Chapter 4 are considered as fully supervised as those

only leverage the initial training set which is manually annotated. The approaches in

Chapter 5 and Chapter 6 are considered unsupervised domain adaptation strategies,

which also leverage unlabeled data from the clinic/set at the deployment stage.

Chapter 3 addresses inter-modality heterogeneity. The combination of modali-

ties used to analyze WMHs can vary from clinic to clinic or even patient to patient.

Moreover, some clinical settings rely only on commonly used but less time consum-
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ing or expensive modalities.

A new strategy is proposed to learn efficiently from available multi-modal

information in such a way that the model can be deployed on commonly used

imaging modalities. The proposed method learns simultaneously FLAIR synthesis

and WMH segmentation from T1-w scans . Once the training is done, the model can

be deployed on unpaired data where FLAIR images are missing. I demonstrate that

the joint optimization of synthesis and segmentation tasks induce a regularization

effect which results in an improvement in segmentation performance. The proposed

method produces more realistic synthetic FLAIR images compared to the traditional

synthesis strategies. Most importantly, it outperforms segmentation of WMHs from

T1-w scans only as well as traditional missing modalities imputation methodologies.

Chapter 4 addresses morphological heterogeneity. The shape of lesions can

vary largely among subjects. To achieve proper generalization, models should learn

features that are invariant to the particular shape variations of the input. However, in

small training sets the amount of morphological patterns present in the training data

is typically limited. Therefore models overfit to the shape variations that are present

in the training set. To encourage morphological invariance in DNNs, I introduce

PADDIT (Probabilistic Augmentation of Data using Diffeomorphic Image Transfor-

mation). The main advantage of PADDIT is the ability to produce transformations

that capture the morphological variability in the training data. Therefore, PADDIT is

able to generate more realistic and diverse samples that promote learning of more

invariant features. I show that DNNs trained with PADDIT have significant improve-

ment in segmentation performance when compared with random deformations based

augmentations.

Chapter 5 deals with intra-modality heterogeneity, i.e the distribution shift

between scans of a single modality when they come from different scanners or

centres. I tackle this issue by formulating it as an unsupervised domain adaptation

problem. Here, annotated training samples are referred to as the source domain

whereas data at the deployment stage is referred to as the target domain. The overall

idea is to leverage unlabeled data from the target domain to refine a model pre-trained
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on the source domain, making it more robust to variation in the inputs. To this end, I

modify the technique known as knowledge distillation [Hinton et al., 2015](initially

conceived to transfer knowledge from a large model, referred to as the teacher, to

a simpler model referred to as the student) to transfer knowledge from source to

target data. A teacher model is initially trained on source data using ground truth

labels. Then, unlabeled samples from the source and target domain go through

the teacher to get label probability maps (soft-labels). Finally, a student model is

trained on those soft-labels to learn discriminative features for both domains. I

demonstrate that this simple yet effective method allows adaptation from source

to target domain without the need for annotations nor specific hyper-parameter

tuning, making it generally applicable. Moreover, the proposed method outperforms

adversarial domain adaptation on the segmentation of WMHs.

In Chapter 6, I extend the domain adaptation idea presented in Chapter 5. While

acknowledging the benefits of learning from soft-labels, I also identify the following

drawbacks: i) The success of adaptation is conditioned on the initial performance of

the teacher on the target data (soft-labels are obtained once, off-line) ii) generaliza-

tion capability depends on the diversity of the available training data which can be

limited if it is composed of few samples. These problems were addressed through

a consistency training approach. Specifically, I introduce a paired consistency loss

(PC) to enforce consistency on the model predictions of a given input and its cor-

responding augmented version. Because the input and augmented predictions act

as soft-labels for each other, the soft-predictions are iteratively updated during the

optimization process without the need of a teacher/student scheme. In addition, It

is shown how the type of augmentation applied has a significant effect on segmen-

tation performance. Robustness to a wider range of heterogeneities is shown to be

maximized through a combination of different augmentations operations. I explored

different transformations to account for: geometric variations, MR-artifacts, and

acquisition differences. The adaptation is supplemented with an adversarial loss that

encourages the model to be domain agnostic, preventing the model from getting

stuck in bad local minima. Finally, the proposed method outperforms other training
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consistency methods that rely on teacher/student strategy.



Chapter 2

Background

Although the contributions of this thesis are primarily technical, it is also important

to understand the clinical aspects that were the base for the development of the

contributions of this thesis. In Section 2.1 I first introduce the biological and clinical

context related to white matter hyperintensities. In Section 2.2 I highlight the

importance of neuroimaging and I review the existing solutions for the visualization

of WMHs. In Section 2.3 I highlight the need for automatic segmentation and I give

an overview of the available methods for WMH segmentation. Finally, in Section 2.4

I mention the solutions that have been proposed to deal with the lack of annotated

data. Note this topic has not been investigated too much in the context of WMH

segmentation, so the mentioned reviewed approaches were in the context of medical

image segmentation in general.

2.1 White Matter
The white matter (WM) represents around 40-50% of the brain volume of young

healthy adults. This tissue is composed mainly of the neural axon and their sup-

portive ganglia [Malloy et al., 2007], which controls the delivery of nutrients and

prevents the entry of damaging elements, and is also responsible for producing and

maintaining the myelin sheaths that cover the axons. The myelin, which is mostly

composed of lipids (80%), acts as an insulator and allows the electrical conduction

along the axons, thereby speeding up the neuronal signal transmission [Deber and

Reynolds, 1991]. Damage to the white matter that affects the myelin or loss of axons
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produce a detrimental effect in the signal transmission and can be associated with

cognitive impairment. The causes for such damage can be diverse and range from

genetic disorders such as leukodystrophies, traumatic events, infectious diseases,

demyelinative disorders (multiple sclerosis), or vascular pathologies [Schmahmann

et al., 2008].

2.1.1 White Matter Disease

The term white matter disease (WMD) refers to pathological observations in white

matter with ischaemic origin as opposed to multiple sclerosis. White matter le-

sions associated with cerebral small vessel disease were classified as lacunes, cere-

bral microbleeds (CMB), infarcts, and enlarged perivascular spaces (EPVS), and

leukoaraiosis (LA) or white matter hyperintensities (WMH) [Wardlaw et al., 2013b]

2.1.1.1 White matter hyperintensities / leukoaraiosis

The terms Leukoaraiosis and White matter hyperintensities (WMHs) are interchange-

ably used to account for changes observed in the white matter of the aging population.

WMHs have been considered as a consequence of ischemia of the tissue. Degra-

dation of the myelin occurs as a consequence of neurons, and oligodendrocytes

decay due to the inability to obtain the required survival components [Wharton

et al., 2015]. There is evidence that shows the relationship between the occurrence

of WMH and impaired vascular endothelium [Wardlaw et al., 2013a]. The term

WMH is indefinite enough that can make reference to a large variety in appear-

ance, spatial distribution, and histopathological explanations. Several directions

have been suggested to address the spatial distribution, however, this task has been

challenging due to difficulty in obtaining robust and reproducible characterization of

locations. Lesions located continuously to the ventricular surface have been referred

to as periventricular WMH or PVWMH whereas the remaining ones are referred

to as deep (WMH or DWMH) [Kim et al., 2008]. DWMH has been commonly

associated with an ischaemic explanation. For its part, PVWMH can be associated

to pathophysiological explanations according to their appearance. In the case of

periventricular (PV ) caps, the areas with hyperintensities seem to be due to a sort of
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discontinuity in the ependymal lining delimiting the ventricles. These changes do

not affect the signal transmission directly through myelin deterioration [Kim et al.,

2008]. As a consequence, the observed hyperintensities in periventricular regions

are not discriminative for myelin degradation and should not be associated with

myelin pathology [Haller et al., 2013]. Another challenge for proper characterization

of lesion spatial distribution is due to the evolution over the time of white matter

damage [Yoshita et al., 2005]. When studying pathologies, longitudinal evolution

plays an important role to clarify causal relationships. A consistent pattern has been

found regarding the evolution of white matter disease. WMHs seem to appear first

at the horns of lateral ventricles, then they spread around them before reaching the

deep white matter and the basal ganglia. Moreover, it has been found that the rate

of appearance of WMH changes is associated with the volume of the lesion at the

beginning [Maillard et al., 2014]. Thus more severe cases will develop faster [Patel

and Markus, 2011].

2.2 Medical Imaging

2.2.1 Imaging the brain

Medical imaging has allowed the understanding of the structural organization and

functioning of the brain as well as the anomalies that can be present in it. In terms of

imaging, abnormalities can refer to changes in structural appearance such as enlarged

ventricles or shrinkage of the hippocampus as well as the unexpected intensity

presentations as observed in tumor, necrosis, or white matter lesions. Regarding

to abnormalities, it is expected those observations are related to some pathological

processes that affect the functioning of a given organ. It is important to note,

that finding causality relationships is a difficult task, consequently, most of the

conclusions are based on correlations that have proven to be useful and clinically

relevant along time. Imaging the brain relies on the differential properties of the

tissues to respond to stimulus such as X-rays, magnetic fields, or the way they behave

respect to a source of stimulus e.g., positron emission radiotracers.

Magnetic resonance imaging (MRI) has proven to be effective to differentiate
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the soft tissues that compose the brain, becoming the modality of choice for its

analysis. MRI works by analyzing how tissues respond to different types of magnetic

excitations in time. The MRI acquisition process consists in applying continuously

a magnetic field and the proton’s spin naturally aligns with it. A magnetic pulse

oriented in a perpendicular plane is applied to force the spins to align with the new

field and rotate in phase at a determined frequency of resonance. When the excitation

pulse decreases, its respected spins return to their original stated, according with two

tissue properties namely T1 and T2 relaxation properties. The T1 relaxation property

or spin-lattice relaxations makes reference to the level of energy that is released on

the intersection between protons and the molecules around it. On the other hand, the

T2 relaxation property or spin-spin relaxation, reflects the velocity with the exited

spins dephases as a result of the magnetic interactions between protons. Different

contrast can be obtained by different designs of pulse sequences. T1-weighted

images (T1-w or T1), were designed to enhance structural contrast between tissues.

Here T1 relaxation properties have more prominence that T2 characteristics which

accentuate the energy iterations levels between protons and neighboring molecules.

In T1-weighted images, tissues with short T1 relaxation time such fat tissues will

appear with a higher signal compared with tissues in which protons exhibit lower

energy interaction with surrounding molecules such as CSF which is displayed dark.

On the other hand, T2-weighted (T2-w or T2) pulse sequences highlight the property

of interactions between protons whereas PD-weighted images rely on the proportions

for protons in tissues. Fluid Attenuated inversion Recovery (FLAIR) is able to

provide the same contrast as T2-weighted while nulling the free water signal.

2.2.2 Imaging white matter hyperintensities

White matter hyperintensities appear as bright in some MRI pulse sequences. De-

terioration of myelin in white matter damage due to age results in an increment of

water in the extracellular volume close to the ventriculus that contributes to change

in the ratio between tissue and water so between molecules and free protons. When

the water/fat [Malloy et al., 2007] ratio changes, it proportionally affect the T1 and

T2 relaxation time in such a way that tissue properties resemble to CSF proper-
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ties. Therefore, in T2-weighted contrast image, such damage appears brighter than

healthy tissue. However, when the water proportion increases in such lesions , it is

not entirely fluid-filled which makes it still visible as bright on FLAIR scans except

in most severe cases. Therefore white matter hyperintensities have mostly been

visualized using T2-weighted, PD-weighted and FLAIR sequences.

As mentioned in Section 2.1.1.1, WMH start around ventricular regions. There-

fore, on T2-w and PD-w images distinction between CSF and WMHs is challenging

as both appear bright. As a result, FLAIR images have a big advantage as they

are able to null the CSF signal while keeping the bright signal for lesions. On the

other hand, in T1-w depending on the severity of the lesion, the signal goes from

iso to hypointense. T1-w images are usually not suitable for the quantification and

assessment of WMH, however, they provide rich structural information [Olsson

et al., 2013]. Figure 2.1 illustrates the presence of WMH on T1, T2, PD and FLAIR

images.

Figure 2.1: Example of WMH on T1, T2 and FLAIR MR images (the figure is
adapted from [Schwarz et al., 2009] )

2.2.2.1 FLAIR disadvantages

Although the FLAIR sequence is usually the modality of choice for WMH assess-

ment, it suffers from some drawbacks. It has been demonstrated that FLAIR images

tend to overestimate the extent of lesions [Rovaris et al., 1999]. Moreover, there is

no direct relation between the intensity depicted on FLAIR and the severity of the

lesion [Uhlenbrock and Sehlen, 1989] as opposed to T1-w or T2-w. In addition, the

hyperintense signals are non-discriminative for the underlying pathological process.

Consequently, different diseases exhibit similar presentation e.g., MS lesions and
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age-related WMH. FLAIR images tend to be prone to be affected by artifacts that

can affect their prediction [Lavdas et al., 2014]. Moreover, shine through effects due

to the increased signal intensity at the boundaries between the cortical ribbon and

external CSF can make difficult delineation of lesions. 3D FLAIR images, which

are high-resolution 3D volumes with isotropic voxel dimensions and the absence of

inter-slice gap [Chagla et al., 2008], can solve most of the artifacts that are mostly

observed in 2D acquired FLAIR [Kakeda et al., 2012]. However 3D FLAIR images

are not widely used in clinical settings [Lavdas et al., 2014].

2.3 WMHs Identification

2.3.1 The need for automatic segmentation

In order to establish associations between white matter damage and any neurological

disorder, a quantitative analysis is required to determine the extent of the damage.

Two directions can be taken to accomplish that task: Visual grading scales and

volumetric measurements.

Grading scales such as the Scheltens scale or the Fazekas scale [Scheltens et al.,

1998] allows quantification of the severity of the damage over the whole brain. What

makes visual grading attractive is that they are fast to obtain. However, they can

suffer from non-linearity, poor sensitivity to small changes and they are susceptible

to flooring and ceiling effects [Kim et al., 2008, van Straaten et al., 2007].

On the other hand, quantitative measurement based on delineation of tissues

seems to provide an alternative for better assessment of WM abnormalities [van

Straaten et al., 2007]. Measures such as volumetric estimations however, need to

be robust and accurate to ascertain valid clinical correlations. However, manual

segmentation is cumbersome and time-consuming, and shows inter and intrarater

variability [Ashton et al., 2003, Filippi et al., 1995] as a consequence it is not a

feasible solution in large clinical studies. Thus, the development of reliable and

robust automated WMHs segmentation methods is crucial. For a segmentation

method to be reliable and robust ideally it would aim high sensitivity, i.e. be

able to find all the lesions, but without compromising specificity i.e. no produce
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overestimation or find more lesions than there actually are. And most important,

predictions should be consistent in the borders definitions under several conditions

of resolutions, artifacts, noise. Several challenges make this task difficult, WMHs

can occur everywhere and present high variability in morphology. Moreover, lesion

intensity can be confused with healthy gray matter specially at the boundaries of

lesions which leads to missclassification.

2.3.2 Overview of segmentation methods

Several techniques have been designed for automatic segmentation of WMHs. The

literature is presented in two groups: First, I consider unsupervised methods, the

methods that do not require explicitly a database with manual annotations. Next

I present supervised methods, I first review non-deep learning based method and

finally I present segmentation methods based on deep neural networks.

2.3.2.1 Unsupervised methods

Generally, methods in this category use clustering techniques. Among those, Fuzzy-

C means (FCM) [Bezdek et al., 1984] is one of the most common approaches. In

[Boudraa et al., 2000], a two-stage classification approach is proposed, in the first

stage a 3 class FCM is applied on PD images enhanced by histogram equalization.

Intensities from corresponding T2-w images are used to select potential lesions and

CSF classes. In the next stage a second FCM is applied on the selected elements

to provide more a accurate selection. Finally correction for false positives based

on minimum size and brain border adjacency to border is performed. In [Admiraal-

Behloul et al., 2005] an adaptative level classifier is first performed where FCM with

a different number of clustering cases is applied to T2-w, PD-w, and FLAIR images

and the output is combined with a fuzzy inference system which is based on intensity

linguistic rules such us brig, dark, etc. To improve false-positive correction they

initialize the centroids of the FCM with spatial priors that come from template atlases.

Wu et al. [2006] computed seeds automatically based on the intensity histogram

of FLAIR images. A threshold is set to be the mean plus 3 standard deviations

and is used to label the seeds. Next, a fuzzy connected algorithm is employed



2.3. WMHS IDENTIFICATION 29

to carry out the segmentation of WMHs while the seeds are updated iteratively.

The process stops when the algorithm can no longer identify any seed, this point

clusters are combined and the final segmentation is produced. One approach that

successfully includes spatial variability into the FCM framework is presented in

[Anitha et al., 2012], they show improvement in lesion segmentation on images from

elderly population. In [Gao et al., 2014] they used a non-local mean regularizer

guided by spatial consistency information which is introduced in the energy function.

For their part, in [Shiee et al., 2010] a bias field modeling is included in the FCM

energy function aiming to ensure spatial consistency guided for both statistical and

topological atlas.

In conclusion, segmentation methods based on unsupervised methodologies

have proven to be effective in the segmentation of WMH. The simplicity in their

implementation, and the no need for annotated training sets make them attractive

to some clinical scenarios where annotated data is scarce. Despite the decent seg-

mentation that can be obtained from only intensity information, more recent works

have stressed out the need to include spatial information [Wang et al., 2012, Shi

et al., 2013]. Including spatial information can improve methods robustness to noise

especially required for accurate segmentation of lesion boundaries. Moreover, spatial

information enables modeling of voxel intensity dependency making models less

prone to false positives.

2.3.2.2 Supervised Methods

Before the boom of deep learning, early supervised methods for WMH segmentation

relied on common classification algorithms. On those approaches, segmentation was

voxel-wise, where each voxel was represented by a feature vector and constituted

the inputs for traditional supervised learning algorithms. Anbeek et al. [2004], used

multi-modal information from T1-w, PD, T2-w and FLAIR images to train a K-

nearest neighbors (KNN) classifier. For a randomly selected set of voxels intensity

and 3D spatial information, features were extracted and used to train the classifier.

They found that the combination of intensity and 3D spatial features yields the

best performance. In [Lao et al., 2008] they replaced KNN for a support vector
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machine (SVM) classifier. In addition, they change the voxel feature representation

to account for neighborhood information. Specifically, for each voxel, the feature

vector is composed of spatial and intensity information from the small neighborhood

around it. They demonstrated that introducing neighborhood information makes the

classifier more robust to misregistration. Instead of performing voxel-wise WMHs

segmentation, the method proposed by Beare et al. [2009] aims to segment regions.

In their method region-based features are extracted and combined with an adaptative

boosting statistical classifier. Another group of approaches aims to model spatial and

intensity distributions via parametric models. In [Simões et al., 2013] a 3-component

Gaussian mixture model with CSF, GM+WM, and WMH classes is used to model

FLAIR images based on histogram analysis. In addition, a context-sensitive penalty

term is introduced in the Expectation-Maximization algorithm to enforce model

regularity in segmentation. In [Khayati et al., 2008], an adaptative mixture model

(AMM) is combined with a Bayesian classifier which includes a Markov random field

to encourage neighborhood consistency. If the current model can not model properly

an observed sample, a new gaussian component is added, those components are

grouped on three classes whose parameters are optimized using the MRF and AMM.

Schmidt et al. [2012] leverage information of different modalities in a sequential

methodology. In the initial step, beliefs maps are created using T1-w images and

then a threshold is applied to get seeds that are used to initialize the segmentation.

In the next step, a 3-component GMM is used to model FLAIR images for healthy

tissues, and a gamma distribution for the lesion class.

In the presence of manually annotated training sets, supervised classification

methods have proven to be successful in solving automatic segmentation problems.

However, the selection of the right feature extraction methodologies adds complexity

to the problem that has shown to be solvable by modern supervised strategies based

on neural networks.

2.3.2.3 Deep learning segmentation methods

Deep neural networks established a significant change regarding the traditional

machine learning approaches for segmentation. Instead of relying on hand-crafted
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features, deep neural networks are able to learn hierarchical features automatically

[Perone et al., 2019]. Since Deep learning models appeared their inclusion in medical

image applications has been progressively increasing. They have been successfully

applied in several applications such as registration, object detection and segmentation

[Suzuki, 2017]. When applying deep learning techniques to the medical domain,

one of the main challenges is how to adapt architectures to different input formats

such as three-dimensional data. A common strategy that is still commonly used is

to divide a Volume of Interest (VOI) into slices which are then fed into a network.

These approaches avoid using a large number of parameters as 3D convolutions are

replaced by their 2D counterpart.

Prasoon et al. [2013] was one of the pioneers using this approach for the

segmentation of knee cartilage. Patches or slices from different orientations (sagittal,

axial, coronal) can be extracted to feed a network in a multi-stream fashion. Examples

of these methods also referred to as 2.5D classification are presented in [Roth et al.,

2015b, Setio et al., 2016]. In early approaches for segmentation, convolutional neural

networks were used to classify every voxel in the image individually. For each voxel,

a patch is extracted and used to feed the network. However, a critical disadvantage

of this ’sliding-window’ approach is that the same convolutions are computed many

times due to the huge overlap from input patches from neighboring voxels. A more

efficient architecture well known as Fully Convolutional Neural Networks (FCNN)

[Long et al., 2015] was proposed to overcome this problem. In this scheme, fully

connected layers are rewritten as a convolution to output a likelihood map, instead

of an output for a single voxel. Therefore FCNN can be applied to an entire input

image/volume more efficiently. One problem that arises due to pooling layers is that

outputs may present a lower resolution than the input. This problem is solved by

applying a FCNN to differently shifted versions of the input image. Then the final

resolution is obtained by stitching the result of the different versions. On the other

hand, an elegant architecture well known as U-net, was proposed for Ronneberger

et al. [2015]. This architecture comprises a FCNN followed by an upsampling part

where up-sampling operators are used for increasing the size image. Moreover, skip
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connections are used to connect opposing contracting and expanding convolutional

layers. A 3D implementation called V-net was proposed for Milletari et al. [2016]

which is more naturally applicable for 3D volumes and enables capturing full context

information. Regarding WMH segmentation, several approaches have been proposed.

The MICCAI 2017 segmentation challenge [Kuijf et al., 2019] evaluated 20 methods

using a dataset of 170 images (60 for training and 110 for testing) from three different

centers (Amsterdam, Singapore, Utrecht). Among the presented methods, 15 relied

on some form of convolutional neural network. Where the best performing team [Li

et al., 2018] relies on an ensemble of three U-net models that use 2D slices extracted

from T1-w and FLAIR images.

2.4 Lack of annotated data
The lack of annotated data is a critical problem when applying supervised deep

learning methods on medical applications. In this section, I review some of the

traditional solutions to this problem such a Data Augmentation, Transfer Learning,

and Domain Adaptation (DA).

2.4.1 Data augmentation

Data augmentation provides and effective solution to reduce the effect of over-fitting

in scenarios where the data is scarce. The Data Augmentation process involves

expanding the training set by introducing new samples derived from the available

data. Approaches vary in the type of operations applied to the available data to

produce new training samples.

2.4.1.1 Traditional Data augmentation

The data augmentation methods applied in medical imaging can be divided according

to the image property they manipulated [Zhang et al., 2019]. Among these proper-

ties, I can find: image quality, image appearance, and image spatial arrangement

(geometry).

• Image quality: Different types of filters changing sharpness or adding

blurriness or noise can be applied to images to change its quality. Gaussian
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noise was applied to CT images in [Christ et al., 2016] for data augmentation.

Sirinukunwattana et al. [2017] blurs colon histology images using a gaussian

filter. Zhang et al. [2019] show the benefits of augmenting the data by adjusting

image quality. They demonstrated that image sharpening leads the largest

improvement in the application of unsharp masking.

• Image appearance: New samples for augmentation can be obtained by ma-

nipulating brightness, saturation, and contrast of images. Dong et al. [2017]

proposed the enhancement of brightness in 3D MR volumes. In [Fu et al.,

2017] and [Alex et al., 2017] it was demonstrated that contrast-based augmen-

tation is helpful in data images with inhomogeneous intensities. The former

applies a contrast transformation to microscopy images for the segmentation

of nuclei. The latter uses histogram matching between images in the dataset

and a reference image chosen randomly from the training data.

• Geometry : Data augmentation can be performed by applying spatial transfor-

mations such as rotation, scaling, and shearing. More, sophisticated methods

apply non-linear transformations such as elastic deformations [Ronneberger

et al., 2015] , dense deformation field [Milletari et al., 2016] , b-spline defor-

mations [Çiçek et al., 2016].

2.4.1.2 Synthetic augmentation

This type of augmentation strategy has been governed mostly by Generative Adver-

sarial Networks (GAN) [Goodfellow et al., 2014] and its variations. Fu et al. [2018]

improve CycleGAN by including a spatial information that enables CycleGAN to

generate synthetic images with the object of interest appearing in desired locations.

They demonstrated that augmented samples generated with spatially constrained

CycleGAN improve segmentation model performance. Guibas et al. [2017] propose

a sequential algorithm composed of both a GAN and a conditional GAN (cGAN) to

generate synthetic fundus images. Firstly, a GAN takes a random vector sampled

from a normal distribution to generate a segmentation mask. This mask goes through

a cGAN to generate a synthetic fundus image. Tang et al. [2019] train a stacked
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GAN (SGAN) with a pair of GANs that aim to generate both denoised and high-

resolution image pairs. Shin et al. [2018] provide a powerful method based on a

cGAN to generated synthetic customized MR-images with tumors. The cGAN takes

as input a tumor mask and a brain mask, where the size and location of tumors can be

predefined by the user. The output is a MR image with a tumor in accordance to the

size and location defined by the user. Segmentation models that are trained with both

synthetic and real real images achieve a significant improvement in performance

compared to the models trained with real images only. Jin et al. [2018] aim to

genereate synthesize pleural nodules from nodule free CT slices. To this end, they

proposed an inpainting model based on a conditional GAN.

Another group of approaches aim to generate synthetic images via Transfor-

mation networks. The method proposed by Zhao et al. [2019] is able to generate a

training set from only one labeled image and a given set of unlabeled images. To

this end, they proposed an hybrid spatial-intensity transformation model. A spatial

transformation network is firstly used to deform the labeled image to match the shape

of a given unlabeled image. Then the intensity at each voxel in the labeled images

is change using a intensity transformation network to match the appearance of the

given unlabeled image. A similar approach was proposed by Chaitanya et al. [2019],

a conditional spatial and intensity generators are trained in an adversarial fashion to

generate images that resemble the appearance of both, labeled and unalbeled images

in a training set.

2.4.2 Leveraging external datasets

Techniques like Transfer Learning (TL) and Domain Adaptation (DA) have also been

developed aiming to alleviate the problem of lack of annotated data by leveraging

data that can be from a different domain or nature. In Transfer Learning, the general

idea is to pre-train a model with a large external database. Then, this model can be

fine-tuned using the target dataset. For its part, Domain Adaptation techniques aim

to bridge the distribution gap between Training and testing sets.
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2.4.2.1 Transfer Learning

For medical imaging applications where data is scarce the idea of transfer learning is

to leverage the potential of large non-medical image datasets. However, the adoption

of transfer learning in medical image segmentation has been limited due to the 3D

nature of medical images. The majority of large datasets are composed of natural

images that are 2D which impede straightforward transferability.

As previously mentioned in Section 2.3.1, 3D segmentation can be carried out

by splitting the 3D images into 2D slices to train 2D networks. This makes it easier

for the transfer of knowledge from natural images to 2D medical image segmentation

models. In [Ma et al., 2019] the authors take as a base an autoencoder that has been

trained on natural images and subsequently is fine-tuned with medical images. Qin

[2019] proposed a slightly different strategy. They initialize and encoder randomly

that is appended to a decoder that has been trained for the classification of natural

images. Then the entire network is fine-tuned with medical images.

On the other hand, there are few works that explore transfer from 2D pre-

trained models to models targeted at 3D medical applications. Yu et al. [2018]

makes an attempt to transfer models trained on natural scenes, where the third

dimension of medical images is used as a temporal axis. However, this approach

can not guarantee the learning of 3D context of medical scans. Liu et al. [2018]

proposed a sophisticated approach for transforming 2D models into a 3D network.

This is possible by extending 2D convolution into 3D separable anisotropic filters.

Consequently, this approach enables the initialization of 3D models from 2D models.

2.4.2.2 Domain adaptation

Besides the scarcity of large manually annotated training sets, another challenge is the

distribution shift between available training data and the data faced in clinical practice.

Different scanners or protocols used during the image acquisition process or even

different patient population and demographics, can produce different distributions.

Due to training datasets typically come from the same center, there is an inherent

bias and the resulting deep learning models tend to decrease their performance when

deployed in data which is different from the data used during training. Domain
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adaptation methods aim to bridge the gap between different domains distributions.

Common directions to accomplish this task are: i) learning a representation invariant

to domain signal or ii) learning to translate images from the training domain to the

testing domain. Domains can be due to different imaging modalities or different

distributions on data with the same modality. The vast majority of domain adaptation

techniques rely on some sort of adversarial learning using GANs or CycleGANs

[Zhu et al., 2017]. The original GAN proposed by Goodfellow et al. [2014] is based

on a dual network scheme: A discriminator is training to differentiate between real

and synthetic images whereas the generator is trained to generate realistic synthetic

images that fool the discriminator. In the context of domain translation, the idea

is the generator learns to map images from one domain to another. CycleGANs

can achieve this objective by a dual mapping using a double pair of generators and

discriminators. One pair performs the translation from source to target and the other

does the inverse mapping. Methods performing domain adaptation can be grouped

in supervised domain adaptation methods, which require labels for the target domain

or unsupervised domain adaptation methods, which may only need unlabeled data

from the target domain.

Unsupervised domain adaptation: In this type of approaches, a set of annotated

data (Source Domain) is available, but there are not labels in the target domain.

Under this condition some authors approached domain adaptation by transforming

images from the source domain to have the style of the target domain while pre-

serving the anatomical structure. Once the transformation is done, a segmentation

network is trained using the transformed images, note the labels are preserved. One

example of this approach was presented by Huo et al. [2018] which uses a joint

synthesis and segmentation framework using unlabeled target images and labeled

images from a source domain. In Chen et al. [2018] a CycleGan is used to perform

domain translation from MR to CT images. They use a shared encoder for both the

segmentation and the synthesis networks, this multitask setting also prevents the

model from over-fitting. As an alternative to the source to target domain translation,

a group of authors propose to perform the adaptation in the opposite direction. A
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synthesis network is trained to perform translation from target to source domain,

so during inference, target images are converted to source domain style and then

used as input in a segmentation network previously trained in source domain images

[Zhao et al., 2017, Zhang et al., 2018, Yang et al., 2018] .

Another group of approaches aim to minimizing the discrepancy between feature

representations from the source and the target domain. An adversarial approach

to learn domain invariant features was proposed in [Kamnitsas et al., 2017] for

brain tumor segmentation. Dong et al. [2018] proposed a similar approach but in

their method, the discriminator aims to distinguish if the segmentation mask is a

ground truth or if it is a predicted mask. In [Wang et al., 2019b] a patch-based

adversarial learning is proposed to encourage a segmentation network generating

similar prediction for source and target regions of interest. In [Wang et al., 2019a] a

boundary and entropy-driven adversarial learning is proposed to encourage boundary

predictions and probability entropy maps of the source and target domain to be

similar. As a result, the generated boundaries are more accurate and the uncertainty

in the predictions is reduced.

Supervised domain adaptation: When labels are available for both domains,

there is no need to make a distinction between source and target domains. The

adaptation is then achieved by learning a shared feature representation which leads

to a more robust prediction independently of the input domain. Learning from

multiple datasets enables more efficient training, as models can learn discriminative

features from different distributions. Moreover, enhanced regularization, as data

from multiple sources can provide further supervision. Harouni et al. [2018] propose

a modality agnostic model that is trained using data from different modalities. The

authors showed that the jointly trained network achieved similar performance than

individually trained networks for each modality. Dmitriev and Kaufman [2019] use

a similar approach by training a segmentation model with images from different

single organ datasets. An additional channels is introduced to condition segmentation

predictions according to the desired organ for segmentation.
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Dealing with Inter-Modality

Heterogeneity

3.1 Derived publication
• Orbes-Arteaga, M, Cardoso, M. J., Sørensen, L., Modat, M., Ourselin, S.,

Nielsen, M., & Pai, A. (2018). Simultaneous synthesis of FLAIR and seg-

mentation of white matter hypointensities from T1 MRIs. In 1st International

Conference on Medical Imaging with Deep Learning (MIDL 2018)

3.2 Preface
The analysis of WMHs is benefited from the information provided by multiple

modalities. WMHs are better highlighted on T2-W, PD-W, and FLAIR whereas

T1-w provides more rich structural and lesion severity information. Similarly to

clinicians, neural networks can learn more information from multiple modalities.

This fact motivated the development of multi-modal segmentation models. In deep

learning methods, the simplest yet common approach to learn from multi-modal data

is by feeding a neural network using each modality as one input channel. In this

setting, training data is paired meaning each sample holds a set of scans from different

modalities that have been co-registered to have one-to-one-spatial correspondence.

During the deployment stage however, those approaches require for new patient to

get the same modalities used during training. This is a huge disadvantage in real

clinical scenarios where there is no guarantee that every sequence will be available.
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Moreover, In many circumstances only less involved sequences are acquired. As

explained in Section 2.2 , although FLAIR sequences are the modality of choice for

WMH analysis, this is a more involved pulse sequence if acquired at high resolution

compared to T1-w (it requires additional time, adding cost to standard clinical

imaging protocol). In order to provide segmentation solutions that can have a real

impact on clinical practice, algorithms should be able to work on simplistic settings

which rely on most commonly used modalities.

In this chapter, we propose a systematic training strategy to learn from multimodal-

information with the ultimate goal of performing segmentation on commonly used

sequences. The proposed method relies on a dual optimization strategy to learn

efficiently from available multi-modal data by simultaneously learning synthesis

of FLAIR and segmentation of WMH segmentation using only T1-w as input. We

demonstrated that the proposed method is able to generate realistic synthetic FLAIR

sequences from T1-w scans. Most important, segmentation from available modalities

is enhanced through the optimization process.

3.3 Related work

Given the presence of limited data with desired multiple modalities, data imputation

methods are used to learn the synthesis of missing modality using T1-W scans.

The intention of imputing data is to guide the optimization using prior information,

i.e., the available FLAIR sequence. As stated in van Tulder and de Bruijne [2015],

synthetic data helps the segmentation because of two reasons. Firstly, the flexibility

of synthesis model allows finding features that can not be seen by the classifier

in an otherwise single-modality model. Secondly, the size of the training set is

synthetically increased which is useful in the training process.

Among CNN-based imputation methods, the most popular ones using a flavor

of generative adversarial networks (GANs) Goodfellow et al. [2014]. For instance,

Nie et al. [2017] use GANs to generate CT images from MRI images. However, most

of the current implementations treat synthesis as a preprocessing step [Ben-Cohen

et al., 2018, Zhang et al., 2018, Huo et al., 2017]. This restricts the network, and the
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features may not be particularly useful for the final segmentation.

Instead, we proposed a simultaneous training based synthesis method that

combines generation of the missing modality and segmentation – inspired from

Tran et al. [2017]. We show with experiments that using the proposed method to

synthesize FLAIR images, we not only obtain higher quality synthetic flair images

(when compared to treating synthesis a preprocessing step) but also improve the

segmentation of WMH using T1-w images only.

3.4 Methods

Let X={XXXnnn,,,LLLnnn : 1, . . . ,N} be an annotated training set which have N subjects . Here,

XXX = {Xa,Xb}, is a pair of MRI images from two different modality sources for a

given subject, and LLL is a volume with the manual annotation for WMH. The goal in

multi modal segmentation task is to find a mapping C(XXX ,θc) from a pair of available

modalities to a corresponding segmentation.

C : {Xa,Xb},→ L (3.1)

Here, C is a function represented by a CNN with parameters θc. We then train

C to maximize:

max
θc

E[log p(L|Xa,Xb,θc)] (3.2)

It is evident that to train, and subsequently test such a scheme, both modalities are

needed. This is a restriction, specially when the network is used to test retrospective

data with missing modalities. One common approach to deal with missing modalities

is to impute them. Formally, a function G (a CNN) is trained to learn a mapping

between the available modality and the missing modality., i.e G(Xa)≈ Xb. Subse-

quently, the synthesized modality is used in conjunction with the available modality

to train a classifier for segmentation. The optimization function for the classifier
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in Equation (3.2) can be re-written as:

max
θc

E[log p(L|Xa,G(Xa),θc)] (3.3)

Note that in this scheme, the generation and the classification are different

optimizations. No complementary information is taken into account. Therefore, in

this work, we aim to learn the generation and classification (respectively performed

by G and C ) simultaneously so that C reinforces the generation G to produce not

only realistic images but also relevant features that help in the optimization of C.

Figure 3.1: Illustration of process follow for training and testing of our method.

The scheme is basically composed of two networks, a generator G and a

classifier C where both networks are trained end to end iteratively, see Figure 3.1.

The classifier training is linked to the generator by taking both the real T1 image

denoted by Xa and the generated image G(Xa) to produce a segmentation LLL′′′. The

loss function of the classifier network is:

LC = E[− 1
N ∑

n
Ln log(C(Xn

a ,G(Xn
a ))] (3.4)

L2 distance is typically used as a loss function for the synthesis and reconstruc-
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tion of images using FCN. L2 is attractive due to its easy implementation, clear

physical interpretation, and is equivalent to maximizing other metrics such as the

peak signal-to-noise rate (PSNR) [Nie et al., 2018]. In addition, L2 has been the

auxiliary loss of choice for reconstruction or synthesis methods that are based on

adversarial learning or that involve a combination of different losse [Dong et al.,

2015, Huang et al., 2017, Yang et al., 2021, Lahiri et al., 2020]. Finally, although L2

shares similar properties to L1, L2 has outperformed L1 in some reconstruction tasks

[Ganguli et al., 2019]. Consequently, in order to train G we use L2 as a reconstruction

error between the real missing modality image and its corresponding generation.

Thus, one may then view the classifier to be a regularization term to the generator or

vice versa. The LG loss for the generator is given by:

LG = ||Xb −G(Xa)||2 +E[− 1
N ∑

n
Ln log(C(Xn

a ,G(Xn
a ))] (3.5)

3.4.1 Network architectures

We use U-Nets Li et al. [2018] (winner in 2017 MICCAI- WMHs segmentation

challenge) as the segmentation network, and a modification of it as a generation

network. The changes involve changing the number of inputs channels from two to

one which corresponds to the T1 modality, we also change the Sigmoid function in

the final layer by LeakyRelu. We use Adam optimizer with learning rate 0.0002

for both the networks, and batch normalization. The classifier and generator are

trained iteratively with the same frequency. We do not use any data augmentation.

3.5 Experiments and results

3.5.1 Data and Experiments

We validated our proposed method on the training dataset from the 2017 White Mat-

ter Hyperintensity Segmentation Challenge (http://wmh.isi.uu.nl). This

dataset is composed of T1 and FLAIR scans for 60 subjects from three different

clinics (Utrecht, Singapore, and AmsterdamGE3T, 20 subjects for each one), the

data is complemented with manual annotations of WMH from presumed vascular

http://wmh.isi.uu.nl
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origin. FLAIR images have been used as a reference for label annotations, so, T1

images have been registered to this space. The images were also corrected for bias

field inhomogeneities using SPM12. As a further preprocessing we use only two of

three stages performed in Li et al. [2018], which include i) cropping or padding of

axial slices ii) Gaussian normalization of voxel intensities. We did not perform data

augmentation as these did not show significant improvement in segmentation.

All the methods were evaluated using a 6-fold cross validation. The dataset was

split in such a way that all the 60 images are tested at least once. For each fold, we

pick 10 subjects for test, 5 for validation, and the remaining 45 are used for training.

For evaluation, dice scores (DSC), false positive rates (FPR), and false negative rates

(FNR) are used.

3.5.2 Results

We evaluated our method in segmenting WMH from T1-w images using: a) Synthe-

sized FLAIR images by treating the synthesis as a preprocessing step – we will refer

to this method as offline synthesis; b) Synthesized FLAIR images using the proposed

method, and c) without any synthesis – we will refer to this method as Unimodal.

Baseline methods are illustrated in Figure 3.2

Figure 3.2: Illustration of methods of comparison, Xa represent a T1 image.

Table 3.1 shows the mean of each measure for all considered methods. As we

can see, our method achieves higher dice scores than baseline methods. A mean dice

improvement of nearly three percent is obtained using our proposed method when

compared the baseline method without any imputation. In addition, the proposed

method also improves segmentation when compared to an offline synthesis.



3.5. EXPERIMENTS AND RESULTS 44

Table 3.1: Average of performance measures for all comparison methods, results in
bold are significantly different (p<0.005) from the baseline Unimodal method (top
row)

Evaluation Metric

Method DSC(%) FPR(%) FNR(%)

Unimodal 55.99 78.67 38.06
Offline synthesis 54.42 63.50 43.39
Proposal 57.81 58.20 41.33

It is important to note, that our proposed method shows a FPR 20.47% lower

than Unimodal and 5.3% lower than offline synthesis method, showing the effec-

tiveness of our method to reduce the number of false positives. On the other hand,

Unimodal method shows the lower rates in terms of FN.

In order to better understand the above results, we visually analyzed the output

segmentation performed for each method. Figure 3.3 shows the results for three

different slices (one slice per column). As illustrated, the proposed method is able to

produce less false positives. It is also important to note that, unimodal segmentation is

the one that produces more false positives, showing the advantage of using synthetic

data. Regarding the nature of false positives, it can be easy to see in the third

column a large number of false positives are on the border of periventricular lesions

for the Unimodal method in comparison to the proposed method. Also from the

first and second column, it can be observed that Unimodal tend to produce more

small regions of false positives near to cortical areas. Removing such false positives

requires additional post-processing steps, therefore, it is of value avoid this kind of

over-segmentation. It can also be noted that synthesis methods tend to produce the

same kind of false negatives, this may be due to the blurring effects in synthesized

images since the information available during testing is limited – which otherwise is

available from a FLAIR sequence.

3.5.3 Results of Generation

Here we compare the generate FLAIR images obtained for the generator using

our optimization strategy against the generated images obtained for using off-line
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synthesis. Firstly, images were quantitatively evaluated in terms of reconstruction

using two well known measures, namely mean absolute error (MAE) and peak-signal-

to-noise-ratio (PSNR). Results of reconstruction measures are shown in Table 3.2

, as we can see our proposal outperforms the baseline approach in both MAE and

PSNR. Specifically, images generated for our proposed method achieve an average

PSNR of 11.01 which is considerably higher compared with 9.65 obtained for images

generated Offline. Reconstruction superiority of our methods is confirmed by the

MEA results, 0.26 and 0.31 for our proposal and the baseline respectively.

In order to analyze qualitatively the results of our generator, we extract slices

with different WMHs loads, Fig. 3.4 shows the reconstruction results for three

different levels of loads. As we can see in the first row, both methods produce

a similar response in regions with a low load of lesions, it can be observed that

generated images are similar to the real FLAIR images in the left, and these not

present evident structural distortions. However, it can be noted images exhibit

blurred effects, which can be due to L2 based optimization, more complex generative

networks with adversarial loss optimization as GANs tend to eliminate blurred effect

but at the expense to produce structural distortions. In the application presented in

this work it is important to preserve the structural information, thus, our L2 based

optimization present a good balance between preserve structural information and

blurred effects. In the second and third column, it can be observed the performance

of both methods when facing the presence of lesions, as can be seen, both methods

have a good response to large and contiguous lesions. It also can be noted both

methods tend to produce poor performance in small and diffuse WMHs marked in

red, note, these lesion do not exhibit identifiable patterns in T1 images, however

it can be seen that our proposed method is more sensitive to these patterns which

enable to highlight some small regions as those marked in green.

3.6 Discussion and concluding remarks

In this chapter, a new CNN-based method to improve WMH segmentation from

T1-w images alone is proposed. The method jointly performs imputation and
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segmentation in such a way that both tasks are mutually benefited. To this end,

FLAIR sequences are used to drive the optimization, which reflects in the results

where joint optimization of synthesis and segmentation yield better segmentation

from T1-only images.

From segmentation results in Section 3.5.2, it is evident that the T1-based

segmentation tends to have excessive over-segmentation of images. By using prior

information from FLAIR images through a generator, we are able to reduce the

number of false positives. However, it could be observed that, if imputation comes

from an independent synthesis model, images tend to be under segmented (high

FNR) reducing the overall segmentation accuracy. The proposed joint optimization

strategy better adapts to capture small lesions, which leads to significantly better

overall segmentation performance.

In addition to an improved segmentation performance, we can see in Sec-

tion 3.5.3 that the proposed method also produces better synthetic FLAIR images

when compared to networks that trained to only specialize in generation. This may

be due to the complementary information available through a joint optimization with

the segmentation network. Specially, lesions that are barely visible in T1 images are

seen in synthetic images produced by the proposed method.

One of the disadvantages of our method is using L2 as a loss function can

produce blurring effect on the images. Using adversarial training by the use of a

discriminative network as a loss function may overcome this issue. However, with an

introduction of an additional network and the availability of limited training data, the

optimization may be prone overfitting. Therefore the proposed method with L2 loss

provides a good compromise between the complexity of the model and segmentation

performance.
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Figure 3.3: Segmentation results for all proposed methods. Each column represents
a different slide in the image, blue areas are regions that were correctly labeled
(Ground truth annotations were done using FLAIR images), false positives are
shown in green, and false negatives in yellow . The first and second rows show the
original FLAIR and T1 as references. Ground truth labels, false positives, and false
negatives maps are overlaid on the synthetic FLAIR images (from the fourth to the
sixth row). The third column shows that unimodal segmentation produces more false
negatives, compared to offline synthesis and the proposal, especially on the border
of periventricular lesions. The second and third columns show that the unimodal
segmentation produces more small false lesions near cortical areas. False negatives
are similar for all the compared methods.
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Table 3.2: Average MAE and PSNR between real FLAIR images and the synthetic
images generated for each method

Method

Measure Offline synthesis proposal

MAE 0.3153 0.2566
PSNR(DB) 9.65 11.01
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Figure 3.4: Results of Generation for all the proposed methods,



Chapter 4

Dealing with morphological

variability

4.1 Derived publication:
• Mauricio Orbes-Arteaga, Lauge Sørensen, Jorge Cardoso, Marc Modat,

Sebastien Ourselin, Stefan Sommer, Mads Nielsen, Christian Igel , and Ak-

shay Pai "PADDIT: Probabilistic Augmentation of Data using Diffeomorphic

Image Transformation", Proc. SPIE 10949, Medical Imaging 2019: Image

Processing,

4.2 Preface
Brain abnormalities such WMHs present irregular morphology with large variations

among patients. A segmentation model should be robust enough to be unaffected by

those variations. However, learning those invariant properties depends directly on

the shape variability presented on the available training samples. Publicly available

WMHs databases hold a small amount of training cases, which also mean limited

morphological variety.

A common yet effective methodology to increase variability on training samples

is through data augmentation. New images can be generated by applying a series

of transformations to the available training images. For those new samples to

be useful they should meet these criteria: i) They should be valid, so they don’t

generate unrealistic morphologies. ii) They should be relevant so the generated
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samples can improve generalization. Although applying deformation is intuitively

the methodology of choice to alternate anatomically samples, it can also lead to the

generation of unrealistic samples.

In order to obtain a model that produces transformations that capture shape

variations in training data, we propose Probabilistic Augmentation of Data using

Diffeomorphic Image Transformation (PADDIT). PADDIT involves an unsupervised

approach to learn shape variations that naturally appear in the training dataset.

This is done by first constructing an unbiased template image that represents the

central tendency of shapes in the training dataset. We sample – using a Hamiltonian

Monte Carlo (HMC) scheme Duane et al. [1987], Neal [2011] – transformations that

warp the training images to the generated mean template. The main advantage of

PADDIT is that it encourage the generation of transformations that does not alter the

anatomical plausibility of the images. That because, those transformations capture

the shape variations in the training data. On the other hand, on generic augmentation

the deformation follow a random pattern (e.g using random b-splines) which can

result in augmented images that can not be seen in real world scenarios. The sampled

transformations are used to perturb training data which is then used for augmentation.

We show that DNNs trained with PADDIT outperforms DNNs trained without

augmentation and with generic augmentation (using b-spline transformations) in

segmenting white matter hyperintensities from T1 and FLAIR brain MRI scans.

4.3 Related work

In order to address generalization, one has to find models that generate features

equivariant or invariant under different transformations of the input. Equivariance of

feature maps generated by CNNs to certain transformations can be obtained by using

group convolutions [Cohen and Welling, 2016] where different orientations of the

features maps are learnt by kernels with shared weights. While group convolutions

are very efficient due to weight sharing in learning multiple orientations for same

feature maps, they are restricted to a limited set of transformations, i.e., symmetric,

linear transformations. In order to reach generalization across a large group of
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transformations one has to rely on data augmentation. Data augmentation is com-

monly achieved by applying transformations that generate warped versions of the

available training data. Accessing a larger group of transformations for augmentation

is specially important in the field of medical image analysis because features related

to the human anatomy need to maintain their identity under non-linear transforma-

tions. For instance, cortical surfaces of brain, structures with arbitrary shapes such

as tumors, or structures subject to atrophy such as hippocampus in the brain have

large variations in their expected morphology. The choice of the transformation in

literature so far has been fairly arbitrary – often restricted to rotations, translations,

reflections, and very small nonlinear deformations [Roth et al., 2015a, Jaderberg

et al., 2015a, Hauberg et al., 2016]. Some degree of learning the right kind of trans-

formations needed to improve the network performance was introduced in Jaderberg

et al. [2015a]. Hauberg et al. Hauberg et al. [2016] propose to learn a particular

group of transformations. The authors suggest to use the space of transformations

called diffeomorphisms, which are well-behaved in the sense of being differentiable

and invertible. In order to learn the kind of diffeomorphisms needed to account

for all shape variations in the training data, the authors propose to measure relative

shape changes by using non-linear image registration. From the resulting set of

transformations, a distribution is constructed from which new transformations for

augmentation are sampled using a Metropolis Markov chain Monte Carlo scheme

(MMCMC). While the performance on MNIST LeCun et al. [1998] improved sig-

nificantly, digits are simpler shapes compared to the more complex brain images

considered in this study. Given the size of each brain image, it is computationally

intensive to randomly register sufficient pairs of images. In addition, since the

posterior distribution of transformations is not a trivial space, MMCMC tend to

get stuck in local isolated modes of distribution. Therefore, images that can not be

plausibly registered may induce transformations that are not meaningful, as those

transformations will generated augmented images that do not represent the testing

population. Feeding the model with augmented images that will not be seen in real

life, can result in a decrease in the model performance.
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To cope with the above mentioned problems we introduced and an effective

and logical strategy to generate realistic deformable transformations based on shape

tendencies in the training set.

4.4 Methods

Probabilistic Bayesian models for template estimation in registration was introduced

by Zhang et al. [2013], albeit using a different class of transformations. In short, the

method views image registration as a maximum a posteriori (MAP) problem where

the similarity between two images (I1, I2) is the likelihood. The transformations are

(lie group exponential of a time-constant velocity field v) regularized by a prior which

is in the form of a norm attached to velocity field. Formally, it is a minimization of

the energy

E(I1, I2,v) = ∥I1 ◦Exp(v)− I2∥2 +λ∥v∥2. (4.1)

The norm on the vector field is generally induced by a differential operator L.

Under certain conditions on L [Younes, 2010], there exist a Hilbert space V ⊂ L2

with norm ∥ · ∥V so that ∥Lv∥2 = ∥v∥2
V = ⟨v,v⟩V , where ⟨·, ·⟩V is the inner product.

In this work however, we directly choose a kernel inducing a reproducing kernel

Hilbert space to parameterize the velocity field [Pai et al., 2016]. Let Ω be the

spatial domain of I1, with x ∈ Ω the spatial location. Let Diff(Ω) the diffeomorphic

transformations ϕ : Ω×R→ Ω, and V the tanget space of Diff(Ω) containing the

velocity fields v. There exist reproducing kernels K : Ω×Ω → Rdxd , which induce

a norm ∥ · ∥W (W:reproducible kernel Hilbert space) which there need not be a

corresponding differential operator. One advantage of reproducing kernels is that

their inner product can be calculated directly as:

⟨a,b⟩W = ⟨K(·,x)a,K(·,y)b⟩= aT K(x,y)b

For all vectors a,b ∈ Rd , for all kernels centers x,y ∈ Rd . The norm and inner

product on this space are defined from the kernel. This space is approximate this

space by ∑i K(·,xi)ai, and by linearity of the inner and the reproducing property, the



4.4. METHODS 53

norm of the kernel can be evaluated by

∥∥∥∥∥∑i
K(·,xi)ai

∥∥∥∥∥
2

=

〈
∑

i
K(·,xi)ai,∑

j
K(·,x j)a j

〉
= ∑

i, j

〈
K(·,xi)ai,K(·,x j)a j

〉
= ∑

j
aT

i K(xi,x j)a j,

Where a are the vectors attached to each spatial kernel, and (xi,x j) is the spatial

position of each kernel.

If we chose the regularization term ∥v∥2 to be a RKHS norm, with the vectors

fields parametrized using the reproducing kernels, the evaluation of the regularization

energy will be just the evaluation of the double sum (∥v∥2 = ∑ j aT
i K(xi,x j)a j). Thus,

the optimal fields will be linear combinations of the reproducing kernels. Therefore,

using the reproducing kernel in the parametrization ensures that the optimization of

the norm takes place in a space that contains optimal solutions.

Using the L2 distance metric between two images (minimization of (4.1)),

one can formulate template estimation as a Fréchet mean estimation problem. In

other words, given a set of N images (or observations) I1, . . . , IN , the atlas Î is the

minimization of the sum-of-squared distances function

Î = argmin
IT

1
N

N

∑
k=1

∥IT − Ik∥2. (4.2)

Since (4.1) is viewed as a MAP problem, the velocity fields are considered

as latent variables, i.e., a ∼ N (0,K), a normal distribution with zero mean and

covariance K derived from a kernel function. In the presence of latent variables, the

template estimation is posed as an expectation maximization (EM) problem. Further,

for simplicity, we assume an i.i.d. noise at each voxel, with a likelihood term (for

each kth observation) given by

p(Ik|vk, IT ,σ) =
1

(2π)M/2σM
exp
(
−∥IT − Ik ◦Exp(vk)∥2

2σ2

)
, (4.3)
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where θ = {σ , IT} are the parameters to be estimated via MAP; σ is the noise

variance, IT is the mean template, and M is the number of voxels. Each observation

can be viewed as a random variation around a mean (IT ◦Exp(−v)). The prior on

the velocity field may be defined in terms of the norm as

p(vk) =
1

(2π)M/2|K| 1
2

exp
(
−∥vk∥2

2

)
(4.4)

Estimating the posterior distribution involves the marginalization of it over the

latent variables as

p(θ |Ik) = p(Ik|θ)p(θ) =
∫

v
p(Ik|v,θ)p(v)dv (4.5)

This is computationally intractable due to the dimensionality of v. To solve this,

Hamiltonian Monte Carlo (HMC) Neal [2011] is employed to sample velocity field

for marginalization. The posterior distribution to draw S number of samples from is

log
N

∏
k=1

p(vk|Ik;θ) = log
N

∏
k=1

p(θ |Ik) =
S

∑
s=1

log
N

∏
k=1

p(Ik|vks,θ)p(vks),

=
S

∑
s=1

(
−N

2
log |K|− 1

2

N

∑
k=1

aT Ka− MN
2

log σ − 1
2σ2

N

∑
k=1

∥Ik ◦Exp(vk)− IT∥2

)
.

(4.6)

The sampled velocity fields (vks of the kth image) are used in an EM algorithm to

estimate an optimal θ . The two steps are as follows:

• E-Step: We draw samples from the posterior distribution ( p̧ost1 ) using

HMC with the current estimate θt . Given S sampled velocity fields, let vk j,

j = 1, . . . ,S, denote the j− th point in this sample for the k− th velocity field.
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The sample mean is taken to approximate the Q function.

Q(θ |θ t) = Evk|Ik,θt

[
log

N

∏
k=1

p(vk|Ik;θ)

]

≈ 1
S

S

∑
j

N

∑
j

logp(vk j|Ik;θ) (4.7)

• M-Step: Update the parameters by maximizing Q(θ |θt). The maximization is

a close form for IT and θt and is given by:

σ
2 =

1
MNS

S

∑
s=1

N

∑
k=1

∥IT − Ik ◦Exp(vks)∥2 (4.8)

In order to update the atlas image I, we set the derivative of the Q function

approximation with respect to I to zero. The solution I gives a closed-form

update.

IT =
∑

S
s=1 ∑

N
k=1 Ik ◦Exp(vks)|DExp(vks)|

∑
S
s=1 ∑

N
k=1 |DExp(vks)|

(4.9)

Where D denotes the Jacobian matrix.

A single-scale Wendland kernel [Pai et al., 2016] is used to parameterize the

velocity field and construct the covariance matrix for regularization. Once a template

is estimated, the posterior distribution is sampled for a set of velocity fields for each

training data. To induce more variations, the velocity fields are randomly integrated

between 0 and 1. The training samples are deformed with cubic interpolation for

the image, and nearest neighbor interpolation for the atlas to create the new set of

synthetic data. The input (for one image as an example) to the deep-learning network

will be of the form

⟨⟨In,Ln⟩,⟨In ◦Exp(vn1),Ln ◦Exp(vn1)⟩, . . .⟨In ◦Exp(vnA),Ln ◦Exp(vnA)⟩⟩, (4.10)

Where A is the number of augmentations and Ln is the label of input image In. Note
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that the label is a segmentation assigning a class to each voxel and is transformed

using the same transformation accordingly. Algorithm 1 summarizes the workflow

of PADDIT in pseudo-code.

Algorithm 1 PADDIT
1: Generate template using Equations (4.7) and (4.8).
2: for number of training epochs do
3: Sample A = 2 velocity fields per training image using HMCNeal [2011] from

the distribution (4.6).
4: Integrate the sampled velocity field upto a randomly chosen time t ≤ 1 to

warp the training image and its corresponding label image.
5: Extract slices from the warped images and add them to the slices extracted

from the original images, see (4.10).
6: Train the convolutional neural network to classify each voxel.
7: end for

4.5 Experiments and Results
We considered CNNs based on a U-net architecture in our experiments. To evaluate

the proposed method, the performance of CNNs trained with data augmentation

using PADDIT was compared to training without augmentation and training with

augmentation using deformations based on random B-splines – we call this method

the baseline. The above-mentioned strategies were applied to White Matter Hyper-

intensities (WMH) segmentation from FLAIR and T1 MRI scans. To this end, we

use the training dataset from the 2017 WMH segmentation MICCAI challenge 1.

The set is composed of T1/FLAIR MRI scans and manual annotations for WMH

from 60 subjects. Manual notations were performed in FLAIR space, therefore T1

modalities have been registered to such space. The images were also corrected for

bias field inhomogeneities using SPM12. As further preprocessing images were

cropped or padded to 200 × 200 × 200 voxels. Also, images were subtracted by

its mean and divided by its variance, to normalized voxel intensities. The dataset

was split into a training(30), validation(5) and testing(10) set. For each method two

different deformed versions of each training case were created, i.e the training set

size was tripled.

1http://wmh.isi.uu.nl
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The Random deformations for the baseline were obtained by using a deforma-

tion field defined on a grid with Cp number of control points and B-spline interpola-

tion. The size of deformation was controlled by adding Gaussian noise with 0 mean

and standard deviation Sd. We evaluate the impact of Cp and Sd hyperparameters,

specifically we tried: Cp = [4×4×4,8×8×8,16×16×16] and Sd = [2,4,6].

Figure 4.1 shows examples of the obtained deformed versions of a FLAIR

scan from one subject from the training dataset. As can be observed, both methods

generated new shapes for WMHs regions. It is worth noting, however, that images

provided by PADDIT look more realistic and without drastic alterations to the

Brain. In contrast, those obtained using random B-spline deformations exhibit

some aberrations in cortical and ventricular structures depending on the size of the

deformation used.

As we mentioned before, we split the data into validation and training set. In this

case the validation set is used to tune the best configuration for the number of control

points Cp and size of deformation Sd . Figure 4.2, shows the dice performance at

each epoch on the validation and testing set. It is worth noting that PADDIT achieved

higher accuracy than training with random B-spline deformations as well as training

without augmentation. Also, it can be noted that random B-spline deformations

did not provide a consistent improvement compared to the training without data

augmentation.

For the final assessment of PADDIT, the validation data was used for early

stopping. The final evaluation of each method is carried out on the testing set using

the network configuration at the epoch where it showed the highest accuracy on

the validation set. The best configuration for random deformations was achieved

using Cp = 8× 8× 8 and Sd = 4. For PADDIT, the control points were placed

every 8 voxels. Results for evaluation on the testing set are summarized in Table 4.1.

Our proposed method PADDIT achieved ≈ 0.2 higher dice accuracy compared to

the network performance without data augmentation and ≈ 0.15 compared to the

baseline data augmentation approach (best configuration). (both differences where

statistically significant (p < 0.5))
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FLAIR PADDIT 1 PADDIT 2

Cp: 4 Cp: 8 Cp: 16

Sd
:2

Sd
:8

Sd
:1

6

Figure 4.1: Example of generated deformations. The first row shows the original
FLAIR image, and the two deformed versions using PADDIT. The remaining rows
show examples of images generated by random B-spline-based deformation using
different values for the number of control points (Cp), and the standard deviation
(SD) which controls the amount of deformation. Thus for example the image in the
right bottom corner was generated using Cp:16 and Sd:16.

4.6 Discussion and concluding remarks

In this chapter, we presented a probabilistic data augmentation approach using dif-

feomorphic image transformations. Contrary to traditional augmentation strategies

(based on aleatory transformations), the proposed method can learn transformations

that better capture the anatomical variations of the training dataset, while preserving



4.6. DISCUSSION AND CONCLUDING REMARKS 59

Figure 4.2: Performance on the validation and testing set for each method. Dice is
computed at each epoch

Methods Dice (mean) Dice (std)
No Data Aug 66.32 24.82

R
an

do
m

D
ef

or
m

at
io

ns

Cp: 4, Sd: 2 66.28 22.60
Cp: 4, Sd4: 63.47 24.66
Cp: 4, Sd6: 66.61 22.74
Cp: 8, Sd2: 64.52 23.47
Cp: 8, Sd4: 64.38 24.03
Cp: 8, Sd6: 65.66 23.27
Cp: 16, Sd2: 63.58 24.57
Cp: 16, Sd4: 65.87 22.38
Cp: 16, Sd6: 65.35 23.41

PADDIT 68.13 21.85

Table 4.1: Segmentation accuracy for all the assessed strategies, the highest dice
score achieved by the random B-spline deformation approach is underlined

the structural topology. According with the experiments, Even though several con-

figurations of random transformations generated realistic looking images, they were

not necessarily useful in DNNs training. On the other hand, the best configuration

of random transformations generated images that were not necessarily biologically

plausible. We hypothesize that such noisy data may help the optimization to find

better minimums. However, one has to be careful in choosing the configuration of

transformations since other configurations with a higher magnitude of deformations

had a negative effect on the training. That because large deformations can generate
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images that does not represent real brain morphologies which only introduce bias

into the model. This can be seen on the results on Table 4.1, where the performance

of the majority of the different configurations for random b-spline deformations

achieved lower performance than the model without any augmentations. In the

case of PADDIT, one need not worry about the transformation configuration too

much since the method learns the right transformation needed to capture the shape

variations in the data set.

The proposed probabilistic augmentation approach PADDIT, proved to be an effective

way to increase the training set by generating new training images which improve

the segmentation performance of DNN’s based approaches.

From the results, it is evident that the network trained with PADDIT is performed

statistically significantly better than the networks with either no data augmentation

or random B-splines based augmentation.



Chapter 5

Dealing with Inter-Modality

Heterogeneity: Knowledge

Distillation

5.1 Derived Publication
• Orbes-Arteaga, M, Cardoso, J., Sørensen, L., Igel, C., Ourselin, S., Modat,

M., ... Pai, A. (2019).. "Knowledge distillation for semi-supervised domain

adaptation." in Context-Aware Operating Theaters and Machine Learning in

Clinical Neuroimaging, MICCAI 2019.

5.2 Preface
Methods proposed in Chapter 3 and Chapter 4 leverage only annotate training data

to cope with morphology and modality heterogeneity on segmentation of WMHs.

However, achieving generalization to variations in image appearance due to differ-

ences in acquisition settings among center needs more powerful solutions, which

also can leverage unlabeled data. Despite advancements of DNNs in segmentation,

their performance always degrades when algorithms are applied on images draw

from a different domains (scanner type, parameters, patient pool etc) as the one used

in training the model. This performance gap is a critical barrier to the safe implemen-

tation and widespread adoption of these techniques in clinical practice. The process
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of adapting a model from a ‘source’ domain to a ’target’ domain is called domain

adaptation. In particular unsupervised domain adaptation methodologies provide

a way to learn from unlabeled data in new domains. This is particularly useful

as in real practice is more feasible to have access to unlabeled data from the new

domains. In this Chapter, we presented a modified knowledge distillation method for

unsupervised domain adaptation. Knowledge distillation as originally proposed in

[Hinton et al., 2015, Lopez-Paz et al., 2015] aims to transfer the learned knowledge

from a large network (Teacher) to a simpler network (student). Instead, we aim to

transfer knowledge learned on source domain data to unlabeled data from the target

domain. The training strategy occurs in two phases. In the first phase, a teacher is

trained in a supervised way using the source data. In the second phase, the teacher is

applied to samples from source and target domains to generate soft-labels (posterior

probabilistic maps for each class) which are used to train the student. The proposed

scheme enables learning discriminative features from the target domain without need

of ground truth labels. Moreover, soft-labels encode co-label similarities that provide

more rich information in boundaries of lesions. Finally, optimization with smoother

targets speeds up convergence and prevents overfitting in a better way than early

stopping [Hinton et al., 2012]. Note that the knowledge is only transferred forward

(from source to target domain). Our primary objective is to improve the performance

on data of the target domain while keeping the performance on the source domain.

However, we don’t encourage backward transfer knowledge (from target to source

domain) due to the lack of labels on the target domain, which can result in the

learning of inaccurate predictions that can decrease the model performance on the

source data.

We present experiments on data coming from three different centers to assess

the adaptation performance of the proposed method. We show that the proposed

knowledge distillation based method is able to perform domain adaptation achieving

higher performance than other methodologies such as adversarial approaches.
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5.3 Related work

Among the recent works on domain adaptation, several methods rely on using a

small amount of data (annotated) to fine-tune a baseline model [Hoffman et al.,

2013, Karani et al., 2018]. The performance of this approach not only relies on a

new – albeit small – set of annotations but also on the choice of the set. In contrast,

unsupervised domain adaptation (UDA) do not use data annotations on new target

domains. Adversarial training is a popular UDA method [Tzeng et al., 2017, Sun

and Saenko, 2016, Hoffman et al., 2017]. In those approaches, networks are trained

in such a way that the generated features are agnostic to the data domain with respect

to a domain discriminator. A similar solution, ADA, was employed by Kamnitsas

et al. [2017] to adapt networks to be agnostic to domain changes.

Another class of methods use knowledge distillation (KD) to transfer representa-

tions between data domains. For instance, Gupta et al. [2016] proposed using KD to

transfer knowledge between different modalities of the same scene. Closely related

to our work is Huang et al. [2018], where the authors propose to use omni-supervised

learning (OSL) to include unlabelled data in the learning process. Here, data distilla-

tion is used to generate an ensemble of predictions from multiple transformations

of unlabeled data, using a teacher model, to generate new training annotations. The

proposed method differs from this method on two accounts: a) we only use soft labels

to train the single student network, where the idea is to improve segmentation by

learning label similarities from unannotated data b) the data included in the training

of the student involves data from new domains in small amounts in contrast to OSL.

5.4 Methods

In UDA methods, we assume the source domain images and their annotations,

(xs,ys) ∈ Xs, are drawn from a distribution ps(xs,y). The target domain images

xt ∈ Xt , are drawn from a distribution pt(xt ,y) where there are no annotations

available. We consider classification into K classes. In an ideal scenario, where ps

and pt are sufficiently similar, the goal is to find a feature representation mapping

f that maps an input to K scores, where the ith score models (up to a constant) the
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logarithm of the probability that the input belongs to class K. These scores can then

be mapped by σ : RK → RK to probability maps over the classes. UDA first finds a

function fs performing well on a source domain and then finds a new ft based on fs

that performs well on the target domain. Vanilla supervised learning methods rely

on including annotations from both Xs and Xt .

In the popular ADA method, the goal is to minimize the distance between the

empirical distributions of ps( fs(Xs)|y) and pt( ft(Xt)|y). Here, a discriminator D

is a neural network that distinguishes between the two domains. Therefore, the

discriminator acts as a discrepancy measure that brings the two distributions together.

Overall, adversarial training involves train a network that generates f in a standard

supervised manner that is indistinguishable by a discriminator Tzeng et al. [2017],

Kamnitsas et al. [2017].

5.4.1 Knowledge distillation for Domain adaptation

KD [Hinton et al., 2015] was originally intended to compress neural networks with

high number of parameters with networks of lower complexity. The objective is to

teach a simpler student network to imitate a more complex trained teacher network,

through a loss function called the distillation loss. To perform unsupervised domain

adaptation, we proposed to use the teacher/student learning strategy. Specifically,

the data from the source domain is used to train a teacher model in a supervised

fashion. Then, the trained teacher is used to generate posterior probability maps

or soft labels on the union of source and target data. These posterior probabilities

are used instead of usual hard labels to train the student or target model. Note, this

approach can take advantage of large amounts of unlabeled data acquired from any

number of domains. An attractive feature of distillation loss is the soft representation

of one-hot encoded label vectors which allow the student to be optimized over a

smoother optimization landscape. Moreover, the smooth representation of labels

also allows the learning of label similarities, which is particularly useful in learning

boundaries in semantic segmentation tasks. The proposed unsupervised learning

method is formulated below.

Training the teacher or source domain model: Consider a set of N manually
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annotate images from a domain Xs = {(xi,yi), i = 1 . . .N}, where xi ∈ Rd represent

a d-dimensional MR scan, with v = 1 . . .V voxels, and yi ∈ [0,1]K with ∥yi∥1 = 1

its correspondent label. Assuming there is a set Fs that holds functions f : Rd →

RK we aim to learn a feature representation fs (teacher model) which follows the

optimization of a loss function, l, according to Equation (5.1)

argmin
f∈Fs

1
N ∑

xi∈Xs

l(yi,σ( fs(xi))) (5.1)

[σ(z)]k =
e[z]k

∑
K
l=1 e[z]l

(5.2)

In a standard supervised learning way, the teacher network is optimized using the

cross-entropy loss function (or any differentiable loss function of choice).

Training the student or target model: Even though fs is suitable to segment

the images from the source domain Xs, it may not be suitable for data coming from

a different data distribution Xt . Our goal is find a function ft ∈ Ft , which is suitable

to segment data from Xt . Assuming, we have access to a limited set of unlabeled

scans in the target domain Xt = {xi, i = 1 . . .M}, we can then create a set

XU = {(xi,yi) |xi ∈ Xs,yi = fs(xi),1 ≤ i ≤ N}∪

{(xi,yi) |xi ∈ Xt ,yi = fs(xi),1 ≤ i ≤ M}

that may be used to optimize a student using the distillation loss. Through soft-

representations of this union dataset, the student is expected to learn a better mapping

to the labels than the teacher network. When training the student network, we

consider probability distributions (soft-labels) over the classes given by the teacher

network as the learning target. This representation reflects the uncertainty of the

prediction by the teacher network. The function ft is found by (approximately)

solving,

argmin
f∈Ft

1
(N +M) ∑

xi∈XU

l(σ(T−1 fs(xi)),σ( ft(xi))) , (5.3)

Here, T > 1 is the temperature parameter which controls the softness of the class

probability predictions given ft . A higher value of T produces a softer probability
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distribution over the classes. As pointed in [Hinton et al., 2015], for models with high

confidence in the predictions, much of the information about the learned function

resides in the radios of every sample probability in the soft targets. For example, for

some lesions, a model will also predict a small probability of 10−6 of being a non-

lesion, whereas for other lesions it can be the other way around. This information

defines a rich similarity structure over the data (i.e inform which lesions look like

non-lesions) but this has little influence on the coss-entropy cost function during the

transfer because the probabilities are close to zero. A higher temperature of the final

soft-max will increase the relevance of all the class probabilities on the cost function.

5.5 Experiments and Results

5.5.1 Databases

The WMH segmentation challenge(https://wmh.isi.uu.nl/ ) dataset is a public

database that contains T1-weighted and FLAIR scans for 60 subjects from three

different clinics. The data also consists of manual annotations of WMH from

presumed vascular origin. T1-weighted images have been registered to FLAIR since

annotations were performed in this space. The images were also corrected for bias

field inhomogenities using SPM12. An important feature of this dataset is that the

scanners and demographics have variance as show in the Table 5.1.

Table 5.1: Summary of data characteristics in the WMH challenge database
Clinic Scanner Name Voxel Size(m3) Size # scans

Utrech 3T Philips Achieva 0.96×0.95×3.00 240×240×48 20
Singapore 3T Siemens TrioTim 1.00×1.00×3.00 252×232×48 20
Amsterdam 3T GE Signa HDxt 1.20×0.98×3.00 132×256×83 20

5.5.2 Experimental setup

One of the main objectives of the paper is to use semi-supervised learning to perform

domain adaptation. We use the WMH challenge dataset to perform cross-clinical

experiments in segmenting WMH on FLAIR images. We consider several scenarios

to establish the performances of ADA and KD. The scenarios are described below.
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Note that, to evaluate the performance of the algorithms, dice overlap measures are

used throughout.

• Lower bound baseline, L-bound: Here a baseline DNN model is trained on

the source dataset to establish a lower bound performance. The DNN is trained

on the source domain images henceforth referred to as S, and tested on 20

subjects from a target dataset T.

• Upper bound baseline, U-bound: Here, a baseline DNN model is trained like

L-Bound, however, the training dataset is a union of images from both S and a

subset of T (10 subjects, with annotations). The network is evaluated on the

remaining 10 subjects in T.

• Adversarial domain adaptation, ADA: Following Kamnitsas et al. [2017], we

attempt at training a DNN model that is invariant to data domains. In this

paper, to be consistent with KD, we train the domain discriminator based on

the final layer of the baseline, in contrast to what was proposed in Kamnitsas

et al. [2017]. We use a discriminator composed of 4 convolutional layers with

8, 16 32, 64 number of filters, followed by 3 fully connected layers with 64,

128 and 2 neurons. For this experiment, like U-bound, the training dataset

is a union of images from both S and a subset of T (10 subjects, without

annotations). The network is evaluated on the remaining 10 subjects in T.

• Knowledge distillation, KD: The experimental setup for KD is the same as

ADA. A temperature of 2 is used in the softmax for the distillation loss. The

student network trained is identical to the teacher network whose architecture

is a standard UNet (like L-bound, U-bound, and ADA) optimized with an

ADAM loss function and a learning rate of 10−4 with is gradual decrease after

epoch 150. The network is trained for 400 epochs.

• Adaptation on-the-fly: A clinically relevant scenario is adapting to a small set

of test images on the fly by keeping the teacher/baseline model constant. To

validate this scenario, we apply ADA and KD on the same 10 unannotated T
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that are included in the training, but subject-wise. In other words, separate

adaptation is performed on each instance of T, instead of including them

together.

5.5.3 Results

As mentioned in section 5.2, we are mainly interested in achieving forward knowl-

edge transfer. Consequently, we compare the performance of the above-mentioned

methods based on the performance in the target domain. To this end, various combi-

nations of mismatched (in terms of clinics) training and testing data were used. For

instance, if the training data is from clinic 1 (Utrecth), the testing data is from either

clinic 2 (Singapore), or clinic3 (Amsterdam). We did not test on two different clinics

even though this scenario is practical. Table 5.2 illustrates mean dice coefficients

(two folds) for each of the scenarios mentioned in Section 5.5.2 except for adaptation

on the fly which is illustrated in Table 5.3. KD outperformed ADA in nearly all

scenarios except for domain adaptation from Singapore clinic to Utrecht clinic and

vice versa. For domain adaptation from Utrecht clinic to Singapore clinic, ADA was

significantly better than KD. In the vice-versa situation, KD achieved a better mean

which is statistically not significant. In all other scenarios, KD yielded statistically

better dice overlaps compared to ADA. Note that the statistical comparison are made

only between ADA and KD. In the adaptation-on-the-fly scenario, KD yields signifi-

cantly better dice overlaps on a majority of the scenarios, the superior performance

of ADA remains in the experiment that involves domain adaptation from Utrecht

clinic to Singapore clinic. However, in the vice-versa scenario, KD performance

better than ADA. To illustrate the differences in segmentations between KD and

ADA, we plot the segmentations (scenario, Utrecht clinic to Amsterdam clinic) in

Figure 5.1. As illustrated, both the methods perform quite well in segmenting lesions

with relatively larger volume, however, the main difference is evident in segmenting

smaller lesions, specially in the deep white matter regions. It is interesting to note

that the adaptation-on-the-fly and the classical scenarios yield nearly the same dice

indicating a good generalisability and less dependency on the choice of the small

dataset coming from the target domain.
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Table 5.2: Illustrates dice overlaps (with variance). Bold fond indicates statistical
significance at 5%, p-values (paired-sample t-test at was used to computed p-values,
which were 0.0002 < p < 0.02). Only ADA and KD methods are considered in the
statistical comparison.
aaaaaaaa

Training
Test

Method Utrech Singapore Amsterdam

Utrech

L-bound 0.6126 ( 0.1092) 0.7207 (0.0793)
ADA 0.7004 ( 0.1057) 0.7144 (0.0968)
KD 0.6456 ( 0.0905) 0.7548 (0.0755)

U-bound 0.8031 ( 0.1148) 0.7704 (0.0787)

Singapore

L-bound 0.6693 ( 0.2271) 0.7368 (0.0931)
ADA 0.6859 ( 0.2036) 0.7337 (0.0912)
KD 0.6924 ( 0.2103) 0.7499 (0.0877)

U-bound 0.7063 ( 0.2016) 0.7699 (0.0851)

Amsterdam

L-bound 0.6471 (0.2086) 0.6811 (0.1172)
ADA 0.6800 (0.2128) 0.7202 (0.1154)
KD 0.6909 (0.2135) 0.7482 (0.0975)

U-bound 0.7208 (0.1851) 0.7988 (0.0869)

Table 5.3: Mean dice overlaps from the adaptation-on-the-fly scenario. Bold fond
indicates statistical significance at 5%, p-values (paired-sample t-test at was used to
computed p-values, which were 0.0003 < p < 0.04). Only ADA and KD methods
are considered in the statistical comparison.
aaaaaaaa

Training
Test

Method Utrech Singapore Amsterdam

Utrech
KD 0.6285 ( 0.097 0.7465(0.0855)

ADA 0.7075 ( 0.095) 0.7220(0.0995)

Singapore
KD 0.6945(0.1825) 0.7425(0.0805)

ADA 0.6680(0.1945) 0.7370(0.0880)

Amsterdam
KD 0.6745 ( 0.2005) 0.7395 (0.1165)

ADA 0.6625 ( 0.1890) 0.7100 (0.1125)

5.6 Discussion and concluding remarks
We have evaluated a modified knowledge distillation approach and compared it

to the popular adversarial approach under different clinical scenarios. Overall,

the knowledge distillation approach gave better results and is relatively simpler to

design when compared to the more architecture-dependent adversarial approaches.

Adversarial approaches require extensive tuning of DNN architectures, especially for

the discriminator, in order to achieve reasonable performances. In contrast, KD only

involves choosing the temperature parameter which can be chosen only based on the
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performances on the source domain. One of the interesting outcomes is the inferior

Target ADA KD U-bound

Figure 5.1: Illustration of the segmentation’s obtained with different methods trained
on the Utrecht dataset and tested on the Amsterdam dataset. The top and bottom row
illustrate segmentations on two different subjects.

performance of KD on domain adaptation in scenario, Utrecht clinic to Singapore

clinic. One of the reasons may be attributed to not just scanner differences but also

differences in demographics. This may have led to an inferior teacher performance

that the student network relies on. To verify this, we used the improved network

from domain adaptation using ADA as a teacher and then trained a student based on

it. We observed that the mean dice overlap improved from 0.65 → 0.69.

In future work, we will consider combining the adversarial approaches with

knowledge distillation to improve the generalisability of DNNs across domains

without the need for large annotated datasets.
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Dealing with Intra-Modality

Heterogeneity: Paired Consistency

under Data Augmentation

6.1 Derived publication
• Orbes-Arteaga, M., Varsavsky, T., Sudre, C. H., Eaton-Rosen, Z., Haddow, L.

J., Sørensen, L., ... & Nachev, M. Jorge Cardoso. Multi-domain adaptation

in brain MRI through paired consistency and adversarial learning. Domain

Adaptation and Representation Transfer and Medical Image Learning with

Less Labels and Imperfect Data, MICCAI 2019.

6.2 Preface
In the previous chapter, we demonstrated that learning from soft labels improves

model generalization. That improvement is mainly because soft-labels not only help

to prevent over-fitting but also enable the model to learn discriminative features for

the target domain. Despite those advantages, there are still some aspects that need

attention. The knowledge distillation requires a teacher/student scheme, where the

student learns from the teacher "soft predictions" that are obtained once before the

student training. Therefore, the adaptation success will depend on the initial teacher

performance on the target data without any chance of rectification during the student
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learning process. Moreover, the generalization properties of the learned features

depend on the amount of variability on the unlabeled training set. Data from the

target domain could only hold a few cases, with very little variability among them.

This could prevent the model learning invariant enough features that extrapolate well

to new cases. In this chapter, we refine the proposed method in Chapter 5 aiming

to maximize generalization to a wider range of heterogeneities. Firstly, we dispose

of the Teacher/Student learning scheme. Instead, we use consistency training to

iteratively refine the model predictions on the target domain. We introduce a paired

consistency loss (PC) which guides the adaptation. The proposed (PC) method

enforces the output consistency between the predictions obtained on a given input

and its augmented counterpart (they act as soft-labels each other). We enforce

the model to produce consistent predictions for a given input and its augmented

counterpart (they act as a soft-labels each other). We explore different types of

augmentation functions aiming to encourage model robustness to a greater range of

expected variability on test data. Specifically, we use synthetic augmentations which

could be geometric (rotations, scale, shearing) but also MRI-specific augmentations

like k-space and bias field. Moreover, we use paired scans (with different acquisition

of the same patient) which are considered as realistic augmented samples.

We study two scenarios: First, we consider the typical case where we want to

adapt to unpaired data coming only from one domain. Then, we study the case where

we have access to paired data from different sequences. Because those sequences

belong to two different domain distributions, this can also be seen as a multi-domain

adaptation scenario.

We compared the proposed adaptation against adversarial unsupervised domain

adaptation, and Mean Teacher (as in [Perone et al., 2019]) which is another self-

learnig method for domain adaptation.

6.3 Methods

Let L a set of annotated data from a source domain, and U a set from unlabeled

data from the target domain. The proposed training strategy for domain adaptation
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occurs in two phases. In the first phase, the network is trained only on labeled data

until convergence. At the end of the first phase, the network can achieve a good

performance on images from the source domain but its performance reduces on data

from the target domain. During the second phase of the training, unlabeled data

is presented in addition to the labeled data and a consistency term is added to the

loss function. This consistency term is inspired from the loss proposed by Xie et al.

[2019] that aims at minimizing the Kullback-Leibler divergence DKL between the

output probability distribution y when conditioned on the unlabeled input x from the

set U or its augmented counterpart x̂ drawn from q(x̂|x).

min
θ

LPC = E
x∈U

E
x̂∼q(x̂|x)

[DKL(p
θ̃
(y|x)||pθ (y|x̂))] (6.1)

6.3.1 Adapting consistency training for segmentation task:

KL divergence suits well with classification task as the one in Xie et al. [2019].

Given we are aiming a segmentation task we use dice loss as this adapts better to the

particularities of the task (while preserves the soft-label nature). In this sense, we

use the dice loss [Milletari et al., 2016] which has proven to be efficient on problems

with high class imbalance. In the following, we denote as yl the labeled ground

truth, ŷl the prediction over labeled images, ŷu the prediction over unlabeled input

and ŷû the prediction over its augmented/paired counterpart. The losses used in our

framework are thus expressed as follows:

LS = dice(ŷl,y), LPC = dice(ŷu, ŷû), Ltot = LS +αLPC (6.2)

We trained networks using Ltot as specified in (6.2) and denote them as PC.

These networks fθ (h|x) produce a feature representation h from which ŷ is calculated.

6.3.2 Preventing trivial solutions:

Early in our experiments, we encountered a specific degenerate solution: our network

was able to produce one solution for source images (a good lesion mask) while

producing a trivial result on the target domain (in this case, a mask of the foreground).

Because there is not labels in the target domain to guide the network to predict lesions,
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the network found the prediction of large masks as a solution to minimize the dice

loss (increasing consistency). This meant that there was good agreement between ŷu

and ŷû because they simply segmented foreground — ignoring the lesions altogether

because it is easier achieve higher dice between larger masks than smaller ones

such the lesions. This means that the network was identifying the domain of the

images and using this to inform its solution: undesirable behaviour. We introduced

an additional adversarial term to avoid these ‘solutions’. Inspired by the domain

adversarial literature (see Section 2.4.2.2) we propose an adversarial loss to minimize

the amount of information about domain contained in h. We introduce a discriminator

dΩ which takes h as input and outputs a domain prediction d̂. The adversarial loss,

Ladv is given by the cross-entropy, Ladv =−∑
n
i=1L

i
ce(di, d̂i) where n is the number

of domains , Li
ce is the multi-class cross entropy loss, d is a one-hot encoded vector

of the domain label and d̂ is the model’s domain prediction as in [Schoenauer-Sebag

et al., 2019]. We use a gradient reversal layer as in Kamnitsas et al. [2017] in order

to minimize Ltot whilst maximizing Ladv. Figure 6.1 presents the diagram of the

proposed method with the combination of different losses, where β controls the

strength with which the model is adapting its features whereas α controls the weights

the consistency effect.

6.3.3 Augmentation:

The augmented function employed to perturb the inputs plays an important role in

consistency training. By applying augmentation we are maximizing the robustness

of models to wider range o variations. In Xie et al. [2019] the authors suggest

various properties of augmented samples necessary for performing Unsupervised

Data Augmentation. Samples should be realistic, valid (meaning they should not

alter the underlying label), smooth, diverse and make use of targeted inductive biases

(domain knowledge). Consequently we explore three groups of augmentation.

• Geometric augmentation: transforming the spacial relations in the im-

ages leads to generating a more diverse set of samples which also improves

sample efficiency. Therefore, encouraging consistency to geometric augmen-

tations can significantly improve robustness to such geometrical variations.



6.3. METHODS 75

Figure 6.1: Diagram of proposed method. At training time, xu, xl and yl are supplied
to the network. xu is an image from the unlabeled target domain and x̂u is the result
of applying some augmentation function to xu. A labeled image, xl , is passed through
the network, fθ before combining with a label yl to form the segmentation loss, Ls.
The image representations are fed to a domain discriminator dΩ which attempts
to maximise the cross-entropy between predicted domain and actual domain, Ladv.
Finally, similarity is promoted between the network predictions on xu and x̂u using
LPC.

We sample independently geometric augmentations which include, random

rotations (all axis ranging from -10 to 10 degrees), random shears ([0.5,0.5]),

and random scaling ([0.75,1.5]) and combined them as one affine transform.

We did not consider non-linear deformations as it increase the complexity of

implementation when performed online, and also it could produce not realistic

results. Moreover, the augmentation method PADDIT presented in Chapter 4

it does not have neither Differentiable (needed for backpropagation) or online

implementation at the moment. Differentiable and online implementations

will be considered as a future work.

MRI-specific augmentation: Common artefacts caused during the acquisi-

tion process of MRIs could produce errors in segmentation models. Therefore,

augmenting the data with synthetically generated artefacts will increase the

image appearance variability and improve the robustness to those anomalies

commonly observed in MRIs. Specifically, We apply k-space motion artefact

augmentation as described in Shaw et al. [2019] and bias field augmentation
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as implemented in Gibson et al. [2017].

• Realistic : Lastly we consider the case where we have access different

separate acquisition of the same subject (e.g 2D and 3D acquisitions). If the

samples are paired (one-to-one spatial correspondence) they can be considered

as realistic augmented versions of each other. Given each sequence belongs to

a different domain distribution, encouraging invariance on their predictions

makes the model robust to the distribution shift of their domains. This can be

also seen as a multi-domain adaptation approach, where we get the adaptation

from one source to multiple target domains. However, taking the sequences

as they are, makes for a discrete augmentation function with discontinuous

jumps. In order to encourage continuity we also applied to each acquisition a

combination of both, geometric and MRI specific augmentations.

6.4 Data

In this work we focus on white matter hyperintensity segmentation. The data

comes from two separate studies. As a source domain we use the White Matter

Hyperintensity challenge data presented in MICCAI 2017 Kuijf et al. [2019]. The

other dataset was used as target domain and comes from a sub-study within the

Pharmacokinetic and Clinical Observations in PeoPle over fiftY (POPPY) Haddow

et al. [2019]. In this study two different FLAIR sequences were acquired during the

same MR session for all 72 subjects on a Philips 3T scanner. The in-plane FLAIR

was an axial acquisition with 3mm slice thickness and 1mm2 planar resolution

(Repetition time (TR) 8000ms, Inversion time (TI) 2400 ms and echo time (TE)

125 ms) while the volumetric FLAIR was of resolution 1.04× 1.04× 0.56 mm3

(TR=8000ms TI=1650ms TE=282ms). Both images were rigidly coregistered to

the 1mm3 T1 sequence acquired during the session. All individuals were male with

mean age of 59.1±6.9 yrs, including HIV-positive subjects and population-matched

controls.
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6.5 Experiments
In this section we aim to evaluate the Consistency Training method (PC) (Sec-

tion 6.3.1 ) and the effects of the proposed augmentation based strategies ( Sec-

tion 6.3.3) on two domain adaptation scenarios: i) We consider the case where we

have access to paired data with different sequences per sample. As we mentioned be-

fore, in order to avoid discontinuities, here we combine real augmentations together

with the geometric and MR- specific augmentations.

ii) We consider the classical domain adaptation setting where we do not have

paired data in the target domain. With this experiment we want to demonstrate the

proposed method is useful to perform domain adaptation in more a commonly seen

scenario. Also we want to explore the effects of each time of augmentation in the

segmentation performance. So consequently we referred to the above scenarios as

Adaptation with paired data and adaptation with unpaired data respectively.

6.5.1 Domain adaptation on paired data

In this set of experiments, we use as a source domain the whole MICCAI dataset,

whereas for the target domain we use a set of 72 images that come from a sub-study

within the Pharmacokinetic and Clinical Observations in PeoPle over fiftY (POPPY).

We split the MICCAI dataset with a train:validation:test assignment of 40:10:10. For

the POPPY dataset, the split was 38:15:20.

Implementation details: Training was done using 2d axial slices of size 256×256

with inference carried out by concatenating the predictions across all slices to form a

3d volume. The segmentation network uses the U-Net architecture Ronneberger et al.

[2015] with depth of 4 and a maximum number of filters of 256 at the deepest layer,

with ReLU as the activation function. Phase one of training is done on the dataset

assigned as source. We use use the the Adam optimizer with an initial learning rate

10−3 and a learning rate decay schedule decaying with γ = 0.1 (γ is a multiplicative

factor of learning rate decay) at epoch 300 and 350. The source validation set is

used for early stopping, thus the baseline model takes the network configuration at

the epoch where it showed the highest accuracy on the validation set. All adaptation

models and adversarial models were initialized with the weights of this trained
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baseline model.

The choice of α parameter balancing the segmentation and the consistency loss

in the domain adaptation runs proved to be important. Generally, high values of α

led to degenerate solutions, where predictions on the target dataset were no longer

capturing lesions. Since scheduling a slowly increasing α did not help, α was fixed

at 0.2 in all experiments.

In case of an adversarial setting, empirical assessment of the best choice of

architecture for the discriminator led to the following choice: four 2D convolutional

layers with a kernel size of 3×3 and a stride of 2 followed by batch normalisation

and leaky ReLU activation. The number of output channels is 4 to begin with and

doubles at each layer to a total of 32. Finally, there are three fully connected layers

with output sizes of 64, 32, and 2 with relu activations and dropout applied (p = 0.5).

Points of comparison: we compared the proposed PC with adversarial set-

ting and augmentation (PC+Adv+Aug) to the version without adversarial setting

(PC+Aug) and the simplest version removing also the augmentation (PC). In addi-

tion, we trained mean-teacher framework (MT) as well as the adversarial domain

adaptation (Adv+Aug) and without augmentation (Adv). Finally, we compared to

the baseline U-Net model trained only on the MICCAI dataset with (Baseline+Aug)

and without (Baseline) augmentation. For all experiments we augment the data using

a combination of geometric and task-specific augmentations.

For the final results table checkpoints were chosen for each of the experiments

by looking at the performance across the validation set.

Reported metrics: As the first metric of consistency, we compute the Dice

score overlap between the two volumes. However, high dice agreement may arise

without predicting lesions, for instance with the segmentation of the foreground or

of another anatomical structure. Such degenerate solutions can indeed occur as the

consistency term in the loss can be minimized for any consistent prediction between

volumes. As there is no lesion segmentation for the POPPY dataset, we use the

known association between age and white matter hyperintensity load reported for this

dataset [Haddow et al., 2019] as surrogate evaluation that the segmented elements
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Table 6.1: Performance of different methods on the target (POPPY) and the source
domain (MICCAI 2017 WMH Challenge). We report the dice between our models’
predictions and the ground truth annotations in the source domain as well as the
HD95. The evaluation on target domains is done with the Dice, the HD95, the
volume difference (VD) and the recall. A significative rank measure is calculated
across all metrics. Results are reported with the format median (IQR) in percentages
for all metrics except the HD95 in mm. Best results are in bold andunderlined when
significantly better than all others (p<0.05 paired Wilcoxon tests).

POPPY MICCAI
Dice HD VD Recall Dice HD Rank

PC+Adv+Aug 54.5 (10.6) 32.7 (9.8) 15.2 (22.8) 52.4 (14.4) 81.4 (9.6) 28.5 (8.6) 2.5
PC+Aug 53.2 (15.1) 39.2 (15.5) 25.4 (15.6) 43.5 (12.5) 81.6 (15.5) 18.6 (4.8) 3.3

PC 50.7 (17.0) 35.1 (11.9) 16.6 (21.4) 43.6 (11.0) 81.4 (22.6) 17.2 (3.6) 3.4
Perone et al 2018 48.6 (12.3) 33.6 (14.8) 33.7 (19.0) 40.9 (5.0) 80.0 (18.2) 20.0 (7.3) 4.3

Baseline+Aug 42.8 (14.6) 34.9 (11.1) 39.3 (22.3) 33.5 (12.6) 80.6 (14.8) 17.8 (4.9) 4.9
Baseline 43.0 (16.2) 33.3 (15.1) 40.3 (24.8) 33.3 (14.8) 81.1 (16.9) 17.5 (3.3) 5.6

Adv 41.8 (15.4) 32.6 (6.1) 25.2 (24.0) 33.5 (12.7) 82.5 (12.0) 17.6 (5.2) 5.7
Adv+Aug 41.4 (16.4) 36.6 (9.0) 38.0 (16.0) 33.6 (13.9) 81.9 (11.1) 19.7 (11.0) 6.3

are lesions. The effect size is a useful metric for determining whether the lesion

loads predicted by the various models agree with the reported literature. For the

eight compared models, the effect size ranged from 1.2-fold to 1.5-fold increase in

lesion load normalized by total intracranial volume per decade. This compares well

with the reported effect size on the POPPY dataset of 1.4-fold with a 95th confidence

interval of [1.0;2.0]. Predictions from in-plane POPPY and volumetric POPPY were

compared using the dice overlap, the 95th percentile Hausdorff distance measured in

mm (HD95), the recall (or sensitivity), the ratio of difference in volume between the

two predictions (VD) as in [Kuijf et al., 2019].

The results, gathered in Table 6.1, reporting median and interquartile range are

ordered according to the average significance ranking, follows the guidelines of the

MICCAI Decathlon challenge 2018 1.

6.5.2 Domain adaptation on unpaired data:

Since MICCAI dataset contains data from 3 clinics, we take advantage of this

splitting to perform cross-clinical domain adaptation. The clinic that acts as a source

domain is split with a train:validation:test assignment 10:5:5 whereas the clinic that

acts as the target domain is split with a train:test: 10:10. Training details are the

1http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf

http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf
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Figure 6.2: Qualitative results on a single slice from a single subject in the POPPY
dataset. The top row shows a slice from the in-plane FLAIR acquisition whilst the
bottom row shows a slice from the volumetric FLAIR acquisition. Each column
shows a model’s predictions on that row’s image. This slice is used to highlight an
example of an artifact (shown in the red circle) introduced by the in-plane acquisition.
As can be seen in the first row, the in-plane acquisition depicts a high signal which
is not a lesion. In the second column, it can be that the baseline method introduces
a false positive in this region. Although adversarial domain adaptation introduces
fewer false positives compared to the baseline, it still wrongly recognizes the artifact
as a lesion. On the other hand, the mean teacher method and our proposal (columns
fourth and fifth) are better at ignoring this artifact.

same as in 6.5.1. Note, this splited is different than the reported on Chapter 5.

Reported Metrics: As measures of comparison, we compute dice overlap, the

95th percentile Hausdorff distance measured in mm (HD95), the recall (or sensitivity),

the ratio of difference in volume between the two predictions (VD) as was used

in Kuijf et al. [2019]. In addition, we provide a single rank score comparing all

methods as in Section 6.5.1. Note this ranking provides is a single summary metric

that uses a per-metric non-parametric statistical significance model.

6.5.2.1 Assessing effects of different augmentation :

We evaluate performance training consistency when combined with different types

of augmentations. When we use consistency training without any augmentation, this

is denoted as PC no-aug, Training consistency combined with geometric augmen-

tation is denoted as PC + Geo, when combined with task-specific augmentation

it is denoted with PC + MRI-aug, Finally, we combined geometric and artifacts

augmentation, which we refer to as PC + all-aug.. Table 6.2 Summarize the results
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Method Dice HD95 VD Recall Rank

clinic1 → clinic2
PC No-aug 66.89 (13.0) 6.29 (9.82) 0.43 (0.09) 52.76 (12.38) 3.625
PC Geo 70.6 (13.02) 5.61 (7.6) 0.37 (0.07) 57.82 (12.14) 2.75
PC + MRI-aug 73.74 (12.2) 5.67 (8.35) 0.34 (0.1) 61.67 (12.54) 2.125
PC + all-aug 73.92 (13.58) 6.82 (9.6) 0.32 (0.1) 62.6 (13.51) 1.5
clinic1 → clinic3
PC No-aug 70.45 (11.04) 5.74 (3.44) 0.32 (0.17) 60.0 (14.45) 3.375
PC Geo 73.14 (9.47) 4.82 (3.61) 0.27 (0.16) 64.04 (13.62) 1.375
PC + MRI-aug 68.77 (12.19) 6.43 (4.07) 0.34 (0.17) 57.77 (15.24) 3.625
PC + all-aug 71.65 (11.01) 5.76 (4.08) 0.26 (0.18) 63.14 (14.83) 1.625
clinic2 → clinic1
PC No-aug 62.3 (23.17) 8.51 (6.21) 1.28 (2.06) 81.52 (14.87) 2.625
PC Geo 61.03 (24.7) 8.09 (6.71) 1.37 (2.24) 80.38 (18.05) 3.125
PC + MRI-aug 62.51 (23.14) 7.93 (6.31) 1.12 (1.81) 79.61 (15.07) 2
PC + all-aug 61.99 (23.69) 8.04 (6.42) 1.18 (1.8) 80.55 (15.8) 2.25
clinic2 → clinic3
PC No-aug 73.24 (10.18) 5.03 (4.79) 0.18 (0.14) 69.81 (14.97) 2.625
PC Geo 74.94 (9.45) 3.95 (3.86) 0.18 (0.12) 73.29 (15.04) 1.375
PC + MRI-aug 72.33 (10.99) 5.31 (5.18) 0.2 (0.16) 67.89 (15.85) 3.375
PC + all-aug 73.39 (10.49) 5.02 (4.7) 0.17 (0.14) 70.74 (15.57) 2.625
clinic3 → clinic1
PC No-aug 61.71 (24.21) 12.69 (7.61) 1.43 (3.33) 69.85 (14.05) 2.875
PC Geo 61.74 (24.92) 13.04 (7.54) 1.52 (3.6) 70.8 (15.06) 2.375
PC + MRI-aug 61.94 (22.97) 10.33 (6.42) 1.15 (2.49) 68.99 (14.38) 2.375
PC + all-aug 61.86 (24.02) 10.57 (6.0) 1.26 (2.88) 68.98 (14.88) 2.375
clinic3 → clinic2
PC No-aug 72.85 (11.81) 5.78 (8.04) 0.29 (0.06) 64.8 (9.28) 4
PC Geo 76.29 (11.44) 5.6 (8.11) 0.24 (0.08) 69.58 (9.96) 2.25
PC + MRI-aug 76.66 ( 8.91) 4.55 (6.16) 0.23 (0.08) 69.64 (9.66) 2.25
PC + all-aug 76.9 (10.58) 5.18 (7.74) 0.21 (0.1) 71.12 (9.72) 1.5

Table 6.2: Performance of different augmentation combinations for each cross-
clinical setting, We report Dice, HD95, volume difference(VD) and Recall, that were
computed between our prediction and the ground truth labels. A significance rank is
calculated across all metrics. Results are reported with the format median (IQR) in
percentages for all metrics except the HD95 in mm. Best results are in bold

for the aforementioned methods. We report median and interquartile range for each

metric as well as the ranking for each method.

In addition, we computed the mean significance rank for each method , where the

mean is computed from the six cross-clinical experiments. This, give the overall

performance of each method. Results are summarized in Table 6.3
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Method Rank

PC + all-aug 1.979167
PC Geo 2.208333
PC + MRI-aug 2.625000
PC No-aug 3.187500

Table 6.3: Average Significance ranking computed for PC with different augmenta-
tions, the lower the rank score the higher the overall performance of the methods

6.5.2.2 Methods comparison

For final assessment we present result for five methods as follows:

• No adaptation: this is a lower bound where the model is trained only on data

from the source domain and applied to data from the target domain.

• Adversarial: we perform adversarial domain adaptation following the guide-

line on Kamnitsas et al. [2017]. This is equivalent to train the model using the

loss Ls +βLadv

• Mean Teacher (MT) : we train a classical self-learning based domain adap-

tation method with a mean-teacher framework following the guidelines in

Perone et al. [2019]. For fair comparison, we complemented mean-teacher

with geometric and task specific augmentations.

• PC + adv + all-aug (PC + AD): Our framework for supervised domain adap-

tation which combines paired consistency and adversarial learning, augmenta-

tions are also a combination of geometric and task specific augmentations.

• Supervised: We use images and labels from the target domain to fine-tune a

pre-trained model on source data. This is an upper bound as we expect higher

performance when included annotations from the target domain.

Performance results along with the respective significance ranking scores are shown

in Table 6.4. The mean significance ranking for each method across all domain adap-

tation experiments is shown in Table 6.5, which summarizes the overall performance

across all cross-domain experiments. From results on Table 6.4 we can see that
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PC ADV outperforms (lower rank) the remaining unsupervised domain adaptation

methods on three out of six cross-clinical experiments ( clinic1 → clinic2, clinic2

→ clinic3, and clinic3 → clinic2), whereas Mean teacher perform the best on two(

clinic2 → to clinic1, and clinic3 → to clinic1. Adversarial learning only performs the

best on clinic1 → clinic3. Table 6.5 confirms that on average PC-ADV perform the

best among the unsupervised domain adaptation methods and that means teacher out-

perform adversarial domain adaptation. Nonetheless, all domain adaptation methods

outperformed the model without domain adaptation.

6.6 Discussion and remarks
In this work, we presented a novel method of performing unsupervised domain-

adaptation which takes advantage of different augmentation functions to improve

consistency training approaches. A pre-trained model on the source domain is

retrained to encourage consistent predictions on two augmented versions of the same

input.

The proposed approach was evaluated against existing unsupervised domain

adaptation strategies including representation learning approaches using domain

adversarial training [Kamnitsas et al., 2017], and the ‘Mean Teacher’ algorithm for

unsupervised domain adaptation [Xie et al., 2019] as well as a supervised baseline

for WMH segmentation.

Overall, our method was able to produce more consistent predictions across

target domains while retaining similar performance on its original training domain.

More specifically, adaptation techniques optimizing pairwise consistency not

only outperformed baseline models not benefiting from any adaptation but also other

domain adaptation strategies.

Furthermore, it appeared that the PC method while closest to the mean teacher

algorithm, outperformed this approach potentially thanks to differences in the opti-

misation strategies. Understanding the reasons for these differences also reported by

Xie et al. [2019] could be an interesting avenue of future investigation.
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Method Dice HD95 VD Recall Rank

clinic1 → clinic2
No adaptation 67.61 (14.02) 7.57 (8.16) 0.37 (0.1) 55.14 (13.22) 5.375
Mean Teacher 68.34 (15.71) 7.79 (9.28) 0.28 (0.14) 58.35 (13.07) 4.125
Adversarial 71.41 (13.25) 5.5 (7.66) 0.35 (0.08) 58.99 (12.08) 4.625
PC ADV 75.72 (9.84) 3.81 (3.46) 0.33 (0.1) 63.73 (10.87) 2.625
Supervised 82.2 (8.88) 3.01 (5.16) 0.16 (0.11) 75.99 (11.31) 1

clinic1 → clinic3
No adaptation 66.77 (13.1) 10.41 (8.04) 0.25 (0.15) 62.46 (16.12) 5
Mean Teacher 67.58 (11.89) 8.98 (6.28) 0.24 (0.16) 65.34 (14.67) 4.5
Adversarial 72.41 (11.48) 6.02 (5.31) 0.21 (0.15) 66.35 (15.51) 2
PC ADV 72.3 (11.58) 5.24 (4.32) 0.25 (0.17) 64.19 (15.86) 3.75
Supervised 74.98 (9.27) 3.89 (2.61) 0.22 (0.16) 67.16 (13.17) 1.375

clinic2 → clinic1
No adaptation 59.27 (24.28) 9.51 (6.74) 1.6 (2.73) 80.07 (16.65) 4.5
Mean Teacher 58.9 (22.05) 8.8 (5.96) 1.49 (1.95) 84.47 (12.84) 3.5
Adversarial 65.53 (12.16) 7.78 (4.75) 0.47 (0.6) 72.37 (16.63) 4.25
PC ADV 65.68 (19.11) 8.21 (5.43) 0.6 (0.73) 75.74 (14.78) 3.625
Supervised 65.88 (21.68) 7.99 (5.97) 0.65 (0.9) 76.88 (15.1) 2.25

clinic2 → clinic3
No adaptation 68.67 (12.19) 8.66 (8.95) 0.22 (0.16) 64.93 (16.4) 4.75
Mean Teacher 69.31 (11.94) 8.69 (6.2) 0.22 (0.21) 74.27 (14.92) 3.75
Adversarial 67.59 (12.06) 5.75 (4.59) 0.2 (0.15) 64.18 (17.33) 4.25
PC ADV 72.05 (9.63) 4.75 (4.67) 0.17 (0.11) 72.76 (15.3) 2.375
Supervised 74.02 (9.45) 4.85 (4.74) 0.19 (0.15) 67.52 (12.85) 3

clinic3 → clinic1
No adaptation 58.56 (26.45) 10.89 (6.55) 1.32 (3.03) 0.21 (0.1) 3.75
Mean Teacher 62.3 (23.47) 10.16 (5.62) 1.28 (2.79) 71.04 (13.24) 3.75
Adversarial 61.77 (22.95) 9.0 (6.14) 1.08 (2.48) 64.14 (13.99) 3.875
PC ADV 62.17 (22.89) 9.16 (5.94) 1.08 (2.48) 64.26 (13.52) 4.25
U-bound 67.99 (19.0) 7.4 (5.9) 0.32 (0.33) 71.8 (14.62) 1.125

clinic3 → clinic2
No adaptation 72.36 (9.69) 5.69 (7.41) 0.3 (0.08) 62.88 (9.25) 4.625
Mean Teacher 73.37 (11.82) 7.03 (8.98) 0.26 (0.08) 66.1 (9.96) 3.875
Adversarial 64.55 (10.5) 7.14 (8.65) 0.38 (0.19) 53.33 (11.39) 6
PC ADV 74.55 (8.56) 6.93 (9.0) 0.26 (0.1) 66.32 (7.38) 3.5
Supervised 82.86 (7.39) 2.4 (2.08) 0.15 (0.08) 78.41 (10.16) 1

Table 6.4: We report Dice, HD95, volume difference(VD) and Recall, that were
computed between our prediction and the ground truth labels. A significance rank is
calculated across all metrics.Results are reported with the format median (IQR) in
percentages for all metrics except the HD95 in mm. Best results are in bold.
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Method Rank

Supervised 1.625000
PC ADV 3.354167
Mean Teacher 3.916667
Adversarial 4.166667
No adaptation 4.666667

Table 6.5: Average Significance ranking for each method, the mean is computed
from the six cross clinical experiments, the lower the rank score the higher the overall
performance of the methods

The type of augmentations demonstrated to play an important role in consistency

training. A significant improvement in performance can be observed when combining

training consistency with any type of augmentation as it promoted a good label

distribution in our target images. According to the mean significance ranking in

Table 6.3, the best performance is achieved when combining the maximum amount of

augmentations. However, according to results in Table 6.2 the rankings vary in each

coss-clinical experiment. It remains unclear what makes one type of augmentation

perform better on certain scenarios. Future work will focus on identifying which

type of augmentation to apply based only on the available unlabeled data.

Regarding the adversarial results, the observed inferior performance on paired

experiments suggests that depending on the adaptation problem, the learning of

a latent space invariant to domain (as enforced in the adversarial approach) may

cause an information loss detrimental to the segmentation task. In addition, the

multi-domain setting requires to train a discriminator in a multi-label classification

task, which makes it hard to find the point of equilibrium that determines if the

discriminator is being fooled.

In conclusion, PC is a promising method to adapt automated image segmentation

tools to different scanner manufacturers, MR sequences, and other confounds. This

adaptation is critical to the clinical translation of these tools notably in the context of

scanner upgrades and multi-center trials.



Chapter 7

Conclusions

7.1 Summary

The aim of this thesis was the development of methodologies to increase the ro-

bustness and generalization of deep learning segmentation models for white matter

hyperintensities. The need for robust and generalizable segmentation models stems

from the desire to provide solutions that can be integrated into real-world scenarios.

In Chapter 3, We developed a simultaneous synthesis and segmentation method

that aims to improve segmentation performance under more common and simplistic

image acquisition settings. The proposal was used to produce WMHs segmentation

and synthesis of FLAIR images from T1-w only scans. We demonstrated the joint

optimization strategy yields a more accurate segmentation but also is able to generate

more realistic synthetic FLAIR images. We acknowledge that improvement to

the regularization effect induced by the synthesis in the segmentation optimization

process.

In Chapter 4, we introduced PADDIT, a data augmentation methodology to

increase morphology diversity on training sets. The proposed method aids optimiza-

tion, forcing models to learn shape invariant features that can generalize better to

morphological variations. The main strength of PADDIT is the ability to learn how

morphological variations occur in the training set and use this knowledge to produce

more realistic augmentations. We demonstrated that DNN trained with PADDIT

produces more accurate segmentation compared to other augmentation strategies.
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To cope with more complex variations as those coming from differences in

acquisition protocols, parameters, or scanner, we proposed domain adaptation strate-

gies that are able to leverage unlabeled data. In Chapter 5, we present a knowledge

distillation based algorithm to transfer knowledge from labeled to unlabeled data.

We demonstrated how a teacher/student learning scheme optimized on soft-labels,

enables learning discriminative features on the target domain data without needing

ground truth.

This idea was extended further in Chapter 6 where we incorporate data aug-

mentation and consistency training in order to increase robustness to geometric,

MR-artificats as well as implicit differences among paired scans from different ac-

quisitions. We show that optimization guided by consistency loss enables models

to learn from their own predictions without the need for a teacher/student scheme.

Moreover, we demonstrated that a combination of different augmentation operations

led to an improvement in segmentation performance. Finally, the main advantage

of methods in Chapter 5 and Chapter 6 relies on the simplicity to take advantage

of unlabeled data to carry out the adaptation. This feature favors their impact in

real-world scenarios.

7.2 Limitations and future directions
In this section, we describe main limitations of the presented methods, and provide

some research directions in order to tackle these limitations.

7.2.1 Multi-modal learning from unpaired data

The jointly synthesis and segmentation learning proposed in Chapter 3 proved to

be effective in learning from available multi-modal information in order to improve

segmentation accuracy on one of the modalities (the less involved or more commonly

used one). The limitation of this method is the need for paired data (for each sample

different images are acquired and co-registered across modalities) to work. This

limitation prevents the proposed method to take advantage of data which do not

fulfill this condition.

One direction to overcome this is to explore synthesis with cycleGAN [Zhu
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et al., 2017], which has been successful in achieving translation on unpaired data.

However, including cycleGAN adds complexity to the optimization process as it

requires the additional learning of two discriminators. Another direction to take

could be learning surrogate tasks [Noroozi and Favaro, 2016, Zhang et al., 2016,

Gidaris et al., 2018] with combined data with different modalities. It has been

demonstrated that by learning a surrogate task the model will be forced to learn a

shared representation for both tasks [Tajbakhsh et al., 2019], which also can be seen

as a way of regularization.

Providing solutions that work with unpaired data will will enable us to leverage

existing large datasets with different modalities.

7.2.2 Learning deformable augmentations online

Despite PADDIT can provide anatomically meaningful augmentations, the main

limitation of the current implementation is that the augmented images are computed

offline. Consequently, the size of the augmented set has to be predefined before

training and it could be conditioned by storage requirements.

As a feature work, we would like to develop an online implementation for

PADDIT where different augmentations can be applied to each batch of images

in each iteration during the network learning. This will maximize the amount of

variability that the network can see during training.

One of the features that can be implemented is deformable registration thorough

spatial transformer networks [Jaderberg et al., 2015b]. With the addition of this

feature, we don’t have to worry about complex deformable registration algorithms

that are time consuming. Moreover, spatial transformer networks can be accelerated

by GPU which would potentially assist the adoption of PADDIT in several DNNs

segmentation frameworks.

7.2.3 Towards domain generalization

Proposed methodologies in Chapter 5 and Chapter 6 were effective leveraging

unlabeled data for domain adaptation. Although getting unlabeled data from the

center is feasible, the development of methodologies that can generalize to different
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domains without any knowledge about domain statistics could have a bigger impact

on clinical practice.

The challenge is how to learn models agnostic to domains signal, but without

affect the discriminative power of learned features.

Although there is not too much work on domain generalization for medical

imaging applications, some directions for future research can take inspiration from

domain generalization work in other visual applications. In this sense, three different

avenues can be considered. i) Data augmentation: previous works such us [Shankar

et al., 2018, Volpi et al., 2018] proved to be effective for domain generalization on

visual applications based on some way of data augmentation. In addition domain

generalization has also been benefited from self-learning [Carlucci et al., 2019].

Therefore one direction to follow is extending data augmentation strategies previ-

ously developed in Chapter 4 and Chapter 6 in order to simulate domain variability

through data perturbation. The advantage of data augmentation is that it can be

easily integrated into a self-learning scheme. ii) Harmonizing of feature spaces.

Alignment of multi-domain distributions can help to produce domain invariant fea-

tures. However the explicit harmonization is carried out on the training domains,

therefore it would be of great value to explore how to extend harmonization to

unseen domains. iii) Meta learning: meta-training and meta-test procedures using

the available multi-domain training data can be used to expose the optimization to

domain-shift making it robust to this phenomenon.

7.2.4 Application to large-scale real clinical datasets and chal-

lenges

The methods proposed in this thesis can be potentially benefited from large-scale real

datasets. That is because the unsupervised nature of the methods enables to leverage

a big amount of data even when it does not have manual annotations (which is usually

the case for large sets of medical data). Large-scale datasets usually encode a large

amount of variability or even can hold different domains (e.g demographic subgroups,

or images acquired with different parameters). Domain adaptation strategies based

on self-learning as proposed in Chapter 5, and Chapter 6 can generate pseudo labels
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on those data enabling extracting relevant information from those domains. This

will increase model generalization capabilities enabling to deploy models directly

on unseen target domain data. Avoiding the single-source, single-target setting is of

clinical significance as models can be directly applied to different clinics without the

need for retraining.

However, there are additional challenges in the presence of large sets. The

self-learning approaches depends on the model performance to generate reliable

pseudo labels on the unseen data. Therefore it is difficult to guarantee that models can

have an initial satisfactory performance these data. That is mainly due to the limited

amount of currently available labeled training data, which can not be able to cope

with all the variability presented on large sets. Because of the 3D volumetric structure

of medical images, it is also complicated to take advantage of a large set of natural

2D images such ImageNet to improve model initial performance. That is because 3D

images contain rich structural information that is significant to representing medical

images. Getting a significant amount of annotations is cumbersome. Therefore,

current models need to adapt to take maximum advantage of the very limited amount

of labeled data, which is always a complicated task.
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