8 research outputs found

    Autoencoder based anomaly detection for SCADA networks

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used to monitor critical infrastructures such as airports, transport, health, and public services of national importance. These are cyber physical systems, which are increasingly integrated with networks and internet of things devices. However, this results in a larger attack surface for cyber threats, making it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. Compared to other techniques, as well as detecting known attack patterns, machine learning can also detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed representation of its input data and through reconstruction loss of inputs can help identify anomalous data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection using an appropriate differentiating threshold from the loss distribution and demonstrate improvements in results compared to other techniques for SCADA gas pipeline dataset

    Recent Advances in Anomaly Detection Methods Applied to Aviation

    Get PDF
    International audienceAnomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance

    LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data

    Get PDF
    In order to ensure the validity of sensor data, it must be thoroughly analyzed for various types of anomalies. Traditional machine learning methods of anomaly detections in sensor data are based on domain-specific feature engineering. A typical approach is to use domain knowledge to analyze sensor data and manually create statistics-based features, which are then used to train the machine learning models to detect and classify the anomalies. Although this methodology is used in practice, it has a significant drawback due to the fact that feature extraction is usually labor intensive and requires considerable effort from domain experts. An alternative approach is to use deep learning algorithms. Research has shown that modern deep neural networks are very effective in automated extraction of abstract features from raw data in classification tasks. Long short-term memory networks, or LSTMs in short, are a special kind of recurrent neural networks that are capable of learning long-term dependencies. These networks have proved to be especially effective in the classification of raw time-series data in various domains. This dissertation systematically investigates the effectiveness of the LSTM model for anomaly detection and classification in raw time-series sensor data. As a proof of concept, this work used time-series data of sensors that measure blood glucose levels. A large number of time-series sequences was created based on a genuine medical diabetes dataset. Anomalous series were constructed by six methods that interspersed patterns of common anomaly types in the data. An LSTM network model was trained with k-fold cross-validation on both anomalous and valid series to classify raw time-series sequences into one of seven classes: non-anomalous, and classes corresponding to each of the six anomaly types. As a control, the accuracy of detection and classification of the LSTM was compared to that of four traditional machine learning classifiers: support vector machines, Random Forests, naive Bayes, and shallow neural networks. The performance of all the classifiers was evaluated based on nine metrics: precision, recall, and the F1-score, each measured in micro, macro and weighted perspective. While the traditional models were trained on vectors of features, derived from the raw data, that were based on knowledge of common sources of anomaly, the LSTM was trained on raw time-series data. Experimental results indicate that the performance of the LSTM was comparable to the best traditional classifiers by achieving 99% accuracy in all 9 metrics. The model requires no labor-intensive feature engineering, and the fine-tuning of its architecture and hyper-parameters can be made in a fully automated way. This study, therefore, finds LSTM networks an effective solution to anomaly detection and classification in sensor data

    Application of deep learning methods in materials microscopy for the quality assessment of lithium-ion batteries and sintered NdFeB magnets

    Get PDF
    Die Qualitätskontrolle konzentriert sich auf die Erkennung von Produktfehlern und die Überwachung von Aktivitäten, um zu überprüfen, ob die Produkte den gewünschten Qualitätsstandard erfüllen. Viele Ansätze für die Qualitätskontrolle verwenden spezialisierte Bildverarbeitungssoftware, die auf manuell entwickelten Merkmalen basiert, die von Fachleuten entwickelt wurden, um Objekte zu erkennen und Bilder zu analysieren. Diese Modelle sind jedoch mühsam, kostspielig in der Entwicklung und schwer zu pflegen, während die erstellte Lösung oft spröde ist und für leicht unterschiedliche Anwendungsfälle erhebliche Anpassungen erfordert. Aus diesen Gründen wird die Qualitätskontrolle in der Industrie immer noch häufig manuell durchgeführt, was zeitaufwändig und fehleranfällig ist. Daher schlagen wir einen allgemeineren datengesteuerten Ansatz vor, der auf den jüngsten Fortschritten in der Computer-Vision-Technologie basiert und Faltungsneuronale Netze verwendet, um repräsentative Merkmale direkt aus den Daten zu lernen. Während herkömmliche Methoden handgefertigte Merkmale verwenden, um einzelne Objekte zu erkennen, lernen Deep-Learning-Ansätze verallgemeinerbare Merkmale direkt aus den Trainingsproben, um verschiedene Objekte zu erkennen. In dieser Dissertation werden Modelle und Techniken für die automatisierte Erkennung von Defekten in lichtmikroskopischen Bildern von materialografisch präparierten Schnitten entwickelt. Wir entwickeln Modelle zur Defekterkennung, die sich grob in überwachte und unüberwachte Deep-Learning-Techniken einteilen lassen. Insbesondere werden verschiedene überwachte Deep-Learning-Modelle zur Erkennung von Defekten in der Mikrostruktur von Lithium-Ionen-Batterien entwickelt, von binären Klassifizierungsmodellen, die auf einem Sliding-Window-Ansatz mit begrenzten Trainingsdaten basieren, bis hin zu komplexen Defekterkennungs- und Lokalisierungsmodellen, die auf ein- und zweistufigen Detektoren basieren. Unser endgültiges Modell kann mehrere Klassen von Defekten in großen Mikroskopiebildern mit hoher Genauigkeit und nahezu in Echtzeit erkennen und lokalisieren. Das erfolgreiche Trainieren von überwachten Deep-Learning-Modellen erfordert jedoch in der Regel eine ausreichend große Menge an markierten Trainingsbeispielen, die oft nicht ohne weiteres verfügbar sind und deren Beschaffung sehr kostspielig sein kann. Daher schlagen wir zwei Ansätze vor, die auf unbeaufsichtigtem Deep Learning zur Erkennung von Anomalien in der Mikrostruktur von gesinterten NdFeB-Magneten basieren, ohne dass markierte Trainingsdaten benötigt werden. Die Modelle sind in der Lage, Defekte zu erkennen, indem sie aus den Trainingsdaten indikative Merkmale von nur "normalen" Mikrostrukturmustern lernen. Wir zeigen experimentelle Ergebnisse der vorgeschlagenen Fehlererkennungssysteme, indem wir eine Qualitätsbewertung an kommerziellen Proben von Lithium-Ionen-Batterien und gesinterten NdFeB-Magneten durchführen
    corecore