
Masthead Logo
Nova Southeastern University

NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2019

LSTM Networks for Detection and Classification
of Anomalies in Raw Sensor Data
Alexander Verner
Nova Southeastern University, verner.alexander@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Alexander Verner. 2019. LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (1074)
https://nsuworks.nova.edu/gscis_etd/1074.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data

by

Alexander Verner

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2019

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

LSTM Networks for Detection and Classification of Anomalies in Raw

Sensor Data

by

Alexander Verner

March 2019

In order to ensure the validity of sensor data, it must be thoroughly analyzed for various

types of anomalies. Traditional machine learning methods of anomaly detections in

sensor data are based on domain-specific feature engineering. A typical approach is to

use domain knowledge to analyze sensor data and manually create statistics-based

features, which are then used to train the machine learning models to detect and classify

the anomalies. Although this methodology is used in practice, it has a significant

drawback due to the fact that feature extraction is usually labor intensive and requires

considerable effort from domain experts.

An alternative approach is to use deep learning algorithms. Research has shown that

modern deep neural networks are very effective in automated extraction of abstract

features from raw data in classification tasks. Long short-term memory networks, or

LSTMs in short, are a special kind of recurrent neural networks that are capable of

learning long-term dependencies. These networks have proved to be especially

effective in the classification of raw time-series data in various domains. This

dissertation systematically investigates the effectiveness of the LSTM model for

anomaly detection and classification in raw time-series sensor data.

As a proof of concept, this work used time-series data of sensors that measure blood

glucose levels. A large number of time-series sequences was created based on a genuine

medical diabetes dataset. Anomalous series were constructed by six methods that

interspersed patterns of common anomaly types in the data. An LSTM network model

was trained with k-fold cross-validation on both anomalous and valid series to classify

raw time-series sequences into one of seven classes: non-anomalous, and classes

corresponding to each of the six anomaly types.

As a control, the accuracy of detection and classification of the LSTM was compared

to that of four traditional machine learning classifiers: support vector machines,

Random Forests, naive Bayes, and shallow neural networks. The performance of all the

classifiers was evaluated based on nine metrics: precision, recall, and the F1-score, each

measured in micro, macro and weighted perspective.

Alexander Verner

While the traditional models were trained on vectors of features, derived from the raw

data, that were based on knowledge of common sources of anomaly, the LSTM was

trained on raw time-series data. Experimental results indicate that the performance of

the LSTM was comparable to the best traditional classifiers by achieving 99% accuracy

in all 9 metrics. The model requires no labor-intensive feature engineering, and the fine-

tuning of its architecture and hyper-parameters can be made in a fully automated way.

This study, therefore, finds LSTM networks an effective solution to anomaly detection

and classification in sensor data.

Acknowledgments

Several people have guided, supported and encouraged me throughout my journey to

pursue a doctoral dissertation from this esteemed institution.

First and foremost, I would like to express my appreciation to Dr. Sumitra Mukherjee,

my academic advisor, for his guidance, strategic advice and invaluable comments

provided during this challenging endeavor.

I would also like to thank my committee members: Dr. Francisco J. Mitropoulos and

Dr. Michael J. Laszlo for encouraging my study and its positive evaluation.

I am most sincerely grateful to my parents, Igor and Marina, and to my brother Uri,

for the time they invested in making my work better.

I thank my grandparents, Matvey and Eleonora, for believing in me and supporting

my aspirations.

I am grateful to my wife Nadezhda for taking care of all my needs, and my kids

Artiom and Polina, for being my source of inspiration along the way.

v

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

List of Tables vii

List of Figures viii

Chapters

1. Introduction 1

Background 1

Problem Statement 3

Dissertation Goal 5

Relevance and Significance 6

Summary 8

2. Literature Review 10

Anomalies as Outliers 10

Anomalies in Sensor Data 13

Taxonomy of Anomaly Detection and Classification Methods 14

Techniques based on Feature Engineering 16

Techniques based on Automated Feature Extraction 19

Existing LSTM-based Solutions 22

Summary 23

3. Methodology 24

Experiment Design 25

Chosen Dataset 29

Data Cleaning and Preprocessing 30

Experiment 1: Classification by Means of SVM 34

Experiment 2: Classification via Random Forest 36

Experiment 3: Classification via Naive Bayes Classifier 39

Experiment 4: Classification via Shallow Neural Network 42

Experiment 5: Classification via LSTM 45

Resources 54

Summary 55

4. Results 56

Results of Dataset Processing 57

Results of Experiment 1 58

Results of Experiment 2 60

Results of Experiment 3 62

Results of Experiment 4 64

Results of Experiment 5 66

Summary 72

5. Conclusions, Implications, Recommendations, and Summary 74

Conclusions 74

Implications 76

vi

Recommendations 76

Summary 78

Appendices 83

A. Detailed Experiment Results 84

B. Third Party Libraries 105

References 107

vii

List of Tables

Tables

1. Table 1. Blood glucose level ranges for different patient groups 30

2. Table 2. Detailed data split by categories 31

3. Table 3. Hand-crafted features for traditional ML algorithms 33

4. Table 4. Random feature vectors, constructed from normal and anomalous

sequences 58

5. Table 5. Confusion matrix and full classification report of the best found SVM

classifier 59

6. Table 6. Confusion matrix and full classification report of the best-found Random

Forest classifier 62

7. Table 7. Confusion matrix and full classification report of the best-found naive

Bayes classifier 64

8. Table 8. Confusion matrix and full classification report of the best-found shallow

neural network classifier 66

9. Table 9. Confusion matrix and full classification report of the best-found LSTM

classifier 71

viii

List of Figures

Figures

1. Figure 1. A multisensor-based noninvasive continuous glucometer 2

2. Figure 2. An example of point anomaly 11

3. Figure 3. Example of contextual anomaly 12

4. Figure 4. Example of collective anomaly 13

5. Figure 5. Design of the planned experiment 28

6. Figure 6. Histogram of JDRF values and their number of appearances 32

7. Figure 7. Using SVM to separate two-dimensional data 35

8. Figure 8. Example of general balanced decision tree 37

9. Figure 9. Example of majority-voting on the final class in Random Forest 38

10. Figure 10. The process of creation of frequency and likelihood tables,

demonstrated on the Golf Dataset 40

11. Figure 11. Information processing in a single neuron 43

12. Figure 12. Architecture of a typical shallow neural network 44

13. Figure 13. RNN unit - unfolding of events over time 46

14. Figure 14. Architecture of a single ordinary RNN unit 46

15. Figure 15. Architecture of a single unit of vanilla LSTM 48

16. Figure 16. Anomaly detection in 1D web traffic time-series data 52

17. Figure 17. Discrete sequences of measured glucose levels, represented as

continuous curves 57

18. Figure 18. Histograms of four different SVM models’ accuracy scores, measured

by nine metrics 59

19. Figure 19. Histograms of four Random Forest models’ accuracy scores,

measured by nine metrics 61

ix

20. Figure 20. Histograms of four naive Bayes classifier model’s accuracy scores,

measured by nine metrics 63

21. Figure 21. Histograms of four shallow neural network models’ accuracy scores,

measured by nine metrics 65

22. Figure 22. Histograms of four LSTM models’ accuracy scores, measured by nine

metrics 68

23. Figure 23. Graphs of four LSTM models’ accuracy and loss versus epochs

during k-fold cross-validation 69

1

Chapter 1 - Introduction

Sensor validation relies on understanding of several basic concepts, such as the

dependence of a sensor-based system on the validity of the data, the relation between

various sensor faults and anomalies in the data, the importance of timely detection of

the data, etc. This role of this chapter is to familiarize the reader with the field of

detection and classification of anomaly in sensor data and explain the essence of the

proposed dissertation. The introduction is divided into the following sections:

• Background

• Problem Statement

• Dissertation Goal

• Relevance and Significance

• Summary

Background

Sensors are widely used in industry, daily life and medicine. Wearable or implanted

medical devices, such as insulin sensors, have been used for several decades to non-

invasively collect electrical, thermal and optical signals generated by the human body

(Mosenia, Sur-Kolay, Raghunathan, & Jha, 2017). Vibration, temperature and noise

sensors are used in nuclear power plants, gas turbines and continuous stirred-tank

reactors, (Luo, Misra, & Himmelblau, 1999; Gribok, Hines, & Uhrig, 2000; Yan &

Goebel, 2003). Numerous other examples of complex sensor-based systems that

operate on data received from the sensors have been well documented. These

observations suggest that, ultimately, the correct functioning of these systems strongly

2

depends on the reliability of sensor data. For instance, Figure 1 (Geng, Tang, Ding, Li,

& Wang, 2017) shows a multisensor-based noninvasive continuous glucometer that

uses several sensors to measure blood glucose levels:

Unfortunately, sensors often fail. These failures can be caused by a variety of

reasons, such as physical damage (both intentional and unintentional), manufacturer

defects, software errors, unmonitored environmental conditions, incorrect calibration

or configuration, improper human-computer interaction (HCI), misuse, and even

hacking and abuse for malicious purposes (Van Der Meulen, 2004; Sikder, Petracca,

Aksu, Jaeger, & Uluagac, 2018). When these failures occur, they lead to anomalies

appearing in the data, making it permanently unreliable, or in the least, for a certain

amount of time. When data with anomalies is fed upstream to high-level processing

stages, this often leads to system's incorrect behavior of the system with unpredictable

Figure 1. A multisensor-based noninvasive continuous glucometer.

3

and even dangerous consequences, such as insulin overdose or nuclear plant shutdown.

With sensors becoming so ubiquitous and implications of their failure becoming so

significant, timely detection of anomaly has also become extremely important.

Classification of anomalies is also of high priority, since it helps to identify the root

cause of the failure and take relevant preventive actions.

Problem Statement

 Detection and classification of anomalies in raw time-series sensors data in a way

that does not require domain knowledge is an open research challenge. Until now, the

vast majority of existing anomaly detection and classification methods have been

based on hand-crafted features (Goldstein, & Uchida, 2016; Parmar, & Patel, 2017;

Yi, Huang, & Li, 2017). These methods require considerable human effort from

domain experts and are strongly tailored to specific system design and type of data.

Much scientific effort has been devoted to the subject of sensor data validation and

various algorithms of anomaly detection and classification have been proposed for

sensor-based systems over the past decades Yao, Cheng, & Wang, 2012; Pires, Garcia,

Pombo, Florez-Revuelta, & Rodriguez, 2016). A detailed review of these methods

appears in Chapter 2 of this dissertation.

The very first approaches were primitive and mainly involved sensors redundancy

in hardware with further majority voting. Due to their high cost, they were soon

replaced by a series of approaches that were based on mathematical (mostly statistical)

models that spotted errors by quantifying the degree of relationship between the

measured distribution and the predicted one.

4

However, over time, sensor-based systems became more complex and included a

variety of sensors differing by characteristics, such as type, manufacturer, degree of

quality, accuracy, stability, deterioration over time, resistance to noise and external

factors (Worden, 2003; Jager et al., 2014). As a result, statistical models became

impractical for these multipart systems (Pires et al., 2016), and were replaced by

approaches based on classical ML models, such as shallow neural networks (SNN)

(Hopfield, 1982), principal components analysis (PCA) (Pearson, 1901), Random

Forest (Ho, 1995), etc. Unlike statistical approaches that focus on understanding the

process that generated the data, ML techniques focus on constructing a mechanism

that improves its accuracy based on previous results (Patcha, Park, 2007).

For more than two decades, various classical ML models have been successfully

used to detect anomaly in sensor data (Wise, & Gallagher, 1996; Luo, Misra, &

Himmelblau, 1999; Misra, Yue, Qin, & Ling, 2002; Tamura, & Tsujita, 2007; Auret,

& Aldrich, 2010; Singh & Murthy, 2012; Jager et al., 2014; Cerrada, et al., 2016;

Zhang, Qian, Mao, Huang, Huang, & Si, 2018). However, despite of their success, ML

methods that involve manual feature extraction have two serious shortcomings: firstly,

these methods cannot operate on raw data. Instead, they operate on features extracted

from the data, which is labor intensive and requires considerable effort from domain

experts. To construct them, a domain expert needs to take into consideration the

peculiarities of the analyzed sensors to manually control and tune their input (Bengio,

Courville, & Vincent, 2013). Secondly, such methods are domain specific. Being

tailored to concrete sensor-based systems and concrete type of data, these approaches

are highly sensitive to the slightest changes in the system or the data (Ibarguengoytia,

1997).

5

Unfortunately, modern sensor-based systems are very dynamic. Their complexity

constantly increases, which requires periodical design changes. The nature of data that

these systems rely on is also volatile and often changes. When these radical changes

occur, previous feature-based solutions cease to function properly and require

fundamental redesign or refactoring, which again results in considerable human effort.

These limitations make most of the current methods inefficient and point to the need

for an approach that would provide significantly longer-lasting solutions to detect and

classify anomalies, do not require domain knowledge, and can be relatively easily

adjusted to new system design or new types of data. This is the challenge that makes

data anomaly detection in sensor data an unsolved problem that requires further

consideration.

Dissertation Goal

 This dissertation systematically investigated the effectiveness of long short-term

memory networks (LSTMs) (Hochreiter, & Schmidhuber, 1997) for anomaly detection

based on raw sensor data. As a proof of concept, it planned to use time-series data on

glucose level measurements. Samples of anomalous time-series sequences, generated

by using six methods that represent common types of anomaly, were used along with

non-anomalous time-series sequences. An LSTM network model was trained on a

medical dataset with real data to classify raw time-series sequences into one of seven

classes: non-anomalous, and classes corresponding to the six types of anomalies.

The model’s generalization success was estimated by means of k-fold cross-

validation (Kohavi, 1995). To evaluate its performance (classification accuracy) a

confusion matrix was used to compute precision, recall, and F1 score (F-measure)

6

(Sammut, & Webb, 2017). Each of the three metrics examined in micro, macro and

weighted perspective, resulting in a total of 9 metrics. As a control, the performance

of the LSTM model, trained on raw time-series data, was compared to performance of

traditional classifiers, such as SNNs, support vector machines (SVMs), random forests

(RF) (Ho, 1995), and naive Bayes classifier (NBC) that were trained on hand-crafted

features based on knowledge about the common sources of anomaly.

Relevance and Significance

As discussed in the Introduction section of this chapter, sensor-based systems are

highly dependent on validity of data received from the sensors. Anomalies in sensor

data caused by various failures lead to incorrect system behavior with unpredictable

and even dangerous consequences. Therefore, precise and timely detection of

anomalies and identification of their types is of extreme importance.

As previously mentioned, former methods, as well as vast majority of recent ones,

operate on hand-crafted features, which results in significant limitations, such as

considerable human effort and lack of resilience to changes in system or underlying

data. It is clear that an alternative approach to anomaly detection and classification that

would be able to process raw data and automatically generate the required features will

be particularly valuable. One method that meets these requirements is LSTM.

Research has shown that this contemporary ML model is very effective in automated

extraction of abstract features from various raw time-series (Salehinejad, 2017).

Moreover, LSTM is capable of learning long-term dependencies from sequential and

time-series data (Dam et al., 2017; Karim, Majumdar, Darabi, & Chen, 2018). As a

result, solutions based on LSTM have several substantial benefits:

7

- They remove the necessity for a domain expert.

- They significantly reduce human effort.

- They decrease design complexity.

- They automatically adjust to new types of data.

- They will have longer lifespans.

- They are automated to a large extent and require significantly less calibration to

address concrete problems.

For reasons that remain unclear, LSTM is little used in anomaly detection and

classification. This model has existed for over twenty years, but solutions based on

LSTM have only started to appear in recent years (Pires et al., 2016; Parmar, & Patel,

2017). A thorough search through recent survey papers revealed that the number of

proposed LSTM-based systems for anomaly detection in raw sensor data is negligible

in comparison with systems based on feature engineering. These facts indicate that

there is no confidence in the research community that LSTM is a promising approach

for anomaly detection in raw time-series. However, despite the absence of proper

recognition and attention from the research community, the aforementioned benefits

of LSTM make it an extremely well-suited method for the above task.

Previous experimental supports this claim. For instance, Fehst, Nghiem, Mayer,

Englert and Fiebig (2018) compared techniques based on manual feature engineering

and feature subset selection for dimensionality reduction with automatic feature

learning through LSTM. The results of their study show that LSTM has significantly

higher accuracy. Other works (Chauhan, & Vig, 2015; Malhotra, Vig, Shroff, &

Agarwal, 2015; Taylor, Leblanc, & Japkowicz, 2016; Yoshikawa, Belkhir, & Suzuki,

2017; Zhang, & Zou, 2018) have also reported on the successful use of LSTM for

solving practical anomaly detection problems in domains such as medicine,

8

automotive, power, aviation, etc. In his master’s thesis, Singh (2017) claims that

LSTMs are suitable for general purpose time-series modeling and anomaly detection

and proves this by successfully applying the model on three real-world datasets from

different domains. There are other works as well; the complete list appears in the

Existing LSTM-based Solutions section of Chapter 2.

 The proposed research considers the effectiveness of LSTM in modeling time-

series of raw data, and its abilities of the capturing long range dependencies. It takes

into account the full compatibility of the above qualities to the field of application, i.e.

anomaly detection and classification in sensor data. Finally, it relies on the optimistic

experience of and impressive results of existing works that recommended LSTM-

based solutions. These three factors combined constitute a well-founded motive to

consider further investigation of this pertinent and important approach.

 While the proposed dissertation deals with a practical problem of detecting sensor

faults, it also aims to contribute to the knowledge base of computer science. The study

deals with the application of ML methods for analyzing sensor data and may provide

new directions and ideas for the effective application of these methods. Particularly,

the study is expected to contribute to an LSTM-based approach in the analysis of

medical-sensor data. Finally, evaluation of the extent in which LSTM can replace

approaches based on feature engineering will contribute to the study of the

effectiveness and practical value of this model.

Summary

 This chapter begins by providing some background information in anomaly

detection. It introduces multi-sensor systems and their dependency on valid sensor

9

data. It discusses the problem of sensors failures that cause anomaly in the data, and

the importance of its timely detection and classification. The chapter then continues

with a brief overview of existing methods, explains their dependence on manual

extraction of features from the data, and the problem imposed by these limitations in

light of complex and constantly changing modern systems. Next, the chapter defines

the goal of the proposed dissertation: systematic investigation of the effectiveness of

LSTM for anomaly detection based on raw sensor data and clarifies how it can be

achieved by the planned study experiment. Finally, this chapter positions the

importance of precise and timely detection of anomalies and identification of their

types. It emphasizes the benefits of the LSTM model, its effectiveness and accuracy,

and the its resulting eminent appropriateness as a method for detection and

classification of anomaly in sensor data. These claims are justified by mentioning

several relevant works of research. Finally, the chapter elaborates on the contribution

of the proposed dissertation to the knowledge base of computer science.

The remainder of this dissertation proposal is organized as follows: Chapter 2

provides literature review on types of anomaly, detection and classification methods,

feature engineering and others. It serves as the baseline and starting point of the

research. Chapter 3 presents the methodology of the investigational portion of the

study. It presents a detailed experiment design, choice and dataset preprocessing, and

each of the five stages of the planned experiment. Chapter 4 shows the results of the

experimental part of the study. Chapter 5, the last one in this dissertation, concludes

results of the investigation and draws inferences from them.

10

Chapter 2 - Literature Review

The primary focus of this dissertation’s research is detection and classification of

anomaly in sensor data. There is a considerable research-community interest in this

area. The following sections review the relevant literature:

• Anomalies as Outliers

• Anomalies in Sensor Data

• Taxonomy of Anomaly Detection and Classification Methods

• Techniques based on Feature Engineering

• Techniques based on Automated Feature Extraction

• Existing LSTM-based Solutions

• Summary

Anomalies as Outliers

Invalid data differs from valid data by the fact that it contains a certain amount of

anomalous values that are discordant observations and do not conform to expected

behavior (Hayes, & Capretz, 2014). Statistically, anomalies can be referred to as

outliers in baseline distribution of the data or of its features (Stoecklin, 2006).

Therefore, in the context of data validation, failure localization and recognition are

equivalent to detection and classification of outliers. Anomalies can be classified into

the following four categories (Parmar, & Patel, 2017):

1. Point anomaly. These are individual data points that are considered anomalous

with respect to the remaining data. This type of anomalies refers to data points that

11

are given without contextual aspect, such as time. Figure 2 (Chandola, Banerjee,

& Kumar, 2009) shows an example point anomaly in a 2D dataset:

As seen in the Figure, most observational data points reside within the two regions

1N and
2N . This data in these regions can be considered normal. On the contrary,

points
1o and

2o , and region
3O are anomalous. They are sufficiently distant from

the normal regions, which makes them outliers.

2. Contextual anomaly (also called conditional anomaly). These are individual data

points that are anomalous in a specific context, but not otherwise. The context is

defined by the structure of the dataset and is problem specific. Each data point is

defined by attributes that define the neighborhood (context) of the point, and

behavioral attributes that express its non-contextual characteristics. When dealing

with time-series data, such as the one examined by this work, an outlier is defined

Figure 2. An example of point anomaly: points o1 and o2, and all the points

within the region O3 are outliers.

12

as a data point that must have both contextual anomaly and behavioral anomaly.

In other words, it must have anomalous values that appear within an anomalous

context. Figure 3 (Chandola, Banerjee, & Kumar, 2009) shows an example of

contextual anomaly in a 1D time-series data of temperature over the year:

Points
1t and

2t have about the same low values. On the one hand,
1t is considered

normal since it stays within the climatic norm for the period of December to

March. On the other hand,
2t is an outlier, since such low temperatures is not

expected in June. It is plain to see that the time context (months in this example)

affect the normality of the data.

3. Collective anomaly. This type of anomaly refers to a collection of related data

points, which are anomalous with respect to the entire dataset. Two notes are worth

mentioning: firstly, individual data points in such an anomalous collection may not

be anomalies by themselves, while only their common existence shows up as

anomaly. Secondly is that this type of anomaly can appear in both context-aware

data and contextless data. Figure 4 (Chandola, Banerjee, & Kumar, 2009) shows

an example of collective anomaly in data from an ECG sensor:

Figure 3. Example of contextual anomaly, t2.

13

Each individual data point in the close-to-zero section between 1000 and 1500

seconds is not an anomaly by itself - as seen on the graph that the curve of the

periodic oscillations crosses zero value several times. However, if the number of

subsequent low-value points is large enough, then they appear to be an anomaly

as a group (in this case a premature atrial contraction, PAC).

Anomalies in Sensor Data

 As previously mentioned, timely validation of raw sensor readings is critical to

prevent invalid data from causing damage to the system, both detection and

classification of invalid data are equally important. Whereas the first protects the

system from being damaged by invalid sensor data readings, the second allows the

nature of the fault to be understood and allow relevant corrections and improvements

to be made in the sensor's system to prevent future reappearances (Scherbakov,

Figure 4. Example of collective anomaly, 1000-1500 secs.

14

Brebels, Shcherbakova, Kamaev, Gerget, & Devyatykh, 2017). A detailed review of

data correction methods, given by Pires et. al. (2016), is beyond the scope of this work.

The task of outlier detection and classification is especially multifaceted and

challenging when sensor data is concerned, and stems from the following factors

(Chandola, Banerjee, & Kumar, 2009):

1. The boundary between normal and anomalous behavior is often not precise.

Anomalous observations may lie very close to normal, and vice-versa, which

makes it very difficult to define a region with every possible normal behavior.

2. When anomalies originate from malicious actions, they appear as normal sensor

data, making it very difficult to define normal behavior.

3. A defined notion of normal behavior that was sufficiently representative at some

point in time may stop being credible later. In many domains the normal behavior

dynamically evolves as the system collects new data. Therefore, applying a

technique of one specific domain to another is not often impractical.

4. When machine learning (ML) based anomaly methods are used, labeled data for

training and validation of models is often a major issue.

5. The data is often interspersed with noise which tends to be quite similar to the

actual anomalies. It is very difficult to distinguish and remove such noise.

Taxonomy of Anomaly Detection and Classification Methods

Through the course of history many scientists and researchers have devoted their

time to the problem of detection and classification of anomaly in sensor data. One of

the simplest sensor failure detection methods is to use multiple sensors of the same

type, then compare the readings and decide by majority-voting which, if any, of them

15

are damaged. Not to mention the fact that this redundancy method cannot classify the

anomaly, it sometimes fails to detect the anomaly, e.g. if an environmental factor, such

as noise, affects the values of all sensors.

Obviously, more advanced and generic methods were needed to serve complex

sensor-based systems and started to appear as early as in the 19th century (Edgeworth,

1887). Researchers have formulated the problem of outlier detection and classification

by adopting concepts from various disciplines, such as statistics, information theory,

spectral theory, ML and data mining (Chandola, Banerjee, & Kumar, 2009). These

formulations were based on model of normal data patterns and generation of outlier

score for each new data sample. The following types of models have been suggested

(Aggarwal, 2015):

1. Extreme values-based models. These models use boundary values to define the

range of normal data. Outliers are data points that exceed these boundaries. Data

points can be univariate as well as multivariate.

2. Clustering-based models. These models create clusters of data points that occur

together. Outliers are data points that appear far away from the clusters.

3. Distance-based models. These models use the distribution of total distance from

each data point to its k-nearest neighbors. For an outlier, this distance is

significantly larger than for other data points.

4. Density-based models. These models use the local density of the data points.

Outliers have low density.

5. Probability-based models. Similar to clustering-based models, these models create

data points clusters. However, instead of using distance to determine outlier score,

it is determined by the probabilistic fit of a data point.

16

6. Information-theoretic models. This type of model is significantly different from

the previous ones. When constructing a normal data model, its space requirements

are analyzed. Then, for each new point, the difference on space requirements

between construction of a normal model with or without this data point is

examined. If the difference is large, the point is reported as an outlier.

These models produced many techniques to anomaly detection and classification

that can be grouped into three fundamental approach types (Hodge, & Austin, 2004):

1. Type 1. Techniques that detect the outliers with no prior knowledge of the data. In

ML, these are unsupervised clustering methods. The models are constructed by

processing all data, while the most distant points are marked as potential outliers.

2. Type 2. Techniques that are based on labeled data. This approach models both

normal and abnormal data and uses supervised learning-based classification.

3. Type 3. Techniques of this type label only normal data. In this approach, also

known as novelty detection or novelty recognition, semi-supervised ML

algorithms, that are trained on the normal data, learn to recognize abnormality

patterns by comparing them to those previously seen.

Techniques Based on Feature Engineering

In feature engineering, domain knowledge is used to analyze the raw data and

process it to create informative hand-crafted features, which are then used to train the

machine learning models. Below is a list of various feature-based methods, based on

the works of Patcha and Park (2007), Yao et al. (2012), and Pires et al. (2016):

1. Profile-based behavioral analysis. The idea behind this method is to use hand-

crafted features to create a profile of data that is considered normal. This profile

17

then serves as a gauge of valid data patterns. If new data significantly deviates from

the profile, it is considered anomalous. A set of rules determines the conditions

that trigger the detection of an outlier. This could be a significant deviation of a

certain critical feature, a combination of important features, or a common deviation

score. The work of Branisavljevic, Kapelan and Prodanovic (2011) used this

method to create a real-time data anomaly detection scheme.

2. Bayesian network techniques (Friedman, Geiger, & Goldszmidt, 1997). This

approach is based on a model that analyzes and encodes relationships of features

in a dataset in a form or directed acyclic graph (DAG). The encoded relationships

can be either casual or probabilistic, whereas the features are often chosen to be

statistical. For a new sample, the model estimates its probabilistic behavioral

likelihood, and decides whether it is normal or an outlier. Kruegel, Mutz,

Robertson and Valeur (2003) applied this technique in a multi-sensor system for

classification and suppression of false alarms.

3. PCA and clustering techniques. PCA (Pearson, 1901) significantly compresses

dataset representation by converting data from the original feature space into a

reduced one. The method preserves most of the information by leaving just a few

principal components - linear combinations of original features that maximize the

variance. After applying PCA, the clustering phase starts. Some metrics, e.g.

Canberra, is applied to the normal part of the data to compute a centroid in the new

feature space. The distance of new samples from the normal data centroid is large

for anomalous samples and small for normal ones. This approach was used by Shyu

and Chen and Sarinnapakorn and Chang (2003) in an unsupervised learning

scheme for intrusion detection.

18

4. Inductive rule generation techniques (Quinlan, 1987). This approach derives a set

of association rules and frequent patterns from the train set. Each rule implies the

category (either normal or anomalous) of the target variable by a range of feature

values. For example, Decision Trees (DTs) (Quinlan, 1986) implement generate

impurity measures-based rules generation. Bombara, Vasile, Penedo, Yasuoka and

Belta (2016) used custom rule generation scheme in DT to detect and classify

anomalies in data of maritime environment and automotive powertrain system.

5. Fuzzy logic techniques (Novak, Perfilieva, & Mockor, 2012). This approach

analyzes the features and builds a set of fuzzy rules that describe behavioral

patterns of normal data, which are then used to form intervals of normal and

anomaly data. For new samples, the rules determine whether they fall inside a

normal interval or in one of the anomaly intervals. Linda, Manic, Vollmer, and

Wright (2011) have proposed a fuzzy logic-based algorithm anomaly detection and

classification in network cyber security sensors.

6. Genetic algorithms (GAs) (Whitley, 1994). Originally these evolutionary

algorithms used mutation, crossover and selection operators to find solutions for

optimization and search problems. However, due to their flexibility and robustness,

they have been adjusted for other uses. One adaptation is to use a GA to derive

highly effective classification rules. Another is to use GA to select an effective

subset of features for other ML algorithms. Both customization methods have been

put into practice in detection and classification of anomaly in network traffic

(Hassan, 2013; Chouhan, & Richhariya, 2015).

7. Traditional ML models. This approach uses traditional ML models, such as SNNs,

SVMs (Cortes, & Vapnik, 1995), RFs (Ho, 1995), and NBCs (Rish, 2001) data.

When traditional ML models are used, anomaly detection and classification is

19

carried out as supervised learning task. For instance, Gribok, Hines and Uhrig

(2000) have used an SVM to validate labeled nuclear reactor sensor data.

Techniques Based on Automated Feature Extraction

ML algorithms based on feature engineering show excellent results. However, as

previously mentioned, manual creation of the features is both domain specific and

labor intensive. The accuracy of classification that relies on feature engineering largely

depends on how well the hand-crafted features are constructed (Bengio, Courville, &

Vincent, 2013). To cope with these shortcomings, recent research is directed to find

models that are capable of automated feature extraction (Salahat, & Qasaimeh, 2017).

An exhaustive literature search (Hodge, & Austin, 2004; Chandola, Banerjee, &

Kumar, 2009; Chandola, Cheboli, Kumar 2009; Parmar, & Patel, 2017; Heaton, 2017;

Fehst et al., 2018) reveals several types of approaches that use automated feature

extraction, also known as automated feature engineering and automated feature

learning:

1. Fuzzy logic-based approach. Recently, methods that use fuzzy logic have been

extended to automate the production of association rules. Modern fuzzy-logic-

based methods use sliding window method to divide the time-series into portions

(subsequences). Further, an algorithm of the fuzzy logic inheritance system

analyzes these subsequences, looking for general patterns in their shape and

amplitude. Since the analysis is carried out in an automated way, these patterns

serve as the automatically created features for subsequence. The algorithm also

automatically produces a set of association rules that define the order of

appearance, mutual dependency relations and other characteristics of internal

20

associations. Izakian and Pedrycz (2013) have used fuzzy-logic to detect anomalies

in precipitation measurements and arrhythmia ECG signals.

2. Genetic programming-based approach. In traditional ML, GP methods have been

used to select an effective subset of features to reduce the cost of computation

during the classification process and improve its efficiency. These methods have

been recently significantly enhanced and awarded new capabilities. The first is the

ability to derive (synthesize) new features from existing ones; another is to derive

new features directly from raw data. Both abilities assume no prior knowledge on

the probabilistic distribution of the data, which allows GP methods to be used for

automated feature extraction. Guo, Jack and Nandi (2005) have used GP-based

technique to detect and classify faults in raw data of vibration rotating machine.

3. Deep feedforward neural networks-based approach. When the dataset is large

enough, special types of neural networks can be used for automated feature

extraction. Two types of networks have been used for detection and classification

of anomaly in raw data:

A. Self-organizing map (SOM) (Kohonen, 1990). These are competitive learning

algorithms for classification problems that do topological mapping from the

input space to clusters. To be more specific, SOMs find statistical relationships

between data points in a high dimensional space and convert them to

geometrical relationships in a two-dimensional map formed by the output

neurons. Recent enhancements allowed SOMs to automatically extract

important features from raw input data and store them in a structure that

preserves the topology. The weight vectors of the output neurons serve as

prototypes of the data points and as centroids of clusters of alike data points.

21

Barreto and Aguayo (2009) have used several variations of SOM to detect

anomalies in data of a solenoid sensor in NASA’s hydraulic valve.

B. Radial basis function (RBF) neural networks (Lowe, & Broomhead, 1988). A

classical RBF network is a three-layer feedforward neural network in which

hidden layer nodes use RBF as a nonlinear activation function. The hidden

layer of an RBF network performs a nonlinear transformation of the input,

whereas its output layer maps the nonlinearity into a new space. RBF

optimization is linear and is carried out by adjusting the weights to minimize

the mean square error (MSE). Improvements made by Lowe and Tipping

(1997), Karayiannis and Mi (1997), and Rojas et al. (2002) allowed to extract

features from an RBF network and resize the network as required, making it

possible to use the RBF networks with time-series, e.g. to detect novelty

elements (Oliveira, Neto, & Meira, 2004).

4. Recurrent neural networks (RNNs) (Bengio, Simard, & Frasconi, 1994). An RNN

is comprised of multiple copies of the same modules, each being a neural network

that passes a message to its successor. RNNs have two inputs: the present and the

recent past. Each recurrent module serves as a memory cell. This makes RNNs

perfectly suited for ML problems that involve analysis of sequential data with

temporal dynamics, such as time-series data of a sensor. Weights are applied to

both current and previous input and can be adjusted by the RNN gradient descent

and backpropagation through time (BPTT) (Werbos, 1988). RNNs can operate on

raw data and do not require hand crafted features. Like deep feedforward neural

networks, they learn appropriate feature representations in their hidden layers

(Lipton, Berkowitz, & Elkan, 2015). An ordinary RNN has short-term memory,

which means that it can only catch time dependency in rather short sequences of

22

data. To overcome this limitation, two special types of RNNs have been invented:

long short-term memory (LSTM) and gated recurrent unit (GRU) (Cho et al.,

2014). Both have more complex (gates-based) architecture of each recurrent

module, which lets them more accurately maintain memory of important

correlations and analyze much longer sequences. In LSTM, the architecture of each

recurrent module is more complicated and uses more gates, whereas a GRU

module exposes the full hidden content without taking control over the flow of

data. As a result, LSTM is more powerful, while GRU is computationally more

efficient (Chung, Gulcehre, Cho, & Bengio, 2014). Shipmon, Gurevitch, Piselli

and Edwards (2017) have used ordinary RNNs, LSTM and GRU to detect anomaly

in time-series data of network traffic.

Existing LSTM-Based Solutions

 Since this dissertation focuses on LSTM, it is worth mentioning existing work on

the subject of detection and classification of anomaly in time-series data. During the

last few years, various LSTM-based solutions have been proposed by the research

community to detect anomaly in time-series data from various domains, such as

medicine (Chauhan, & Vig, 2015), space (Hundman, Constantinou, Laporte, Colwell,

& Soderstrom, 2018), automotive (Taylor, Leblanc, & Japkowicz, 2016), power

(Malhotra et al., 2015), astronomy (Zhang, & Zou, 2018), web traffic (Kimа, & Cho,

2018), machinery (Singh, 2017), economy (Ergen, Mirza, & Kozat, 2017), etc.

An especially interesting piece of research was carried out by Fehst et al. (2018).

Similar to this dissertation, the authors used LSTM to detect anomaly in time-series

data of sensors that measured drinking-water quality. LSTM’s automatic feature

23

learning was compared to a traditional ML method called logistic regression, which

used manually prepared features. Experiment results (F1-score) show that LSTM

classification quality was superior to that of the traditional approach.

Summary

 This chapter began by the describing anomalies as outliers and reviewed several

types of the latter. It then observed the peculiarities of detecting anomaly in sensor

data. The chapter continued by examining main anomaly detection and classification

techniques based on both feature engineering and automatic feature extraction. The

chapter ended by listing a number of LSTM-based solutions to anomaly detection in

time-series data in multiple domains. The next chapter refers to methodology of the

proposed dissertation.

24

Chapter 3 - Methodology

The proposed dissertation investigates the use of LSTM model for the problem of

anomaly detection in sensor data. Sensor data can be seen as a time-series, while, as

previously mentioned, LSTMs are well-suited for finding difficult patterns in the shape

and amplitude of this kind of data. In addition, LSTMs are capable of automatically

extracting features from raw time-series data. Therefore, the choice of model in this

work can be considered convenient for this task. In order to control the LSTM and

estimate its abilities of automated feature extraction, the same problem was solved

using several traditional ML algorithms that operated on hand-crafted features. The

following ML methods have been selected: SVM, Random Forest, naive Bayes

classifier, and shallow neural network. Since this work focuses on sensor data, all five

algorithms were trained and tested on a dataset that contains sensor measurements. To

realistically demonstrate both experimental approaches, the dataset was carefully

chosen.

 This chapter describes the planned experiment in the following sections:

• Experiment Design

• Chosen Dataset

• Data Cleaning and Preprocessing

• Experiment 1: Classification via SVM

• Experiment 2: Classification via Random Forest

• Experiment 3: Classification via Naive Bayes

• Experiment 4: Classification via a Shallow Neural Network

• Experiment 5: Classification via LSTM

25

Experiment Design

Below are the design decisions for each stage of the experimental work:

1. Choosing a dataset. A dataset must be carefully selected to match the goal, scope

and facilities of the experiment (LaLoudouana, Tarare, Center, & Selacie, 2003).

For the proposed study, the following of dataset requirements have been devised:

a. The dataset must contain measurements of real sensors, and have sufficient data

for both training and testing.

b. The dataset should be well-balanced, having each class represented by roughly the

same number of samples.

2. Preprocessing the data. The data may suffer from phenomena such as clearly

illegal values, missing values, incomplete samples etc. In this case it needs to be

cleaned or completed. E.g., in cases where anomalous samples are missing these

samples need to be generated and added to existing data. Finally, the data needs to

be adjusted to the specific experiments. In case of the proposed work, the samples

need to be converted to feature vectors and time-series.

3. Choosing the classifiers. As previously mentioned, anomaly detection and

classification should be carried out by using ML algorithms of two types. The first

is based on traditional feature-based ML algorithms, namely SVM, RF, NBC and

SNN. The second type, an LSTM network, should operate on raw time-series and

automatically extract features. Altogether, five classification experiments are to be

conducted. First four experiments estimate anomaly detection and classification

abilities of the traditional ML models. These models should be trained and

validated on feature vectors that were prepared during the dataset preprocessing

phase. The fifth classification experiment estimates the ability of LSTM to

26

automatically extract features from raw time-series data and use this knowledge to

detect and classify the anomaly. Due to wise construction of statistical domain

knowledge-based features, the simpler algorithms can achieve very high

classification accuracy. To assess the benefits of LSTM, its accuracy should be

matched to that of the traditional models.

4. Training and cross-validating the classifier. One of the main requirements of ML

is to build a computational model with both high prediction accuracy and good

generalization abilities (Mitchell, 1997). Improperly trained model memorizes the

training examples and overfits, resulting in poor generalization on unseen data. To

train a good model the bias-variance tradeoff (Kononenko, & Kukar, 2007) should

be considered, i.e. the right balance between good prediction on training data and

good generalization of new data needs to be found. Cross-validation (CV) (Picard,

& Cook, 1984) is considered a conventional approach to ensure good

generalization and prevent overfitting. k-fold CV is a slightly more effective

(Reitermanova, 2010) variation of CV that also automates the process of dataset

partitioning. To keep the models of this study robust and resistant to overfitting,

each they should be trained through 10-fold CV.

5. Tuning the classifiers. Tuning a model’s architecture and hyperparameters can

significantly improve its accuracy. This type of optimization relies less on theory

and more on experimental results. Following the work of Bergstra and Bengio

(2012), this study should apply two most popular strategies for hyperparameter

optimization: automated grid search and manual search. For traditional ML models

that require significantly less time to train, grid search through 10-fold CV will be

used to find the best combination of architecture and hyperparameters. To prevent

overfitting, the models should be trained through cross-validation. For the LSTM

27

the long training times require manual search of the optimal setup. However, the

LSTM should be also trained through 10-fold CV.

6. Testing the model. After being trained, cross-validated, and tuned, the model’s

accuracy should be tested. To ensure credible testing, the JDRF dataset should be

split in a way called train-cross-validate-test, following the recent trend (Kuhn,

2013). This method splits the data into two parts with ratio of 0.9. Training and

cross-validation data is used for training of the model and finding the best set of

hyperparameters via k-fold CV, while the testing data is used for testing.

7. Evaluating the model. In order to keep the evaluation results trustworthy and

ensure that the accuracy is measured from every angle, this study should follow

the recommendations of Goutte and Gaussier (2005). Once tested, a confusion

matrix should be constructed from computed true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN) test results. Then, the following

nine metrics should be computed: micro-precision, macro-precision, weighted

precision, micro-recall, macro-recall, weighted-recall, micro-F1 score, macro-F1

score, and weighted F1-score. In LSTM, there should be another two metrics: the

interrelations between accuracy and loss of the model, and the number of epochs

elapsed during the training process. This will allow to estimate the effectiveness of

the model apart from its accuracy.

8. Reasoning on LSTM’s advantages. Estimation of the algorithms' classification

accuracy should serve as the quantitative analysis that is required to examine its

effectiveness. By comparing the overall classification results of the traditional ML

algorithms with the LSTM, it should possible to discern if the expected results in

automated feature engineering have been achieved and if the LSTM can be used

as a preferable alternative to classical models in the domain of sensor data.

28

Feature

vectors

Time-

series

Original

dataset

Cleaning

Completing

Train data Validate data Fold 1

Fold 2

Validate

data
Train data Fold k

Splitting to train-validate-test data

LSTM

classifier

Creating, training and tuning best

hyperparameters on k-fold CV data

Evaluation of test data, computing

precision, recall and F1-score

Experiment

results

Generalizing and summarizing

Transforming Transforming

Figure 5. Design of the planned experiment.

k-fold CV data Test data

. . .
Train data Validate data Train data

All data

Prediction

results

Train data Validate data

Validate

data
Train data

Traditional ML

classifiers

Creating, training and tuning best

hyperparameters on k-fold CV data

Evaluation of test data, computing

precision, recall and F1-score

k-fold CV data Test data

. . .
Train data Validate data Train data

All data

Splitting to train-validate-test data

Prediction

results

Generalizing and summarizing

29

9. Generalizing and summarizing the experiment results. The experiments should

provide sufficient "food for thought" from their results to facilitate the addressing

of the following questions:

• What is the meaning behind the achieved results?

• Could these results be foreseen?

• Would the results have been roughly the same if another dataset was used?

Figure 5 visualizes the phases of the planned experiment. It can be seen that the

flow of the traditional ML algorithms and the flow of the LSTM are very much alike.

The only difference is the type of data they are applied on. This aspect keeps the

experiment straightforward, equitable and precise.

Chosen Dataset

For the proposed dissertation, the Juvenile Diabetes Research Foundation (JDRF)

Continuous Glucose Monitoring (CGM) Clinical Trial dataset (JDRF CGM Study

Group, 2008) was chosen. This dataset contains genuine measurements of blood

glucose levels, which deserve to be called sensor data since blood glucose meters and

similar devices are sensor-based. An analysis of the chosen dataset both quantitative

and qualitative (Verner, & Butvinik, 2017) revealed that its data is heterogeneous,

inconsistent, partially complete and has uneven number of measurements per day.

Such data is highly realistic and is expected to provide veridical experiments.

The clinical population examined to prepare the dataset consisted of both healthy

people and patients suffering from intensively-treated type 1 diabetes and glycated

hemoglobin (HbA1c). Patients were divided into three age groups (over 25 yrs., 15-24

30

yrs., 8-14 yrs.). The measurement period for every patient was about 26 weeks. Table

1 (Verner, & Butvinik, 2017) shows blood glucose level ranges for the patient groups:

Group Age

Glucose Level Range in mg/100

ml

Fasting 1 r. After

Meal

2 hr. After

Meal

Normal w/o Diabetes 11-61 <90 <140 <110

Obese w/o Diabetes 14-62 <90 <140 <110

Normal w/ Diabetes 24-69 80-120 >170 >140

Obese w/ Diabetes 15-65 80-150 >170 >140

 The total number of samples in the dataset was 772,061 samples, which is sufficient

amount of diverse data to train and test both traditional ML algorithms and LSTM.

 The chosen dataset had a couple of issues. First, it contained only normal data and

no anomalous samples. This problem was solved by manually generating anomalous

data with different types of anomaly from the original data. Another problem was that

the data was in rather inconvenient form of numbered measurements with patient IDs

and timestamps. The solution was to regroup the data in a way that provided both

feature vectors and time-series. The next section covers the details of these procedures.

Data Cleaning and Preprocessing

The dataset was reorganized in a way that placed all subsequent daily measurements

of a single patient as a time-series. Since the number of measurements per day differed

by both dates and patients, this produced a large amount of variable length time-series.

Several series appeared to be too short due to missing or corrupted data. These series

provide an insufficient amount of information to be analyzed when detecting outliers

and were, therefore, deleted from the dataset. After cleaning out the short time-series,

Table 1. Blood glucose level ranges for different patient groups.

31

the dataset had 3,826 normal time-series left. Based on the normal sequences, six

anomalous time-series were created by embedding different anomalous elements into

the normal series. The following six patterns of anomaly were used:

1. Random numbers of extremely large, or extremely small values.

2. Chaotic subsequences of arbitrary length, in which elements significantly and

unexpectedly vary from one another.

3. Exorbitantly long subsequences with constant value.

4. Unusually large number of appearances of certain value.

5. Excessively long subsequences of strictly increasing or decreasing values.

6. Excessively long subsequences of two alternating elements.

This resulted in 3,826 x 7 = 26,782 time-series, each labelled by its anomaly type.

As previously mentioned, 90% of the data was devoted to training with 10-fold cross-

validation, where the remaining 10% were used for testing. Table 2 specifies the

number of samples in each category:

Such amount of data was sufficient amount for both traditional and deep ML. The

necessary data for the LSTM was prepared. However, to properly finish the

transformation phase it was required to convert each time-series into a corresponding

Category
Number of

Samples

Training with cross-validation - Fold 1 2410

Training with cross-validation - Fold 2 2410

Training with cross-validation - Fold 3 2410

Training with cross-validation - Fold 4 2410

Training with cross-validation - Fold 5 2410

Training with cross-validation - Fold 6 2410

Training with cross-validation - Fold 7 2410

Training with cross-validation - Fold 8 2410

Training with cross-validation - Fold 9 2410

Training with cross-validation - Fold 10 2413

Testing 2679

24103
26782

Table 2. Detailed data split by categories.

32

feature vector, to be used by traditional ML algorithms. To prepare a small number of

precise and informative features, this study analyzed the nature of the data and used

the available domain knowledge. Blood glucose levels act as a bounded curve that

fluctuates over time, which is typical for sensors that measure physical quantities. One

important task was to find the boundaries of the data. Figure 6 (Verner, & Butvinik,

2017) shows a histogram of the values and their number of appearances:

As seen in the Figure, the JDRF dataset contains both extremely low and extremely

high values, such as 19 and 471 mg/dL. Since higher values are occasionally inherent

to the human body, it was decided to extend the valid range to [19, 800] mg/dL.

The distribution form has asymmetric Gaussian distribution, which is known to be

well described by statistical functions (Gupta, Nguyen, & Sanqui, 2004). The latter

implies that manually created features should have statistical nature. In recognition of

this fact and the domain knowledge on the types of anomaly, this study proposes eight

statistical features that were manually created to estimate the boundaries, averages,

deviations and fluctuation patterns of sensor data to identify the six anomaly types.

Figure 6. Histogram of JDRF values and their number of appearances.

33

Each feature operates on a single time-series of an arbitrary length (yet, long enough

to be left in the dataset). Taken altogether, the features form a (labeled) feature vector

of fixed length. Table 3 describes these features and the anomaly types they identify:

Feature Verbal

Description

Feature Mathematical Description Identified

Anomaly

Patterns

Minimal value
() () () ()

1 2

1 , ,...,
i

xi Ti i
f MIN x x x

=

1

Maximal value
() () () ()

1 2

2 , ,...,
i

xi Ti i
f MAX x x x

=

1

Maximal

absolute

difference

between

adjacent

elements

() ()

() () () ()

1

1 1

4
| :

i k i k

i k i k i j i j

x x

x x

f

x

j k

x

−

− −

= − ∀ ≠

− ≥ −

2

Ratio of

maximal

number of

succeeding

repetitions of a

constant

element to the

overall

sequence

length

() () (){ }
()

1 1

5

| : ...
i k i k

i

i

j

x

k j
MAX j k x x x

f
T

+ + −
∃ = = =

=

3

Mode

frequency

()()
()() ()()

3 | :
i k

i k i j

f

C

x

x

COUNT j k

OUNT CO xUNT

= ∀ ≠

>

4

Ratio of length

of the longest

sequence of

strictly

increasing

succeeding

elements to the

overall

sequence

length

() () (){ }
()

1 1

7

| :
i k i

i

k

x

k i j

j
MAX j k x x x

f
T

+ + −
∃ < <…<

=

5

Ration of the

length of the

longest

() () (){ }
()

1 1

7

| :
i k i

i

k

x

k i j

j
MAX j k x x x

f
T

+ + −
∃ > >…>

=

5

Table 3. Hand-crafted features for traditional ML algorithms.

34

sequence of

strictly

decreasing

elements to the

overall

sequence

length

Length of the

longest

sequence with

two alternating

constant

elements

() ()
()

() ()
()

1
2

2 2

2
1 3 2

9

1

| , , :

j
i k

j i k i k

i k
i k i k

j

j k l m

l m

f MAX
l x x x

m x x x

−
+ +

+ − + +

∃

≠ ∧

=
= = = … = ∧

 = = = … =

6

Verner and Butvinik (2017) trained an SVM on the features extracted from the

JDRF data that were much like those discussed above. Their model achieved 100%

precision and 99.22% recall in binary classification of the data to anomalous and valid.

These results were sufficient evidence to assume that if thoughtful hand-crafted

features will be used, traditional ML models will be able to achieve high accuracy in

anomaly detection and (multiclass) classification.

Experiment 1: Classification via SVM

 Support vector machine (Cortes, & Vapnik, 1995) is a supervised learning

algorithm that that can be employed for both classification and regression tasks. This

ML model is rather simple and is based on feature engineering. However, when the

features are properly chosen, SVM becomes a very powerful tool for learning complex

non-linear functions. SVM considers the feature vectors as data points in multi-

dimensional space and tries to find the best segregation of these points into two classes.

In the simpler case of linearly-separable data, the SVM acts as a linear classifier. In

this case, its decision on the class of each point is based on the value of a linear

35

combination of its features. In more complicated cases, when the data is not linearly

inseparable, SVM can still be applied by using the a (non-linear) kernel method. The

use of non-linear kernels, e.g. radial basis function (RBF), is also known as the kernel

trick (Hofmann, Scholkopf, & Smola, 2008). SVM separates the points of different

classes by drawing a boundary referred to as hyperplane, which is determined by two

factors: support vectors and margins. With a high enough number of dimensions, a

hyperplane that separates the classes can always be found. Support vectors are critical

points (at least one of each class) that are closest to the hyperplane. Margins are the

distances between the hyperplane and the nearest data points (of either class). The goal

of SVM is to find the optimal hyperplane with the greatest possible margins that would

increase the chances of new data to be correctly classified.

SVM can be used not just for binary classification, but also for multiclass

classification. In the latter case, hyperplane construction is repeated a number of times,

Figure 7. Using SVM to separate two-dimensional data.

36

until data points of all classes are delineated and separated in the multi-dimensional

space. Figure 7 shows a simple case of an SVM that separates two-dimensional data:

 Below is a list of SVM’s advantages and disadvantages by Auria and Moro (2008):

Advantages:

- Convex optimization assures optimal classification of linearly separable data.

- Works well on small datasets.

- Can be used with regularization techniques to reduce overfitting.

- Is very accurate with a custom domain knowledge-based kernel function.

Disadvantages:

- Significantly longer training times in case of large datasets.

- Less effective on datasets with noisy data and overlapping classes.

- Can be strongly affected by overfitting if inappropriate kernel method is chosen.

To achieve the optimal accuracy on a concrete dataset, the hyperparameters of the

SVM should to be tuned. Below is a list of those, based on works of Duan, Keerthi and

Poo (2003), and Eitrich and Lang (2006):

- Cost parameter, noted as C.

- Kernel method.

- Free parameter of the RBF kernel, noted as γ (or, sometimes, as σ).

Experiment 2: Classification via Random Forest

Random forest or random decision forest (Ho, 1995) is an ensemble feature-based

learning method for both classification and regression. RF is known to provide high

accuracy even without fine tuning (Fernandez-Delgado et al., 2014), which makes it a

popular ML algorithm. The basic building blocks of a random forest are decision trees

37

(Breiman, 1984). This simpler model is a flowchart-like structure that is constructed

in a top-down manner. Every internal node in a decision tree is a condition on a single

feature that is intended to split the data by similar response values. Figure 8 (Safavian,

& Landgrebe, 1991) shows an example of general balanced decision tree:

Construction of decision tree with optimal binary splits is an NP-complete problem

(Laurent, & Rivest, 1976). Nevertheless, different metrics are used to locally choose

optimal features and conditions at each split based on informativeness criteria called

impurity. For classification tasks, two of most widely used metrics are Gini Index and

Information Gain, while for regression trees the popular metrics is variance (Raileanu,

& Stoffel, 2004).

A serious shortcoming of decision trees is their high sensitivity to noise and

susceptibility to overfitting on the training data (Ho, 1995). To deal with this issue, RF

builds a random ensemble of decision trees, then combines and averages their

predictions to get more accurate and stable results. For classification problems the final

class is a result of majority-voting, i.e. it is the most frequent class; and for regression,

Figure 8. Example of general balanced decision tree.

38

the mean value is chosen. Figure 9 shows how the process of majority-voting in a

typical random forest:

To prevent RF trees from being correlated, they are trained on diverse subsets of

features and samples. According to Dietterich (2000), the most popular techniques for

constructing RFs are bagging (Breiman, 1996) and boosting (Freund, & Schapire,

1996). Bagging uses bootstrapping (Tibshirani, & Efron, 1993), in which the DTs are

trained on equally sized subsets of the original dataset, created by random sampling

with replacement. In boosting, the DTs are trained one by one on the whole dataset,

adjusting samples weight and gradually correcting previous step DT to reduce the total

error. Two popular boosting algorithms are adaptive boosting (AdaBoost) (Freund,

Schapire, & Abe, 1999) and gradient boosting (Friedman, 2001).

Below is a list of advantages and disadvantages of the RF, based on the works of

Ali, Khan, Ahmad and Maqsood (2012), and Prajwala (2015):

Advantages:

- Easy to use, since it often produces good prediction results without tuning.

Figure 9. Example of majority-voting on the final class in Random Forest.

39

- Quickly trained.

- Can handle binary, categorical and numerical features without scaling.

- Bagging can be parallelized since each DT can be built independently.

- Bagging reduces overfitting by reducing the variance while retaining the bias.

- Performs implicit feature selection and can serve as an informativeness indicator.

Disadvantages:

- Often has large number of trees, which results in large memory footprint.

- Large forests can significantly slow down prediction and prevent real-time usage.

- Is not descriptive enough and its results are quite difficult to interpret.

- Favors categorical features with large number of values.

- Favors smaller groups of correlated features.

Based on the work of Probst, Wright and Boulesteix (2018), the following

hyperparameters allow to achieve the optimal bias-variance trade-off for the RF:

- Size of randomly picked candidate features subset, denoted by mtry.

- Size of training samples subset.

- Replacement with sampling flag.

- Maximal size of internal node, denoted as nodesize.

- Minimal size of leaf node, denoted as leafsize.

- Number of trees in a single forest.

- Informativeness criteria.

Experiment 3: Classification via Naive Bayes Classifier

 Naive Bayes classifier (Russell, & Norvig, 1995) is another feature-based

supervised learning algorithm. It was originally intended to be used for classification

40

tasks, but with some modifications it can be used for regression as well (Frank, Trigg,

Holmes, & Witten, 2000). NBC is rather simple and is often used as a baseline for

comparison to other models. However, if properly trained, it can perform well on most

classification tasks, and is often significantly more accurate than more sophisticated

methods (Frank et al., 2000; Ashari, Paryudi, & Tjoa, 2013). This technique is based

on two theoretical aspects: Bayes’ theorem (Bayes, Price, & Canton, 1763) and an

assumption that all the features of the given dataset are of completely independent of

one another. In probability terms, this assumption can be formulated as following: each

feature has an independent contribution to the probability that an arbitrary sample

belongs to a particular class, regardless of any correlations between the features.

41

 Apparently, features are often dependent on one another, which makes the above

assumption naive (hence the name of the classifier) and the probability estimations

inaccurate. However, despite its simplicity, NBC often manages to achieve relatively

high accuracy by using the loss function (Wald, 1949), such as zero-one loss

(Friedman, 1997). This function defines the error as the number of wrong predictions

and results in assigning the maximum probability to the correct class (Domingos, &

Pazzani, 1997). The computations of NBC rely in two types of mathematical objects:

frequency- and likelihood tables. For each feature, these tables convert the frequencies

of the classes to posterior probabilities, which are then compared predict the outcome

class. Figure 10 (Gerard, 2017) shows the above process on the Golf Dataset.

Figure 10. The process of creation of frequency and likelihood tables, demonstrated

on the Golf Dataset.

42

Below is a list of pros and cons of the NBC, based on the work of Al-Aidaroos,

Bakar and Othman (2010), that help to estimate its applicability for a concrete dataset.

Advantages:

- Easy to understand, implement and update.

- Computationally efficient for both binary and multiclass classification.

- Can be trained even on a very small dataset if its features are independent.

- Naturally robust to missing, noisy and irrelevant features.

- When predicting, provides not only the class of a sample, but also the probability.

Disadvantages:

- Works well on numerical features, only if the latter have a concrete distribution.

- Is sensitive to redundant or correlated features.

- Is susceptible to the so called zero-frequency problem (Wu, Cai, & Zhu ,2013).

- In case of dependent features, the computed probabilities cannot be trusted.

- Does not work well with imbalanced datasets.

The basic NBC requires no hyperparameters. However, other variants use various

techniques to reduce the “naivety”. For example, Laplace smoothing (Manning,

Raghavan, & Schutze, 2008) modifies the probabilities in the zero-probability

problem. These variants of NBC make it more robust. Below are the popular ones:

- Gaussian naive Bayes (John, & Langley, 1995).

- Multinomial naive Bayes (Manning, Raghavan, & Schutze, 2008).

- Bernoulli naive Bayes (Manning, Raghavan, & Schutze, 2008).

- Complement naive Bayes (Rennie, Shih, Teevan, & Karger, 2003).

- Scaled naive Bayes (Martinez, Webb, Chen, & Zaidi, 2016).

A more thorough list of naive Bayes variants can be found in the work of Al-Aidaroos,

Bakar and Othman (2010) that shows 18 improved algorithms for various applications.

43

Experiment 4: Classification via Shallow Neural Network

Artificial neural network (ANN), or simply neural network, is a graph-like

computational model that can do both classification and regression. Thanks to

excellent results, this model has raised a considerable interest in both research and

industry and is successfully used in various domains (Zhang, Patuwo, & Hu, 1998).

The basic computational units of a neural network are the neurons. A neuron receives

its inputs either from external sources or from other neurons and computes an output.

Each input has an associated weight that represents the relative importance of current

input in relation to other inputs.

To produce the output, the neuron applies a special non-linear activation function,

e.g. sigmoid or hyperbolic tangent (Gomes, Ludermir, & Lima, 2011), on the weighted

sum of its inputs and adds the relevant bias. The activation function performs a fixed

mathematical operation that determines which neurons to consider when making the

prediction. The bias provides every neuron with a trainable constant value that slightly

44

decreases or increases the result of the activation function. Figure 11 (Fonseca,

Navaresse, & Moynihan, 2003) shows the information processing in a single neuron:

ANNs have three types of layers: input, hidden and outer. The (single) input layer

contains neurons that get their input from the features and pass it on to the (first) hidden

layer. Neurons of the (possibly multiple) hidden layer(s) perform computations and

transfer the results to the output layer. The (single) output layer neurons do additional

computations and produce the prediction result. SNNs have a single hidden layer.

The weights and the biases are initialized either randomly, or by a special technique,

e.g. the one suggested by Yam and Chow (2000) or those proposed by Fernandez-

Redondo and Hernandez-Espinosa (2001). The weights are iteratively adjusted to near-

optimal values by two optimization methods: forward propagation and

backpropagation (Werbos, 1982). Backpropagation’s main optimization algorithms

are: batch gradient descent, mini-batch gradient descent and stochastic gradient

descent (SGD) (Ruder, 2016). After each full traversal of adjustments, the loss

function computes a penalty score for wrong predictions on the training set, to see if it

dropped below a predefined threshold. When found, the final values of weights and

Figure 11. Information processing in a single neuron.

45

biases are used for prediction on new samples. Figure 12 (Tu, 1996) shows an example

of SNN trained to predict the probability of patients’ death based on their age and sex:

Below are the benefits and limitations of the SNNs, based on the work of Tu (1996):

Advantages:

1. Detect complex non-linear relationships between target variable and features.

2. Solve classification and regression problems equally good.

3. Operate well on numerous types of data relatively well without fine-tuning.

4. Handle various dependencies between the features.

5. Capable of modeling nonlinear data with numerous features, e.g. images.

6. Prediction is very fast, especially in shallow ANNs.

Disadvantages:

1. Internal relationships between the target variable and the features are indistinct.

2. Needs large train set to achieve high accuracy and is computationally expensive.

Figure 12. Architecture of a typical shallow neural network.

46

3. Prone to overfitting.

4. Can forget dependencies that they learned from old data after learning new one.

5. Are practically limited due to a single hidden layer.

SNNs have several hyperparameters that determine its structure, affect the training

speed etc. Below is a list of the important ones based on the work of Bengio (2012):

1. Number of hidden neurons in the hidden layer.

2. Activation function.

3. Learning rate in backpropagation, denoted by alpha.

4. Optimization algorithm.

5. Maximal number of weights adjustment iterations.

6. Weights initialization method.

Experiment 5: Classification via LSTM

Long short-term memory networks (Hochreiter, & Schmidhuber, 1997) are a

special kind of recurrent neural networks. All RNNs, including the LSTM, consist of

units. These are ANNs with multiple hidden layers that contain cycles from subsequent

neurons to preceding ones. These cycles create a special recurrent layer within the

network, called hidden state, which acts like a memory and allows the RNN unit to

handle time sequenced data. Since the unit is recurrent, it handles the input by

timesteps. At each timestep t , the unit receives
tx , which is an input sequence element

(vector) at position (time) t , and
1th

−
, which is the hidden state vector from previous

timestep and the output of the unit at time 1t − . Figure 13 shows a single RNN unit:

47

Units of ordinary RNNs, such as Elman (Elman, 1990) and Jordan (Jordan, 1997)

networks, have simple architecture. Their update process is simple as well. When

processing the timed input sequence, forward propagation iteratively updates the input

and output vectors, timestep by timestep, starting with timestep 1t = and ending by

t τ= (last element index). Figure 14 (Greff, Srivastava, Koutnik, Steunebrink, &

Schmidhuber, 2017) shows a typical RNN unit:

RNN

unit i

x

h

Unrolled in time
RNN

unit i

x0

h0

RNN

unit i

x1

h1

. . . RNN

unit i

xt

h
t

Figure 13. RNN unit - unfolding of events over time.

h
0
 h

1
 h

t-1

RNN

unit i

x
t-1

h
t-1

h
t-2

Figure 14. Architecture of a single ordinary RNN unit.

48

In each iteration, the RNN cell considers the current input and the previous hidden

state and produces the current hidden state - the predicted output of the unit. The

decision is based on weight matrices of current input and previous output, and a bias,

which are optimized during the backpropagation to make the right decisions. A

hyperbolic tangent activation function is applied on the summation result to get the

hidden state squashed into a range of (-1,1). If the output sequence need to be

transformed into a more convenient form, then the output function
ty can be computed

from current hidden state by using another layer, called dense layer, with weights, bias

and a final non-linear activation function, such as softmax (Bishop, 2006).

In practice, each RNN unit handles a single input value from the input features

vector. Therefore, RNN networks often consist of RNN cell that contains several

stacked RNN units, corresponding to the length of the vector. In addition to being deep

in time, RNNs can be made deep in space by stacking by multiple recurrent hidden

layers (each having multiple units) on top of each other (Graves, Mohamed, & Hinton,

2013). A stacked RNN architecture usually ends with a dense layer.

Deep RNNs can recognize significantly more complex patterns in the data than

ordinary neural networks (Bianchini, & Scarselli, 2014), and even learn time

dependencies in the data. However, their memory cells do not have enough level of

control over the memorization process to precisely regulate which part of the

information is unimportant and should be thrown away, and which is important enough

to keep for handling data of subsequent timesteps (Salehinejad et al., 2017). In

addition, when time-series with long time lag patterns, ordinary RNN units have

practical difficulties due to particularities of the backpropagation process (Bengio,

Simard, & Frasconi, 1994). RNN units rely on BPTT – a special variation of

backpropagation that considers recurrent layers, which is known for being ineffective

49

for time-series because of two problems: One, called exploding gradient, (Bengio,

Simard, & Frasconi, 1994) can be easily solved by gradient clipping (Mikolov, 2012).

The other one, vanishing gradient, is more serious and prevents from ordinary RNNs

to become inappropriate for tasks which involve learning long-term dependencies.

LSTM solves the vanishing gradients problem by using a combination of real time

recurrent learning (RTRL) (Williams, & Zipser, 1989) and a full BPTT (Robinson, &

Fallside, 1987; Werbos, 1988; Williams, 1989; Williams, & Peng, 1990, Graves, &

Schmidhuber, 2005). In addition to full BPTT, LSTM has a significantly more

complex unit, having four recurrent hidden layers instead of one and special constructs

that interact in a special way to control the memorization process to a far greater extent

that RNN’s unit.

The original LSTM design by Hochreiter and Schmidhuber (1997) had several

flows and was significantly improved by various researchers (Gers, Schmidhuber, &

Cummins, 1999, Gers, & Schmidhuber, 2000; Gers, & Schmidhuber, 2001; Gers,

Figure 15. Architecture of a single unit of vanilla LSTM.

50

Schraudolph, & Schmidhuber, 2002, Graves, & Schmidhuber, 2005), resulting in a so

called vanilla LSTM that is to date the most commonly used in the literature (Greff et

al., 2017). This study refers to the vanilla LSTM as baseline architecture. Figure 15

(Greff et al., 2017) shows the schematics of a vanilla LSTM unit’s architecture. Like

RNN units, LSTM units can be stacked in a single LSTM layer, whereas LSTM layers

can also be stacked.

The update process in LSTM unit much resembles the one that takes place in RNN.

Vanilla LSTM unit contains several components. First is the memory cell, also called

Constant Error Carousel (CEC), which is capable of memorizing information with long

time lags. The content of a memory cell is called the cell state; and another three

components are gate layers: input, forget, and output. Each gate layer consists of the

relevant gate itself and a following Hadamard product (or Schur product) operator

(Davis, 1962). The gates are special FFNNs with sigmoid activation function that

control information flow by preventing part of it to proceed any further. Each gate

receives three input vectors: input vector of current timestep, hidden state vector

(output vector) from previous timestep, and the cell state vector from current or

previous timestamps (depends on the gate). Below are the equations, according to

which the update computations are carried out:

 - length of input vectors (number of features)

 - length of hidden-state (number of units in single cell)

 - input vector at time

 - hidden-sate vector at time

 - forget gate activat

d

t

h

t

h

t

d

h

x R t

h R t

f R

∈

∈

∈ ion vector at time

 - input gate activation vector at time

 - output gate activation vector at time

 - state vector at time

 - potential changes in cell state vector at time

h

t

h

t

h

t

h

t

t

i R t

o R t

c R t

c R t

∈

∈

∈

∈�

51

, , , - input weight matrices of forget gate, input gate, output gate

 and cell state, respectively

, , , - output weight matrices of forget gat

d h

f i o c

h h

f i o c

U U U U R

W W W W R

×

×

∈

∈ e, input gate, output gate

 and cell state, respectively

, , - peephole diagonal weight matrices of forget gate, input gate and

h h

f i o
D D D R

×
∈

 output gate, respectively

 - bias of forget gate

 - bias of input gate

 - bias of output gate

 - bias of cell state gate

 - sigmoid activation function

tanh - hyperbolic tangent activa

h

f

h

i

h

o

h

o

b R

b R

b R

b R

σ

∈

∈

∈

∈

()

()

()

()

()

1 1

1 1

1

1

1

tion function

 - Hadamart product operator

tanh

tanh

t f t f t f t f

t i t i t i t i

t c t c t c

t t t t t

t o t o t o t o

t t t

f U x W h D c b

i U x W h D c b

c U x W h b

c f c i c

o U x W h D c b

h o c

σ

σ

σ

− −

− −

−

−

−

= + + +

= + + +

= + +

= +

= + + +

=

�

�

�� �

�

All the input vectors of a gate are weighted. For input and hidden-state vectors

ordinary weight matrices are used, whereas for the hidden-state vector a diagonal

weight matrix is used (Graves, 2013). The gate then adds a (single) bias and applies a

sigmoid activation function. When backpropagation takes place, the weights and

biases of the gates are optimized to let the gate make correct decisions on required cell

state changes. The components of the vector produced by the gate are numbers

between 0 and 1, and the gate vector’s length corresponds to the length of the cell state

vector. These numbers determine which part of the information arriving from the input

vectors is let through to the cell state vector. Zero value means “let nothing through,”

while a value of one means “let everything through”. Next, the gate and the cell state

52

vectors both go into the Hadamard product operator that does pointwise multiplication

and applies the relevant changes to the cell state vector.

Three additional components of the unit are peephole connections that pass

weighted cell state vectors as input for the gates, to let them consider the contents of

the memory cell when making their decisions. Finally, the last component is an input

layer. This is another FFNN that operates in almost the same way as a gate. It receives

weighted input vector of the current timestep and the hidden-state vector of the

previous timestep, applies an activation function, and creates a vector of potential

changes in the cell state vector. Altogether, the components of a unit act as a single

mechanism that operates in several steps.

At the first step, the forget gate layer decides what unimportant information should

be removed from the cell state. The layer’s gate considers current input vector,

previous hidden state vector, and the previous cell state vector (all weighted and

biased) and produces a vector with information that should be removed from the cell

state. These changes are then applied on previous cell state vector, to get a vector with

forget updates for the cell state vector.

At the second step, the LSTM decides what new information is important enough

to be stored in the cell state. This step requires a common effort of two layers: input

gate layer and input layer. The input gate considers current input vector, previous

hidden state vector and previous cell state vector, and decides which components of

the cell state vector are updated. The input layer considers the current input vector and

previous hidden-state vector, and computes a candidate state vector, which holds the

new information that is added to the existing cell state vector. The result vectors of the

two layers are combined into a single vector, which contains the store updates for the

cell state vector. Finally, the update vector is pointwise added to the previous cell state

53

vector, which frees it from irrelevant information and fills it with new data. This

completes the update operations and produces the current cell state vector, which is

ready to be used in the next recurrence iteration.

The last step is for the LSTM to decide what part of the current cell state (which at

this point is fully computed) is going to become the current hidden state, i.e. the output

of the unit. This step takes place in three stages. In the first stage, the output gate layer

considers the current input, the previous hidden state and the current cell state, and

produces a vector that decides which components of the current cell state enters the

hidden state. In the second stage, the current cell state vector is replaced by a

hyperbolic tangent activation function. This pushes its components to between −1 and

1 and prepares it to be combined with the output gate result vector. In the third stage

the two vectors are combined. This produces the current hidden-state vector, which, as

stated above, is also the vector the unit provides the outside world.

As opposed to numerous traditional ML models, LSTLs analyze the fluctuations of

the time-series over time and not just the statistical multi-dimensional distribution of

its values. They determine whether the new curvatures in the data significantly differ

from those previously seen. Figure 16 (Kim, & Cho, 2018) illustrates this idea on a

curve of 1D web traffic time-series data:

Figure 16. Anomaly detection in one-dimensional web traffic time-series data.

54

The two areas marked as abnormal contain peaks that are superfluously high as

compared with the rest of the knolls. This quality is particularly relevant to sensor data

since the it is essentially a time-series and suggests that LSTM has a very high chance

of being the most appropriate model for such analysis.

A list of advantages and disadvantages of the LSTM, based on the work of

(Hochreiter, & Schmidhuber, 1997; Otte, Liwicki, & Krechel, 2014) appears below:

Advantages:

1. Can store information over huge number of steps.

2. Can handle noise, distributed representations, and continuous values even in

sequences with long time lags.

3. Can process time-series with varying length straightforwardly.

4. Can handle extremely long sequences.

5. Can distinguish two subsequences by two widely separated elements.

6. Can recognize a pattern even if is separated by a wide time lag from last occurrence.

7. Works well with relatively little fine tuning.

8. Has constant update complexity per weight and timestep.

9. Can be parallelized and speed up by using multiple CPUs and GPUs.

Disadvantages:

1. Is significantly less effective on small amounts of data.

2. Rather long training time due to large amount of required training data.

3. Cannot solve some theoretic problems, e.g. the strongly delayed XOR problem.

4. Have relatively large number of weights, which causes large memory footprint.

5. Unable to precisely count discrete time steps.

Based on the works of Reimers and Gurevych (2017), Merity, Keskar and Socher,

(2017), and Bengio (2012), the LSTM can be tuned by changing the following:

55

1. The size of a hidden state, i.e. the number of LSTM units that comprise it.

2. Number of LSTM layers in stacked LSTM model.

3. Optimization algorithm.

4. Algorithm for an exploding gradient.

5. Method and rate of the variational dropout regularization technique.

6. Size of the mini-batch descent.

7. Number of training epochs.

8. LSTM architectures, such LSTM with embedding layer, BLSTM etc.

Resources

For this research, the following basic and available resources were required:

- A laptop or desktop computer with high-speed access to the internet.

- An extremely powerful computational platform on Amazon Web Services.

- Scientific computing and programming software, as following:

o The Python programming language (Van Rossum, & Drake, 2018).

o Integrated development environments (IDE) for Python, such as

PyCharm (2018), and Jupyter Notebook (2014).

o Frameworks for Python, such as NumPy (2018), matplotlib (Hunter,

2007), SciPy (Jones, Oliphant, & Peterson, 2014), Pandas (2018),

TensorFlow (Abadi et al., 2016), Keras (Chollet, 2015), Scikit-learn

(Pedregosa et al., 2011), etc.

o Software architecture tools, such as Enterprise Architect (2018).

- Software for documentation, data management and presentations, such as

Microsoft Office (2018).

56

- Additional software, in which the need may arise in the future.

Summary

This chapter began by the providing a detailed design of the planned experiment,

according to the following major components: choosing a dataset, preprocessing the

data, choosing the classifiers, tuning the classifiers’ hyperparameters, estimating

classification accuracy, reasoning on LSTM’s advantages, and generalizing and

summarizing the experiment results. Then the chapter continued by focusing on the

dataset. An analysis and justification of the chosen dataset was followed by elaboration

on cleaning and preprocessing procedures, such as transforming samples into feature

vectors and into time-series, which needed to be carried out before the data could be

analyzed by ML models. Finally, the last and largest portion of the chapter contained

an in-depth review and analysis of the five ML models, namely: SVM, RF, NBC, SNN,

and LSTM, that were chosen to analyze the sensor data and detect anomalies within it.

The focus was on LSTM since this approach is the heart of this dissertation.

57

Chapter 4 - Results

The five experiments designed to be carried out in Chapter 3 were conducted. The

collected data was processed and prepared for:

1. Estimating the accuracy and effectiveness of LSTM detection of anomalies in

normal data, and classifying the anomaly type.

2. Estimating the degree to which traditional ML models, which are based on

feature engineering, can be replaced by a deep learning (DL) LSTM model,

such as an LSTM that operates on raw data.

The examined models, both traditional ones and the LSTM, have numerous

variations that can be built by changing their architecture and hyperparameters. In this

study, four variations have been chosen to represent each model and show the effect

of its most important tunable elements on the prediction accuracy. Each variation was

trained with 10-fold cross-validation on the training/validation set, then tested on the

test set. For each model, the testing results were shown as four histograms reflecting

its evaluation according to the nine metrics of accuracy described in Chapter 2: micro-

precision, macro-precision, weighted precision, micro-recall, macro-recall, weighted-

recall, micro-F1 score, macro-F1 score, and weighted F1-score. Each accuracy score

varied from 0 (lowest) to 1 (highest). In this study, accuracy score above 0.95

(corresponding to 95%) is considered high.

The complete source code of the experimental part of this dissertation is available

in the supplementary archive. Appendix A contains screenshots with a full

specification of the examined architectures and hyperparameters, as well as detailed

evaluation results.

58

Results of Dataset Processing

The first objective of the experimental part was to process the dataset, create normal

and anomalous sequences and ensure that the sequences of each type are significantly

distinctive from the other types. This was necessary so the traditional ML algorithms

can learn the patterns and achieve high accuracy scores. This objective was achieved.

All ML classifiers showed very high accuracy scores on all the chosen nine metrics.

Following the experiment’s design, the original dataset was compiled into a single file

and transformed into normal sequences, each consisting of ordered patient

measurements per day. These sequences were then used to create anomalous sequences

by splicing anomalous elements of six types, resulting in seven types of data.

Figure 17 shows a small subset of randomly picked sequences (one for each type):

Each sequence consists of discrete consecutive values of blood glucose level

measurements and is represented as a curve. It can be clearly seen from the diagram

that each anomaly type distorts the normal curve in its own way. These sequences of

raw data were ready to be analyzed by the LSTM.

Figure 17. Discrete sequences of measured glucose levels, represented as continuous

curves.

59

 For traditional ML models, that could not classify these sequences in their original

form, feature vectors of fixed length were prepared according to Table 3, one for each

sequence. By using a small amount of wisely constructed features, it was possible to

clearly reveal the differences between the normal data and each type of anomaly. Table

4 shows random feature vectors with matching labels:

In the header of the table, the index N in the postfix _T<N> of each feature represents

the corresponding type of anomaly (denoted by VecType). It can be seen that vectors

of a given type can be isolated from other vectors by comparing the relevant columns.

Results of Experiment 1

Experiment 1 used SVM to detect and classify anomalies. The fact that this model

can be quickly constructed and trained, made it feasible to use grid search to traverse

Table 4. Random feature vectors, constructed from normal and anomalous

60

through the numerous combinations of its hyperparameters and find the best variant.

Figure 18 shows the nine accuracy scores of each of the four chosen SVMs:

 The SVM has several important hyperparameters. One is the kernel type. Figure

18 shows SVMs with RBF, polynomial, and linear kernels. Polynomial and linear

kernels both provided very high results. Another central hyperparameter is C - the ratio

of data points of the opposite class that can violate the hyperplane. Setting C to a very

small value of 0.001 heavily penalized SVM 2 for violations and undermined accuracy.

Figure 18. Histograms of four different SVM models’ accuracy scores, measured by

the nine metrics used in the study.

0.88

0.90

0.92

0.94

0.96

0.98

1.00

SVM 1 (RBF Kernel) SVM 2 (Linear/Small C) SVM 3 (Polynomial

Kernel)

SVM 4 (Linear Kernel)

A
cc

u
ra

cy
 R

a
ti

o

Pr.-Mic. Pr.-Mac. Pr.-Wei. Rec.-Mic. Rec.-Mac. Rec.-Wei. F1-Mic. F1-Mac. F1-Wei.

Table 5. Confusion matrix and full classification report of the best-found SVM

classifier.

61

For the chosen dataset, the optimal value (used in SVM 4) was 9. This model achieved

a full 1.0 score with just 4 out of 2,679 misclassified samples. Table 5 shows its

confusion matrix and a full classification report with prediction details.

The obtained results show that a rather simple linear SVM was able to find good

support vectors and construct a hyperplane that correctly classified nearly all data

points. Similar results were observed in the study if Verner and Butvinik (2017).

However, to achieve such high accuracy, precise and tailored features had to be chosen

for the model. As previously mentioned, construction of these features is a labor-

intensive task and requires an in-depth domain knowledge. Therefore, this experiment

inferences were as following:

- High accuracy can be achieved when the features are properly chosen.

- The LSTM model is expected to achieve accuracy of the same order, yet

without the overhead of feature engineering.

Results of Experiment 2

In Experiment 2, the Random Forest model was chosen to detect and classify

anomalies. The RF model has large amount of hyperparameters, which made it

impractical to exhaustively search through over all the possible combinations.

Therefore, several hyperparameters, for instance, the size of features subset, were

manually analyzed for its effect on the prediction accuracy. Accuracy scores of the

most interesting RF variants are shown in Figure 19:

62

Several hyperparameters had an interesting effect on the accuracy. One is the

maximal depth of the RF trees. According to Probst, Wright and Boulesteix (2018),

pruned trees constitute a form of regularization, as they decrease the variance of the

model and increase its bias. In this study, trees pruning have slightly reduced the

accuracy. The negative effect could have been significantly stronger, but the small

number of precise features appeared to be sufficient for the primitive trees of RF 2 to

filter out the right type of the data by a few simple conditions. Another hyperparameter

with similar regularization effect (Genuer, 2012) is the minimal number of samples

required to be at leaf nodes. In RF 1 this value was chosen to be large, which allowed

many samples to be held in a minimal leaf node and prevented the right splits to occur

in the Forest’s trees, even though only a small number of them was required. The result

was an over simplified model with mediocre accuracy. Finally, the impurity criteria

hyperparameter had practically no impact on the accuracy: both RF 3 and RF 4 had

excellent results. Raileanu and Stoffel (2004) explain this by saying that that Gini and

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

RF 1 (Entropy / Large

Leaf Split Criterion)

RF 2 (Gini / Pruned

Trees)

RF 3 (Entropy / Normal) RF 4 (Gini / Normal)

A
cc

u
ra

cy
 R

a
ti

o

Pr.-Mic. Pr.-Mac. Pr.-Wei. Rec.-Mic. Rec.-Mac. Rec.-Wei. F1-Mic. F1-Mac. F1-Wei.

Figure 19. Histograms of four different Random Forest model’s accuracy scores,

measured by 9 metrics.

63

Entropy are virtually equal by their effectiveness, differing mainly in terms

computation speed.

The best-found RF (see Appendix A for a full list of its hyperparameters) repeated

the extremely high results of the SVM, scoring 1.0 in all metrics with 4 out of 2,679

wrong predictions. Table 6 shows the full results of this model:

RF is another proof that high accuracy can be achieved with traditional ML models if

the chosen features are properly chosen. However, as in the case with SVM, the model

could not operate on raw data and required hand-crafted features, with all the attendant

limitations. The LSTM model is awaited to achieve close accuracy, yet without being

dependent on the domain knowledge factor.

Results of Experiment 3

 Experiment 3 concerned the naive Bayes classifier. Variations of NBC have very

few hyperparameters, for which, as the experiments have shown, the default values of

Scikit-learn work the best. Therefore, instead of searching for the best combination of

hyperparameters, the accuracy of several NBC models in their default configuration

Table 6. Confusion matrix and full classification report of the best-found Random

Forest classifier.

64

were compared. Figure 20 shows the accuracy scores of Bernoulli, complement,

multinomial, and Gaussian NBCs:

NBC is a classic example to demonstrate the high dependence of traditional ML

models on the type of data. For instance, the Bernoulli classifier only considers the

presence or absence of a feature instead of counting its number of appearances. For

most types of data, including the one used in this study, this oversimplified approach

results in poor accuracy. Complement NBC confers an advantage for imbalanced

datasets, where the weights for classes with few training samples shrink due to under-

studied bias effect (Rennie et al., 2003). However, the dataset used in this study was

perfectly balanced, which deprived the Complement NBC of its benefits and resulted

in below-average performance. In addition, the model appeared to be highly unstable,

since its accuracy scores significantly differ from one another. For example, having an

average weighted precision of 0.65, the model had weighted F1-score of only 0.39.

Multinomial NBC had another dataset issue that prevented it from achieving high

results. The probabilistic computations of this model are adjusted to multinomial

Figure 20. Histograms of four naive Bayes classifier models’ accuracy scores,

measured by in 9 metrics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bernoulli NB Complement NB Multinomial NB Gaussian NB

A
cc

u
ra

cy
 R

a
ti

o

Pr.-Mic. Pr.-Mac. Pr.-Wei. Rec.-Mic. Rec.-Mac. Rec.-Wei. F1-Mic. F1-Mac. F1-Wei.

65

distribution for all the feature pairs. As a result, it works well for data that can be easily

turned into counts, such as word counts in text, but suffers from lack of accuracy when

the data does not fit well into multinomial distribution. In case of this study, it did not.

Table 7 shows the detailed results of the Gaussian NBC, the best-found model:

This NBC variant achieved the best accuracy, scoring 0.99 in all metrics with 33 out

of 2,679 misclassified samples. However, the true reason behind such high accuracy

hides in the expressiveness of the constructed features. The chosen features had very

low-entropy distribution, which, according to Rish (2001), yields high accuracy for the

naive Bayes. In fact, if less informative features had been used, the results would have

been significantly less impressive. Being able to automatically extract features, the

LSTM is anticipated to overcome this limitation.

Results of Experiment 4

Experiment 4 addresses shallow neural networks. SNNs can be tuned by changing

both their architecture and their hyperparameters, which makes the number of

combinations very large. However, effective parallelized training of this model in

Table 7. Confusion matrix and full classification report of the best-found naive

Bayes classifier.

66

Scikit-learn made it possible to find the best accuracy by means of grid search. Four

particularly interesting variations of SNN are presented in Figure 21:

Conducted experiments have shown that reasonable changes in the architecture and

hyperparameters of the SNNs had little effect on the model’s accuracy, which was

quite high even for the default setup. The latter confirms the robustness of the model

and matches the conclusions of Ba and Caruana (2014). Logistic (sigmoid) activation

function was found to be slightly superior to others. Similarly, Adam (Kingma, & Ba,

2014) outperformed other optimization algorithms, especially SGD. According to

Papamakarios (2014), this technique computes the gradient of a single feature, which

is often a noisy estimate of the true gradient. In this study, the SGD was unable to

complete the weights optimization within the devoted 200 epochs.

Another important hyperparameter is
2L regularization, also known as weight

decay. This method drives the weights closer to the origin. It heavily penalizes the

model for steep weights, preferring balanced ones and encouraging it to make equal

use of all input features rather than heavily use just a few of them. However, the

Figure 21. Histograms of four shallow neural network models’ accuracy

scores, measured by nine metrics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNN 1 (SGD) SNN 2 (Adam/Large

Alpha)

SNN 3 (Adam/Large HL) SNN 4 (Adam/Normal)

A
cc

u
ra

cy
 R

a
ti

o

Pr.-Mic. Pr.-Mac. Pr.-Wei. Rec.-Mic. Rec.-Mac. Rec.-Wei. F1-Mic. F1-Mac. F1-Wei.

67

penalty may be too high, in which case the network becomes oversimplified and

accuracy declines (Ng, 2004). SNN 2 demonstrates this aspect.

Table 8 shows the full prediction details of the most accurate SNN variant:

The model achieved 1.0 scores on all nine metrics, having only 5 out of 2,679

misclassified samples. In fact, most of the SNN variants that were tried out during the

exhaustive search showed high accuracy, which characterizes this model as the most

robust one of the four examined. However, SNNs still have two flaws:

- They cannot operate on raw data and require hand-crafted features.

- Being a FFNN and having just one hidden layer, the SNN is too simple to learn

complicated long-term dependencies in the data.

The LSTM is expected to overcome these limitations, while preserving the robustness.

Results of Experiment 5

 The last and most important experiment conducted in this dissertation was to use

the LSTM model to detect and classify anomaly in the JDRF dataset. Its purpose was

to explore the effectiveness of the model and see whether it is capable of the following:

1. Sense long-term temporal dependencies in time-series data.

Table 8. Confusion matrix and full classification report of the best-found shallow

neural network classifier.

68

2. Operate on time-series of variable length.

 Numerous variations of an LSTM network could have been created by changing its

architecture and its hyperparameters. However, unlike previously examined simpler

models, LSTM training is significantly more time-consuming. Even on extremely

powerful Amazon Web Services computing platform with 24 CPUs, 4 GPUs and

128GB of RAM the average training of a single LSTM variation lasted about ten hours.

This constraint made the use of grid search impossible and compelled this study to

take another approach. Several dozen of LSTM variations were evaluated step by step,

gradually improving the accuracy by trying out different directions in changing

architecture and hyperparameters. Much reliance in this process was placed on the

experience of other researchers, in particular on the work of Reimers and Gurevych

(2017) that evaluated the performance of over 50,000 different variations of LSTM.

 Several hyperparameter optimizations were applied to all the LSTM variants.

Similar to SNN, the number of epochs was limited. Lipton, Kale, Elkan, and Wetzel

(2015) showed that after a certain point in the training, LSTM starts overfitting the

training data. This requires to find a convergence tradeoff point, at which the model

both fits the training data well and keeps its generalization ability high. In this work,

an optimal threshold of 100 epochs was determined by means of early stopping and

freezing of best-found model during full training. Another global optimization was

variational dropout. This form of regularization is commonly used to improve the

accuracy of deep neural networks (Gal, & Ghahramani, 2016). In this study the optimal

value (for both input, output, and recurrent layers) was found to be 0.3. The final

common method was the optimization algorithm. Andrychowicz et al. (2016) consider

it a critical factor that can significantly hamper or haste the convergence of the LSTM.

To verify this claim, several optimizers, such as RMSProp (Tieleman, & Hinton, 2012)

69

and Adadelta (Zeiler, 2012), were examined. As in the case of SNNs, SGD showed

the slowest convergence rate, while Adam was chosen as the best.

 Next step was applying a batch gradient descent algorithm. According to Li, Zhang,

Chen and Smola (2014), using small chunks of data to update the model’s weights

speeds-up stochastic convex optimization problems without being dropped into local

minima. Batch size had to be carefully picked, since improper choice would cause a

negative effect. Small batches could increase the cost of the noise, whereas large ones

could significantly slow down the training. To find the best size, this work followed

the theoretical guidelines of Neishi, Sakuma, Tohda, Ishiwatari, Yoshinaga, and

Toyoda (2017), and the practical recommendations of You, Demmel, Keutzer, Hsieh,

Ying, and Hseu (2018). Batch of 512 samples was found optimal for the JDRF dataset.

 Further optimization attempts considered architectural changes. Figure 22 shows

the result of four LSTM variants that delineated the most important decision in these

searches, whereas Figure 23 shows a pair of graphs that reflect their accuracy and loss

changes during cross-validated training versus the number of epochs:

Figure 22. Histograms of four LSTM models’ accuracy scores, measured by nine

metrics.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

LSTM 1 (Stacked/No

Embed)

LSTM 2 (Single/100/No

Embed)

LSTM 3 (Single/Embed) LSTM 4

(Single/Embed/Bidir)

A
cc

u
ra

cy
 R

a
ti

o

Pr.-Mic. Pr.-Mac. Pr.-Wei. Rec.-Mic. Rec.-Mac. Rec.-Wei. F1-Mic. F1-Mac. F1-Wei.

70

Figure 23. Graphs of four LSTM models’ accuracy and loss versus epochs during

k-fold cross-validation.

LSTM 2 (Single Layer, No Embedding)

LSTM 1 (Stacked, No Embedding)

LSTM 3 (Single Layer, Embedding)

LSTM 4 (Single Layer, Embedding, Bidirectional)

71

 Stacked architecture was examined first, relying on the work of Graves, Mohamed

and Hinton (2013) that found that the spatial depth of an LSTM network is more

important, in terms of accuracy, than the number of its memory cells. LSTM 1 had two

stacked layers with 10 LSTM units in the first and another 35 in the second. In this

setup, the role of the first layer was to convert the input sequence to another sequence

with chunks of sensor measurements over time, whereas the second layer classified

these chunks. Having two levels of abstraction, the hidden state of the second level

could operate at a different timescale than the first one, and was capable of learning

more complicated long-term patterns. Nevertheless, the experiments have shown the

opposite: the model scored slightly below 0.4. A conceivable explanation of such low

results is that, although sequence to sequence modeling works well for one type of ML

tasks, e.g. machine translation, it fails to obtain substantial progress in other tasks. In

case of numeric time-series classification, the sequence produced by the second layer

appeared to have smaller degree of informativeness than the original time sequence.

 The setback of previous attempt pointed to the advisability of choosing a single-

layered LSTM, while increasing the number of units to 100. According to Hermans

and Schrauwen (2013), RNNs with deeper architecture are in general more accurate.

This assumption proved correct. LSTM 2 was able to increase the accuracy by 10%.

However, accuracy was still unacceptably low and required significant improvements.

 A rule of thumb, it can be said that the more information the LSTM can extract

from the data, the better the prediction accuracy will be (Neishi et al., 2017). Therefore,

the next architectural change focused on this aspect. So far, the first layer of the LSTM

contained ordinary units. This approach considers the magnitude of the values and tries

to analyze the fluctuations in the data by estimating the order in which the magnitudes

were positioned. Another, slower, but more sophisticated, approach is to put an

72

additional embedding layer at the front of the LSTM. This technique is widely used in

text analysis (Palangi et al., 2016). In sequence classification, embedding maps each

value into a continuous vector space, where the distance between words represents

proximity. Using this technique, LSTM 3 could sense the relation between the

frequencies of measurements that were closely positioned in the time-series. By

extracting this valuable contextual information, the model achieved 98% accuracy.

 The final architectural change was to use bidirectional LSTM architecture. BLSTM

(Graves, & Schmidhuber, 2005) requires a special back-propagation technique, which

further slows down the training. However, according to Graves (2012), BLSTMs are

noticeably better in supervised labeling than unidirectional LSTMs. As previously

said, in this architecture, two models are trained on the input sequence: one for positive

time direction, and the other for negative one. Through this method, LSTM 4 was able

to extract even more information from the raw data by considering the relation of each

glucose level measurement to both preceding (past) and subsequent (future)

measurements of the input time-series. To compensate the model for slightly longer

time lag patterns in the negative direction, the number of units in each of the two LSTM

parts was increased to 120. Altogether, these changes were able to push the accuracy

to 99% in all metrics. Table 9 shows the results of the final and best-found LSTM.

Table 9. Confusion matrix and full classification report of the best-found LSTM

network classifier.

73

 LSTM 4 had only 36 out of 2,679 misclassified samples. In an applied research

study like the current one, such accuracy can be considered almost flawless prediction,

commensurate with that of feature-based traditional models. For fair, it should be said

that the training time of LSTM 4 was significantly larger than that of the traditional

algorithms. However, following its accuracy and loss curves in Figure 23, it can be

seen that the model managed to fully converge within about 60 epochs, which is rather

fast for an LSTM. Besides, once trained, the model acts many times faster when

predicting new time-series. Given that the LSTM operated on raw data and, unlike the

traditional models, had no clues on the anomaly types, its results are truly impressive.

To conclude, it can be said that the LSTM network definitely qualifies as successful

for anomaly detection and classification in sensor data.

Summary

 This chapter provided the results of the experimental part of the dissertation and a

detailed analysis of the examined models. The first four experiments considered

classical ML models that operated on feature vectors. The last experiment related to a

more contemporary deep learning approach that used the LSTM model to process raw

data. Each experiment tried out different model variants, trying to find the best one.

 Experiment 1 analyzed the SVM classifier. Numerous attempts have been made to

change the model’s kernel, violations penalty coefficient etc. Experiment 2 analyzed

RF, whereas the best accuracy was searched by changing hyperparameters such as leaf

split criterion, impurity, maximal trees depth etc. Experiment 3 reviewed the NBC.

Several modifications of this model, e.g. Gaussian NB, Bernoulli NB, etc. were

compared to find the most accurate model. The fourth experiment observed SNNs. The

74

accuracy was tuned by changing the architecture of the network, applying

regularization, changing the optimization algorithm and so on. The final experiment

studied the LSTM model. A relatively large number of LSTM variations were worked

through, gradually improving the accuracy by changing the hyperparameters and the

architecture of the model.

 Altogether 20 models were analyzed in depth. The results of experiments 1 through

4 showed that all classical ML models provided very high prediction accuracy when

operating on feature vectors. Although it was important to confirm this fact, this

experimental part of the dissertation was to some extent foreseen. As seen in Chapters

2 and 3, various studies have shown various anomaly detection and classification

solutions based on traditional ML models. Basically, the purpose of the first

experimental part was to show that older traditional ML models can provide very high

prediction accuracy when provided with appropriate features, and serve as mean of

control for the deep learning approach, carried out in the second part.

 This last part was significantly more interesting and novel. Its goal was to show that

LSTM can detect and classify anomaly in sensor data by analyzing raw data, having

absolutely no domain knowledge neither on the data, nor on the anomalies covertly

spliced into it. The results of the second part experiments show that the LSTM model

successfully managed to detect and classify the anomaly in blood glucose level sensor

data. The best-found model achieved a very high accuracy of 0.99 in all the nine

metrics used in the study that thoroughly estimated the model from all the aspects of

correct prediction.

75

Chapter 5 - Conclusions, Implications, Recommendations, and

Summary

 Having both the theoretical and the experimental parts of the dissertation

completed, the role of this chapter is to summarize the study. The chapter briefly

concludes the results achieved in the experimental part. It indicates the evidence of

fully accomplishing the objectives stated in the study and delineates its strengths and

weaknesses. It debates on the contribution of the dissertation to the field of anomaly

detection in sensor data. It discusses the impact that the dissertation may have on the

research community and elaborates on the future work that can be done in the direction

that it has set. Finally, the chapter presents a short standalone report of the entire work.

 The summary chapter is divided into the following sections:

• Conclusions

• Implications

• Recommendations

• Summary

Conclusions

 The goal of this dissertation was to investigate the effectiveness of the LSTM for

anomaly detection based on raw sensor data. The results of the conducted experiments

clearly demonstrate that the model is highly efficient by based on the following facts:

- The LSTM was able to achieve 99% accuracy in the strict oversight of nine

metrics that covered all aspects of prediction.

- The model had absolutely no knowledge the domain of the data.

76

- It required no human labor, except for fine-tuning, which can be made in a fully

automated way according to Hwang and Sung (2015).

- Operating on raw sensor data, the LSTM was able to detect and identify

randomly and deeply abided spliced anomalies of six different types.

Based on the above, it can be said that the objectives of this dissertation have been

fully accomplished.

 As any study with a practical element, this dissertation had several weaknesses and

limitations. One of them is the fact that the training of the LSTM model was extremely

computationally intense. A powerful deep learning workstation with vast CPU, GPU

and RAM resources had to be used to find a model that provided the sufficient level

of accuracy. Moreover, even on this machine, the training process of each model took

many hours, especially of the BLSTM. As opposed to the LSTM, traditional ML

models require far less time to train. With this in mind, it can be said that the hardware

and time demands of the LSTM may in some degree prevent it from being widely used.

 Another weakness of the study is that, due to limited time available, it was

impossible in this study to carry out an exhaustive search over large multi-dimensional

space of hyperparameters and architectures to evaluate virtually every possible LSTM

variation. Manual tuning process required certain skills and knowledge, which is

indeed a certain restriction. However, its impact is relatively minor, since it is possible

to implement an algorithm that will analyze the results after each execution, take the

right tactical decisions, and train an accurate LSTM model, starting from a basic

variant and improving accuracy step-by-step.

 Finally, another weakness lies in the data used in the study, which was ranged and

of integer type. The conducted experiments have shown that the LSTM model can

effectively detect and classify anomalies in this type of data. However, more complex

77

types of data, e.g. measurements of sensors that return floating point values, or a vector

of numbers, might appear significantly more difficult to analyze and predict.

Theoretically this case is handled by LSTM’s decoding layers. For instance, Rui, Jing,

Rong-gui, and Shu-guang (2013) made a decoding layer for CAPTCHA images.

However, an accuracy drop might take place and prevent this solution from being used.

Implications

 The research conducted in this dissertation contributes several new directions to the

field of anomaly detection in sensor data. As discussed in Chapter 2, there are currently

only a few LSTM-based solutions for anomaly detection and classification. At the time

of writing this dissertation, only a single study was found that proposed to use LSTM

to detect anomaly in time-series data of sensors. The results of the experiments indicate

that LSTM is an appropriate, convenient and recommended solution to open research

problem stated in Chapter 1: detection and classification of anomalies in raw time-

series sensors data in a way that does not require domain knowledge.

 The contribution of this dissertation is that it explores the effectiveness of LSTM

for detection and classification of anomaly in sensor data, and indicates that this model

can successfully solve the posed problem. The positive results of the study motivate

further research on using LSTM as a promising approach to sensor anomaly detection.

Recommendations

 The positive results of this dissertation encourage additional research that will

further investigate and improve the LSTM-based approach for the detection and

78

classification of anomalies in sensor data. There are several possible directions for

expanding the research. One is to change the input data type. In this direction, the

following actions are legitimate:

- See if if the LSTM-based approach can be applied for sensor anomaly detection

in other areas, such as physics, industrial, avionics, telecom etc.

- Check whether the approach can be used for other type of sensors, e.g.

temperature, light, touch, flow and level etc.

- Verify that the approach works equally good for other type of sequential data,

e.g. multidimensional decimal values, alphanumeric codes, and so on.

Another direction is to investigate the limitations and feasibility of the LSTM-based

approach in aspects such as:

- Computational requirements.

- Challenges of implementation of the algorithm in software and/or hardware.

- Processing (prediction) speed of new data.

- Lengths of sequences sufficient for analysis.

- Integration into larger systems.

Finally, additional techniques may be required to be applied to the LSTM to allow it

analyze more complex data and achieve acceptable levels of accuracy. Below is a list

of possible improvements:

- One of the previously mentioned limitations of the BLSTM was very long

training times. Training time is directly affected by the convergence rate.

Therefore, it the latter is improved, it will take much less time to train the

model. One of the methods that have not been applied in this dissertation is

batch normalization. Laurent, Pereyra, Brakel, Zhang, and Bengio (2016)

applied this method to input-to-hidden transitions of the network, i.e. the ones

79

used in non-stacked LSTM. Cooijmans, Ballas, Laurent, Gulcehre, and

Courville (2016) have applied it to hidden-to-hidden transitions, corresponding

to those of the stacked-LSTM. Both groups of researchers managed to achieve

faster convergence. Therefore, it is worthwhile exploring this hyperparameter

and see if it can speed up the training.

- Another hyperparameter that can reduce training time is layer normalization

(Ba, Kiros, & Hinton, 2016). This technique much resembles batch

normalization, but is independent of batch size. According to the authors

(ibid.), this method is very effective at stabilizing the hidden state dynamics

and can substantially reduce the training time.

- One more idea for future work is to apply
2L Regularization. According to

Merity et al., (2017), this method helps to control the norm of the resulting

model and reduces overfitting.

- The last suggestion concerns a very sophisticated network called nested LSTM

(Moniz, & Krueger, 2018) that was designed to learn especially complicated

multi-level dependencies in the data. Nested LSTMs have multiple memory

levels. The value of a memory cell in this architecture is computed by an LSTM

cell, which has its own inner memory cell. According to the authors, this LSTM

is more accurate than both stacked and single-layer LSTMs.

Summary

 Various sensor-based systems are widely used in our everyday life. These systems

heavily depend on the validity of data they received from underlying sensors.

Anomalous sensor data can cause unpredicted system behavior and have dangerous

80

consequences. Therefore, providing the sensor-based systems with mechanisms that

detect anomalies and identify their types in an automated manner is highly import.

 For many years scientists and researchers have been conducting research in the field

of data validation and have suggested many solutions. A large portion of recent

solutions is based on traditional ML algorithms. These solutions made substantial

progress in anomaly detection and classification of sensor data, and many of them have

been implemented in large industrial systems with great benefits. However, even

though current ML-based solutions have high accuracy and work well, they have a

serious caveat - traditional ML models are based on hand-crafted features.

 Manual feature construction requires both domain expertise and considerable

human effort. In addition, these features are tailored to a concrete type of data and

bounded with particular system design. Apparently, modern sensor-based systems are

characterized by frequent changes in their design and in the type of the data they

process. These events entail constant adaptation of anomaly detection mechanisms.

This maintenance of the sensor-based systems is highly labor-intense and

economically unsustainable.

These shortcomings point to the need for an approach that will provide significantly

longer-lasting solutions to the problem of anomaly detection and classification in

sensor data. These are solutions that do not require domain knowledge and could be

relatively easily adjusted to new system design or new types of data. A recent research

trend focuses on creating solutions that are based on contemporary ML models with

automated feature extraction. The advantages of these new solutions are obvious.

One research trend that has quickly gained popularity is in the field of anomaly

detection in DL algorithms. These ML models can operate on raw data, from which

they automatically extract features. In particular, LSTM networks have proved to be

81

especially effective in the classification of raw time-series data in various domains.

Similar to other deep learning algorithms, these models do not require manually

prepared features and are capable of analyzing raw time-series. However, their key

advantage over other DL models is the ability to learn complicated long-term patterns

in time-series data. This characteristic is especially important for sensor data.

Despite these clear advantages of LSTM and the promising results of previous

studies that used LSTM to detect anomaly in time-series data, to date, the number of

LSTM-based solutions in the field of anomaly detections and classification is

relatively small compared to other methods. In fact, only one study suggesting to detect

anomaly in time-series data of sensors by means of LSTM was found. Anticipating the

potential feasibility of the LSTM, in this dissertation it was decided to investigate the

effectiveness of this model for anomaly detection and classification of sensor data, and

see whether it can be considered an accurately and robust solution that requires no

domain knowledge and no labor-intense feature engineering.

To provide veridical experiments, the experiments were chosen to be carried out on

a genuine medical dataset. Being heterogeneous, inconsistent, incomplete, etc., this

data created the difficult conditions that helped to perform a trustworthy and credible

verification of the LSTM’s capabilities. The original normal data was substantially

expanded by splicing random and deeply abided anomalies of six types. The LSTM

had to analyze raw sensor data (both normal and anomalous) in its most basic form,

having zero information on the type and nature of the anomaly.

As a control, the accuracy of detection and classification of the LSTM was

compared to that of traditional classifiers. While the LSTM was trained on raw time-

series data, traditional classifiers were trained on feature vectors that were derived

from the raw data. The features were carefully picked to be precise and informative.

82

Each feature focused on a single type of anomaly, making it relatively easy for the

traditional ML models to differentiate the anomaly types. The generalization abilities

of all the models in this dissertation were estimated by means of 10-fold cross-

validation. Their performance (classification accuracy) was evaluated based on the

following nine metrics derived from the confusion matrix: micro-precision, macro-

precision, weighted precision, micro-recall, macro-recall, weighted-recall, micro-F1

score, macro-F1 score, and weighted F1-score.

 In Experiment 1 the SVM classifier was chosen. Various modifications of this

model were tried by means of the grid search technique to find a combination of

hyperparameters that provided the highest accuracy. The best found SVM showed

nearly perfect accuracy of 1.0 in all metrics.

 Experiment 2 the used the Random Forest classifier to classify the anomaly. This

model had significantly more hyperparameters to work through. However, the fact that

building and training of the model could be made in parallel made it possible to use

exhaustive search and find a very accurate model. The chosen Random Forest also

scored 1.0 in all accuracy metrics.

 The third experiment addressed naive Bayes classifier. This model is significantly

simpler than the others, and had no hyperparameters that required tuning. By traversing

through several types of this model, the Gaussian NBC was chosen. Despite its

simplicity, it was able to take advantage of the features’ high informativeness and

achieve very high accuracy of 99%.

 Experiment 4 considers shallow neural networks. For this model it was also possible

to use parallel grid search, which allowed the filtering of numerous models with

inappropriate sets of architecture and hyperparameters. The best-found shallow neural

network was another nearly perfect model, showing a full 1.0 score in all metrics.

83

 Given the remarkable results of the first four experiments, it can be said that

classical ML models are capable of precisely detecting and classifying anomaly in

sensor data when operating on precise and informative feature vectors. However,

although it was important to confirm this fact, this part of the experiments was to some

extent foreseen. As seen in Chapters 2 and 3, various studies have shown various

anomaly detection and classification solutions based on traditional ML models. Hence,

its purpose was more to show that older traditional ML models can serve as mean of

control for the deep learning approach, carried out in Experiment 5.

 The final experiment of this dissertation studied the LSTM model. Although this

model requires significantly more time to train, the use of an extremely powerful deep

learning workstation on Amazon’s cloud computing services made it possible to

examine a relatively large number of LSTM variations. A wisely chosen strategy of

gradually changing architecture and hyperparameters towards accuracy maximization

resulted in a model that made correct predictions in 99% of the cases. The nine metrics

chosen to keep the results trustworthy ensured that this high score was not obtained by

chance and reflects the true capabilities of the network.

 The results of the last experiment showed that the LSTM model is feasible for

solving the daunting task of anomaly detection and classification in sensor data. The

high accuracy clearly demonstrates the effectiveness of LSTM. Even though it was

operating on raw sensor data with absolutely no domain knowledge, the LSTM was

still able to successfully segregate normal data, as well as detect and identify all six

types of anomaly that was randomly positioned and deeply buried. The model required

no human labor, except for fine-tuning, which was manually performed in this study,

but can be fully automated. Considering the arguments above, it is fair to say that the

goals of this dissertation have been fully met.

84

Appendices

85

Appendix A - Detailed Experiment Results

This appendix provides detailed results of experiments 1 through 5. As previously

mentioned, each experiment carried out in this study considered models of the same

type, differing in their hyperparameters, architecture etc. From these models four were

chosen to be closely inspected. After being trained with k-fold cross-validation, the

models were tested on previously unseen data and evaluated by means confusion

matrix and further computation of the following nine metrics:

1. Micro-precision.

2. Macro-precision.

3. Weighted-precision.

4. Micro-recall.

5. Macro-recall.

6. Weighted-recall.

7. Micro-F1 score.

8. Macro-F1 score.

9. Weighted F1-score.

Below are screenshots with a summary of each model’s hyperparameters, architecture

(if necessary) and detailed accuracy results, corresponding to the above evaluation

method. These screenshots can also be seen in the code (Jupyter notebooks).

86

Experiment 1

SMV 1

87

Experiment 1

SMV 2

88

Experiment 1

SMV 3

89

Experiment 1

SMV 4

90

Experiment 2

RF 1

91

Experiment 2

RF 2

92

Experiment 2

RF 3

93

Experiment 2

RF 4

94

Experiment 3

Bernoulli NB

95

Experiment 3

Complement

NB

96

Experiment 3

Multinomial

NB

97

Experiment 3

NB 4

98

Experiment 4

SNN 1

99

Experiment 4

SNN 2

100

Experiment 4

SNN 3

101

Experiment 4

SNN 4

102

Experiment 5

LSTM 1

103

Experiment 5

LSTM 2

104

Experiment 5

LSTM 3

105

Experiment 5

LSTM 4

106

Appendix B - Third Party Libraries

This dissertation used a large number of third-party libraries for the Python 3.6

programming language. The table below lists this supplementary piece of software

along with their versions and a short description as a token of appreciation to the

contribution of other researchers and computer scientists that created these building

blocks. All the third-party libraries and frameworks were used “as is”, without making

any source code changes and/or configuration changes. In addition to these external

libraries, many libraries that became part of the Python programming language, e.g.

pickle, were intensively used in the study.

Library /

Framework

Name

Version

Number

Short Description

Jupyter

Notebook

5.7.4 A web-based integrated development environment for

interactive computing.

Keras 2.2.4 Keras greatly simplifies deep learning tasks in Python. It

runs on top of TensorFlow and has built-in and easy-to-

work-with implementations of various neural networks

models. In this study Keras was used to create, train, store,

load and do all other necessary operations with LSTM.

Matplotlib 3.0.2 Matplotlib is a plotting library. It provides a vast number

of built-in plots for various data graphical representation

purposes. In this study it was used to visualize dataset

sequences and LSTM train history.

nbimporter 0.3.1 nbimporter is a library for importing IPython notebooks,

used by Jupyter IDE for Python, as modules. In this study

it was used to simplify call supplementary functions from

the main flow of the five experiments.

NumPy 1.16.1 NumPy is a fundamental Python library for scientific

computing, making it simpler to work with arrays,

matrices, use high-level math functions etc. This library

was heavily used in this work for operations on data

structures and various computations.

Pandas 0.24.1 Pandas is a library that greatly simplifies datasets

processing, display and analysis. In this study it was used

to extract the data from the JDRF dataset and prepare it

for the ML models.

scikit-learn 0.20.2 Scikit-learn contains various traditional ML models for

classification, regression, clustering and other tasks. In

107

this work, implementations of all the classifiers of

Experiments 1 through 4 were taken from this library.

TensorFlow 1.12.0 TensorFlow is widely used for machine learning, deep

learning and numerical computations. In this study it was

used as the backend for executing grid search with cross-

validation and training the LSTM on multiple CPUs and

GPUs.

xmltodict 0.12.0 xmltodict is a library that simplifies reading and writing

data to and from XML files. This work used it to read user

settings from the configuration file.

108

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016).

Tensorflow: a system for large-scale machine learning. OSDI, 16, 265-283.

Aggarwal, C. C. (2015). Data mining: the textbook. Yorktown Heights, NY: Springer.

Al-Aidaroos, K. M., Bakar, A. A., & Othman, Z. (2010). Naive Bayes variants in

classification learning. IEEE International Conference on Information

Retrieval & Knowledge Management (CAMP), 276-281.

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision

trees. International Journal of Computer Science Issues (IJCSI), 9(5), 272.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T.,

Shillingford, B., de Freitas, N. (2016). Learning to learn by gradient descent

by gradient descent. Advances in Neural Information Processing Systems,

3981-3989.

Ashari, A., Paryudi, I., & Tjoa, A. M. (2013). Performance comparison between Naive

Bayes, decision tree and k-nearest neighbor in searching alternative design in

an energy simulation tool. International Journal of Advanced Computer

Science and Applications (IJACSA), 4(11).

Auret, L., & Aldrich, C. (2010). Unsupervised process fault detection with random

forests. Industrial & Engineering Chemistry Research, 49(19), 9184-9194.

Auria, L., & Moro, R. A. (2008). Support vector machines (SVM) as a technique for

solvency analysis.

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

Ba, J., & Caruana, R. (2014). Do deep nets really need to be deep?. Advances in neural

information processing systems, 2654-2662.

Barreto, G. A., & Aguayo, L. (2009). Time series clustering for anomaly detection

using competitive neural networks. International Workshop on Self-

Organizing Maps, 28-36. Springer, Berlin, Heidelberg.

Bayes, T., Price, R., & Canton, J. (1763). An essay towards solving a problem in the

doctrine of chances.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. Neural networks: Tricks of the trade, 437-478. Springer, Berlin,

Heidelberg.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8), 1798-1828.

109

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-

166.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb), 281-305.

Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network classifiers:

A comparison between shallow and deep architectures. IEEE transactions on

neural networks and learning systems, 25(8), 1553-1565.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Cambridge:

Springer.

Bombara, G., Vasile, C. I., Penedo, F., Yasuoka, H., & Belta, C. (2016, April). A

decision tree approach to data classification using signal temporal logic.

Proceedings of the 19th International Conference on Hybrid Systems:

Computation and Control, 1-10. ACM.

Branisavljevic, N., Kapelan, Z., & Prodanovic, D. (2011). Improved real-time data

anomaly detection using context classification. Journal of Hydroinformatics,

13(3), 307-323.

Breiman, L. (1984). Classification and Regression Trees. New York: Routledge.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., ... &

Layton, R. (2013). API design for machine learning software: experiences from

the scikit-learn project. arXiv preprint arXiv:1309.0238.

Cerrada, M., Zurita, G., Cabrera, D., Sanchez, R. V., Artes, M., & Li, C. (2016). Fault

diagnosis in spur gears based on genetic algorithm and random forest.

Mechanical Systems and Signal Processing, 70, 87-103.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3), 15.

Chandola, V., Cheboli, D., & Kumar V., (2009). Detecting Anomalies in a Time Series

Database. Technical Report. ACM.

Chauhan, S., & Vig, L. (2015). Anomaly detection in ECG time signals via deep long

short-term memory networks. IEEE International Conference on Data Science

and Advanced Analytics (DSAA), 2015, 36678, 1-7.

Chollet, F. (2015). Keras, GitHub. https://github.com/fchollet/keras

Chouhan, P., & Richhariya, V. (2015). Anomaly detection in network using genetic

algorithm and support vector machine. International Journal of Computer

Science and Information Technologies, 6(5), 4429-4433.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

110

Cooijmans, T., Ballas, N., Laurent, C., Gulcehre, C., & Courville, A. (2016). Recurrent

batch normalization. arXiv preprint arXiv:1603.09025.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),

273-297.

Davis, C. (1962). The norm of the Schur product operation. Numerische Mathematik,

4(1), 343-344.

Dietterich, T. G. (2000). An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and

randomization. Machine learning, 40(2), 139-157.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian

classifier under zero-one loss. Machine learning, 29(2-3), 103-130.

Duan, K., Keerthi, S. S., & Poo, A. N. (2003). Evaluation of simple performance

measures for tuning SVM hyperparameters. Neurocomputing, 51, 41-59.

Edgeworth, F. Y. (1887). Xli. on discordant observations. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 23(143), 364-375.

Eitrich, T., & Lang, B. (2006). Efficient optimization of support vector machine

learning parameters for unbalanced datasets. Journal of computational and

applied mathematics, 196(2), 425-436.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.

Ergen, T., Mirza, A. H., & Kozat, S. S. (2017). Unsupervised and Semi-supervised

Anomaly Detection with LSTM Neural Networks. arXiv preprint

arXiv:1710.09207.

Fehst, V., La, H. C., Nghiem, T. D., Mayer, B. E., Englert, P., & Fiebig, K. H. (2018).

Automatic vs. manual feature engineering for anomaly detection of drinking-

water quality. Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 5-6. ACM.

Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need

hundreds of classifiers to solve real world classification problems?. The

Journal of Machine Learning Research, 15(1), 3133-3181.

Fernandez-Redondo, M., & Hernandez-Espinosa, C. (2001). Weight initialization

methods for multilayer feedforward. ESANN, 119-124.

Fonseca, D. J., Navaresse, D. O., & Moynihan, G. P. (2003). Simulation metamodeling

through artificial neural networks. Engineering Applications of Artificial

Intelligence, 16(3), 177-183.

Frank, E., Trigg, L., Holmes, G., & Witten, I. H. (2000). Naive Bayes for regression.

Machine Learning, 41(1), 5-25.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm.

Icml, 96, 148-156.

111

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-

Japanese Society for Artificial Intelligence, 14(771-780), 1612.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality.

Data mining and knowledge discovery, 1(1), 55-77.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of statistics, 1189-1232.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.

Machine learning, 29(2-3), 131-163.

Gal, Y., & Ghahramani, Z. (2016). A theoretically grounded application of dropout in

recurrent neural networks. Advances in neural information processing systems,

1019-1027.

Geng, Z., Tang, F., Ding, Y., Li, S., & Wang, X. (2017). Noninvasive continuous

glucose monitoring using a multisensor-based glucometer and time series

analysis. Scientific reports, 7(1), 12650.

Genuer, R. (2012). Variance reduction in purely random forests. Journal of

Nonparametric Statistics, 24(3), 543-562.

Gerard, N. (2017). Golf Dataset. Retrieved October 07, 2018 from

https://gerardnico.com/data_mining/weather.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count.

Proceedings of the IEEE-INNS-ENNS International Joint Conference on

Neural Networks (IJCNN). Neural Computing: New Challenges and

Perspectives for the New Millennium, 3, 189-194.

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context-

free and context-sensitive languages. IEEE Transactions on Neural Networks,

12(6), 1333-1340.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual

prediction with LSTM. Neural Computation, 12(10), 2451-2471.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing

with LSTM recurrent networks. Journal of machine learning research, 3(Aug),

115-143.

Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data. PloS one, 11(4), e0152173.

Gomes, G. S. D. S., Ludermir, T. B., & Lima, L. M. (2011). Comparison of new

activation functions in neural network for forecasting financial time series.

Neural Computing and Applications, 20(3), 417-439.

Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall

and F-score, with implication for evaluation. European Conference on

Information Retrieval, 345-359. Springer, Berlin, Heidelberg.

112

Graves, A. (2012). Supervised sequence labelling. In Supervised sequence labelling

with recurrent neural networks (pp. 5-13). Springer, Berlin, Heidelberg.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural Networks,

18(5-6), 602-610.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. IEEE international conference on acoustics, speech

and signal processing (ICASSP), 6645-6649.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017).

LSTM: A search space odyssey. IEEE transactions on neural networks and

learning systems, 28(10), 2222-2232.

Gribok, A. V., Hines, J. W., & Uhrig, R. E. (2000, November). Use of kernel based

techniques for sensor validation in nuclear power plants. Third American

Nuclear Society International Topical Meeting on Nuclear Plant

Instrumentation and Control and Human-Machine Interface Technologies,

Washington DC.

Guo, H., Jack, L. B., & Nandi, A. K. (2005). Feature generation using genetic

programming with application to fault classification. IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, 35(1), 89-99.

Gupta, A. K., Nguyen, T. T., & Sanqui, J. A. T. (2004). Characterization of the skew-

normal distribution. Annals of the Institute of Statistical Mathematics, 56(2),

351-360.

Hassan, M. M. M. (2013). Network intrusion detection system using genetic algorithm

and fuzzy logic. International Journal of Innovative Research in Computer and

Communication Engineering, 1(7), 1435-1445.

Hayes, M. A., & Capretz, M. A. (2014). Contextual anomaly detection in big sensor

data. 2014 IEEE International Congress on Big Data, 64-71.

Heaton, J. T. (2017). Automated Feature Engineering for Deep Neural Networks with

Genetic Programming (Doctoral dissertation, Nova Southeastern University,

USA).

Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural

networks. Advances in neural information processing systems, 190-198.

Ho, T. K. (1995). Random decision forests. Proceedings of the third international

conference on document analysis and recognition, 1, 278-282. IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial

intelligence review, 22(2), 85-126.

113

Hofmann, T., Scholkopf, B., & Smola, A. J. (2008). Kernel methods in machine

learning. The annals of statistics, 1171-1220.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences,

79(8), 2554-2558.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., & Soderstrom, T. (2018).

Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic

Thresholding. arXiv preprint arXiv:1802.04431.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science

& engineering, 9(3), 90-95.

Hwang, K., & Sung, W. (2015). Single stream parallelization of generalized LSTM-

like RNNs on a GPU. arXiv preprint arXiv:1503.02852.

Ibarguengoytia, P. H. (1997). Any time probabilistic sensor validation (Doctoral

dissertation, University of Salford, UK).

Izakian, H., & Pedrycz, W. (2013). Anomaly detection in time series data using a fuzzy

c-means clustering. IFSA World Congress and NAFIPS Annual Meeting

(IFSA/NAFIPS), 1513-1518. IEEE.

Jager, G., Zug, S., Brade, T., Dietrich, A., Steup, C., Moewes, C., & Cretu, A. M.

(2014). Assessing neural networks for sensor fault detection. 2014 IEEE

International Conference on Computational Intelligence and Virtual

Environments for Measurement Systems and Applications (CIVEMSA), 70-75.

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian

classifiers. Proceedings of the Eleventh conference on Uncertainty in artificial

intelligence, 338-345. Morgan Kaufmann Publishers Inc.

Jones, E., Oliphant, T., & Peterson, P. (2014). SciPy: open source scientific tools for

Python.

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach.

Advances in psychology, 121, 471-495. North-Holland.

Jupyter Notebook [Computer software]. (2014). Retrieved from https:// jupyter.org/

Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group

(2008). JDRF randomized clinical trial to assess the efficacy of real-time

continuous glucose monitoring in the management of type 1 diabetes: research

design and methods. Diabetes Technol Ther. 10(4), 310-321.

Karayiannis, N. B., & Mi, G. W. (1997). Growing radial basis neural networks:

Merging supervised and unsupervised learning with network growth

techniques. IEEE Transactions on Neural networks, 8(6), 1492-1506.

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). LSTM fully convolutional

networks for time series classification. IEEE Access, 6, 1662-1669.

Kim, T. Y., & Cho, S. B. (2018). Web traffic anomaly detection using C-LSTM neural

networks. Expert Systems with Applications, 106, 66-76.

114

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation

and model selection. Ijcai, 14 (2), 1137-1145.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-

1480.

Kononenko, I., & Kukar, M. (2007). Machine Learning and Data Mining: Introduction

to Principles and Algorithms, Horwood Publishing.

Kruegel, C., Mutz, D., Robertson, W., & Valeur, F. (2003). Bayesian event

classification for intrusion detection. Proceedings of the 19th Annual

Computer Security Applications Conference, 14-23. IEEE.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.

LaLoudouana, D., Tarare, M. B., Center, L. T., & Selacie, G. U. A. N. A. (2003). Data

set selection. Journal of Machine Learning Gossip, 1, 11-19.

Laurent, C., Pereyra, G., Brakel, P., Zhang, Y., & Bengio, Y. (2016). Batch normalized

recurrent neural networks. IEEE 2016 International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2657-2661.

Laurent, H., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-

complete. Information processing letters, 5(1), 15-17.

Li, M., Zhang, T., Chen, Y., & Smola, A. J. (2014). Efficient mini-batch training for

stochastic optimization. Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, 661-670.

Linda, O., Manic, M., Vollmer, T., & Wright, J. (2011, April). Fuzzy logic based

anomaly detection for embedded network security cyber sensor. 2011 IEEE

Symposium on Computational Intelligence in Cyber Security (CICS), 202-209.

IEEE.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv:1506.00019.

Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with

LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.

Lowe, D., & Broomhead, D. (1988). Multivariable functional interpolation and

adaptive networks. Complex systems, 2(3), 321-355.

Lowe, D., & Tipping, M. E. (1997). Neuroscale: novel topographic feature extraction

using RBF networks. Advances in neural information processing systems, 543-

549.

Luo, R., Misra, M., & Himmelblau, D. M. (1999). Sensor fault detection via multiscale

analysis and dynamic PCA. Industrial & Engineering Chemistry Research,

38(4), 1489-1495.

115

Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long short term memory

networks for anomaly detection in time series. Proceedings of the European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning (ESANN), 89–94.

Manning, C.D., Raghavan, P., & Schutze, M. (2008). Introduction to Information

Retrieval. Cambridge: Cambridge University Press.

Martinez, A. M., Webb, G. I., Chen, S., & Zaidi, N. A. (2016). Scalable learning of

Bayesian network classifiers. The Journal of Machine Learning Research,

17(1), 1515-1549.

Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing and optimizing LSTM

language models. arXiv preprint arXiv:1708.02182.

Microsoft Office [Computer software]. (2018). Retrieved from

https://products.office.com

Mikolov, T. (2012). Statistical language models based on neural networks. Brno

University of Technology.

Misra, M., Yue, H. H., Qin, S. J., & Ling, C. (2002). Multivariate process monitoring

and fault diagnosis by multi-scale PCA. Computers & Chemical Engineering,

26(9), 1281-1293.

Mitchell, T. M. (1997). Machine learning, McGraw Hill, New York.

Moniz, J. R. A., & Krueger, D. (2018). Nested LSTMs. arXiv preprint

arXiv:1801.10308.

Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. K. (2017). Wearable medical

sensor-based system design: A survey. IEEE Transactions on Multi-Scale

Computing Systems, 3(2), 124-138.

Neishi, M., Sakuma, J., Tohda, S., Ishiwatari, S., Yoshinaga, N., & Toyoda, M. (2017).

A bag of useful tricks for practical neural machine translation: Embedding

layer initialization and large batch size. Proceedings of the 4th Workshop on

Asian Translation (WAT2017), 99-109.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance.

Proceedings of the twenty-first international conference on Machine learning,

78. ACM.

Novak, V., Perfilieva, I., & Mockor, J. (2012). Mathematical principles of fuzzy logic,

Springer Science & Business Media, 517.

NumPy [Computer software]. (2018). Retrieved from http://www.numpy.org/

Oliveira, A. L., Neto, F. B., & Meira, S. R. (2004). Combining MLP and RBF neural

networks for novelty detection in short time series. Mexican International

Conference on Artificial Intelligence, 844-853. Springer, Berlin, Heidelberg.

Otte, S., Liwicki, M., & Krechel, D. (2014). Investigating Long Short-Term Memory

Networks for Various Pattern Recognition Problems. International Workshop

116

on Machine Learning and Data Mining in Pattern Recognition, 484-497.

Springer, Cham.

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., & Ward, R. (2016).

Deep sentence embedding using long short-term memory networks: Analysis

and application to information retrieval. IEEE/ACM Transactions on Audio,

Speech and Language Processing (TASLP), 24(4), 694-707.

pandas [Computer software]. (2018). Retrieved from https://pandas.pydata.org/

Papamakarios, G. (2014). Comparison of Modern Stochastic Optimization

Algorithms.

Parmar, J. D., & Patel, J. T. (2017). Anomaly Detection in Data Mining: A Review.

International Journal, 7(4).

Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer networks, 51(12),

3448-3470. Elsevier.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 2(11), 559-572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of

machine learning research, 12(Oct), 2825-2830.

Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of

the American Statistical Association, 79(387), 575-583.

Pires, I. M., Garcia, N. M., Pombo, N., Florez-Revuelta, F., & Rodriguez, N. D. (2016).

Validation Techniques for Sensor Data in Mobile Health Applications. Journal

of Sensors, 2016.

Prajwala, T. R. (2015). A comparative study on decision tree and random forest using

R tool. International journal of advanced research in computer and

communication engineering, 4(1), 196-1.

Probst, P., & Boulesteix, A. L. (2017). To tune or not to tune the number of trees in

random forest?. arXiv preprint arXiv:1705.05654.

Probst, P., Wright, M., & Boulesteix, A. L. (2018). Hyperparameters and Tuning

Strategies for Random Forest. arXiv preprint arXiv:1804.03515.

PyCharm [Computer software]. (2018). Retrieved from

https://www.jetbrains.com/pycharm/

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Quinlan, J. R. (1987). Generating production rules from decision trees. IJCAI 87, 304-

307.

117

Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index

and information gain criteria. Annals of Mathematics and Artificial

Intelligence, 41(1), 77-93.

Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks

for sequence labeling tasks. arXiv preprint arXiv:1707.06799.

Reitermanova, Z. (2010). Data splitting. WDS, 10, (31-36).

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor

assumptions of naive Bayes text classifiers. Proceedings of the 20th

international conference on machine learning (ICML-03), 616-623.

Rish, I. (2001). An empirical study of the naive Bayes classifier. IJCAI 2001 workshop

on empirical methods in artificial intelligence, 3 (22), 41-46. IBM.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation

network. University of Cambridge Department of Engineering.

Rojas, I., Pomares, H., Bernier, J. L., Ortega, J., Pino, B., Pelayo, F. J., & Prieto, A.

(2002). Time series analysis using normalized PG-RBF network with

regression weights. Neurocomputing, 42(1-4), 267-285.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Rui, C., Jing, Y., Rong-gui, H., & Shu-guang, H. (2013). A novel LSTM-RNN

decoding algorithm in CAPTCHA recognition. Third International Conference

on Instrumentation, Measurement, Computer, Communication and Control,

2013, 766-771. IEEE.

Russell, S., Norvig, P., & Intelligence, A. (1995). Artificial Intelligence. A modern

approach. Prentice-Hall, New Jersey.

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-

674.

Salahat, E., & Qasaimeh, M. (2017). Recent advances in features extraction and

description algorithms: A comprehensive survey. 2017 IEEE International

Conference on Industrial Technology (ICIT), 1059-1063.

Salehinejad, H., Baarbe, J., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017).

Recent Advances in Recurrent Neural Networks. arXiv preprint

arXiv:1801.01078.

Sammut, C., & Webb, G. I. (2017). Encyclopedia of machine learning and data

mining. New York, NY: Springer US.

Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Kamaev, V. A., Gerget, O. M.,

& Devyatykh, D. (2017). Outlier detection and classification in sensor data

streams for proactive decision support systems. Journal of Physics:

Conference Series, 803(1), 012143. IOP Publishing.

118

Shipmon, D. T., Gurevitch, J. M., Piselli, P. M., & Edwards, S. T. (2017). Time Series

Anomaly Detection; Detection of anomalous drops with limited features and

sparse examples in noisy highly periodic data. arXiv preprint

arXiv:1708.03665.

Shyu, M. L., Chen, S. C., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly

detection scheme based on principal component classifier. Miami University

Coral Gables, Florida, Department of Electrical and Computer Engineering.

Sikder, A. K., Petracca, G., Aksu, H., Jaeger, T., & Uluagac, A. S. (2018). A Survey

on Sensor-based Threats to Internet-of-Things (IoT) Devices and Applications.

arXiv preprint arXiv:1802.02041.

Singh, A. (2017). Anomaly Detection for Temporal Data using Long Short-Term

Memory (LSTM).

Singh, S., & Murthy, T. R. (2012). Neural network based sensor fault detection for

flight control systems. International Journal of Computer Applications,

59(13).

Stoecklin, M. (2006). Anomaly detection by finding feature distribution outliers.

Proceedings of the 2006 ACM CoNEXT conference, 32-33.

Tamura, M., & Tsujita, S. (2007). A study on the number of principal components and

sensitivity of fault detection using PCA. Computers & Chemical Engineering,

31(9), 1035-1046.

Taylor, A., Leblanc, S., & Japkowicz, N. (2016). Anomaly detection in automobile

control network data with long short-term memory networks. 2016 IEEE

International Conference on Data Science and Advanced Analytics (DSAA),

130-139.

Tibshirani, R. J., & Efron, B. (1993). An introduction to the bootstrap. Monographs

on statistics and applied probability, 57, 1-436.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2), 26-31.

Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks

versus logistic regression for predicting medical outcomes. Journal of clinical

epidemiology, 49(11), 1225-1231.

Van Der Meulen, M. (2004). On the use of smart sensors, common cause failure and

the need for diversity. 6th International Symposium Programmable Electronic

Systems in Safety Related Applications.

Van Rossum, G., & Drake, F. L. (2018). Python tutorial. Open Documents Library.

Verner, A., & Butvinik, D. (2017). A Machine Learning Approach to Detecting Sensor

Data Modification Intrusions in WBANs. IEEE 16th International Conference

on Machine Learning and Applications - ICMLA 2017, 161-169.

119

Wald, A. (1949). Statistical decision functions. The Annals of Mathematical Statistics,

165-205.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis.

Proceedings of the 10th IFIP Conference, System modeling and optimization,

762-770. Springer, Berlin, Heidelberg.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent

gas market model. Neural networks, 1(4), 339-356.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-

85.

Williams, R. J. (1989). Complexity of exact gradient computation algorithms for

recurrent neural networks. Technical Report Technical Report NU-CCS-89-

27, Boston: Northeastern University, College of Computer Science.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line

training of recurrent network trajectories. Neural computation, 2(4), 490-501.

Williams, R. J., & Zipser, D. (1989). Experimental analysis of the real-time recurrent

learning algorithm. Connection Science, 1(1), 87-111.

Wise, B. M., & Gallagher, N. B. (1996). The process chemometrics approach to

process monitoring and fault detection. Journal of Process Control, 6(6), 329-

348.

Worden, K. (2003). Sensor validation and correction using auto-associative neural

networks and principal component analysis. Proceedings of the IMAC-XXI,

973-982.

Wu, J., Cai, Z., & Zhu, X. (2013). Self-adaptive probability estimation for naive Bayes

classification. The 2013 International Joint Conference on Neural Networks

(IJCNN), 1-8. IEEE.

Yam, J. Y., & Chow, T. W. (2000). A weight initialization method for improving

training speed in feedforward neural network. Neurocomputing, 30(1-4), 219-

232.

Yan, W., & Goebel, K. F. (2003, August). Sensor validation and fusion for gas turbine

vibration monitoring. System Diagnosis and Prognosis: Security and

Condition Monitoring Issues III, 5107, 106-118. International Society for

Optics and Photonics.

Yao, Z. G., Cheng, L., & Wang, Q. L. (2012). Sensor fault detection, diagnosis and

validation-a survey. Applied Mechanics and Materials, 229, 1265-1271. Trans

Tech Publications.

Yi, T. H., Huang, H. B., & Li, H. N. (2017). Development of sensor validation

methodologies for structural health monitoring: A comprehensive review.

Measurement, 109, 200-214.

120

Yoshikawa, N., Belkhir, N., & Suzuki, S. (2017). Recurrent Neural Network-based

Fault Detector for Aileron Failures of Aircraft. ASCC 2017-The 2017 Asian

Control Conference.

You, Y., Demmel, J., Keutzer, K., Hsieh, C., Ying, C., & Hseu, J. (2018). Large-Batch

Training for LSTM and Beyond. arXiv preprint arXiv: 1901.08256.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A Data-Driven

Design for Fault Detection of Wind Turbines Using Random Forests and

XGboost. IEEE Access, 6, 21020-21031.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural

networks:: The state of the art. International journal of forecasting, 14(1), 35-

62.

Zhang, R., & Zou, Q. (2018). Time Series Prediction and Anomaly Detection of Light

Curve Using LSTM Neural Network. Journal of Physics: Conference Series,

1061 (1), 012012. IOP Publishing.

	Nova Southeastern University
	NSUWorks
	2019

	LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data
	Alexander Verner
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1557236951.pdf.AWxQU

