765 research outputs found

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works

    Full text link
    Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.Comment: 24 pages, 11 figures, 3 table

    Disaster Analysis using Satellite Image Data with Knowledge Transfer and Semi-Supervised Learning Techniques

    Get PDF
    With the increase in frequency of disasters and crisis situations like floods, earthquake and hurricanes, the requirement to handle the situation efficiently through disaster response and humanitarian relief has increased. Disasters are mostly unpredictable in nature with respect to their impact on people and property. Moreover, the dynamic and varied nature of disasters makes it difficult to predict their impact accurately for advanced preparation of responses [104]. It is also notable that the economical loss due to natural disasters has increased in recent years, and it, along with the pure humanitarian need, is one of the reasons to research innovative approaches to the mitigation and management of disaster operations efficiently [1]

    Self-supervised Multisensor Change Detection

    Get PDF
    Most change detection methods assume that pre-change and post-change images are acquired by the same sensor. However, in many real-life scenarios, e.g., natural disaster, it is more practical to use the latest available images before and after the occurrence of incidence, which may be acquired using different sensors. In particular, we are interested in the combination of the images acquired by optical and Synthetic Aperture Radar (SAR) sensors. SAR images appear vastly different from the optical images even when capturing the same scene. Adding to this, change detection methods are often constrained to use only target image-pair, no labeled data, and no additional unlabeled data. Such constraints limit the scope of traditional supervised machine learning and unsupervised generative approaches for multi-sensor change detection. Recent rapid development of self-supervised learning methods has shown that some of them can even work with only few images. Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images that are used for training a network in self-supervised fashion by using deep clustering and contrastive learning. The proposed method is evaluated on four multi-modal bi-temporal scenes showing change and the benefits of our self-supervised approach are demonstrated

    Deep Unsupervised Embedding for Remotely Sensed Images Based on Spatially Augmented Momentum Contrast

    Get PDF
    Convolutional neural networks (CNNs) have achieved great success when characterizing remote sensing (RS) images. However, the lack of sufficient annotated data (together with the high complexity of the RS image domain) often makes supervised and transfer learning schemes limited from an operational perspective. Despite the fact that unsupervised methods can potentially relieve these limitations, they are frequently unable to effectively exploit relevant prior knowledge about the RS domain, which may eventually constrain their final performance. In order to address these challenges, this article presents a new unsupervised deep metric learning model, called spatially augmented momentum contrast (SauMoCo), which has been specially designed to characterize unlabeled RS scenes. Based on the first law of geography, the proposed approach defines spatial augmentation criteria to uncover semantic relationships among land cover tiles. Then, a queue of deep embeddings is constructed to enhance the semantic variety of RS tiles within the considered contrastive learning process, where an auxiliary CNN model serves as an updating mechanism. Our experimental comparison, including different state-of-the-art techniques and benchmark RS image archives, reveals that the proposed approach obtains remarkable performance gains when characterizing unlabeled scenes since it is able to substantially enhance the discrimination ability among complex land cover categories. The source codes of this article will be made available to the RS community for reproducible research

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Self-Supervised Learning for Invariant Representations From Multi-Spectral and SAR Images

    Get PDF
    Self-Supervised learning (SSL) has become the new state of the art in several domain classification and segmentation tasks. One popular category of SSL are distillation networks such as Bootstrap Your Own Latent (BYOL). This work proposes RS-BYOL, which builds on BYOL in the remote sensing (RS) domain where data are non-trivially different from natural RGB images. Since multi-spectral (MS) and synthetic aperture radar (SAR) sensors provide varied spectral and spatial resolution information, we utilise them as an implicit augmentation to learn invariant feature embeddings. In order to learn RS based invariant features with SSL, we trained RS-BYOL in two ways, i.e. single channel feature learning and three channel feature learning. This work explores the usefulness of single channel feature learning from random 10 MS bands of 10m-20 m resolution and VV-VH of SAR bands compared to the common notion of using three or more bands. In our linear probing evaluation, these single channel features reached a 0.92 F1 score on the EuroSAT classification task and 59.6 mIoU on the IEEE Data Fusion Contest (DFC) segmentation task for certain single bands. We also compare our results with ImageNet weights and show that the RS based SSL model outperforms the supervised ImageNet based model. We further explore the usefulness of multi-modal data compared to single modality data, and it is shown that utilising MS and SAR data allows better invariant representations to be learnt than utilising only MS data
    corecore