77 research outputs found

    Analysis and evaluation of Wi-Fi indoor positioning systems using smartphones

    Get PDF
    This paper attempts to analyze the main algorithms used in Machine Learning applied to the indoor location. New technologies are facing new challenges. Satellite positioning has become a typical application of mobile phones, but stops working satisfactorily in enclosed spaces. Currently there is a problem in positioning which is unresolved. This circumstance motivates the research of new methods. After the introduction, the first chapter presents current methods of positioning and the problem of positioning indoors. This part of the work shows globally the current state of the art. It mentions a taxonomy that helps classify the different types of indoor positioning and a selection of current commercial solutions. The second chapter is more focused on the algorithms that will be analyzed. It explains how the most widely used of Machine Learning algorithms work. The aim of this section is to present mathematical algorithms theoretically. These algorithms were not designed for indoor location but can be used for countless solutions. In the third chapter, we learn gives tools work: Weka and Python. the results obtained after thousands of executions with different algorithms and parameters showing main problems of Machine Learning shown. In the fourth chapter the results are collected and the conclusions drawn are shown

    SURIMI: supervised radio map augmentation with deep learning and a generative adversarial network for fingerprint-based indoor positioning

    Get PDF
    Indoor Positioning based on Machine Learning has drawn increasing attention both in the academy and the industry as meaningful information from the reference data can be extracted. Many researchers are using supervised, semi-supervised, and unsupervised Machine Learning models to reduce the positioning error and offer reliable solutions to the end-users. In this article, we propose a new architecture by combining Convolutional Neural Network (CNN), Long short-term memory (LSTM) and Generative Adversarial Network (GAN) in order to increase the training data and thus improve the position accuracy. The proposed combination of supervised and unsupervised models was tested in 17 public datasets, providing an extensive analysis of its performance. As a result, the positioning error has been reduced in more than 70% of them.The authors gratefully acknowledge funding from European Union’s Hori zon 2020 Research and Innovation programme under the Marie Skłodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt)

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease
    • …
    corecore