1,183 research outputs found

    Improved Constituent Context Model with Features

    Get PDF

    Using semantic cues to learn syntax

    Get PDF
    We present a method for dependency grammar induction that utilizes sparse annotations of semantic relations. This induction set-up is attractive because such annotations provide useful clues about the underlying syntactic structure, and they are readily available in many domains (e.g., info-boxes and HTML markup). Our method is based on the intuition that syntactic realizations of the same semantic predicate exhibit some degree of consistency. We incorporate this intuition in a directed graphical model that tightly links the syntactic and semantic structures. This design enables us to exploit syntactic regularities while still allowing for variations. Another strength of the model lies in its ability to capture non-local dependency relations. Our results demonstrate that even a small amount of semantic annotations greatly improves the accuracy of learned dependencies when tested on both in-domain and out-of-domain texts.United States. Defense Advanced Research Projects Agency (Defense Advanced Research Projects Agency (DARPA) Machine Reading Program under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172)United States. Defense Advanced Research Projects Agency (Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172)U.S. Army Research Laboratory (contract no. W911NF-10-1-0533

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics

    Montague Grammar Induction

    Get PDF
    We propose a computational model for inducing full-fledged combinatory categorial grammars from behavioral data. This model contrasts with prior computational models of selection in representing syntactic and semantic types as structured (rather than atomic) objects, enabling direct interpretation of the modeling results relative to standard formal frameworks. We investigate the grammar our model induces when fit to a lexicon-scale acceptability judgment dataset – Mega Acceptability – focusing in particular on the types our model assigns to clausal complements and the predicates that select them
    • …
    corecore