The syntactic topic model (STM) is a Bayesian nonparametric model of language
that discovers latent distributions of words (topics) that are both
semantically and syntactically coherent. The STM models dependency parsed
corpora where sentences are grouped into documents. It assumes that each word
is drawn from a latent topic chosen by combining document-level features and
the local syntactic context. Each document has a distribution over latent
topics, as in topic models, which provides the semantic consistency. Each
element in the dependency parse tree also has a distribution over the topics of
its children, as in latent-state syntax models, which provides the syntactic
consistency. These distributions are convolved so that the topic of each word
is likely under both its document and syntactic context. We derive a fast
posterior inference algorithm based on variational methods. We report
qualitative and quantitative studies on both synthetic data and hand-parsed
documents. We show that the STM is a more predictive model of language than
current models based only on syntax or only on topics