90 research outputs found

    Analyzing Business Process Anomalies Using Autoencoders

    Full text link
    Businesses are naturally interested in detecting anomalies in their internal processes, because these can be indicators for fraud and inefficiencies. Within the domain of business intelligence, classic anomaly detection is not very frequently researched. In this paper, we propose a method, using autoencoders, for detecting and analyzing anomalies occurring in the execution of a business process. Our method does not rely on any prior knowledge about the process and can be trained on a noisy dataset already containing the anomalies. We demonstrate its effectiveness by evaluating it on 700 different datasets and testing its performance against three state-of-the-art anomaly detection methods. This paper is an extension of our previous work from 2016 [30]. Compared to the original publication we have further refined the approach in terms of performance and conducted an elaborate evaluation on more sophisticated datasets including real-life event logs from the Business Process Intelligence Challenges of 2012 and 2017. In our experiments our approach reached an F1 score of 0.87, whereas the best unaltered state-of-the-art approach reached an F1 score of 0.72. Furthermore, our approach can be used to analyze the detected anomalies in terms of which event within one execution of the process causes the anomaly.Comment: 20 pages, 5 figure

    Analyzing Business Process Anomalies Using Autoencoders

    Full text link
    Businesses are naturally interested in detecting anomalies in their internal processes, because these can be indicators for fraud and inefficiencies. Within the domain of business intelligence, classic anomaly detection is not very frequently researched. In this paper, we propose a method, using autoencoders, for detecting and analyzing anomalies occurring in the execution of a business process. Our method does not rely on any prior knowledge about the process and can be trained on a noisy dataset already containing the anomalies. We demonstrate its effectiveness by evaluating it on 700 different datasets and testing its performance against three state-of-the-art anomaly detection methods. This paper is an extension of our previous work from 2016 [30]. Compared to the original publication we have further refined the approach in terms of performance and conducted an elaborate evaluation on more sophisticated datasets including real-life event logs from the Business Process Intelligence Challenges of 2012 and 2017. In our experiments our approach reached an F1 score of 0.87, whereas the best unaltered state-of-the-art approach reached an F1 score of 0.72. Furthermore, our approach can be used to analyze the detected anomalies in terms of which event within one execution of the process causes the anomaly.Comment: 20 pages, 5 figure

    Neural Computing for Event Log Quality Improvement

    Get PDF
    Department of Management EngineeringAn event log is a vital part used for process mining such as process discovery, conformance checking or enhancement. Like any other data, the initial event logs can be too coarse resulting in severe data mining mistakes. Traditional statistical reconstruction methods work poorly with event logs, because of the complex interrelations among attributes, events and cases. As such, machine learning approaches appear more suitable for reconstructing or repairing event logs. However, there is very limited work on exploiting neural networks to do this task. This thesis focuses on two issues that may arise in the coarse event logs, incorrect attribute values and missing attribute values. We are interested in exploring the application of different kinds of autoencoders on the task of reconstructing event logs since this architecture suits the problem of unsupervised learning, such as the ones we are considering. When repairing an event log, in fact, one cannot assume that a training set with true labels is available for model training. We also propose the techniques for preprocessing and training the event logs data. In order to provide an insight on how feasible and applicable our work is, we have carried out experiments using real-life datasets. Regarding the first issue, we train autoencoders under purely unsupervised manner to deal with the problem of anomaly detection without using any prior knowledge of the domain. We focus on developing algorithms that can capture the general pattern and sequence aspect of the data. In order to solve the second issue, we develop models that should not only learn the representation and underlying true distribution of the data but also be able to generate the realistic and reliable output that has the characteristic of the logs.ope

    BINet: Multi-perspective Business Process Anomaly Classification

    Full text link
    In this paper, we introduce BINet, a neural network architecture for real-time multi-perspective anomaly detection in business process event logs. BINet is designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a set of heuristics for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level but also on event attribute level. Finally, we demonstrate that a simple set of rules can be used to utilize the output of BINet for anomaly classification. We compare BINet to eight other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 29 synthetic and 15 real-life event logs. BINet outperforms all other methods both on the synthetic as well as on the real-life datasets

    Extending Dynamic Bayesian Networks for Anomaly Detection in Complex Logs

    Full text link
    Checking various log files from different processes can be a tedious task as these logs contain lots of events, each with a (possibly large) number of attributes. We developed a way to automatically model log files and detect outlier traces in the data. For that we extend Dynamic Bayesian Networks to model the normal behavior found in log files. We introduce a new algorithm that is able to learn a model of a log file starting from the data itself. The model is capable of scoring traces even when new values or new combinations of values appear in the log file

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    corecore