
Master's Thesis

Neural Computing for

Event Log Quality Improvement

Hoang Thi Cam Nguyen

Department of Management Engineering

Graduate School of UNIST

2018

Neural Computing for

Event Log Quality Improvement

Hoang Thi Cam Nguyen

Department of Management Engineering

Graduate School of UNIST

Neural Computing for

Event Log Quality Improvement

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Hoang Thi Cam Nguyen

 12/15/2017 of submission

Approved by

Advisor

Marco Comuzzi

Abstract

An event log is a vital part used for process mining such as process discovery, conformance
checking or enhancement. Like any other data, the initial event logs can be too coarse
resulting in severe data mining mistakes. Traditional statistical reconstruction methods work
poorly with event logs, because of the complex interrelations among attributes, events and
cases. As such, machine learning approaches appear more suitable for reconstructing or
repairing event logs. However, there is very limited work on exploiting neural networks to
do this task.

This thesis focuses on two issues that may arise in the coarse event logs, incorrect attribute
values and missing attribute values. We are interested in exploring the application of different
kinds of autoencoders on the task of reconstructing event logs since this architecture suits the
problem of unsupervised learning, such as the ones we are considering. When repairing an
event log, in fact, one cannot assume that a training set with true labels is available for model
training. We also propose the techniques for preprocessing and training the event logs data.
In order to provide an insight on how feasible and applicable our work is, we have carried
out experiments using real-life datasets.

Regarding the first issue, we train autoencoders under purely unsupervised manner to
deal with the problem of anomaly detection without using any prior knowledge of the domain.
We focus on developing algorithms that can capture the general pattern and sequence aspect
of the data.

In order to solve the second issue, we develop models that should not only learn the
representation and underlying true distribution of the data but also be able to generate the
realistic and reliable output that has the characteristic of the logs.

Keywords: Process mining, Business process, Data quality, Event log, Neural network.

Table of contents

List of figures v

List of tables vii

Nomenclature ix

1 Introduction 1
1.1 Problem scenario . 1
1.2 Objectives . 3
1.3 Outline . 4

2 Background and related work 5
2.1 Machine learning background . 5

2.1.1 Feed-forward neural networks . 5
2.1.2 Recurrent Neural Networks (RNNs) 6
2.1.3 Autoencoders (AEs) . 8

2.2 Related work on quality of event logs . 13

3 Preliminaries 17
3.1 Event log definition . 17
3.2 Datasets . 18

3.2.1 Artificial datasets . 18
3.2.2 Real-life datasets . 19

4 Multivariate anomaly detection 21
4.1 Introduction . 21
4.2 Methods . 21
4.3 Anomalous attribute simulation . 23

iv Table of contents

4.4 Input data treatment . 24
4.5 Experiments . 26
4.6 Evaluation criteria . 27
4.7 Results . 28
4.8 Discussion . 33

5 Event log reconstruction 35
5.1 Introduction . 35
5.2 Methods . 36
5.3 Missing attribute simulation . 36
5.4 Input data treatment . 38
5.5 Experiments . 40
5.6 Evaluation criteria . 41
5.7 Results . 42
5.8 Discussion . 44

6 Conclusion and future work 47
6.1 Conclusion . 47
6.2 Future work . 48

References 51

Appendix A Statistical Description and Visualization 59

Appendix B Scatter Plot of Anomalous Time 65

Appendix C Receiver Operating Characteristic Curve 69

Appendix D Implementation 73

List of figures

1.1 The petrinet process model of BPI challenge 2013 dataset 1
1.2 The proposed framework for event log quality improvement 3

2.1 Feed-forward Neural Network . 5
2.2 Recurrent Network architecture . 6
2.3 A LSTM cell . 7
2.4 Autoencoders . 8
2.5 The butterfly architecture of undercomplete autoencoder with five layers . . 8
2.6 A standard variational autoencoder . 11
2.7 Reparametrization trick . 11
2.8 The architecture of a simple sequence autoencoder 12

4.1 Multivariate anomaly detection procedure 22
4.2 Event log pre-processing example . 24
4.3 An example of vectorized input . 25
4.4 Reconstruction error of Time attribute . 29
4.5 Reconstruction error of Activity attribute 30

5.1 Event log reconstruction procedure . 36
5.2 Event log pre-processing example . 38

B.1 Normal and abnormal of selected activity duration of BPI 2013 log 65
B.2 Normal and abnormal of selected activity duration of BPI 2012 log 66
B.3 Normal and abnormal of selected activity duration of small log 67
B.4 Normal and abnormal of selected activity duration of small log 68

C.1 Receiver Operating Characteristic of Time attribute 70
C.2 Receiver Operating Characteristic of Time attribute 71

vi List of figures

D.1 Multivariate Anomaly Detection: Directory structure 74
D.2 Event Log Reconstruction: Directory structure 75

List of tables

1.1 A subset of an event log . 2

3.1 Configurations for log generation . 19
3.2 A part of a dataset exported by Disco . 20

4.1 Choices of hidden size for experiments. 27
4.2 Execution Time in multivariate anomaly detection experiments. 27
4.3 Performance of Anomalous Time Detector 31
4.4 Performance of Threshold-based Anomalous Activity Detector 32
4.5 Performance of Argmax-based Anomalous Activity Detector 32

5.1 Example of missing attribute value setting 37
5.2 Number of missing values in each dataset 37
5.3 Choices of hidden size for experiments . 40
5.4 Execution Time in multivariate anomaly detection experiments. 41
5.5 Model performance for missing timestamp value reconstruction 42
5.6 Model performance for missing activity label reconstruction 43

A.1 BPI 2013 Challenge: Descriptive statistics of activity duration and frequency 59
A.2 BPI 2013 Challenge: Descriptive statistics of case duration 59
A.3 BPI 2012 Challenge: Descriptive statistics of activity duration and frequency 60
A.4 BPI 2012 Challenge: Descriptive statistics of case duration 61
A.5 Small log: Descriptive statistics of activity duration and frequency 62
A.6 Small log: Descriptive statistics of case duration 62
A.7 Large log: Descriptive statistics of activity duration and frequency 63
A.8 Large log: Descriptive statistics of case duration 63

Nomenclature

Acronyms / Abbreviations

AE Autoencoder

ELR Event Log Reconstruction

EM Expectation Maximization

fpr false positive rate

KL Kullback-Leibler divergence

LAE Long Short-Term Memory Autoencoder

LSTM Long Short-Term Memory

MAD Multivariate Anomaly Detection

MLP Multi-Layer Perceptron

NN Neural Network

OHC One Hot Encode

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

tpr true positive rate

VAE Variational Autoencoder

Chapter 1

Introduction

1.1 Problem scenario

Historical information about execution of business processes can be recorded in so-called
event logs using data produced by enterprise information systems. A record in an event log
is an individual event that occurred in a particular process instance, or case, and includes
attributes such as a case id, timestamp of occurrence, activity label, i.e., what was executed,
and resources, i.e., who was in charge of execution/supervision. Event logs enable a plethora
of process analyses, such as process discovery, conformance analysis, performance analysis
or organisational information mining [51]. For instance, Table 1.1 shows an example event
log of a loan origination process and a process model depicted in Figure 1.1 that can be
mined from the event log, using traditional process discovery techniques.

Fig. 1.1 A petrinet process model of BPI challenge 2013 dataset mined by using ProM1. This
model visualizes the flow of activities between different resources within the company.

1http://www.promtools.org/doku.php

http://www.promtools.org/doku.php

2 Introduction

Table 1.1 Event log BPI Challenge 2013. Only information of the first two cases is shown.

Case ID Activity Resource Complete Timestamp Lifecycle Product Resource Country

Case 1

Queued-Awaiting Assignment Value 1 11/01/2006 23:49:42 Awaiting Assignment PROD191 India
Accepted-In Progress Value 1 15/03/2012 19:53:52 In Progress PROD191 India
Accepted-Assigned Value 1 15/03/2012 19:56:17 Assigned PROD191 India
Accepted-In Progress Value 1 15/03/2012 20:09:05 In Progress PROD191 India
Completed-Closed Value 1 15/03/2012 20:11:33 Closed PROD191 India

Case 2

Accepted-In Progress Value 2 07/11/2006 18:00:36 In Progress PROD753 Sweden
Accepted-In Progress Value 2 07/11/2006 21:05:44 In Progress PROD753 Sweden
Accepted-Wait Value 2 02/12/2009 22:24:32 Wait PROD753 Sweden
Accepted-In Progress Value 2 03/09/2011 14:09:09 In Progress PROD753 Sweden
Accepted-In Progress Value 3 20/01/2012 18:23:24 In Progress PROD753 China
Completed-Closed Value 3 20/01/2012 18:23:27 Closed PROD753 China

The quality of data-enabled analysis strongly depends on the quality of the underlying
data used for it [2]. This holds also for event log-enabled business process analysis. For
instance, in the monitoring of process KPIs, low quality information about resources, i.e.,
inaccurate or incomplete resource attribute values in event logs, prevents calculating an entire
class of indicators related with individual resources’ efficiency in executing the tasks to
which they assigned.

A certain level of errors in event logs, unfortunately, is often unavoidable, particularly
where manual logging is involved. Mans et al. [24], for instance, report that errors in event
logs of health care processes mainly occur due to manual logging and that, among them,
missing or incorrect case id and resource information occur at higher frequency than missing
or abnormal timestamps.

Therefore, more research is needed to address the challenge of improving the quality of
event logs, which in turn will enable higher quality analyses of business processes.

Quality of data, in general, can be improved by (i) improving the way in which data are
captured while they are being generated and (ii) improving the data after they have been
acquired [2]. In this thesis, we focus on (ii), that is, improving the quality of existing event
logs. There are two stages to improve the quality of data that have been acquired, namely
data cleaning and imputation. The former refers to identifying and removing abnormal values
in a dataset, whereas the latter is the process of replacing, or reconstructing, missing values
with reliable substituted values.

It should be noted that an event log has unique characteristics which make it different
from other types of datasets, such as the ones traditionally used in health care or social
science research. While an individual record in other datasets, e.g., medical datasets, can be
considered as a complete observation of a phenomenon, an event in an event log is part of
a case, which represents an actual observation, that is, a particular execution of a business
process. This multi-layered structure of event logs, combined with temporal relations among

1.2 Objectives 3

events determined by timestamps, require learning models, such as neural networks, able to
learn more complex models of data. Due to these characteristics, statistical methods seem to
be ineffective, which leaves the problem on how to improve improve the quality of business
event log in a more appropriate way. This thesis aims to address this problem.

1.2 Objectives

The goal of this research is to deal with the two aforementioned data quality issues of the
event log, anomalous values and missing values, that should be done during cleaning and
imputation stage. The method proposed in this project uses autoencoders, i.e., a class of deep
feed-forward neural networks that aim at reconstructing their own input after having learnt a
hidden latent distribution of the input data [14]. The autoencoders developed in this paper
are able to handle both continuous, e.g., timestamps, and discrete attributes, e.g., activity and
resource labels. Since the three most important attributes carried by all event logs are case id,
timestamp and activity, we only use these attributes in our works; and restrict the proposed
model on reconstructing the values of timestamp, as an example of numerical attribute, and
activity name, as an example of categorical attribute. The remaining attribute, case id, is
maintained accurate and complete. We test the performance of different model variants on
artificial and real event logs randomly perturbed with noise; then compare them in terms
of the efficiency and computation. In addition, we also introduce the way to transform and
present an event log into a numeric matrix so that it can be fed into the learning models.

The proposed framework for event log quality improvement is depicted in Figure 1.2. It
is important to note that this process can be totally automated without human intervention.
There are two procedures corresponding to the main goals in this thesis.

1. The first goal is data cleaning.

2. The second goal is data imputation.

Raw	event	log
Multivariate
Anomaly	
Detection

Event	Log	
Reconstruction

Improved	
event	log

Fig. 1.2 The proposed framework for event log quality improvement.

4 Introduction

1.3 Outline

The remainder of this thesis is organised as follows:

Chapter 2 introduces the background knowledge of machine learning and gives an overview
of some topics related to event quality issue.

Chapter 3 provides the preliminaries which are needed for the remainder of this thesis.

Chapter 4 identify the and suggest the approach for detecting anomalies in event logs.

Chapter 5 addresses event log quality issues and provide the solutions on how to repair
incomplete event logs.

Chapter 6 summarises and identifies future research opportunities.

Chapter 2

Background and related work

2.1 Machine learning background

In this section, we would like to give explanations about the definition of the neural networks
that we use in our study. This section also addresses some fundamental theoretical aspects
for model learning.

2.1.1 Feed-forward neural networks

Input	node Hidden	node Output	node

Fig. 2.1 Feed-forward Neural Network

A Feed-forward Neural Network, also called a Multi-Layer Perceptron (MLP), is an
artificial neural network of which computational units interconnect in the way that there is
no loop or cycle [52]. Thus, in this network, the information can be transferred from input
nodes to output nodes through hidden nodes. The network can be comprised of a single layer
or multiple layers of perceptron. We can view one perceptron [35] as a mathematical model

6 Background and related work

that includes a set of weights, and activation functions (linear or non-linear function). These
weight values define the behavior of the whole network.

In fact, we can train the network to approximate the values for the weights. Amongst
many neural network learning algorithms, backpropagation [38] is the most popular. Back-
propagation is an iterative algorithm comprising of two phases, forward phase and backward

phase. In the former phase, a training set with known output is given. Therefore, we can
evaluate the network’s output with the input based on the random weights. After that, in the
second phase, we compute the error between the output and the desired output, then take the
derivatives of the error with respect to the weight values in the network. Finally, we adjust
the weight based on this gradient.

2.1.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks

Recurrent Neural Network [36] is a counterpart of MLP, however, the information in the
network does not only travel forward. Since there is a loop inside the network that enables
information to be persisted, RNNs form a powerful class of models that has an ability to solve
multiple prediction and modeling tasks with sequences. The cycle formed by the connections
between neurons in RNNs is visualised in Fig. 2.2.

H

X

O

𝑊𝑥ℎ

𝑊ℎ𝑜

𝑊ℎℎ

Unfold

ℎ% ℎ& ℎ'

𝑜% 𝑜& 𝑜'

𝑥% 𝑥& 𝑥'

𝑊𝑥ℎ 𝑊𝑥ℎ 𝑊𝑥ℎ

𝑊ℎ𝑜 𝑊ℎ𝑜 𝑊ℎ𝑜

𝑊ℎ𝑜 𝑊ℎ𝑜 𝑊ℎ𝑜

.	.	.		

ℎ(

𝑜(

𝑥(

𝑊𝑥ℎ

𝑊ℎ𝑜

𝑊ℎ𝑜

Fig. 2.2 An unrolled architecture of recurrent neural network.

We can see in the diagram that at the time t, one chunk of the network, H, receives input
xt and outputs ht . A loop makes it possible to pass information from one time step to the next.
If we unfold the RNN diagram above, we can view it as multiple normal neural networks.
Each piece passes information to its successor in the network.

2.1 Machine learning background 7

More formally, given a sequence of input vectors x1,x2, ...,xT , each in Rn, hidden vectors
h1,h2, ...,hT and output vectors o1,o2, ...,oT are computed using the following equations:

ht = f(Wxhxt +Whhht−1 +bh)

ot = Whoht +bo

∀t ∈ 1 : T ,

(2.1)

where Wxh,Whh,Who are the input-to-hidden, hidden-to-hidden and hidden-to-output weight
matrices, respectively, bh and bo are the bias vectors. The undefined hidden vector h0 can be
zero or randomly initialised prior to the training procedure. Function f can be any activation
function.

Long Short-Term Memory (LSTM)

𝒉𝒕

𝒄𝒕

𝒉𝒕

∗ +

𝜎 𝜎 𝜎	𝑡𝑎𝑛ℎ

𝑡𝑎𝑛ℎ
∗𝒇𝒕

𝒊𝒕

𝒈𝒕

𝒐𝒕

concat

𝒄𝒕.𝟏

𝒉𝒕.𝟏

𝒙𝒕

∗

Fig. 2.3 Visualisation of Equation 2.2 for the LSTM module.

Standard RNN lacks the ability to learn long-range temporal patterns due to the vanishing
or exploding gradient problems [18, 5]. To alleviate such problems, a modification of the
standard RNN with "memory" cells was proposed, long short-term memory (LSTM) [19]. In
LSTM, besides hidden and input vectors at each time step, an additional memory cell vector
ct is added. The equations describing the behaviour of LSTM are presented below:

it = σ(Wixt +Uiht−1 +bi)

ft = σ(W f xt +U f ht−1 +b f)

ot = σ(Woxt +Uoht−1 +bo)

gt = tanh(Wgxt +Ught−1 +bg)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct)

∀t ∈ 1 : T , (2.2)

where it , ft ,ot are referred to as input, forget and output gates; matrices Wi,W f ,Wo,Wg

map input vectors to corresponding gate vectors; matrices Ui,U f ,Uo,Ug map hidden vectors
to corresponding gate vectors; vectors bi,b f ,bo,bg are the biases, σ is a sigmoid activation

8 Background and related work

function applied element-wise, ⊙ denotes the Hadamard product. The undefined hidden
vector h0 and cell vector c0 can be zero or randomly initialised prior to the training procedure.

2.1.3 Autoencoders (AEs)

Autoencoders are a class of neural networks used for unsupervised learning and as generative
models [14]. Given a dataset X = {xi} ∈ Rn, an autoencoder tries to learn a vector X ′ having
a distribution similar to X . This is done in two separate processes (see Fig. 2.4 for a standard
representation of an autoencoder). First, a vector Z, i.e., a code, is formed (or encoded) from
X to learn a hidden, or latent model qθ (z|x) of the data, where θ are the weights and biases
of the encoder; second, a decoder pφ (x|z) reconstructs a vector X ′ having similar distribution
to X from the code Z (where φ are the weights and biases of the decoder neural network).

Z

X X’

f g

Fig. 2.4 An autoencoder comprises of two components: an encoder f and an decoder g,
mappings pencoder(h|x) to pdecoder(x|h)

Several hidden layers can be stacked in between input and output layers in both processes,
allowing a model to create a higher dimensional representation of the data. The autoencoder
of Fig. 2.5, for instance, uses one hidden layer for both encoding and decoding, leading to a
5-layered deep neural network.

X Z X’

Input	layer Output	layer

Code

Encoder DecoderBottleneck

Fig. 2.5 The butterfly architecture of undercomplete autoencoder. The dimensions of input
and output vectors are the same while the number of neurons of the hidden layers is smaller.
The representation of the data lies in the bottleneck which is latent space.

2.1 Machine learning background 9

The number of hidden units in the bottleneck layer, i.e., the dimension of the code, can be
lower or higher than n. If the size of the code is lower than n, then an autoencoder is forced
to learn a compressed representation of X , by identifying a limited number of interesting
features characterising the latent distribution of X . If the size of the code is higher than n, then
an autoencoder can still be used to learn interesting structure in data, particularly if specific
constraints on hidden units are enforced, e.g., sparcity of hidden units when processing pixels
of an image.

Autoencoders initially have been used for dimensionality reduction and feature learning.
The basic idea of autoencoders (with code size lower than n) is similar to the one of Principal
Components Analysis (PCA) [1], that is, to project high dimensional data onto a manifold,
which can represent data with a lower dimensional code. Unlike PCA, autoencoders are not
restricted to linear transformations and they are able to reconstruct their output from latent
variables. In addition, it can also obtain the true distribution of the data especially in the task
of pattern analysis [4]. Therefore, of more interest to many researchers is the ability of the
trained model that can extract useful underlying factors in order to fully understand the data
and perform other tasks. Autoencoders have been successfully applied in many real-world
problems, such as paraphrase detection [43] or anomaly detection [39]. Nowadays, they also
find several applications as generative models, since the learnt code Z can be used to generate
new datasets from the same latent distribution of input X .

The learning process in an autoencoder aims at optimising a loss function L(X ,X ′), where
L is a suitable likelihood function. L can be formulated based on the ultimate objective of the
training process. When the data is the output of linear function or the values are in the range
of (−∞,∞) (similar to the output in Chapter 4), we can use mean square error which can
be written in Equation 2.3 to measure how close the reconstructed input x′ is to the original
input x.

L(x,x′) =
1
N ∑

i
(x′i − xi)

2 (2.3)

When the data resemble a vector of probabilities, i.e., values comprised between 0 and
1, as in the method proposed in Chapter 5, the loss function in Equation 2.4 is used to
optimize. This loss function considers the average cross-entropy of N observations xi in X .
The cross-entropy between two probability distributions p and q over the same underlying
set of observations measures the average number of information units needed to identify an
observation drawn from a coding scheme optimised for the distribution q is used, rather than

10 Background and related work

the true distribution p.

L(X ,X ′) =
1
N

N

∑
i=1

xi logx′i +(1− xi) log(1− x′i) (2.4)

In this study, we will look into how to derive the value of Z through three models, simple
autoencoder, variational autoencoder and sequential autoencoder, in order to construct the
event log from the corrupted version of it.

Autoencoder

An autoencoder [37, 23, 7, 17], also called an autoassociator or a Diabolo network, is a
special case of feedforward networks, however, it requires less effort during training stage.

Similar to other feedforward neural networks, the neurons in the hidden layers of autoen-
coder computes the weighted sums of the input neurons and biases, then passed through
a non-linear transformation by some activation function f (.), such as Sigmoid, Tanh or
Rectified Linear Unit (ReLU):

z = f (Wx+b) (2.5)

Variational Autoencoder (VAE)

Variational Autoencoder [22] is a variant of autoencoder. Similar to autoencoder, the model
comprises of encode and decode process which enables extracting the representation of the
dataset and mapping the latent variable to the output which distribution is similar to the input.
One noticeable difference between two models is how the hidden code is approximated. Vari-
ational autoencoder was proposed to perform efficient inference approximation of intractable
posterior by using Stochastic Gradient Variational Bayes resulting in fast back-propagation
and training process without relying on traditional expensive inference schemes such as
Markov Chain Monte Carlo.

Stated more formally, variational autoencoder is trained in such a way that the probability
of X is maximized in the training set according to:

p(x) =
∫

p(x|z,θ)P(z)dz (2.6)

This integral of the marginal likelihood is intractable leading to the intractability of the
posterior p(z|x)= p(x|z)p(z)/p(x), which makes it impossible to apply expectation–maximization
(EM) algorithm to approximate. Hence, variational autoencoder deals with this problem by

2.1 Machine learning background 11

attempting to optimize the variational lower bound L which is written as:

L(θ ,φ ,x) =−DKL[qφ (z|x)∥pθ (z)]︸ ︷︷ ︸
KL/regularization term

+Eqφ (z|x)[logpθ (x|z)]︸ ︷︷ ︸
reconstruction term

(2.7)

where qφ (z|x) is a probabilistic encoder, the unobserved variables z is a code and pθ (x|z) is a
probabilistic decode.

The structure of a standard variational autoencoder is depicted in Fig. 2.6.

X

Z𝜙 𝜃

𝒩

Fig. 2.6 A standard variational autoencoder. Dashed lines denote encoder network approxi-
mating qφ (z|x), solid lines denote decoder network pθ (x|z). The model is jointly learn the
parameters φ and θ while training.

The first term in Equation 2.7, Kullback-Liebler (KL) divergence, plays as an additional
constraint on how to construct the hidden representation z and it measures how much
information is lost when using distribution q to represent distribution p. We need to find
qφ (z|x) so that DKL[qφ (z|x)∥pθ (z)] is ideally close to zero. To optimize DKL, we can adopt
gradient descent procedure which uses the gradient of DKL, however, we cannot take the
gradient w.r.t φ under the integral sign. This can be solved by using reparameterization

trick [22] that is depicted in Fig. 2.7.

Encoder

𝜇

𝜎

𝜀

Sample	from	𝒩(0, 1)

z

Sampled	latent	vector

Fig. 2.7 Reparametrization trick.

12 Background and related work

The trick suggests that the sample z ∼ qφ (z|x) can be computed as µ +σ ⊙ ε where
ε ∼ N(0,1) and qφ (z|x)∼ N(z,µ,σ). The term µ and σ are the outputs of encoder layers.
Under this setting, the formula of regularization term at the datapoint i can be written as:

−DKL[qφ (z)∥pθ (z)] =
1
2

J

∑
j=1

(1+ log((σ j)
2)− (µ j)

2 − (σ j)
2) (2.8)

where µ j and σ j denote the j-th element of vector µ and σ . The KL divergence can be
computed and differentiated, which allows us to use back-propagation.

The second term of the Lower Bound L is the representation for the performance of
generative network (decoder), which measures the error of the outputs and can have either
Bernoulli or Gaussian form. Therefore, the loss term can be formulated depends on the
training objective as discussed above.

To sum up, a VAE is an autoencoder with added constraints on the encoded representation
Z. In particular, the features in a code Z learnt by a VAE are forced to roughly follow a given
probabilistic distribution p(z), e.g., a unit gaussian distribution. This helps when VAE are
used as a generative model, since new output data roughly similar to the input data can be
generated by drawing values from such a distribution and pass them into the decoder part of
the neural network.

RNN Encoder–Decoder

ℎ"# ℎ$# ℎ%# ℎ&#

𝑥$ 𝑥% 𝑥&

ℎ"(ℎ$(ℎ%(ℎ&(

𝑥′$ 𝑥′% 𝑥′&𝑥′"

𝑥′$ 𝑥′% 𝑥′&

copy

encoder decoder

Fig. 2.8 The architecture of a simple sequence autoencoder to reconstruct output x′ from
input x.

RNN Encoder–Decoder, also known as Sequential Autoencoder, was first proposed by
Cho et al. [13] to learn the representation of a sequence of words applied in the field of
Natural Language Processing. Similar to AE and VAE, the strategy of this model is to map
the input to a fixed-size vector with the encoder, then decode the vector back to the target.

2.2 Related work on quality of event logs 13

However, with one RNN as a encoder and another RNN as decoder, RNN Encoder–Decoder
is able to estimate the conditional probability p(y1, . . . ,yT ′) | (x1, . . . ,xT)) where (x1, . . . ,xT)

is the input sequence and (y1, . . . ,yT ′) is the corresponding output sequence, which can be
applied in sequence learning tasks. The illustration of this model is shown in Fig. 2.8.

Different types of recurrent units, such as Long Short-Term Memory unit or Gated
Recurrent unit, can be used to build a RNN Encoder–Decoder. Since the work of Tax et
al. [47] has shown the empirical results in using LSTM in order to predict the continuation
of a running case, in our study, we interested in using LSTM cell block for the encoder and
decoder. We call this model Long Short-Term Memory Autoencoder (LAE).

2.2 Related work on quality of event logs

In this section, we review a number of recent works that have proposed in the context of data
quality improvement. First, we briefly discuss the data quality issues that were identified,
and then we will have a closer look at the previous approaches which were used to encounter
these issues.

In Process Mining Manifestor, Aalst et al. [48] define maturity levels ranging from 1
to 5 stars as the indicators of the trustworthiness of an event log used in process mining.
Following this, they introduce a guiding principle in the practice of process mining that it
should only be applied to well-defined semantic logs which are at least rated as 3-star in
order to avoid problematic analysis and unreliable results. Therefore, with high priority, the
log should be treated by more systematic approaches.

There has been several works focusing on precisely defining and formulating data quality
problem [32, 26, 28]. Different approaches lead to different taxonomies, nevertheless, their
findings show that the data problem manifests in very similar ways. Data quality issues
in event logs have been classified by Bose et al. [6] and, in the specific context of process
mining in the health care, by Mans et al. [24]. Bose et al., in particular, have identified
missing, incorrect, imprecise, and irrelevant data as type of sources of event log quality
degradation. In addition, they analyze the manner which these issues appear in reality. As
the result, the two issues that most frequently occur in real-life logs used in the analysis are
missing event, and imprecise activity name; the issue related to timestamp is also a common
cause of inconsistent result in process mining. Whereas, Mans et al. point out imprecise
resource, i.e. the recorded resource refers to a specific operating room instead of the person
who performed the surgery, is more likely to happen than other issues in Hospital Information
System (HIS).

14 Background and related work

The work of Suriadi et al. [46] classifies a set of event log imperfection patterns that
may guide the event log quality improvement phase. These patterns help understanding the
sources of imperfection in an event log and, therefore, can guide the improvement of logging
activities during process execution. This thesis focuses on a closely related, but different
issue, that is, reconstructing suspicious and missing values in an event log that has already
been acquired. In this thesis, we do not assume any knowledge about the process that has
generated an event log.

The quality of event logs is strictly related with detecting noise in event logs, i.e.,
infrequent behaviour, and with repairing event logs. Noise is typically removed in a pre-
processing phase, using frequency-based approaches [11]. As such, it can be seen in our
context as a data cleaning activity and the task of detecting noise can be considered as
novelty detection. Various state-of-art techniques in novelty detection, such as Frequentist
and Bayesian approaches, information theory, and neural network, can be found in [30].
In this paper, the authors categorize all techniques into five groups that are probabilistic,
distance-based, reconstruction-based, domain-based, and information-theoretic. Then, they
compare the groups in terms of model complexity and application. In the work of Abhinav et
al. [44], Hidden Markov Model, which is a typical example of probabilistic approach, has
proven to be successfully applied to identify credit transaction fraud. In fact, this method
has been extensively used in the context of anomaly detection for time series dataset since it
calculates the probability of the behavior happens in the current stage based on the previous
stage. In this work, we adopt a similar approach to extract the sequential information from
the event log.

Aalst et al. [49] introduce the way to exploit α−algorithm in order to identify anomalous
trace, however, this method requires the complete log containing only normal behaviors to
be given as input. In contrast, this thesis assumes that the only information available for
repairing and reconstructing values in an event log is the event log itself. In [15], Ghionna
et al. proposed a two-step method to filter the exceptional trace by first extracting the
normal patterns and then applying a clustering procedure under the assumption that outliers
are characterized by infrequent patterns. Recently, Nolle et al. [27] have proposed to use
autoencoders for denoising event logs, showing remarkable performance, albeit on artificially
generated logs. Event in this case, however, noise in event logs is defined at the event level,
e.g., missing or duplicated events, rather than at the event attribute level as we consider in this
thesis. Our work also examines the use of reconstruction-based approach, autoencoders, to
identify the anomalies. This method relies on frequent data patterns to reconstruct the noisy

2.2 Related work on quality of event logs 15

input data and use the reconstructed input as a measure of normality, hence, it is susceptible
to loops of anomalous data in the logs [27].

Regarding the second context, data imputation, various methods have been proposed
to do this task in large datasets, such as deletion of observations with missing values or
reconstructing data using statistical and artificial intelligence techniques. Promising results
have been shown particularly in imputation of medical domain datasets [20, 40]. Beaulieu-
Jones et al. [20], in the task of dealing data missing completely at random and data missing
not at random, find that using bottle-neck architecture autoencoder integrated with dropout
as a regularizer gives robust results at a variety of information loss. They also show that
autoencoders are able to surpass KNN and SVM even when the missing data is increased.
One more advantage of this algorithm is that it runs in linear time. Inspired by this paper, in
our work, we use the same approach, but only focus on dealing with data missing completely
at random in the logs.

For time series, Zhengping Che et al. [9] deploys a deep neural network based on Gated
Recurrent Unit (GRU) [12], which is so-called GRU-D. Their model takes two missing
pattern, namely masking and time interval. While the model identifies which inputs are
observer or missing based on information from masking, it retrieves input observation pattern
from time interval. Both representations, masking and time interval, are fed into the model
so that their GRU-D is enabled to not only capture the long-term temporal dependencies
of time series but take advantage of the missing patterns to enhance the predictions. They
also compare the performance of RNN-based and non-RNN-based to see the benefit of
using RNN on extracting sequential information. Since the time attribute in the log can be
considered as time series, in this thesis, we also use RNN-based method.

Recently, Gondara et al. [16] propose a multiple-imputation model based on denoising
autoencoders, which are able to process a variety of data types (continuous, categorical and
mixed), distributions (random and uniform), and missing patterns (missing completely at
random and missing not at random). Their model not only perform well on large datasets
but also on small size ones. More remarkably, the model is capable to cope well with the
situation in which users do not provide complete observations for training. Nevertheless,
their model can only takes the fixed length sequence as input, whereas in this thesis, we aim
to reconstruct the trace sequence of different length.

In the field of business processes, several ad-hoc methods have been proposed for
repairing event logs by reconstructing missing events. Rogge-Solti et al. [34] propose a
method based on stochastic Petri nets and Bayesian networks. A similar approach can then
be used to improve process documentation [33]. Bayomie et al. [3] have proposed a method

16 Background and related work

to reconstruct the value of case identifier in an unlabeled event log. These approaches take a
different perspective from the one considered in this thesis, since they assume that a process
model is available. Missing events or attribute values can be then reconstructed by combining
process knowledge with knowledge discovery techniques.

Chapter 3

Preliminaries

This section introduces the formal description of the concepts related to event logs. First, we
start with the definition of the event log and its notation; then we will discuss on how we
collect the datasets for our work.

3.1 Event log definition

An event log is a set of events capturing the instances of a single process. Each process
instance is referred to a case or a trace and each event belonging to a single case is referred
to a task or an activity. All events corresponding to a trace are chronologically ordered. An
event may also carry optional additional information such as time, transaction type, resource,
costs, etc. All these additional properties are considered as attributes. However, in this thesis,
we assume the minimal information presented, in which each event has 3 attributes: case
id, timestamp and activity name. The first attribute, case id, is complete while other two
attributes need to be reproduced to become more reliable.

Before getting into the real-life dataset, let us introduce some required notation of event
logs (an example event log is shown in Table 1.1). Let E be the event universe, i.e. the set of
all possible event identifiers. Events are characterised by attributes, e.g., they belong to a
particular case, have a timestamp, correspond to an activity, and are executed by a particular
person. Let AN = {a1, . . . ,an} be a set of all possible attributes names and Dai the domain of
attribute ai, i.e., the set of all possible values for the attribute ai. Attributes can be numerical or
categorical. Numerical attributes, e.g., timestamps, assume value within a certain numerical
interval, that is, Dai = [vi,min,vi,max] ∈ R. Categorical attributes assume values within a
given set, such as a set of activity identifiers (strings) for the activity label attribute, i.e.,

18 Preliminaries

Dai =
{

vi,1, . . . ,vi,K
}

. For any event e ∈ E and attribute name a ∈ AN, #a(e) ∈ Da is the
value of attribute named a for event e.

Let Did be the set of event identifiers, Dcase the set of case identifiers, Did the set of
activity labels, Dtst the set of possible timestamps, and Dres the set of possible resource
identifiers. For each event e ∈ E, we define a set of standard attributes:

• #id(e) ∈Did is the event identifier of e;

• #case(e) ∈Dcase is the case identifier of e;

• #tst(e) ∈Dtst is the timestamp of e;

• #act(e) ∈Dact is the activity name of e;

• #res(e) ∈Dres is the resource involved in e;

In the pre-processing phase, an event log is transformed into a suitable format to be fed
into an autoencoder. The detail on how to do this will be provided in Chapter 4 and 5.

3.2 Datasets

Next, we would like to describe how we collected the datasets. In our experiment, we evaluate
the performance of the proposed models by using two real-life event logs collected from an
open-source website, 4TU1 and two artificial event logs generated by PLG2 [8]. While deep
learning offers great solutions for predictive analytics, it requires sufficient amounts of high
dimensional data for more efficient and stable performance [10]. Therefore, in order to get
benefit from the deep architecture model and fully extract the valuable information of data,
we should choose big-size datasets. In our study, we aim to explore the performance of the
models under the extreme situation as well. As the result, for evaluation purposes, we use the
process models of different complexities in terms of the number of distinct activities, traces
and loops in the logs.

3.2.1 Artificial datasets

We use the PLG2 tool to generate two artificial logs. PLG2 allows to create logs from process
models randomly generated. In the thesis, we have considered one small and one large log,
characterised by the parameters shown in the Table 3.1:

1https://data.4tu.nl/repository/collection:event_logs_real

https://data.4tu.nl/repository/collection:event_logs_real

3.2 Datasets 19

Table 3.1 Configurations for log generation..

Data Number of
traces

Number of
distinct

activities

Number of
OR

gateways

Number of
AND

gateways
Small log 2,000 14 0 4
Large log 15,000 10 2 2

The generated log can be saved as BPMN file. We import the BPMN file into Disco2 and
convert into CSV (Comma Separated Values).

3.2.2 Real-life datasets

From the collection of real datasets, we choose one small dataset, BPI 2013 Challenge [45],
and one big dataset, BPI 2012 Challenge [50]. The event logs used in the experiments are
briefly described below:

BPI 2013 Challenge: This log comprises 1,487 cases and 6,660 events with 7 different
activities obtained from the incident and problem management process of Volvo IT Belgium.
The case with the most number of activities comprises of 35 activities. The size of this
dataset is relatively small compared to the other dataset.

BPI 2012 Challenge: This log consists of 13,087 cases and 262,200 events capturing
the whole process of loan and overdraft application in Dutch Financial Institute. There are
36 different activities observed in the process and the case with the most number of activities
comprises of 175 activities. In the experiments with this dataset, the training was done with
5,496 cases while the validation set and the test set consisted of both 1,832 instances.

We use the full version of the datasets in which one activity may occur many times
in a trace. The standard format of the dataset file is XES (eXtensible Event Stream). We
convert each data into CSV by using Disco. Case ID, complete timestamp and activity are
three main information carried by both datasets. Case IDs are anonymized by selecting the
anonymization option. An example of dataset which is exported by using Disco is shown in
Table 3.2.

More details in terms of the statistical descriptions and visualisations of the datasets are
provided in Appendix A.

2https://fluxicon.com/disco/

https://fluxicon.com/disco/

20 Preliminaries

Table 3.2 Event log BPI Challenge 2013.

Case ID Activity Complete Timestamp

Case 1

Queued-Awaiting Assignment 11/01/2006 23:49:00
Accepted-In Progress 15/03/2012 19:53:00
Accepted-Assigned 15/03/2012 19:56:00
Accepted-In Progress 15/03/2012 20:09:00
Completed-Closed 15/03/2012 20:11:00

Case 2

Accepted-In Progress 07/11/2006 18:00:00
Accepted-In Progress 07/11/2006 21:05:00
Accepted-Wait 02/12/2009 22:24:00
Accepted-In Progress 03/09/2011 14:09:00
Accepted-In Progress 20/01/2012 18:23:00
Completed-Closed 20/01/2012 18:23:00

Chapter 4

Multivariate anomaly detection

4.1 Introduction

Anomaly detection, also called outlier detection, is a process of identifying unusual patterns
in the datasets. Unlike the standard classification task, the anomaly detection problems are
mostly addressed by using the concepts in the domain of unsupervised learning, taking only
the structure of the dataset into consideration. Detecting the anomalies at an early stage is
critical for users since many analysts use extensive amounts of historical data and the analysis
is prone to the existence of the anomalies in the dataset. Therefore, there have been various
research on anomaly detection system which can be used for many practical applications such
as intrusion detection [31], fraud detection [29] and data leakage prevention [42]. However,
there is the lack of anomaly detection algorithms as well as available datasets that can used
for analyzing the business process containing irregular behaviors due to the fact that anomaly
detection is not very frequently researched topic in the field of business process management.
Therefore, in this chapter, we present the way to simulate the anomaly and propose a novel
anomaly detection algorithm for detecting anomalous events without requiring any domain
knowledge. The algorithms work based on the assumption that when there is sufficient or
abundant normal data compared to anomalous data, the models are able to generalize the
normal behaviors and treat the other data as noise.

4.2 Methods

This section presents in detail the proposed method for detecting anomalous attribute values
in event logs. The steps of the proposed are shown in Fig. 4.1. A low quality event log,

22 Multivariate anomaly detection

i.e., with anomalous values, is taken as input. In a pre-processing phase, event logs are
transformed into a format that can be fed into autoencoders. As discussed later in this section,
for an autoencoder, each case in an event log represents an observation belonging to the input
X . Hence, each case in an event log is transformed into a matrix of events and features that
can be fed into an autoencoder. As far as model training is concerned, in this chapter we
experiment with VAE, AE and LAE, which require the same type of input.

Pre-processing Anomaly	
Detectors

Multivariate	
Anomaly
Detection

Model	
Training

Event	log
(low	quality)

Event	log
(Anomaly	removed)

Trained
Model

(VAE,	AE,	LSTMAE)

Input	matrices Output	matrices

Fig. 4.1 Multivariate anomaly detection procedure.

After having the autoencoders trained, for each case x with noise, we can use the model
to generate a reconstructed trace x′. We define the reconstruction error indicating the distance
between the input vector and the output vector. Under the assumption that the model will
reproduce the "normal" values for all attributes, reconstruction error of the normal traces
will be smaller than the error of abnormal traces. As the result, we use the reconstruction
error as the signal to detect anomalies in the event log. With a choice of threshold, if the
reconstruction error is less than the anomaly detection threshold, the variable is normal and
vice versa. It turns out that setting the threshold is critical in terms of the performance and
the objective of the detector. With a low threshold, we can detect more anomalies, however,
there is a trade-off that the number of false positives also increases and vice versa. We report
the results by using the average reconstruction error as the threshold. The two detectors for
time and activity attributes are set up as follow:

1. Anomalous Time Detector: For detecting anomalous time, the reconstruction error is
defined as the absolute value of the difference between the input time and output time
attribute. Then, the instance, which the error falls below the threshold, is classified
as normal; and the instance is classified as abnormal when the error is exceeded the
threshold. Since this detector relies on the choice of threshold, we call it threshold-
based detector.

4.3 Anomalous attribute simulation 23

2. Anomalous Activity Detector: In order to detect anomalous activity, we set up two
classifiers. One is similar to time anomalous time detector which is the threshold-based
detector. However, in this case the error is defined as the mean of the absolute error
between probability distribution associated with the output and input activity attribute.
In the second detector, instead of using the probability distribution, we use the activity
label as the signal of anomaly. The activity is considered as anomalous when its
reconstructed label and input label are unmatched. We call this argmax-based detector
since the input or output label is the label with maximum probability.

4.3 Anomalous attribute simulation

During the execution of a business process, most of the abnormal instances happened
unexpectedly and the structure of these data cannot be observed or described in closed form,
which make it impossible to learn the model that can fit the pattern of the anomalies. As a
result, it is difficult to simulate a dataset with anomalies given a clean dataset. As far as we
are aware, there is no appropriate labeled event log dataset of anomalies available, thus our
additional challenge is generating random noisy data points in order to train and evaluate our
model.

Initially, we aim to obtain the imbalanced datasets in proportions of 10% anomalies and
90% normal data. These proportions indicate that the likelihood of the anomalies exist in the
observation is quite high and this inaccurate information may exacerbates the performance
of trained model. However, we want to consider the extreme case in which the ratio of
the anomalies is much higher than in reality. The two attributes perturbed are activity and
timestamp, so the probability that the mutation occurs is set to 5% in each attribute.

As the anomaly scenario, an activity is anomalous when its label is recored incorrectly.
Therefore, we perturb 5% randomly-selected activities by replacing them with another activity
which is also randomly sampled.

For the complete timestamp, since we cannot mutate this attribute directly, we make it
anomalous indirectly through the duration of the activity corresponding to it. A duration of an
activity is anomalous if it is larger than the sum of mean and standard deviation derived from
the set of durations of that activity. With this scenario, we replace the duration by anomalous
value and repeat until the number of anomalous timestamps is 5% of the total number of data
points. After having the anomalous duration, we can transform back to timestamp and derive
the cumulative duration within a case. The perturbed duration of selected activities in the
four datasets is visualised in Appendix B.

24 Multivariate anomaly detection

4.4 Input data treatment

Autoencoders require as input observations coded as a matrix of numerical values. Values
should also be scaled to facilitate faster convergence. If, in fact, attribute values vary across
different ranges, then attributes characterised by larger ranges would be more important than
other attributes characterised by smaller ranges during the learning phases. To meet this
requirement, an event log is pre-processed as described in the following to transform each
case into a matrix of numeric values of fixed size (see Fig. 4.2 for an example).

id case act tst

e1 1 A 5

e2 1 B 7

e3 2 B 3

e4 1 C 10

id case CA CB Cc Ctst

e1 1 1 0 0 -0.42

e2 1 0 1 0 0.25

e3 2 0 1 0 -1.09

e4 1 0 0 1 1.26

1 0 0 -0.42
0 1 0 0.25
0 0 1 1.26

0 0 0 0
0 0 0 0
0 1 0 -1.09

Case	1

Case	2

e1

e2
e4

e3

Event	log
Standardisation of	

attributes	“act”	(discrete)	
and	“tst”	(continuous)

Input	of	autoencoder

Fig. 4.2 Event log pre-processing for MAD: example

Categorical attributes (see encoding of the activity attribute in Fig. 4.2) are encoded using
a one-of-K scheme. That is, for an attribute ai a column ci,k in the autoencoder input matrix
is created for each value vi,k ∈Dai . A row is then created for each event e in an event log,
with values in columns ci,k, k = 1, . . . ,K assigned as follows:

ci,k(e) =

1 if #ai(e) = vi,k

0 otherwise

As can be seen from the scatter plots shown in Appendix B, the anomalous data points are
not far away from the mean in the distribution. In addition, there is a significant difference
regarding the duration across different activities, which suggests us to scale the data by using
standardisation instead of normalisation; so that the duration with small value will not be
shrink. Especially, standardisation will be helpful in case the dataset has some extreme values
such as the outliers, it avoids the situation in which the normal value data is scaled to a very
small interval. Hence, numerical attributes #ai(e) (see encoding of timestamps Fig. 4.2) are
encoded by standardising their value with the mean value Lmean and standard deviation value
Lstd assumed by attribute ai in the event log. That is, for a continuous attribute ai, a column

4.4 Input data treatment 25

is created such that:

ci(e) =
#ai(e)−Lmean

Lstd
, (4.1)

with Lmean = #ai(emean), Lstd = #ai(estd) and

emean =
1
N ∑e′,∀e′ ∈ E (4.2)

estd =

√
∑(e′− emean)2

N
,∀e′ ∈ E (4.3)

Obtained rows are then grouped by case id and ordered by timestamp value. As a result,
an individual case is represented by a p by q matrix, where p is the number of activities in
the case and q is the number of columns resulting from the standardisation described above.
Since an autoencoder requires a fixed-size matrix as input, zero-padding is applied to all
cases for which p < pmax, where pmax is the highest number of activities in a case in an event
log (see zero-padding of the first two rows for case 2 in Fig. 4.2 in which it is assumed that
case 1 is the one with highest number of activities in the event log, another example is shown
in Fig. 4.3). In the experiments that we conducted, the results do not depend on the position
of the zero-padding rows in an input matrix.

longest	
length

duration OHC	activity duration OHC	activity

Fig. 4.3 An example of two vectorized inputs of sequence length of 4 and 3. The longest
length is five. The white circles denote for zero-padding edges while the blue circles denote
for numeric data points.

The objective of the model training step is to train a model that can capture the general
behavior of data in an event log. Once a model has been trained, each case in an event log is
reconstructed into an output matrix of elements c′i, j of size p×q. As a result of the generating
step, in the output matrix, the anomalous attributes values are replaced by a new value for
numerical attributes and probabilities for the categorical attributes which are supposed to be
the real values.

26 Multivariate anomaly detection

We introduce a masking matrix to indicate zero-padding values which should not be
taken into consideration when the model computes the loss for updating weights. Elements
mi, j of the masking matrix M ∈ Rp×q are defined as:

mi, j =

0 if ci, j = 0 (0-padding)

1 otherwise
(4.4)

As discussed in Section 4.2, we use distance-based method to classify normal and
abnormal behavior, hence, we consider a modified mean squared error loss function, which
uses the masking matrix of Eq. 4.4 before averaging across all values in an input matrix:

L(ci, j,c′i, j) =
1

p×q

p

∑
i=1

q

∑
i=1

mi, j · (ci, j − c′i, j)
2 (4.5)

4.5 Experiments

A network with many non-linear transformation layers can have the better representation
of the data, leading to the fact that in practice people are in favour of deep artificial neural
networks than shallow network [25]. However, in all experiments of this thesis, we only use
the shallow network to show that our model has real-world applications.

For VAE and AE, we construct a simple architecture with two hidden layers (one in
encoder and the other in decoder) and one code layer. The number of neurons in hidden layers
is chosen so that it is smaller than the input size. The overview of hidden layer size used for
the experiments can be found in Table 4.1. It is important to note here that we can achieve
better results compared to the one shown in this thesis if we consider the dimension of all
layers as the extra hyperparameters and do fine tuning. We also use non-linear activation
function and dropout in the hidden layers, which enables faster convergence and avoids
overfitting problem. Based on guidance from the literature [14, 22, 16], internal neurons
use Tanh and ReLU activation functions in AE and VAE, respectively. For LAE, we use
LSTM cells which hidden size is smaller than the number of features to build the RNN
encoder-decoder. The choice of hidden layer used for each dataset is given in Table 4.1.

We conducted several experiments to find good hyperparameters, with early stopping
based on the validation loss. Each experiment run in 100 iterations, in each iteration, the data
is loaded in batch size of 16. The models are optimised by Adam algorithm [21] with β1

= 0.9 and β2 = 0.999. We apply adaptive learning rate with an exponential decay factor of
0.99 to adjust the learning rate after each iteration. The weights of each layer are initialized

4.6 Evaluation criteria 27

Table 4.1 Choices of hidden size for experiments.

Data Input size Hidden size
(AE, VAE)

Number of
features

Hidden size
(LAE)

BPI 2013 280 [100, 50] 8 1
BPI 2012 6,475 [300, 100] 37 20
Small log 210 [100, 50] 15 1
Large log 88 [50, 20] 11 5

from a Xavier normal random distribution. In VAE and AE, we used dropout at 0.2 in order
to avoid overfitting problem while in LAE, we use clipping to avoid vanishing/exploding
gradient problem.

It is critical to choose the right learning rates since it affect the speed of convergence
and the quality of model. Therefore, we tune the learning rate manually. We start the
training procedure with the learning rate of 0.01 and gradually decrease by 0.001 after each
training. By doing this, we find that the learning rate 0.0001 is sufficient good for the training
procedure of three models. We train the model until the condition of early stopping, which
the error in the validation set does not improve after 10 epochs, is met; or the maximum
number of epochs is reached.

The method has been implemented in Pytorch1. The implementation code is publicly
available at2. Experiments run on an Intel i7 Linux machine equipped with 16GB memory
and a GeForce GTX 1080 GPU. The execution time of one epoch training is given in
Table 4.2.

Table 4.2 Execution time reported in milliseconds.

Data VAE AE LAE
BPI 2013 250 200 300
BPI 2012 1,900 1,500 8,200
Small log 250 200 350
Large log 1,700 1,300 2,000

4.6 Evaluation criteria

Because of the imbalance classes in the dataset, evaluation using the standard accuracy
rate is not a good choice since the model may act like general classification models such

1https://github.com/pytorch
2https://github.com/hoangnguyen3892/multivariate-anomaly-detection-for-event-logs

https://github.com/pytorch
https://github.com/hoangnguyen3892/multivariate-anomaly-detection-for-event-logs

28 Multivariate anomaly detection

that it can cover of the majority examples, whereas the minority ones are misclassified
frequently; leading to the high accuracy. The performance of proposed methods should be
evaluated mainly based on their ability of identifying the anomalies. Therefore, we assess the
performance by determining the metrics of each class label. There are 4 possible outcomes
of the binary classification of a variable labeled either i - abnormal or j - normal, which are
T Pi (true positive: The label i is correctly assigned to label i), FPi (false positive: Label j is
incorrectly assigned to label i), T Ni(true negative: Label j is correctly identified as label j),
and FNi (false negative: Label j is incorrectly identified as label i). The precision/specificity
(πi), recall/sensitivity (ρi) and F-score (fi) of label i are defined as follow:

πi =
T Pi

T Pi +FPi
ρi =

T Pi

T Pi +FNi
fi = 2× πi ×ρi

πi +ρi
(4.6)

Then, the average score is the weighted mean of all classes:

π =
si ×πi + s j ×π j

si + s j
ρ =

si ×ρi + s j ×ρ j

si + s j
f =

si × fi + s j × f j

si + s j
(4.7)

where si and s j is the total number of abnormal and normal observations, respectively.
In addition to using the above metrics for evaluation, we also create visualisations for

better understanding the performance of the detection models. The first visual evaluation
that we use is the histogram of reconstruction errors to examine the distribution of this
value across normal and abnormal data. Since we use threshold-based method described in
Section 4.2 to separate the usual and unusual data points, we put two overlaid histograms of
reconstruction errors of normal and abnormal data in the same plot in order to check whether
the detection algorithm can distinguish between them. We also plot receiver operating
characteristic (ROC) curve to illustrate two operating characteristics at different threshold
settings, please refer to Appendix C for details.

4.7 Results

In this section, we evaluate the computational and the performance of three proposed models.
The histograms of reconstruction error of threshold-based anomalous time and anomalous
activity detector are presented graphically in Fig. 4.4 and 4.5, respectively. Table 4.3, 4.4
and 4.5 show the evaluation scores for the anomalous time detector, the threshold-based
anomalous activity detector and the argmax-based anomalous activity detector in this order.

4.7 Results 29

(a) BPI 2013 - VAE (b) BPI 2013 - AE (c) BPI 2013 - LAE

(d) BPI 2012 - VAE (e) BPI 2012 - AE (f) BPI 2012 - LAE

(g) Small log - VAE (h) Small log - AE (i) Small log - LAE

(j) Large log - VAE (k) Large log - AE (l) Large log - LAE

Fig. 4.4 Reconstruction error of Time attribute. The blue histogram denotes for reconstruction
error of normal points and the green one denotes for anomalous points.

30 Multivariate anomaly detection

(a) BPI 2013 - VAE (b) BPI 2013 - AE (c) BPI 2013 - LAE

(d) BPI 2012 - VAE (e) BPI 2012 - AE (f) BPI 2012 - LAE

(g) Small log - VAE (h) Small log - AE (i) Small log - LAE

(j) Large log - VAE (k) Large log - AE (l) Large log - LAE

Fig. 4.5 Reconstruction error of Activity attribute. The blue histogram denotes for recon-
struction error of normal points and the green one denotes for anomalous points.

4.7 Results 31

It is clear that all detectors work better than a random classification model. In particular,
VAE and AE are able to discriminate efficiently between normal and anomalous data in
the artificial logs. Consider the real-life logs, the models do not yield significant results in
BPI 2013 and unfortunately, all models fail in detecting anomaly in BPI 2012. Overall, the
anomalous activity detectors show higher performance than the anomalous time detector.

Anomalous Time Detector. The Fig. 4.4g, 4.4h, 4.4j and 4.4k demonstrate that most
of the anomalous attributes can be detected effectively by using VAE and AE. In contrast,
from Figures 4.4a–4.4f, we can observe the detectors mostly yield nonsensical results for
time attribute in two real-life logs. Based on the reconstruction error, the models are unable
to distinguish abnormal time from normal ones since the error patterns are similar between
two groups. When analyzing the output for the real logs, we find that the detectors encounter
several distractions from the normal attribute which has a similar value. The first distraction
is the loop in the process flow, which an activity may happen multiple times in a single case.
Another distraction is caused by the same range of activity duration. If we take a look insight
the duration of normal and abnormal activities visualised in Appendix B, we can recognise
that there is no clear borderline between the duration of two groups in two real-life datasets.

Table 4.3 Performance of Anomalous Time Detector.

Data Class VAE AE LAE SupportPrecision Recall F-score Precision Recall F-score Precision Recall F-score

BPI 2013
Normal 0.87 0.60 0.71 0.92 0.62 0.74 0.90 0.63 0.74 956

Anomalous 0.07 0.26 0.11 0.15 0.57 0.24 0.12 0.44 0.20 115
Average 0.78 0.56 0.64 0.84 0.62 0.69 0.82 0.61 0.68 1,071

BPI 2012
Normal 0.92 0.64 0.75 0.93 0.70 0.80 0.92 0.67 0.78 43,368

Anomalous 0.12 0.49 0.19 0.14 0.47 0.21 0.12 0.42 0.18 4,455
Average 0.85 0.62 0.7 0.85 0.68 0.74 0.84 0.65 0.72 47,823

Small log
Normal 0.98 1.00 0.99 0.98 0.99 0.99 0.94 0.84 0.89 5,086

Anomalous 1.00 0.81 0.89 0.93 0.81 0.86 0.23 0.47 0.31 514
Average 0.98 0.98 0.98 0.98 0.99 0.99 0.88 0.81 0.83 5,600

Large log
Normal 0.98 1.00 0.99 0.98 0.99 0.99 0.95 0.69 0.80 21,888

Anomalous 1.00 0.79 0.88 0.89 0.81 0.85 0.16 0.62 0.26 2,112
Average 0.98 0.98 0.98 0.97 0.97 0.97 0.87 0.65 0.72 24,000

Anomalous Activity Detector. Fig. 4.5 gives an insight into the distribution of recon-
struction errors of activity variable. Except the figures reported for LAE (Fig. 4.5c, 4.5f, 4.5i
and 4.5l), it can be seen that the distribution of the normal and abnormal groups shown
in Fig. 4.5 are quite different. For example, in Fig. 4.5a and 4.5b, the distribution of the
errors of normal cases is left-skewed while errors of abnormal cases are clustered to the right.
More specifically, the majority of normal data has small reconstruction error and the model
reproduces the input with large error for most of abnormal data. Nevertheless, the precision
is relatively low compared to the recall indicates that the false positive rate is still high. More
significant positive results are presented graphically in the artificial logs, which there is no

32 Multivariate anomaly detection

intersection between the distribution of abnormal and normal data resulting in the ability of
the detectors to clearly separate two types of attribute. In conclusion, we achieve sufficient
good results in predicting anomalous activity in artificial logs while the performance in
real-logs should be improved.

Table 4.4 Performance of Threshold-based Anomalous Activity Detector.

Data Class VAE AE LAE SupportPrecision Recall F-score Precision Recall F-score Precision Recall F-score

BPI 2013
Normal 0.99 0.80 0.89 0.97 0.94 0.97 0.97 0.50 0.66 5,015

Anomalous 0.35 0.91 0.51 0.69 0.78 0.73 0.17 0.86 0.28 585
Average 0.95 0.94 0.94 0.95 0.94 0.94 0.89 0.54 0.62 5,600

BPI 2012
Normal 0.97 0.87 0.92 0.96 0.97 0.97 0.93 0.84 0.89 21,552

Anomalous 0.40 0.80 0.53 0.73 0.61 0.67 0.26 0.49 0.34 2,448
Average 0.92 0.86 0.88 0.94 0.93 0.94 0.88 0.66 0.73 24,000

Small log
Normal 0.99 1.00 0.99 1.00 1.00 1.00 0.97 0.35 0.52 960

Anomalous 1.00 0.89 0.94 0.97 1.00 0.99 0.14 0.90 0.24 111
Average 0.99 0.99 0.99 1.00 1.00 1.00 0.88 0.41 0.49 1,071

Large log
Normal 0.99 1.00 1.00 1.00 1.00 1.00 0.95 0.62 0.76 42,925

Anomalous 1.00 0.95 0.97 0.99 0.96 0.97 0.18 0.73 0.29 4,898
Average 0.99 0.99 0.99 0.99 0.99 0.99 0.87 0.64 0.71 47,823

Table 4.5 Performance of Argmax-based Anomalous Activity Detector.

Data Class VAE AE LAE SupportPrecision Recall F-score Precision Recall F-score Precision Recall F-score

BPI 2013
Normal 0.99 0.71 0.83 0.96 0.99 0.97 0.97 0.49 0.65 960

Anomalous 0.27 0.93 0.42 0.84 0.60 0.70 0.16 0.86 0.28 111
Average 0.91 0.74 0.79 0.94 0.95 0.94 0.89 0.53 0.61 1,071

BPI 2012
Normal 0.99 0.36 0.53 1.00 0.85 0.92 0.93 0.87 0.90 42,925

Anomalous 0.15 0.98 0.26 0.43 0.99 0.60 0.29 0.45 0.35 4,898
Average 0.91 0.42 0.5 0.92 0.63 0.7 0.87 0.83 0.84 47,823

Small log
Normal 0.99 0.66 0.79 1.00 1.00 1.00 0.94 0.14 0.24 5,015

Anomalous 0.25 0.97 0.40 1.00 0.98 0.99 0.11 0.93 0.20 585
Average 0.92 0.69 0.75 1.00 1.00 1.00 0.86 0.22 0.24 5,600

Large log
Normal 1.00 0.79 0.88 0.99 1.00 1.00 0.92 0.75 0.83 21,552

Anomalous 0.35 0.98 0.51 1.00 0.95 0.97 0.17 0.44 0.24 2,448
Average 0.93 0.81 0.84 0.99 0.99 0.99 0.85 0.72 0.77 24,000

Table 4.4 and 4.5 summarises the performance of two different approaches used for the
activity classifier, threshold and argmax. During our experiments, we find that there is no
absolute superior approach which produces better performance over the other one as long
as we are employing the "butterfly" architecture autoencoder. Increasing the size of hidden
layers deteriorates the performance of argmax-based detector, whereas the performance of
threshold-based detector still remains.

Comparison between the proposed learning models. Comparing the performance
between the three models, the results show that VAE and AE outperforms LAE in all datasets,
even though we expect that with the complicated computations, LAE will give competitively
better results compared to the others. The scores obtained from AE is slightly higher than

4.8 Discussion 33

those from VAE. In terms of the model complexity, the LAE architecture is more complex
than VAE and AE models, resulting in more expensive computational cost (refer to Table 4.2).
In addition, tuning LAE requires a lot of effort. From the experiments, we can conclude that
AE provides more benefits in this context.

4.8 Discussion

In this work, we investigate the use of autoencoders for detecting anomalies in business
process logs and we also integrate our anomaly detection algorithm into real-life datasets.
We train the network purely unsupervised by using different types of neural layers, vanilla
feed-forward layer and stochastic layer. From the experiments, it is clear that despite the
simplicity of the networks and optimisation settings, the autoencoders can be exploit to learn
the underlying distribution and general pattern even with the corruption of noise. No prior
knowledge about the process is required during model construction stage.

Even though the proposed network has been shown some promising results in solving
the problems of anomaly detection, it still faces some challenges and limitations. Firstly, the
efficient of the model seems to be restricted by the way we define the boundary between
anomalous and normal observations, especially in the case of real logs. When we look at the
generated anomalous durations, there are many anomalous data that lies close to the normal,
which makes the model hard to distinguish between them. In fact, when we consider the
problem arising with the timestamp, we are more interested in fixing imprecise timestamp,
i.e. the time does not reflect the true duration of the corresponding activity, than incorrect
timestamp, i.e. time is not recorded in order, since it is easy to recognise the later situation.
Unfortunately, this pattern is not easily simulated.

Since the model is highly sensitive to the variance introduced by noise, we can improve
the performance of current model by identifying and removing easy-to-recognize anomalies
before constructing the normal subspace since these anomalies may contaminate the subspace
during learning stage.

Another limitation is that the evaluation used for detection algorithm is solely based
on metrics and visualisations, which makes it not clear to see how effective our approach
is compared to others. In order to give more convinced results, we should compare the
performance of our model with other ones.

For the future investigations, we want to cope with the two limitations mentioned above.
With the high priority, the lack of standard and appropriate dataset should be solved first in

34 Multivariate anomaly detection

order to improve the reliability and validity of our models. Then, the next step is to compare
our approach with other currently-used frameworks.

Chapter 5

Event log reconstruction

5.1 Introduction

The problem with data collection is that it suffers from information loss, which is an important
issue in all domains. Traditional data imputation methods, such as mean or median value
substitution, are not very effective with event logs, since one cannot assume that attribute
values follow a known specific distribution. Instead of using traditional methods, in this
thesis, we propose adopting machine learning techniques to learn a model of data from which
missing value can be then imputed. The core idea underlying the proposed method is to treat
imputation as a special case of process predictive monitoring. While predictive monitoring
aims at predicting the next value of an attribute in a case [47], e.g., the next activity to be
executed, by looking at what happened in an event log in the past, when imputing missing
value we can look at the entire event log to impute a value for missing attributes. From a
methodological standpoint, predictive monitoring is a supervised learning problem, since
previous history in an event log can be used to extract a set of correctly labelled observations
to train a model. In reconstructing missing attribute values, however, correct observations are,
by definition, not available for training a learning model. Therefore, event log reconstruction
becomes a case of unsupervised learning. In this chapter, we present the way to simulate the
data with missing values and propose a novel reconstruction algorithm to impute a substituted
value that most truthfully reflects the execution of the business process that has generated the
event to which the missing attribute belongs.

36 Event log reconstruction

5.2 Methods

This section presents in detail the proposed method for imputing missing attribute values
in event logs. The steps of the proposed are shown in Fig. 5.1. A low quality event log,
i.e., with missing values, is taken as input. As mentioned in Section 4.2, we need to do
the transformation steps in the pre-processing phase. In terms of the training model, in this
chapter we also experiment with AE, VAE and LAE. After having learnt a model of the input,
a model is used to reconstruct missing values in an event log using the latent distribution
learnt by an autoencoder.

In a post-processing phase, for each case the continuous attribute values reconstructed by
the model are then translated back into the traditional format of event logs by applying the
inverse of the transformation adopted in the pre-processing phase. Meanwhile, the output
corresponding to the categorical attributes is fired by Softmax function to get the probability
of the likelihood of each label occurring.

Pre-processing Post-
processing

Event	Log
Reconstruction

Model	
Training

Event	log
(low	quality)

Event	log
(Reconstructed)

Trained
Model

(VAE,	AE,	LSTMAE)

Input	matrices Output	matrices

Fig. 5.1 Event log reconstruction procedure.

5.3 Missing attribute simulation

The downloaded event logs are clean and complete, so there is a need to introduce missing
values to evaluate the proposed method. We restrict the proposed model to imputing the
values of timestamp of completed activities, as an example of numerical attribute, and
activity name, as an example of categorical attribute. The remaining attribute, i.e., case id, is
maintained accurate and complete.

Since we are interested in investigating the impact of informative missingness on the
performance of our algorithm, we consider 30%, 35%, 40% and 50% as ratios of attribute
values missingness in event logs. To decide which values to set as missing, we randomly
sample two integers x1 and x2 from a discrete uniform distribution, with x1 signifying the

5.3 Missing attribute simulation 37

event to be set as missing, i.e., the row in an event log, and x2 the attribute to be set as missing,
i.e., the column in an event log. Then, we set the observation at the location of x1 and x2 as
missing. Table 5.1 shows an example of setting missing values using the BPI Challenge 2012
dataset.

Table 5.1 Example of missing attribute value setting, using the BPI Challenge 2012 event
log.

Case ID Activity Complete Timestamp
Case 1 A_SUBMITTED-COMPLETE 01/10/2011 07:38:45
Case 1 A_PARTLYSUBMITTED-COMPLETE 01/10/2011 07:38:45
Case 1 A_PREACCEPTED-COMPLETE NaT
Case 1 NaN NaT
Case 1 NaN 01/10/2011 18:36:46

In this case, x1 is drawn from a uniform distribution in the range [1,5], that is, 5 events
belong to the log, and x2 from a uniform distribution in range [1,2], i.e., only 2 attributes
can be missing (activity or timestamp). In Table 5.1, 4 missing values have been set, for
(x1,x2)∈ {(3,2),(4,1),(4,2),(5,1)}. Note that continuous missing attributes are set to NaN,
whereas discrete missing attributes are set to NaT. As a result of this procedure, the propensity
for an attribute value to be missing is completely random.

The number of missing values introduced for the later experiments is shown in Table 5.2.

Table 5.2 Number of missing values in each dataset

Data Missingness ratio Variable Train Validate Test Total

BPI 2013

30%
Time 1,371 327 317 2,015
Activity 1,352 321 308 1,981

35%
Time 1,577 374 399 2,350
Activity 1,523 408 381 2,312

40%
Time 1,799 432 425 2,656
Activity 1,797 423 452 2,672

50%
Time 2,226 545 535 3,306
Activity 2,146 654 554 3,354

BPI 2012

30%
Time 47,329 16,546 14,501 78,376
Activity 47,624 16,971 14,349 78,944

35%
Time 55,546 19,584 16,930 92,060
Activity 55,183 19,457 16,840 91,480

40%
Time 63,500 22,125 19,154 104,779
Activity 63,485 22,333 19,163 104,981

50%
Time 79,253 27,901 23,902 131,056
Activity 79,431 27,777 23,936 131,144

38 Event log reconstruction

5.4 Input data treatment

id case act tst

e1 1 A 5

e2 1 B 7

e3 2 B 3

e4 1 C 10

id case CA CB Cc Ctst

e1 1 1 0 0 0

e2 1 0 1 0 0.4

e3 2 0 1 0 0

e4 1 0 0 1 1

1 0 0 0
0 1 0 0.4
0 0 1 1

0 0 0 0
0 0 0 0
0 1 0 0

Case	1

Case	2

e1

e2
e4

e3

Event	log
Normalisation of	

attributes	“act”	(discrete)	
and	“tst”	(continuous)

Input	of	autoencoder

Fig. 5.2 Event log pre-processing for ELR: example

Before feeding the data into the training network, we need to do preprocessing steps
on this dataset to make it more appropriate to our model. Similar to the steps described in
Section 4.4, the categorical attributes are encoded using one-of-K scheme which K is the
number of labels (see encoding of timestamps Figure 5.2).

Numerical attributes #ai(e) (see encoding of timestamps Figure 5.2) are encoded by
normalising their value between the minimum value Lmin the maximum value Lmax assumed
by attribute ai within the case to which event e belongs. That is, for a continuous attribute ai,
a column is created such that, for each event e in an event log:

ci(e) =
#ai(e)−Lmin

Lmax −Lmin
, (5.1)

with Lmax = #ai(emax), Lmin = #ai(emin) and

emax =
{

e ∈ E : #a(e)< #a(e′)∧#case(e) = #case(e′)⇒ e′ = e,∀e′ ∈ E
}

(5.2)

emin =
{

e ∈ E : #a(e)> #a(e′)∧#case(e) = #case(e′)⇒ e′ = e,∀e′ ∈ E
}

(5.3)

Alternatively, numerical attributes values can be normalised using the minimum and max-
imum values li,min and li,max in Dai . This choice, however, is highly sensitive to abnormally
high values in the domain Dai .

For both categorical and numerical attributes, missing values are encoded to the value 0.
Then, we need to transform the data within a case into matrix by doing two steps, groupby

and padding, as mentioned in Section 4.4 in order to get p×q matrix as a presentation of a
case. For a closer look at these steps, please refer to Figure 5.2.

5.4 Input data treatment 39

The objective of the model training step is to train a model that can learn the latent

distribution of data in an event log. Once a model has been trained, each case in an event log
is reconstructed into an output matrix of elements c′i, j of size p×q. As a result of the model
learning step, in an output matrix missing attributes values (denoted by 0 in the input matrix)
are mapped to valid value for numerical attributes and to probabilities for the categorical
attributes. In other words, the task of reconstructing a missing value of a numerical attribute
is a regression task, while reconstructing values of categorical attributes is a classification
task.

To define the loss function to be optimised, during model training we introduce a masking
matrix to distinguish missing values and zero-padding values from non-zero values in an input
matrix. The loss function, in fact, must be designed in such a way that 0 values in an input
matrix should not be learnt, since they correspond to either artificially added zero-padding
values or initially missing values. Elements mi, j of the masking matrix M ∈Rp×q are defined
as:

mi, j =

0 if ci, j = 0 (missing or 0-padding)

1 otherwise
(5.4)

As introduced in Section 2.1.3, we consider a cross entropy-based loss function for
autoencoders, which uses the masking matrix of Eq. 5.4 and in which cross-entropy is
averaged across all values in an input matrix:

L(ci, j,c′i, j) =
1

p×q

p

∑
i=1

q

∑
i=1

ci, j ·mi, j logc′i, j +(1− c′i, j) ·mi, j · log(1− c′i, j) (5.5)

For VAE, in the loss function (see Eq. 2.7) we consider unit gaussian distributions for the
KL regularization term and the cross-entropy function defined above for the reconstruction
term.

The last step is to post-process the output matrices to reconstruct an event log in its
traditional format. In this post-processing step missing values of numerical attributes are
transformed into valid values in an event log by inverting Eq. 5.1, whereas an output value ai

of a categorical attribute is reconstructed by softmax activation, that is, the attribute value
ai,k with highest probability value c′i,k in an output matrix is chosen as reconstructed value.

40 Event log reconstruction

5.5 Experiments

The configurations of the autoencoders in terms of activation functions and types of hidden
layers used in this experiments are set the same as those in anomaly detection in Section 4.5
except that we use sigmoid as the last activation function since it squashes the output to 0
and 1. Additional layers may be stacked in the encoding and decoding layers to increase the
performance of the learning of process while deteriorating the time performance.

Following the acquisition of the appropriate dataset, we conduct experiments with three
variants of autoencoders. The input data is loaded into the model with mini batch-size of 16,
and the weights are initialized by Xavier uniform initializer to assist in faster convergence
and avoiding local minima and exploding/vanishing gradient descent. We train the model
with 100 epoch using the learning rate of 0.001, an adaptive learning rate with an exponential
decay factor of 0.99. The parameters are optimized by using Adam algorithm [21] with β1 =
0.9 and β2 = 0.999. We monitor the training procedure by manually terminating the training
when the loss on the validation set has not improved after 10 iterations.

Table 5.3 Choices of hidden size for experiments.

Data Input size Hidden size
(AE, VAE)

Number of
features

Hidden size
(LAE)

BPI 2013 280 [100, 50] 8 1
BPI 2012 6,475 [300, 100] 37 20
Small log 210 [100, 50] 15 25
Large log 88 [50, 20] 11 25

Once obtaining the trained model, we let the model do the imputation for the test set. The
output of regression task is evaluated by the metrics, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) while the classification task is evaluated by Accuracy Score.

After model training, we let the model do the imputation on the test set (see Fig. 5.1).
The performance of the regression task (for numerical attributes) is evaluated using the Mean
Absolute Error (MAE) and the Root Mean Square Error (RMSE), while for the classification
task (for categorical attributes), we consider the accuracy score.

The method has been implemented in Pytorch1. The implementation code can be found
at2. With the same machine described in Section 4.5, the running time is shown in Table 5.4.

1https://github.com/pytorch
2https://github.com/hoangnguyen3892/event-log-reconstruction

https://github.com/pytorch
https://github.com/hoangnguyen3892/event-log-reconstruction

5.6 Evaluation criteria 41

Table 5.4 Execution time reported in milliseconds.

Data VAE AE LAE
BPI 2013 250 200 350
BPI 2012 2,400 1,800 9,500
Small log 300 200 600
Large log 1,900 1300 2,500

5.6 Evaluation criteria

In this section, we describe baseline models used for the evaluation of our reconstruction
model. As we notice, there is no existing procedure to do the imputation for both activity
and complete timestamp of the event logs. Therefore, we utilize some baseline methods do
to single imputation for activity imputation and complete timestamp separately.

The performance of the proposed method is evaluated against baseline imputation meth-
ods commonly used in the literature. For imputing the values of categorical attributes, i.e.,
activity name in our experiments, a traditional approach is to consider the most frequent
observation [41]. In our experiments, the baseline BL for missing activity values is the most
frequent activity name in an event log. For imputing values of numerical attributes, the
median or mean value are often considered [41]. In our experiments, we consider 4 possible
baselines for imputing missing timestamps values, i.e., reconstructing timestamp values using
the median (BL1) and mean (BL2) duration of all activities in an event log, and using the
median (BL3) and mean (BL4) duration of the activity to which a missing timestamp belongs.
Note that, if both activity name and timestamp are missing for an event, then the activity
name is imputed first using the proposed method, and this imputed value is used to calculate
the baseline values of the missing timestamp.

Even though handling the missingness in this sequence can be solved by using median
and mean substitution methods, these methods can lead to imprecise information which
changes the order of activity. We ignore this problem in these dummy models and use the
imputed values for computing the error metrics.

As mentioned previously in our paper, the error metrics for the time prediction are Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE); the error metric for activity
prediction is accuracy. These metrics are computed with the values obtained from dummy
models to compare with the results of our proposed models.

42 Event log reconstruction

5.7 Results

Table 5.5 and Table 5.6 shows the time and activity imputation results on the datasets
respectively. It can be seen that the our proposed models outperform the baselines in all
experiments and their performance is somehow affected by the availability of the data.
Furthermore, the goodness of the reconstruction models is remarkably efficient in the task of
imputing missing activities. Another thing we observe during training is that it is difficult to
guarantee and accelerate the convergence of training in the small-size dataset compared with
the large-size dataset.

Table 5.5 Model performance for missing timestamp value reconstruction, measured by Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) in days.

Event log Missingness Metric VAE AE LAE BL1 BL2 BL3 BL4

BPI 2013

30%
MAE 7.23 6.70 6.69 8.68 14.35 8.97 12.90

RMSE 13.50 13.32 13.39 16.47 19.40 16.43 18.42

35%
MAE 7.80 7.34 7.93 15.35 19.88 15.45 18.67

RMSE 14.38 14.21 14.32 113.84 113.94 113.83 113.85

40%
MAE 8.52 7.70 7.53 10.14 16.79 10.93 15.34

RMSE 15.95 13.99 13.95 18.21 23.53 18.42 22.03

50%
MAE 8.65 8.32 8.42 19.10 26.05 19.68 26.27

RMSE 14.92 14.73 15.48 139.66 140.02 139.62 140.14

BPI 2012

30%
MAE 0.98 0.77 0.71 1.12 1.46 1.09 1.13

RMSE 2.12 1.92 1.95 3.80 3.86 3.70 3.68

35%
MAE 1.07 0.81 1.76 1.15 1.49 1.11 1.13

RMSE 2.23 1.95 3.01 3.78 3.85 3.66 3.64

40%
MAE 1.08 0.89 1.12 1.18 1.54 1.13 1.19

RMSE 2.23 2.10 2.24 3.89 3.97 3.79 3.78

50%
MAE 1.17 1.06 1.05 1.43 1.85 1.39 1.43

RMSE 2.40 2.46 2.39 4.29 4.42 4.19 4.18

Small log

30%
MAE 0.02 0.02 0.02 0.06 0.06 0.05 0.05

RMSE 0.03 0.03 0.03 0.13 0.11 0.11 0.11

35%
MAE 0.02 0.02 0.02 0.06 0.06 0.05 0.05

RMSE 0.03 0.03 0.03 0.13 0.12 0.11 0.11

40%
MAE 0.02 0.02 0.03 0.07 0.06 0.05 0.05

RMSE 0.04 0.04 0.04 0.08 0.07 0.06 0.07

50%
MAE 0.03 0.03 0.03 0.13 0.12 0.11 0.11

RMSE 0.04 0.04 0.05 0.15 0.13 0.14 0.14

Large log

30%
MAE 0.02 0.02 0.02 0.06 0.06 0.06 0.06

RMSE 0.04 0.04 0.04 0.13 0.12 0.12 0.12

35%
MAE 0.03 0.03 0.03 0.07 0.07 0.06 0.06

RMSE 0.04 0.04 0.04 0.13 0.13 0.13 0.13

40%
MAE 0.03 0.03 0.03 0.07 0.07 0.07 0.07

RMSE 0.05 0.05 0.05 0.14 0.13 0.11 0.12

50%
MAE 0.04 0.04 0.04 0.08 0.08 0.08 0.07

RMSE 0.06 0.06 0.06 0.15 0.14 0.15 0.13

5.7 Results 43

Timestamp reconstruction. Results in Table 5.5 show that, in relative terms, both VAE,
AE and LAE perform better than the baselines BL1−4. The mean and maximum case duration
is 8.62 days and 137.22 days, respectively, for the BPI 2012 event log and 178.88 days and
2,254.85 days, respectively, for the BPI 2013 event log. The reported numbers in small log
are both 0.33 days; in large log are 0.25 days. Statistical description of case duration can be
found in Appendix A.

The performance of the proposed method on the BPI 2012 event log is rather stable, with
MAE and RMSE not exceeding 13.6% (0.85%) and 27.8% (1.75%) of mean (maximum) case
duration, respectively. The performance in respect of the BPI 2013 event log is substantially
less stable. The high variability of results for the BPI 2013 event log is due to the distribution
of activity durations. Activities in this event log tend to have very short or very long duration,
which makes it difficult to learn the time characteristics in the logs. This is also supported
by the noticeable gap between mean (BL1, BL3) and median (BL2, BL4) imputation for this
event log. Mean values are in fact affected by extreme values or outliers in the dataset, and
therefore achieves worse results. On the small log, MAE and RMSE are approximately 9.1%
and 12.1% of mean case duration, while these numbers on the large log are 16% and 24%,
respectively. Comparing to the performance of model in the real and artificial log, we find
that the model can achieve more stable result in the later dataset. This is due to the fact that
there are less disturbances and distractions from noise in the artificial logs.

Table 5.6 Model performance for missing activity label reconstruction, measured by accuracy.

Data Missingness VAE AE LAE BL

BPI 2013

30% 73.05% 78.57% 74.35% 44.16%
35% 74.80% 75.33% 73.75% 46.46%
40% 73.70% 78.76% 76.55% 44.47%
50% 71.48% 76.33% 72.02% 47.11%

BPI 2012

30% 69.05% 79.19% 48.81% 10.77%
35% 64.88% 78.69% 27.93% 10.32%
40% 64.33% 75.92% 31.93% 10.28%
50% 60.78% 74.90% 36.95% 10.17%

Small log

30% 94.66% 96.36% 61.83% 5.22%
35% 94.07% 96.90% 67.44% 6.25%
40% 91.18% 95.41% 66.02% 7.29%
50% 90.11% 93.74% 65.83% 7.12%

Large log

30% 87.14% 87.69% 83.04% 11.84%
35% 86.72% 87.02% 82.86% 12.55%
40% 86.38% 86.84% 82.44% 12.32%
50% 84.64% 85.20% 82.04% 12.32%

44 Event log reconstruction

Activity reconstruction. Results in Table 5.6 show a remarkable efficiency of the
proposed method to reconstruct missing activity names. We can also observe that the
performance of reconstructing missing activity names is more stable compared to missing
timestamp reconstruction, even under high levels of information missingness. The model is
able to impute missing values efficiently with higher accuracy than baselines from the very
first iterations. This may be due to the fact that a sequence of activities in an event log tend
to follow a particular pattern determined by the process control flow. This pattern can be
learned by our model during the training process, which helps improving the accuracy of
activity imputation.

Effect of missingness ratio. As the number of missing attribute values increases, the
performance of the proposed reconstruction models deteriorates. However, the missingness
ratio does not appear to have a large effect on the activity name imputation performance (see
Table 5.6). As remarked before, this may be due to the patterns of sequence of activities.
Once these control flow structures have been learned by a model, they easily can be used to
reliably impute missing values. It seems, therefore, that the performance of the model should
be evaluated in the future in respect of the complexity of a process model control flow. Note
that the results do not vary extensively in the baseline methods using the mean and median
values. This is because we only consider completely random missing values, which do not
have a significant impact impact on average values calculate from the dataset.

Comparison between the proposed learning models. Overall, AE seems to perform
better than VAE and LAE in most scenarios. In addition, the two later models converge
slower than AE under the same settings. This should not surprise, since VAE and LAE are
by definition better suited to generative use cases, i.e., when the objective is to generate new
datasets X ′ with a similar distribution to the input X , whereas AEs suit better the use case
of exact reconstruction of the input dataset X , through the steps of encoding and decoding.
The problem considered in this paper is more similar to the latter one, since we aim at
reconstructing exactly a set of missing values in an event log.

5.8 Discussion

This paper has presented a method to reconstruct missing attribute values in event logs. This
increases the event logs quality by reducing the number of missing values, which in turn
enables higher quality business process analysis. The method proposed uses autoencoders, a
special class of feed-forward deep neural networks that aim at reconstructing their own input.
Even though the performance of reconstructing timestamp values is unstable, especially in

5.8 Discussion 45

the case of the small-sized dataset, we have showed that autoencoders give better results than
baseline imputation methods when applied to both real-life and artificial event logs.

The proposed method has been evaluated for imputing the values of missing timestamps
and activity labels. However, it can be generalised to other variables that typically belong to
an event log. For instance, cost can be considered as a numerical variable, whereas resource
identifier is a categorical variable that can be handled similarly to activity names. Given its
central role in uniquely identifying cases, imputing the value of missing case id values is
more challenging and deserves the development of ad-hoc methods.

The work presented has several limitations. First, the bias introduced by the distribution
of the values of timestamps leads to poor imputation of timestamps when compared to
activity names. Also, the proposed method only considers two variables for training and it
can be improved by considering other existing information in event logs or by extracting
more features. Addressing these limitation is a direction for future work. Moreover, future
research should also look beyond improving event log quality after they have been acquired,
by considering how a process logging infrastructure can be intsrumented with data quality
controls. Another interesting avenue for future research concerns investigating the impact
of control flow complexity on the efficiency of reconstructing the values of activity labels.
Finally, we also aim at evaluating the actual impact of event log quality improvement on the
results of process mining analysis.

Chapter 6

Conclusion and future work

6.1 Conclusion

This thesis presents a two-step procedure using autoencoders for unsupervised representation
learning in order to solve the problem of the event log quality. In general, autoencoders
compress the pattern of data in the event log to a low-dimensional space which is later
decompressed to reconstruct the true data distribution. Then, the recovered distribution can
be used to recognise the noisy values, which is applied into data cleaning step, or reproduce
the missing values, which is applied into data imputation step.

As demonstrated by experiments in Chapter 4, the proposed methods work efficiently in
the generated logs. However, the results obtained in real-life event logs are not as good as the
ones obtained in artificial logs. This is because there is no clear borderline between simulated
anomalies and normal data. In other experiments shown in Chapter 5, all models have been
shown to achieve good results in imputing the missing attributes. In fact, performing this task
is easier than the previous since noise is removed and the model only learn by the correct
data. Among the methods mentioned in this thesis, AE appears to be more useful in applying
to this context.

In conclusion, we have shown that our proposed models outperform traditional approach
in both real-life and artificial event logs. Furthermore, the method can be generalised and
extended to other variables. For instance, cost and resource can be treated as a numerical and
categorical variable, respectively. Finally, this work is an evidence that neural networks is
applicable in the field of business process.

48 Conclusion and future work

6.2 Future work

For the future investigations corresponding to the first sub-procedure, data cleaning, we
should explore how to simulate anomalies more appropriate in the real-life logs. Regarding
data imputation, it is worth to investigate more the distribution of time value and look insight
the process logging infrastructure. Aside from those, in the future work, we would like to
check the conformance of our novel framework in an end-to-end experiment in which we
should check to what extend the models can enhance the quality of further analysis.

Publications

The results of this thesis will be published in:

1. A paper titled "Event Log Reconstruction using Autoencoders" submitted to CAiSE
20181.

2. A journal paper titled "Neural computing to improve event log quality" currently under
preparation for journal submission (expected in January 2018).

1https://caise2018.ut.ee/

https://caise2018.ut.ee/

References

[1] Abdi, H. and Williams, L. J. (2010). Principal component analysis. Wiley interdisci-
plinary reviews: computational statistics, 2(4):433–459.

[2] Batini, C., Cappiello, C., Francalanci, C., and Maurino, A. (2009). Methodologies for
data quality assessment and improvement. ACM computing surveys (CSUR), 41(3):16.

[3] Bayomie, D., Helal, I. M., Awad, A., Ezat, E., and ElBastawissi, A. (2015). Deducing
case ids for unlabeled event logs. In Business Process Management Workshops, pages
242–254. Springer.

[4] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828.

[5] Bengio, Y., Simard, P. Y., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166.

[6] Bose, R. J. C., Mans, R. S., and van der Aalst, W. M. (2013). Wanna improve process
mining results? In Computational Intelligence and Data Mining (CIDM), 2013 IEEE
Symposium on, pages 127–134. IEEE.

[7] Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and
singular value decomposition. Biol. Cybern., 59(4-5):291–294.

[8] Burattin, A. (2015). PLG2: multiperspective processes randomization and simulation for
online and offline settings. CoRR, abs/1506.08415.

[9] Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2016). Recurrent neural net-
works for multivariate time series with missing values. arXiv preprint arXiv:1606.01865.

[10] Chen, X. W. and Lin, X. (2014). Big data deep learning: Challenges and perspectives.
IEEE Access, 2:514–525.

[11] Cheng, H.-J. and Kumar, A. (2015). Process mining on noisy logs—can log sanitization
help to improve performance? Decision Support Systems, 79:138–149.

[12] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the properties
of neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259.

[13] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio,
Y. (2014b). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

52 References

[14] Doersch, C. (2016). Tutorial on Variational Autoencoders. Arxiv preprint.

[15] Ghionna, L., Greco, G., Guzzo, A., and Pontieri, L. (2008). Outlier detection techniques
for process mining applications. In Proceedings of the 17th International Conference
on Foundations of Intelligent Systems, ISMIS’08, pages 150–159, Berlin, Heidelberg.
Springer-Verlag.

[16] Gondara, L. and Wang, K. (2017). Multiple imputation using deep denoising autoen-
coders. arXiv preprint arXiv:1705.02737.

[17] Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length and
helmholtz free energy. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances
in Neural Information Processing Systems 6, pages 3–10. Morgan-Kaufmann.

[18] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München, page 91.

[19] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

[20] K. Beaulieu-Jones, B. and Moore, J. (2016). Missing data imputation in the electronic
health record using deeply learned autoencoders. 22:207–218.

[21] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

[22] Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. ArXiv
e-prints.

[23] Lecun, Y. (1987). PhD thesis: Modeles connexionnistes de l’apprentissage (connec-
tionist learning models). Universite P. et M. Curie (Paris 6).

[24] Mans, R. S., van der Aalst, W. M., Vanwersch, R. J., and Moleman, A. J. (2013). Process
mining in healthcare: Data challenges when answering frequently posed questions. In
Process Support and Knowledge Representation in Health Care, pages 140–153. Springer.

[25] Montúfar, G., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the Number of Linear
Regions of Deep Neural Networks. ArXiv e-prints.

[26] Müller, H. and Freytag, J. (2005). Problems, Methods, and Challenges in Comprehen-
sive Data Cleansing. Informatik-Berichte // Institut für Informatik, Humboldt Universität
zu Berlin. Humboldt-Univ. zu Berlin.

[27] Nolle, T., Seeliger, A., and Mühlhäuser, M. (2016). Unsupervised anomaly detection
in noisy business process event logs using denoising autoencoders. In International
Conference on Discovery Science, pages 442–456. Springer.

[28] Oliveira, P., Rodrigues, F., and Henriques, P. R. (2005). A formal definition of data
quality problems. In Naumann, F., Gertz, M., and Madnick, S. E., editors, IQ. MIT.

[29] Phua, C., Lee, V., Smith-Miles, K., and Gayler, R. (2013). A comprehensive survey of
data mining-based fraud detection research (bibliography).

References 53

[30] Pimentel, M. A., Clifton, D. A., Clifton, L., and Tarassenko, L. (2014). A review of
novelty detection. Signal Processing, 99(Supplement C):215 – 249.

[31] Portnoy, L., Eskin, E., and Stolfo, S. (2001). Intrusion detection with unlabeled data
using clustering.

[32] Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull., 23(4):3–13.

[33] Rogge-Solti, A., Mans, R. S., van der Aalst, W. M., and Weske, M. (2013a). Improving
documentation by repairing event logs. In IFIP Working Conference on The Practice of
Enterprise Modeling, pages 129–144. Springer.

[34] Rogge-Solti, A., Mans, R. S., van der Aalst, W. M., and Weske, M. (2013b). Repairing
event logs using timed process models. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", pages 705–708. Springer.

[35] Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons and the theory of
brain mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books.

[36] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

[37] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter Learning
Internal Representations by Error Propagation, pages 318–362. MIT Press, Cambridge,
MA, USA.

[38] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomputing: Founda-
tions of research. chapter Learning Representations by Back-propagating Errors, pages
696–699. MIT Press, Cambridge, MA, USA.

[39] Sakurada, M. and Yairi, T. (2014). Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the MLSDA 2014 2Nd Workshop on
Machine Learning for Sensory Data Analysis, MLSDA’14, pages 4:4–4:11, New York,
NY, USA. ACM.

[40] Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., and Hemingway, H. (2014a).
Comparison of random forest and parametric imputation models for imputing missing
data using mice: A caliber study. American Journal of Epidemiology, 179(6):764–774.

[41] Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., and Hemingway, H. (2014b).
Comparison of random forest and parametric imputation models for imputing missing
data using mice: a caliber study. American Journal of Epidemiology, 179(6):764–774.

[42] Sigholm, J. and Raciti, M. (2012). Best-effort data leakage prevention in inter-
organizational tactical manets. In MILCOM 2012 - 2012 IEEE Military Communications
Conference, pages 1–7.

[43] Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and Ng, A. Y. (2011). Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In Shawe-Taylor,
J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 24, pages 801–809. Curran Associates, Inc.

54 References

[44] Srivastava, A., Kundu, A., Sural, S., and Majumdar, A. (2008). Credit card fraud
detection using hidden markov model. IEEE Transactions on dependable and secure
computing, 5(1):37–48.

[45] Steeman, W. (2013). Bpi challenge 2013.

[46] Suriadi, S., Andrews, R., ter Hofstede, A. H., and Wynn, M. T. (2017). Event log
imperfection patterns for process mining: Towards a systematic approach to cleaning
event logs. Information Systems, 64:132–150.

[47] Tax, N., Verenich, I., La Rosa, M., and Dumas, M. (2017). Predictive business
process monitoring with lstm neural networks. In International Conference on Advanced
Information Systems Engineering, pages 477–492. Springer.

[48] van der Aalst, W., Adriansyah, A., de Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle,
T., Bose, J. C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J.,
Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni,
M., Delias, P., van Dongen, B. F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D. R.,
Gaaloul, W., van Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., ter Hofstede,
A., Hoogland, J., Ingvaldsen, J. E., Kato, K., Kuhn, R., Kumar, A., La Rosa, M., Maggi,
F., Malerba, D., Mans, R. S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali,
M., Motahari-Nezhad, H. R., zur Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro,
J., Rozinat, A., Seguel Pérez, H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P.,
Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner,
C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., Weber,
B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., and Wynn, M. (2012). Process
Mining Manifesto, pages 169–194. Springer Berlin Heidelberg, Berlin, Heidelberg.

[49] van der Aalst, W. and de Medeiros, A. (2005). Process mining and security: Detecting
anomalous process executions and checking process conformance. Electronic Notes
in Theoretical Computer Science, 121(Supplement C):3 – 21. Proceedings of the 2nd
International Workshop on Security Issues with Petri Nets and other Computational
Models (WISP 2004).

[50] Van Dongen, B. (2012). Bpi challenge 2012.

[51] van Eck, M. L., Lu, X., Leemans, S. J., and van der Aalst, W. M. (2015). Pmˆ
2: A process mining project methodology. In International Conference on Advanced
Information Systems Engineering, pages 297–313. Springer.

[52] Zell, A. (1994). Simulation neuronaler netze.

I would like to dedicate this thesis to my family for their support and encouragement.

Acknowledgements

I would like to thank many people for contributing to this work.
First of all, I am deeply grateful to my supervisor, Professor Marco Comuzzi, who has

been the most reliable supervisor and given me the freedom to do what I am interested in.
Without his inspirations, insights and supports, I could not have this work done.

I would like to thank Mr. Hoang Minh Le for being so responsive to all of my questions
regarding technical knowledge, and providing me the computing and software facility to run
all of the experiments in this thesis.

I would like to thank Mr. Du Phan for creating study group, getting me interested in
machine learning. I wish him success in his future endeavors.

I would like to thank all of my friends in Korea who have made my stay here more
memorable and meaningful. I am also grateful to my friends back home. They have been
always available to keep me strong to overcome the obstacles in my path.

And last but not least, I would like to thank my family for their encouragement, sacrifices
and understanding.

Appendix A

Statistical Description and Visualization

BPI challenge 2013

Table A.1 BPI 2013 Challenge: Descriptive statistics of activity duration and frequency.

Activity µ σ Frequency
Completed-Cancelled 28,252.33 48,530.94 3
Queued-Awaiting Assignment 1,000,673.29 4,089,422.39 875
Completed-Closed 4,487,671.02 9,756,199.10 1,565
Accepted-Wait 3,474,376.57 9,675,577.78 527
Accepted-Assigned 2,284,207.51 7,115,575.88 614
Accepted-In Progress 3,862,876.81 11,479,844.40 3,066
Unmatched-Unmatched 659,730.10 1,613,426.68 10

Table A.2 BPI 2013 Challenge: Descriptive statistics of case duration.

Stat Value in seconds Value in days
Mean 15,455,650.00 178.88
Standard Deviation 20,550,850.00 237.86
Min - -
25th percentile 2,063,427.00 23.88
50th percentile 7,086,718.00 82.02
75th percentile 21,441,580.00 248.17
Max 194,818,900.00 2,254.85

60 Statistical Description and Visualization

BPI challenge 2012

Table A.3 BPI 2012 Challenge: Descriptive statistics of activity duration and frequency.

Activity µ σ Frequency
A_REGISTERED-COMPLETE 209.03 5,203.87 2,246
O_ACCEPTED-COMPLETE 488.71 721.68 5,113
W_Valideren aanvraag-SCHEDULE 62.7 211.2 5,023
W_Afhandelen leads-START 15,560.8 28,078.36 5,897
O_DECLINED-COMPLETE 524.37 799.24 802
A_PREACCEPTED-COMPLETE 85.19 151.96 7,367
O_SELECTED-COMPLETE 134.32 249.12 7,030
A_CANCELLED-COMPLETE 22,143.71 188,709.42 2,807
W_Beoordelen fraude-SCHEDULE 80.33 152.42 124
W_Afhandelen leads-SCHEDULE 27.57 19.83 4,771
W_Completeren aanvraag-SCHEDULE 0.6 5.15 7,371
W_Nabellen offertes-COMPLETE 12,720.04 115,166.4 22,976
O_CREATED-COMPLETE 4.29 11.58 7,030
A_DECLINED-COMPLETE 195.85 366.31 7,635
W_Beoordelen fraude-COMPLETE 546.16 5,785.19 270
A_ACTIVATED-COMPLETE 82.17 328.19 2,246
W_Valideren aanvraag-START 112,510.23 155,271.12 7,891
W_Completeren aanvraag-COMPLETE 17,090.33 166,754.11 23,967
A_PARTLYSUBMITTED-COMPLETE 0.58 1.24 13,087
W_Beoordelen fraude-START 61,002.15 100,268.84 270
A_FINALIZED-COMPLETE 95.1 160.53 5,015
A_ACCEPTED-COMPLETE 418.45 296.49 2,243
W_Afhandelen leads-COMPLETE 872.77 9,844.51 5,898
W_Nabellen offertes-START 264,853.48 287,348.28 22,406
O_SENT-COMPLETE 0.06 0.12 7,030
W_Valideren aanvraag-COMPLETE 594.5 6,170.41 7,895
A_SUBMITTED-COMPLETE - - 13,087
W_Nabellen incomplete dossiers-SCHEDULE 1,095.67 989.65 2,383
A_APPROVED-COMPLETE 222.82 672.36 2,246
W_Nabellen offertes-SCHEDULE 0.21 0.29 6,634
W_Wijzigen contractgegevens-SCHEDULE 1,013,819.24 2,542,798.47 12
O_SENT_BACK-COMPLETE 47.27 97.84 3,454
W_Completeren aanvraag-START 60,638.93 185,331.21 23,512
O_CANCELLED-COMPLETE 5,213.6 79,518.84 3,655
W_Nabellen incomplete dossiers-COMPLETE 737.92 8,291.54 11,407
W_Nabellen incomplete dossiers-START 49,978.11 102,731.69 11,400

61

Table A.4 BPI 2012 Challenge: Descriptive statistics of case duration.

Stat Value in seconds Value in days
Mean 745,100.10 8.62
Standard deviation 1,047,978.00 12.13
Min 1.86 -
25th percentile 54.47 -
50th percentile 69,857.43 0.81
75th percentile 1,226,653.00 14.20
Max 11,855,940.00 137.22

62 Statistical Description and Visualization

Small log

Table A.5 Small log: Descriptive statistics of activity duration and frequency.

Activity µ σ Frequency
Activity A - - 2,000
Activity B 3,600.00 - 2,000
Activity C 3,600.00 - 2,000
Activity D 3,600.00 - 2,000
Activity E 3,600.00 - 2,000
Activity F 3,600.00 - 2,000
Activity G 1,186.20 1,692.54 2,000
Activity H 3,600.00 - 2,000
Activity I 558.00 1,303.18 2,000
Activity J 628.20 1,366.68 2,000
Activity K 1,186.20 1,692.54 2,000
Activity L 1,186.20 1,692.54 2,000
Activity M 1,227.60 1,706.99 2,000
Activity N 1,227.60 1,706.99 2,000

Table A.6 Small log: Descriptive statistics of case duration.

Stat Value in seconds Value in days
Mean 28,800.00 0.33
Standard deviation - -
Min 28,800.00 0.33
25th percentile 28,800.00 0.33
50th percentile 28,800.00 0.33
75th percentile 28,800.00 0.33
Max 28,800.00 0.33

63

Large log

Table A.7 Large log: Descriptive statistics of activity duration and frequency.

Activity µ σ Frequency
Activity A - - 15,000
Activity B 3600.00 - 15,000
Activity C 1797.36 1800.06 15,000
Activity D 1802.64 1800.06 15,000
Activity E 3600.00 - 15,000
Activity F 3600.00 - 15,000
Activity G 3600.00 - 5,073
Activity H 3600.00 - 4,994
Activity I 3600.00 - 4,933
Activity J 3600.00 - 15,000

Table A.8 Large log: Descriptive statistics of case duration.

Stat Value in seconds Value in days
Mean 21,600.00 0.25
Standard deviation - -
Min 21,600.00 0.25
25th percentile 21,600.00 0.25
50th percentile 21,600.00 0.25
75th percentile 21,600.00 0.25
Max 21,600.00 0.25

Appendix B

Scatter Plot of Anomalous Time

In this appendix, we will show the simulated anomalous time attribute graphically.

BPI 2013 Challenge

(a) Accepted-Assigned (b) Accepted-In-Progress

(c) Accepted-Wait (d) Accepted-In-Progress

Fig. B.1 BPI 2013 log: Scatter plot of selected activity duration. The green dot denotes for
anomalous data, blue dot denotes for the normal data and the red solid line is the borderline.

66 Scatter Plot of Anomalous Time

BPI 2012 Challenge

(a) A-ACCEPTED-COMPLETE (b) A-ACTIVATED-COMPLETE

(c) A-DECLINED-COMPLETE (d) A-FINALIZED-COMPLETE

(e) A-PARTLYSUBMITTED-COMPLETE (f) A-REGISTERED-COMPLETE

Fig. B.2 BPI 2012 log: Scatter plot of selected activity duration. The green dot denotes for
anomalous data, blue dot denotes for the normal data and the red solid line is the borderline.

67

Small Log

(a) Activity G (b) Activity G

(c) Activity I (d) Activity J

(e) Activity K (f) Activity L

Fig. B.3 Small log: Scatter plot of selected activity duration. The green dot denotes for
anomalous data, blue dot denotes for the normal data and the red solid line is the borderline.

68 Scatter Plot of Anomalous Time

Large Log

(a) Activity B (b) Activity C

(c) Activity D (d) Activity E

(e) Activity F (f) Activity G

Fig. B.4 Small log: Scatter plot of selected activity duration. The green dot denotes for
anomalous data, blue dot denotes for the normal data and the red solid line is the borderline.

Appendix C

Receiver Operating Characteristic Curve

In this appendix, we provide the visualisation of ROC curves obtained from the experiments
in Chapter 4.

70 Receiver Operating Characteristic Curve

ROC Curve of Time attribute

(a) BPI 2013 - VAE (b) BPI 2013 - AE (c) BPI 2013 - LSTM-AE

(d) BPI 2012 - VAE (e) BPI 2012 - AE (f) BPI 2012 - LSTM-AE

(g) Small log - VAE (h) Small log - AE (i) Small log - LSTM-AE

(j) Large log - VAE (k) Large log - AE (l) Large log - LSTM-AE

Fig. C.1 Receiver Operating Characteristic of Time attribute.

71

ROC Curve of Activity attribute

(a) BPI 2013 - VAE (b) BPI 2013 - AE (c) BPI 2013 - LSTM-AE

(d) BPI 2012 - VAE (e) BPI 2012 - AE (f) BPI 2012 - LSTM-AE

(g) Small log - VAE (h) Small log - AE (i) Small log - LSTM-AE

(j) Large log - VAE (k) Large log - AE (l) Large log - LSTM-AE

Fig. C.2 Receiver Operating Characteristic of Time attribute.

Appendix D

Implementation

In this appendix, we gives a short instruction on how to reproduce the results shown in this
thesis.

74 Implementation

Multivariate Anomaly Detection

1. Source code: https://github.com/hoangnguyen3892/multivariate-anomaly-detection-for-event-logs

2. Directory structure:

Fig. D.1 Multivariate Anomaly Detection: Directory structure.

3. Clone the repository into a new private directory:

$ git clone https://github.com/hoangnguyen3892/multivariate-anomaly-detection-for-event-logs

4. Follow README.md to install requirements and run the kernels.

https://github.com/hoangnguyen3892/multivariate-anomaly-detection-for-event-logs

75

Event Log Reconstruction

1. Source code: https://github.com/hoangnguyen3892/event-log-reconstruction

2. Directory structure:

Fig. D.2 Event Log Reconstruction: Directory structure.

3. Clone the repository into a new private directory:

$ git clone https://github.com/hoangnguyen3892/event-log-reconstruction

4. Follow README.md to install requirements and run the kernels.

https://github.com/hoangnguyen3892/event-log-reconstruction

	1 Introduction
	1.1 Problem scenario
	1.2 Objectives
	1.3 Outline

	2 Background and related work
	2.1 Machine learning background
	2.1.1 Feed-forward neural networks
	2.1.2 Recurrent Neural Networks (RNNs)
	2.1.3 Autoencoders (AEs)

	2.2 Related work on quality of event logs

	3 Preliminaries
	3.1 Event log definition
	3.2 Datasets
	3.2.1 Artificial datasets
	3.2.2 Real-life datasets

	4 Multivariate anomaly detection
	4.1 Introduction
	4.2 Methods
	4.3 Anomalous attribute simulation
	4.4 Input data treatment
	4.5 Experiments
	4.6 Evaluation criteria
	4.7 Results
	4.8 Discussion

	5 Event log reconstruction
	5.1 Introduction
	5.2 Methods
	5.3 Missing attribute simulation
	5.4 Input data treatment
	5.5 Experiments
	5.6 Evaluation criteria
	5.7 Results
	5.8 Discussion

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	References
	Appendix A Statistical Description and Visualization
	Appendix B Scatter Plot of Anomalous Time
	Appendix C Receiver Operating Characteristic Curve
	Appendix D Implementation

<startpage>16
1 Introduction 1
 1.1 Problem scenario 1
 1.2 Objectives 3
 1.3 Outline 4
2 Background and related work 5
 2.1 Machine learning background 5
 2.1.1 Feed-forward neural networks 5
 2.1.2 Recurrent Neural Networks (RNNs) 6
 2.1.3 Autoencoders (AEs) 8
 2.2 Related work on quality of event logs 13
3 Preliminaries 17
 3.1 Event log definition 17
 3.2 Datasets 18
 3.2.1 Artificial datasets 18
 3.2.2 Real-life datasets 19
4 Multivariate anomaly detection 21
 4.1 Introduction 21
 4.2 Methods 21
 4.3 Anomalous attribute simulation 23
 4.4 Input data treatment 24
 4.5 Experiments 26
 4.6 Evaluation criteria 27
 4.7 Results 28
 4.8 Discussion 33
5 Event log reconstruction 35
 5.1 Introduction 35
 5.2 Methods 36
 5.3 Missing attribute simulation 36
 5.4 Input data treatment 38
 5.5 Experiments 40
 5.6 Evaluation criteria 41
 5.7 Results 42
 5.8 Discussion 44
6 Conclusion and future work 47
 6.1 Conclusion 47
 6.2 Future work 48
References 51
Appendix A Statistical Description and Visualization 59
Appendix B Scatter Plot of Anomalous Time 65
Appendix C Receiver Operating Characteristic Curve 69
Appendix D Implementation 73
</body>

