2,739 research outputs found

    Achieving reliability and fairness in online task computing environments

    Get PDF
    Mención Internacional en el título de doctorWe consider online task computing environments such as volunteer computing platforms running on BOINC (e.g., SETI@home) and crowdsourcing platforms such as Amazon Mechanical Turk. We model the computations as an Internet-based task computing system under the masterworker paradigm. A master entity sends tasks across the Internet, to worker entities willing to perform a computational task. Workers execute the tasks, and report back the results, completing the computational round. Unfortunately, workers are untrustworthy and might report an incorrect result. Thus, the first research question we answer in this work is how to design a reliable masterworker task computing system. We capture the workers’ behavior through two realistic models: (1) the “error probability model” which assumes the presence of altruistic workers willing to provide correct results and the presence of troll workers aiming at providing random incorrect results. Both types of workers suffer from an error probability altering their intended response. (2) The “rationality model” which assumes the presence of altruistic workers, always reporting a correct result, the presence of malicious workers always reporting an incorrect result, and the presence of rational workers following a strategy that will maximize their utility (benefit). The rational workers can choose among two strategies: either be honest and report a correct result, or cheat and report an incorrect result. Our two modeling assumptions on the workers’ behavior are supported by an experimental evaluation we have performed on Amazon Mechanical Turk. Given the error probability model, we evaluate two reliability techniques: (1) “voting” and (2) “auditing” in terms of task assignments required and time invested for computing correctly a set of tasks with high probability. Considering the rationality model, we take an evolutionary game theoretic approach and we design mechanisms that eventually achieve a reliable computational platform where the master receives the correct task result with probability one and with minimal auditing cost. The designed mechanisms provide incentives to the rational workers, reinforcing their strategy to a correct behavior, while they are complemented by four reputation schemes that cope with malice. Finally, we also design a mechanism that deals with unresponsive workers by keeping a reputation related to the workers’ response rate. The designed mechanism selects the most reliable and active workers in each computational round. Simulations, among other, depict the trade-off between the master’s cost and the time the system needs to reach a state where the master always receives the correct task result. The second research question we answer in this work concerns the fair and efficient distribution of workers among the masters over multiple computational rounds. Masters with similar tasks are competing for the same set of workers at each computational round. Workers must be assigned to the masters in a fair manner; when the master values a worker’s contribution the most. We consider that a master might have a strategic behavior, declaring a dishonest valuation on a worker in each round, in an attempt to increase its benefit. This strategic behavior from the side of the masters might lead to unfair and inefficient assignments of workers. Applying renown auction mechanisms to solve the problem at hand can be infeasible since monetary payments are required on the side of the masters. Hence, we present an alternative mechanism for fair and efficient distribution of the workers in the presence of strategic masters, without the use of monetary incentives. We show analytically that our designed mechanism guarantees fairness, is socially efficient, and is truthful. Simulations favourably compare our designed mechanism with two benchmark auction mechanisms.This work has been supported by IMDEA Networks Institute and the Spanish Ministry of Education grant FPU2013-03792.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Alberto Tarable.- Secretario: José Antonio Cuesta Ruiz.- Vocal: Juan Julián Merelo Guervó

    Optimizing the performance of optimization in the cloud environment–An intelligent auto-scaling approach

    Get PDF
    The cloud computing paradigm has gained wide acceptance in the scientific community, taking a significant share from fields previously reserved exclusively for High Performance Computing (HPC). On-demand access to a large amount of computing resources provided by Cloud makes it ideal for executing large-scale optimizations using evolutionary algorithms without the need for owning any computing infrastructure. In this regard, we extended WoBinGO, an existing parallel software framework for genetic algorithm based optimization, to be used in Cloud. With these extensions, the framework is capable of elastically and frugally utilizing the underlying cloud computing infrastructure for performing computationally expensive fitness evaluations. We studied two issues that are pertinent when dealing with large-scale optimization in the elastic cloud environment: the computing instance launching overhead and the price of engaging Cloud for solving optimization problems, in terms of the instances’ cumulative uptime. To explain the usability limits of WoBinGO framework running in the IaaS environment, a comprehensive analysis of the framework’s performance was given. Optimization of both total optimization time and total cumulative uptime, leads to minimizing the cost of cloud resources utilization. In this way, we are proposing an intelligent decision support engine based on artificial neural networks and metaheuristics to provide the user with an assessment of the framework’s behavior on the underlying infrastructure in terms of optimization duration and the cost of resource consumption. According to a given assessment, the user can decide upon faster delivery of results or lower infrastructure costs. The proposed software framework has been used to solve a complex real-world optimization problem of a subsurface rock mass model calibration. The results obtained from the private OpenStack deployment show that by using the proposed decision support engine, significant savings can be achieved in both optimization time and optimization cost

    The Importance of Worker Reputation Information in Microtask-Based Crowd Work Systems

    Get PDF
    This paper presents the first systematic investigation of the potential performance gains for crowd work systems, deriving from available information at the requester about individual worker reputation. In particular, we first formalize the optimal task assignment problem when workers’ reputation estimates are available, as the maximization of a monotone (sub-modular) function subject to Matroid constraints. Then, being the optimal problem NP-hard, we propose a simple but efficient greedy heuristic task allocation algorithm. We also propose a simple “maximum a-posteriori” decision rule and a decision algorithm based on message passing. Finally, we test and compare different solutions, showing that system performance can greatly benefit from information about workers’ reputation. Our main findings are that: i) even largely inaccurate estimates of workers’ reputation can be effectively exploited in the task assignment to greatly improve system performance; ii) the performance of the maximum a-posteriori decision rule quickly degrades as worker reputation estimates become inaccurate; iii) when workers’ reputation estimates are significantly inaccurate, the best performance can be obtained by combining our proposed task assignment algorithm with the message-passing decision algorithm

    Towards Scalable, Private and Practical Deep Learning

    Get PDF
    Deep Learning (DL) models have drastically improved the performance of Artificial Intelligence (AI) tasks such as image recognition, word prediction, translation, among many others, on which traditional Machine Learning (ML) models fall short. However, DL models are costly to design, train, and deploy due to their computing and memory demands. Designing DL models usually requires extensive expertise and significant manual tuning efforts. Even with the latest accelerators such as Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU), training DL models can take prohibitively long time, therefore training large DL models in a distributed manner is a norm. Massive amount of data is made available thanks to the prevalence of mobile and internet-of-things (IoT) devices. However, regulations such as HIPAA and GDPR limit the access and transmission of personal data to protect security and privacy. Therefore, enabling DL model training in a decentralized but private fashion is urgent and critical. Deploying trained DL models in a real world environment usually requires meeting Quality of Service (QoS) standards, which makes adaptability of DL models an important yet challenging matter.  In this dissertation, we aim to address the above challenges to make a step towards scalable, private, and practical deep learning. To simplify DL model design, we propose Efficient Progressive Neural-Architecture Search (EPNAS) and FedCust to automatically design model architectures and tune hyperparameters, respectively. To provide efficient and robust distributed training while preserving privacy, we design LEASGD, TiFL, and HDFL. We further conduct a study on the security aspect of distributed learning by focusing on how data heterogeneity affects backdoor attacks and how to mitigate such threats. Finally, we use super resolution (SR) as an example application to explore model adaptability for cross platform deployment and dynamic runtime environment. Specifically, we propose DySR and AdaSR frameworks which enable SR models to meet QoS by dynamically adapting to available resources instantly and seamlessly without excessive memory overheads
    corecore