
University of Nevada, Reno

Towards Scalable, Private, and Practical Deep Learning

A dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of

Philosophy in Computer Science and Engineering

by

Syed Zawad

Dr. Feng Yan, Dissertation Advisor

December 2022

© by Syed Zawad 2022
All Rights Reserved

The Graduate School

We recommend that the dissertation prepared under our supervision by

Syed Zawad

entitled

Towards Scalable, Private, and Practical Deep Learning

be accepted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Feng Yan, Ph.D., Advisor

Lei Yang, Ph.D., Committee Member

Haoting Shen, Ph.D., Committee Member

Dongfang Zhao, Ph.D., Committee Member

Ali Anwar, Ph.D., Committee Member

Hao Xu, Ph.D., Graduate School Representative

Markus Kemmelmeie, Ph. D., Dean, Graduate School

December 2022

i

Abstract

Deep Learning (DL) models have drastically improved the performance of Artificial In-

telligence (AI) tasks such as image recognition, word prediction, translation, among many

others, on which traditional Machine Learning (ML) models fall short. However, DL mod-

els are costly to design, train, and deploy due to their computing and memory demands.

Designing DL models usually requires extensive expertise and significant manual tuning

efforts. Even with the latest accelerators such as Graphics Processing Unit (GPU) and Ten-

sor Processing Unit (TPU), training DL models can take prohibitively long time, therefore

training large DL models in a distributed manner is a norm. Massive amount of data is made

available thanks to the prevalence of mobile and internet-of-things (IoT) devices. However,

regulations such as HIPAA and GDPR limit the access and transmission of personal data

to protect security and privacy. Therefore, enabling DL model training in a decentralized

but private fashion is urgent and critical. Deploying trained DL models in a real world

environment usually requires meeting Quality of Service (QoS) standards, which makes

adaptability of DL models an important yet challenging matter.

In this dissertation, we aim to address the above challenges to make a step towards scal-

able, private, and practical deep learning. To simplify DL model design, we propose Effi-

cient Progressive Neural-Architecture Search (EPNAS) and FedCust to automatically de-

sign model architectures and tune hyperparameters, respectively. To provide efficient and

robust distributed training while preserving privacy, we design LEASGD, TiFL, and HDFL.

We further conduct a study on the security aspect of distributed learning by focusing on how

data heterogeneity affects backdoor attacks and how to mitigate such threats. Finally, we

use super resolution (SR) as an example application to explore model adaptability for cross

platform deployment and dynamic runtime environment. Specifically, we propose DySR

ii

and AdaSR frameworks which enable SR models to meet QoS by dynamically adapting to

available resources instantly and seamlessly without excessive memory overheads.

iii

Acknowledgements

I would like to express my sincere gratitude to everyone who helped me with this dis-

sertation, especially: My advisor, Dr. Feng Yan, who was abundantly helpful and offered

invaluable assistance, support, and guidance. I am very fortunate to have him as my advi-

sor and mentor. Thank you for allowing me to work on exciting and challenging projects

that helped me grow professionally and personally through learning new technologies with

persistence and perseverance. I am grateful to you for teaching me great work ethic and

motivating me throughout my PhD by leading through example. I appreciate your valuable

advice that has helped me both in my personal and professional life. I look forward to

collaborating on numerous exciting projects in the future as well. Next, I would also like

to pay my gratitude to my committee members Dr. Lei Yang, Dr. Dongfang Zhao, Dr. Ali

Anwar, Dr. Haoting Shen and Dr. Hao Xu for their valuable feedback and suggestions that

helped improve this dissertation.

I am very thankful to my esteemed colleagues of the Intelligent Data and Systems Lab

(IDS Lab) and Big Data Analytics and Informatics Lab (BASIS Lab) with whom I have

shared six memorable years that I will cherish for the rest of my life. I have been fortunate

to have the opportunity to collaborate with them on various research projects. Collabora-

tions and brainstorming sessions with my lab colleagues helped me to troubleshoot chal-

lenges that arose in various projects. I wish them luck for their future endeavours and hope

to continue our collaborations in the future. I would also like to thank my collaborators at

Baidu Research, IBM Research - Almaden, Microsoft Research Redmond, George Mason

University, Duke University and University of Virginia. I am especially thankful for my

internship opportunities in Baidu, IBM and Microsoft due to which I was able to learn how

to do research in the industry. I am also very thankful to my family, especially my parents

iv

and siblings, who have always been very supportive. It would not have been possible for

me to follow my passion and dream of pursuing my graduate studies without their endless

love and support.

Finally, I am thankful to the University of Nevada, Reno, the National Science Founda-

tion, Amazon Web Services (AWS), Microsoft Research, and IBM Research for provid-

ing funding and resources in support of my doctoral research. The materials presented in

this dissertation is based on work supported by the National Science Foundation grants

CAREER-2048044, IIS-1838024, and CCF-1756013. Any opinions, findings, and con-

clusions or recommendations expressed in this work are those of the authors and do not

necessarily reflect the views of UNR, the National Science Foundation, AWS, Microsoft,

or IBM.

v

TABLE OF CONTENTS

Abstract i

Acknowledgements iii

List of Tables xvii

List of Figures xx

1 Introduction 1

1.1 Overview . 1

1.2 Summary of Contributions . 4

1.2.1 Automated Deep Learning Model Design and Tuning 4

1.2.1.1 EPNAS: Efficient Progressive Neural Architecture Search 5

1.2.1.2 FedCust: Offloading Hyperparameter Customization for

Federated Learning . 5

1.2.2 Efficient and Robust Deep Learning Training 6

1.2.2.1 LEASGD: Towards Decentralized Deep Learning with

Differential Privacy . 6

1.2.2.2 TiFL: A Tier-based Federated Learning System 7

vi

1.2.2.3 HDFL: Dropout and Multi-Performance Metrics Aware

Fair Scheduler for Federated Learning 8

1.2.2.4 Curse or Redemption? How Data Heterogeneity Affects

the Robustness of Federated Learning 9

1.2.3 Adaptive Deep Learning Model Deployment 9

1.2.3.1 DySR: Adaptive Super-Resolution via Algorithm and Sys-

tem Co-design . 10

1.2.3.2 AdaSR: Adaptive Super Resolution with Shared Archi-

tecture and Weights for Cross Platform Deployment and

Dynamic Runtime Environment 11

1.3 Organization . 12

2 EPNAS: Efficient Progressive Neural Architecture Search 13

2.1 Introduction . 13

2.2 Related Works . 15

2.3 Framework . 16

2.3.1 Policy Network . 19

2.3.2 Search Pattern . 20

2.3.3 Speedup EPNAS with performance prediction 21

2.4 Experimental Evaluation . 22

vii

2.4.1 Results on ImageNet . 26

3 FedCust: Offloading Hyperparameter Customization for Federated Learning 27

3.1 Introduction . 27

3.2 Background and Related Work . 31

3.2.1 Data Heterogeneity in Federated Learning 31

3.2.2 Hyperparameter Optimization . 32

3.2.2.1 Hyperparameter Optimization for Data Centralized Learn-

ing . 32

3.2.2.2 One-size-fits-all Hyperparameter Optimization for FL . . 33

3.2.2.3 Hyperparameter Customization for FL 33

3.3 Federated Learning Hyperparameter Optimization Study 34

3.3.1 Federated Learning: A Primer . 35

3.3.2 Heterogeneity-oblivious vs. Heterogeneity-aware Hyperparameter

Optimization . 37

3.3.3 Resource Cost and Scalability . 40

3.4 Hyperparameter Customization Offloading 42

3.5 FedCust: Heterogeneity-aware Hyperparameter Optimization 45

3.5.1 Proxy dataset-based Hyperparameter Customization 46

viii

3.5.2 Privacy-Preserving Hyperparameter Customization via Hyperpa-

rameter Reference Table . 48

3.5.3 Determining HRT Granularity . 51

3.5.4 Scalable Hyperparameter Customization via Bayesian Strengthened

Tuner . 52

3.6 Evaluation . 54

3.6.1 Experiment Setup . 54

3.6.2 Performance Comparison . 56

3.6.3 Hyperparameter Optimization Cost 58

3.6.4 Scalability . 59

3.6.5 HRT Size . 60

3.6.6 Resource Cost . 61

3.6.7 Comparison against State-of-the-art 63

3.6.8 Compatibility with Other Heterogeneity-aware FL Optimization . . 64

3.6.9 Impact of Proxy Dataset Quality 64

4 LEASGD: Towards Decentralized Deep Learning with Differential Privacy 66

4.1 Introduction . 66

4.2 Related Work . 68

ix

4.3 Non-private Leader-Follower Elastic Averaging Stochastic Gradient De-

scent Algorithm . 70

4.3.1 Problem Setting . 70

4.3.2 Decentralized leader-follower Topology 72

4.3.3 Algorithm Hyperparameters . 73

4.3.4 Asynchronous LEASGD Algorithm 75

4.4 Non-private Leader-Follower Elastic Averaging Stochastic Gradient De-

scent Algorithm . 76

4.4.1 Problem Setting . 76

4.4.2 Decentralized Leader-Follower Topology 77

4.4.3 Algorithm Hyperparameters . 79

4.4.4 Asynchronous LEASGD Algorithm 80

4.5 Private-preserving Scheme . 82

4.5.1 Differential Privacy Model . 82

4.5.2 Privacy-preserving Scheme . 83

4.6 Analysis . 85

4.6.1 Convergence Rate Analysis . 85

4.6.2 Privacy Trade-off Analysis . 88

x

4.7 Experimental Evaluation . 90

4.7.1 Experiment Setup . 90

4.7.2 Non-private Setting Comparison 91

4.7.3 Differential Private Comparison 92

5 TiFL: A Tier-based Federated Learning System 94

5.1 Introduction . 94

5.2 Related Work . 97

5.3 Heterogeneity Impact Study . 99

5.3.1 Formulating Vanilla Federated Learning 99

5.3.2 Heterogeneity Impact Analysis . 99

5.3.3 Experimental Study . 102

5.4 TiFL : A Tier-based Federated Learning System 104

5.4.1 System Overview . 105

5.4.2 Profiling and Tiering . 105

5.4.3 Straw-man Proposal: Static Tier Selection Algorithm 107

5.4.4 Adaptive Tier Selection Algorithm 108

5.4.5 Training Time Estimation Model 111

xi

5.4.6 Discussion: Compatibility with Privacy-Preserving Federated Learn-

ing . 112

5.5 Experimental Evaluation . 113

5.5.1 Experimental Setup . 113

5.5.2 Experimental Results . 115

5.5.2.1 Training Time Estimation via Analytical Model 120

5.5.2.2 Resource Heterogeneity 121

5.5.2.3 Data Heterogeneity . 122

5.5.2.4 Resource and Data Heterogeneity 124

5.5.2.5 Adaptive Selection Policy 126

5.5.2.6 Adaptive Selection Policy (LEAF) 127

6 Curse or Redemption? How Data Heterogeneity Affects the Robustness of

Federated Learning 129

6.1 Introduction . 129

6.2 Related Works . 132

6.3 Experiment Setups for FL Backdooring 133

6.4 Data Heterogeneity Seems to Be a Redemption 136

xii

6.4.1 Redemption 1: Data Heterogeneity Reduces Attack Effectiveness

of Backdooring . 136

6.4.2 Redemption 2: An Overlooked Key Factor: Malicious Data Distri-

bution . 138

6.4.3 Redemption 3: Effective Attack Strategies are More Challenging

to Make . 139

6.5 Data Heterogeneity Brings Unseen Curses 140

6.5.1 Curse 1: Local Attack Timing: a New Vulnerability 141

6.5.2 Curse 2: Failure of Skewed-Feature Based Defense 142

6.5.3 Curse 3: Malicious Data Distribution as Leverage 143

6.6 Defending the Curses Brought by Data Heterogeneity 145

7 HDFL: Dropout and Multi-Performance Metrics Aware Fair Schedulerfor Fed-

erated Learning 148

7.1 Introduction . 148

7.2 Background and Related Work . 150

7.3 Characterization Study . 152

7.3.1 Performance Metrics . 152

7.3.2 Tradeoff Between Fairness and Training Time 154

7.3.3 Impact of Dropout on Fairness and Model Error 155

xiii

7.3.4 Tradeoff Between Cost and Model Error 156

7.4 Methodology . 157

7.4.1 Problem Formulation . 157

7.4.2 HDFL Overview . 158

7.4.3 Selection Probability . 160

7.4.4 Selection Mutualism . 161

7.5 Evaluation . 163

8 DySR: Adaptive Super-Resolution via Algorithm and System Co-design 169

8.1 Introduction . 169

8.2 Related Works . 171

8.3 Motivation and Challenges . 172

8.4 Algorithm and System Co-design: DySR 174

8.4.1 Adaption-aware One-shot Neural Architecture Search 174

8.4.2 Adaptive Sub-Graphs . 179

8.4.3 Model Adaption Policy . 180

8.5 Evaluation . 181

8.5.1 Training Setup . 181

8.5.2 Baselines and Parameters . 182

xiv

8.5.3 Pareto Optimality . 183

8.5.4 Dynamic Resource Adaptivity . 185

9 AdaSR: Adaptive Super Resolution with Shared Architecture and Weights for

Cross Platform Deployment and Dynamic Runtime Environment 188

9.1 Introduction . 188

9.2 Related Works . 190

9.3 Proposed Method . 192

9.3.1 Operation Reduction . 193

9.3.2 AdaSR Architecture Design . 195

9.3.2.1 Progressive Knowledge Distillation 196

9.3.2.2 Function Matching and Regularization 197

9.3.2.3 Depth Consolidation . 198

9.3.2.4 Bayesian-tuned Loss Function 198

9.3.3 AdaSR Training . 200

9.4 Evaluation . 202

9.4.1 Cross Platform Pareto Optimality 203

9.4.2 Dynamic Runtime Environment 204

9.4.3 Comparison with State-of-the-art Methods 206

xv

9.4.4 Visual Qualitative Results . 207

10 Conclusion and Future Works 208

10.1 Conclusion . 208

10.1.1 Automated Deep Learning Model Design and Tuning 208

10.1.1.1 EPNAS: Efficient Progressive Neural Architecture Search 208

10.1.1.2 FedCust: Offloading Hyperparameter Customization for

Federated Learning . 209

10.1.2 Efficient and Robust Deep Learning Training 210

10.1.2.1 LEASGD: Towards Decentralized Deep Learning with

Differential Privacy . 210

10.1.2.2 TiFL: A Tier-based Federated Learning System 210

10.1.2.3 HDFL: Dropout and Multi-Performance Metrics Aware

Fair Scheduler for Federated Learning 211

10.1.2.4 Curse or Redemption? How Data Heterogeneity Affects

the Robustness of Federated Learning 212

10.1.3 Adaptive Deep Learning Model Deployment 212

10.1.3.1 DySR: Adaptive Super-Resolution via Algorithm and Sys-

tem Co-design . 212

xvi

10.1.3.2 AdaSR: Adaptive Super Resolution with Shared Archi-

tecture and Weights for Cross Platform Deployment and

Dynamic Runtime Environment 213

10.2 Future Works . 213

10.2.1 Holistic Approach for Broader Federated Learning Architectures . . 214

10.2.2 Adaptive Transformer Models . 215

10.2.3 Privacy-Preserving Federated NLP Model Fine-tuning 215

Bibliography 217

xvii

LIST OF TABLES

2.1 Layer-by-Layer Search . 22

2.2 Module Search . 23

2.3 Comparison of EPNAS to automated architecture search literature for CIFAR-

10. Note that ENAS GPU days are evaluated on our own server with au-

thor implementation,with the same system configuration with EPNAS’s

evaluation. M stands for million. 24

2.4 EPNAS with multiple resource constraints vs. the SoTA models on CI-

FAR10. sz means Model size (M). c.i.means compute intensity (FLOPs/byte)

and c.c. means compute complexity (MFLOPs). Compute intensity is not

compute complexity divided by model size.It reflects how models reuse

data without loading data from slow memory. The higher com-pute inten-

sity is, the better. MFLOPs stands for mega floating-point operations per

second. 25

2.5 Comparison of model generalization to ImageNet. Model error rate (%) is

reported with Top-1 and Top-5 predictions. 25

3.1 Optimal learning rates - Under different data heterogeneity levels, batch

sizes, and data sizes. 44

xviii

3.2 HRT - Sample HRT for HI data quality metric. Each cell contains the

tuned learning rate/batch size/local epochs for that distribution combina-

tion. - Sample HRT for HI data quality metric. Each cell contains the

tuned learning rate, batch size, local epochs for that distribution combina-

tion. The HI can be substituted with any other heterogeneity metric, and

is shown as an example only. 48

3.3 Training setup - Describes the model, number of train/test datapoints,

clients and global hyperparameter sets. 54

3.4 Accuracy Comparison - Accuracy over rounds comparison for different

datasets. 56

3.5 Accuracy Improvement - Increase in accuracy (%) over Global Tuning

for different datasets and distribution metrics. 57

3.6 Final model accuracy - Comparison of FedCust against the reported state-

of-the-art performance. Missing values are due to them not being reported

in the paper. 63

4.1 Private setting result of final accuracy and ϵ. 92

5.1 Scheduling Policy Configurations. 115

5.2 Estimated VS Actual Training Time. 115

6.1 Training Setup. 133

xix

6.2 Attack Success Rate comparison between without and with the proposed

active defense. 145

7.1 Training Setup. 162

7.2 Model error/fairness comparison when the training time is the same (lower

the better). 167

8.1 Model and hardware device specification comparison. 181

9.1 Comparison between AdaSR and state-of-the-art models. Evaluated for 4x

SISR and trained on Div2K. Patch size is 256x256. 203

xx

LIST OF FIGURES

2.1 REINFORCE step for policy gradient. N is the number of parallel policy

networks to adapt a baseline architecture at episode of i 17

2.2 Policy Network of EPNAS. It is an LSTM-based network, which first gen-

erates network embedding, and then outputs actions to modify the network

with a “Scale LSTM”and an “Insert LSTM”. 18

2.3 Left: A layer-by-layer search insert operation example. A conv operation

is inserted after layer L, and has skip connection with layer L-2. Right: A

module search insert operation example. When the branch 3 is inserted,

one of its source value is from branch 2. After insertion, the connection

between branch 2 and the next layer is cut off. 20

3.1 Heterogeneity Impact - (a) Test accuracy vs. training rounds compari-

son. (b) The tuned learning rates and the corresponding number of clients

that use them. Derived after hand-tuning all clients. (c) Scalability of the

number of training steps that must be run to tune hyperparameters with

varying number of clients in the system. 37

3.2 Heterogeneity-aware Tuning Configurations - The Learning Rate, Batch

Size and Local Epoch parameter value distributions across distinct client

sets chosen after Heterogeneity-aware tuning. Each of the client sets is

mutually exclusive and sampled as 10% from the full LEAF dataset. 37

xxi

3.3 Resource Cost and Scalability - (a) Energy spent per client for tuning

hyperparameters (b) Time taken for each client for tuning and FL local

training (c) Scalability of the number of search steps that must be run to

tune hyperparameters with varying number of clients in the system. The

energy and time is measured using the Android Profiler [114] over 200

clients with Samsung S20 devices. 40

3.4 Comparison of Tuning Methods - (a) Hand-tuned vs. estimated learn-

ing rate (LR) under different heterogeneity index. Estimation is done via

regression fitting. (b) Final test accuracy comparison between hand-tuned

vs. estimated LR under different heterogeneity index. 44

3.5 FedCust System Design - Shows the major steps involved in the tuning

process. 45

3.6 Accuracy Curve Comparison - The test accuracy comparisons between

FedCust, Hand-Tuned, and Global Tuning. 56

3.7 Cost Comparison - (a) Test accuracy of the global model achieved with

hyperparameters derived at different stages of tuning for the FEMNIST

dataset. (b) Tuning iterations comparison across different datasets. 57

xxii

3.8 Scalability of of clients and HRT - (a) Number of iterations for tuning

vs. number of clients in the FL system. This compares the search cost

scalability of FedCust against using local Bayesian Optimization. (b) The

hyperparameter search space as a function of HRT cells against test accu-

racy and cost using FEMNIST. (c) Analysis on how the HRT granularity

varies depending on the τ threshold between the current HRT data distri-

bution combination cells and actual data distribution. 59

3.9 Resource Cost - Resource consumption of the various resources for Local

BO and FedCust during hyperparameter tuning. The average values with

the 90th percentile errors are shown. 62

3.10 Compatibility with other frameworks, robustness of proxy datasets.

(a) Final test accuracy of state-of-the-art FL frameworks when used with

and without FedCust. (b) Test accuracy comparison of one-size-fits-all ap-

proach (labeled as Global), FedCust with extremely poor quality of proxy

dataset (i.e., use Double MNIST, Cifar100 and MNIST as proxy dataset for

FEMNIST, Cifar10 and F-MNIST as training dataset labeled as FedCust

(Bad Proxy)), and FedCust using the same datasets for proxy and train-

ing, though no overlapping between proxy and training labeled as FedCust

(Good Proxy)). 64

xxiii

4.1 The dynamic leader-follower topology. (a) shows the structure of leader

pool and follower pool. (b) shows a recategorization phase where one of

the workers is elected as recategorized worker and gathers the latest loss

function values from all other workers. (c) shows the new structure of

leader pool and follower pool after recategorization (note the randomiza-

tion used for avoiding over-fitting). 74

4.2 The dynamic Leader-Follower topology. (a) shows the structure of leader

pool and follower pool. (b) shows a recategorization phase where one of

the workers is elected as recategorized worker and gathers the latest loss

function values from all other workers. (c) shows the new structure of

leader pool and follower pool after recategorization (note the randomiza-

tion used for avoiding over-fitting). 79

4.3 Comparison between LEASGD, DPSGD, and PS. Training Loss VS Itera-

tions for (a) MNIST-CNN, (b) MNIST-RNN, and (c) CIFAR 10. Training

Loss VS Number of Transmitted vectors for (d) MNIST-CNN, (e) MNIST-

RNN, and (f) CIFAR 10. 90

4.4 Scalability of LEASGD (m is the total number of nodes). 92

5.1 (a) Training time per round (logscale) for one client with varying amount

of resource and training data quantity (number of training points) ; (b)

accuracy under varying number of classes per client (non-IID) with fixed

amoumd of computational resources. 103

5.2 Overview of TiFL . 104

xxiv

5.3 Comparison results for different selection policies on Cifar10 with re-

source heterogeneity (0.5 to 4 CPUs) and homogenous data quantity (Col-

umn 1), and data quantity heterogeneity with with homogenous resources

(2 CPUs per client) (Column 2). 116

5.4 Comparison results for different selection policies on Cifar10 with differ-

ent levels of non-IID heterogeneity (Class) and fixed resources. 117

5.5 Comparison results for different selection policies on MNIST (Column 1)

and FMNIST (Column 2) with resource plus data heterogeneity. 120

5.6 Comparison results for different selection policies on Cifar10 with re-

source plus non-IID heterogeneity heterogeneity (Column 1) and resource,

data quantity, and non-IID heterogeneity heterogeneity (Column 2). 123

5.7 Comparison results of Cifar10 under non-IID heterogeneity (Class) for

different client selection policies with fixed resources (2 CPUs) per client. . 125

5.8 Comparison results for different selection policies on Cifar10 with data

quantity heterogeneity (Amount), non-IID heterogeneity (Class), and re-

source plus data heterogeneity (Combine). 125

5.9 Comparison results for different selection policies on LEAF with default

data heterogeneity (quantity, non-IID heterogeneity), and resource hetero-

geneity. 128

6.1 An overview of the FL backdooring procedure. 133

6.2 Attack Success Rate (ASR) vs. Heterogeneity Index (HI). 136

xxv

6.3 Attack Success Rate (ASR) vs. malicious data distribution (each bar rep-

resents a unique malicious data distribution). 136

6.4 Attack Success Rate (ASR) scalability in terms of attack scale and total

attack budget. 139

6.5 Comparison of different attack timing on FEMNIST. 140

6.6 Comparison between evenly vs. last batch attack timing under various

Heterogeneity Index. 141

6.7 Cosine Similarity Comparison between benign and malicious clients under

different Heterogeneity Index. 142

6.8 ASR trend with ChiSq Distance . 143

6.9 ASR comparison between different total attack budget, attack scale, and

ChiSq distance. 144

7.1 Tradeoff between fairness and training time. 154

7.2 (a) Model error distribution and (b) dropout ratio (DR) vs. accuracy. 155

7.3 Cost and model error with increased participation. 156

7.4 Model error distribution of global model. 163

7.5 Training time vs. model error and fairness. 163

7.6 Cost comparison when training to convergence. 166

7.7 Cost comparison with the same training time. 167

xxvi

8.1 (a) Resource utilization cap over time for each device. (b-d) FPS drop due

to reduced resources. Uses FALSR-C, FALSR-B [58], and CARN [14]

models respectively due to being designed specifically for the correspond-

ing hardware. 172

8.2 (a-c) FPS over time when models are reloaded every 5 seconds. (d) To-

tal number of parameters in memory against the number of static models

loaded as one assembled set. 173

8.3 Meta-graph with (a) search space and (b) example of adaptive sub-graph

cell architectures. Each cell is search-able and all layers after 15 are skip-

pable. Four types of upscaling layers can be searched. 176

8.4 Size comparison between the Assembled baseline and DySR with 10 models.181

8.5 (a) State-of-the-art model’s PSNR vs. FPS. Used to generate the Pareto

curve determining the optimal trade-offs. Shown here for Div2K dataset

run with 1080Ti for 2x scale. (b) Comparison of RAM consumption

for Assembled, Static (CARN) and DySR with different numbers of sub-

graphs generated by the Nb and B parameters. Calculated as the sum of

the model memory (number of parameters * sizeof(int8)) and activation

memory (measured in PyTorch). 182

8.6 PSNR vs. FPS for DySR generated sub-graphs for different datasets. Top

row - 2X upscaling. Bottom row - 4X upscaling. 183

xxvii

8.7 Pareto Optimality for different hardware. Generated by running DySR

once and profiling FPS on 1080Ti to generate models between 15 and 30

FPS. While the FPS spectrum shifts across datasets, the Pareto Optimality

is maintained. 184

8.8 CDF comparison between DySR and baselines for FPS and PSNR based

on bursty, random and stable trace. 185

9.1 Network diagrams of CARN, RCAN, and ESRGAN models. They use

repetitive blocks stacked on top of each other with residual connections.

Cascading and Res-E block architectures from CARN are shown in detail

here as an example of how the blocks of these models use the convolutional

operations. 190

9.2 AdaSR Model Architecture. This figure shows the steps for progressive

knowledge distilled training. Every mth block of the original model is

distilled to the adaptable model’s block. The backpropagation starts from

the current distilled block to the block at the beginning. L is the loss

function using output values of OT and OS from the original and adapted

models, respectively. 193

9.3 Comparison between our KD-trained models against state of the art against

MACs and PSNR. Shown for Set14 at 4x upscaling with patch size 256x256.

AdaSR is capable of producing models across a range of sizes suitable for

different hardware platforms. 198

xxviii

9.4 Comparison of PSNR vs. inference latency trade-off between AdaSR and

state-of-the-art models designed for resource constrained deployments.

AdaSR is developed by changing the depth and width of the original CARN

model. Experiment is run on Set14 with 4x upscaling factor for path sizes

256x256. 201

9.5 Memory cost and interruption time comparison between AdaSR and state-

of-the-art model assembly. 203

9.6 Visual qualitative comparison between AdaSR models and the correspond-

ing original models. Images taken from Urban100 (above) and Set14 (be-

low) datasets for 4x resolution with their Low resolution (LR) input and

ground-truth High Resolution (HR) samples. 205

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Deep neural networks have demonstrated excellent performance on challenging tasks and

pushed the frontiers of impactful applications such as image recognition [190, 204, 236],

synthetic data generator [125,159], language modeling [16,56,241] and medical diagnosis

[76,226]. All these advancements have led to a strong interest on the usage of deep learning

applications. The practicality of deep models, however, are still under scrutiny due to its

many remaining challenges. The deep learning development pipeline can be sectioned into

three main parts- 1) design, 2) training and 3) deployment. For this dissertation, we propose

works that tackle specific challenges in each of these steps.

The design phase involves determining the architecture of a deep neural network befit-

ting a certain task, and tuning hyperparameters to derive maximum information gain from

a given dataset. The implementation and tuning of deep neural networks is complex and

usually requires strong expertise in machine learning development. It is also generally a

trial-and-error process which requires significant time and resources since it involves an

iterative exploration process for the full set of possibilities. Further complications arise

when attempting to design such models with additional criteria such as computational ef-

ficiency and reducing model overfitting. The structure of the architecture deep neural net-

work models can vary significantly depending on the task. The significant amount of time,

resources and domain expertise required for the development of a single model may be too

2

much for widespread use of deep learning and AI. [70, 241, 300]. To address this problem,

techniques called Neural Architecture Search (NAS) [155, 308] and Hyperparamter Opti-

mization/Tuning [97, 135, 279] are applied to automate the architecture and hyperparamter

selection process. We propose novel NAS and Hyperparameter Tuning frameworks EP-

NAS and FedCust that tackle specific challenges not addressed in prior works and enable

ease-of-design for model development.

The training phase of the pipeline involves updating models weights of the designed ar-

chitecture based on the input datasets using the tuned hyperparameters. The purpose here is

to fit the neural network on a training dataset such that it learns a good set of inputs to out-

put mapping functions. The weight update phase contains forward pass, loss computation

and backward propagation phases, which are computationally expensive operations. Deep

models can range anywhere between a few thousand [216] to trillions [19] of parameters,

which can significantly compound the total resource cost of training. The large amount of

resources means the training must be delegated to clusters of computational nodes, i.e. dis-

tributed systems, to be feasible. However, distributed systems come with their own set of

challenges [169]. For example, nodes must communicate with each other to collaboratively

train a single model, but this communication can become a bottleneck. Nodes can fail, re-

sulting in sub-par training since datapoints are missed out on. Straggling nodes can cause

delays for the full system. The node networks can be exposed to malicious attackers which

can cause backdoors to appear in the model [137, 221, 262]. This motivates the need for

research into making more efficient and robust distributed training frameworks. We present

one such framework called LEASGD where we tackle the challenge of fully decentralizing

the training process which allows for a more private, scalable and robust training system.

As models become larger, more and more datapoints are required for sufficient training.

Such vast quantities of data are usually scrapped from end-users which can be in violation

3

of privacy laws such as HIPAA [20]. A new high-performance training paradigm - Fed-

erated Learning (FL) [128, 172] addresses privacy and security challenges for distributed

training systems. In FL, the training is performed through utilizing decentralized data that

is training local models on the local data of each client (data parties) and using a central

aggregator to accumulate the learned gradients of local models to train a global model.

However, doing so introduces a set of challenges not generally seen in traditional dis-

tributed training systems. 1) Due to the distribution of data across multiple devices, there is

no guarantee on the “quality“ of data to be used and can result in biased training datasets.

2) The local device hardware used for training are diverse, meaning that the training time

and resource costs may vary widely. 3) Devices dropping out during training is also a sig-

nificant issue since there are no guarantees on their availability. For this dissertation, we

propose two systems - TiFL and HDFL - that tackles each of these issues by taking holistic

approaches not taken by prior art. Our hyperparameter tuning framework, FedCust, is also

applied to the FL paradigm and can perform hyperparameter customization for each node

individually without violating privacy, which no other works in current literature address.

Lastly, in the deployment phase, ML developers run the trained model inference on the

application device. The popularity of handheld devices has resulted in the widespread use

of deep learning-based applications being run on low powered hardware [191]. For ex-

ample, social media applications such as video streaming, live photo editing and tagging

are increasingly becoming popular and use deep models in the backend. One of the most

expensive yet widely used application is super-resolution, where a deep model is used to in-

crease the resolution of a small image into a high quality one. Such SR models are resource

demanding [145,163] and need to meet Quality of Service (QoS) standards to provide good

user experience in visual services. Examples of QoS including meeting a minimum fram-

erate and avoiding interruptions so that users perceive smooth motions. This, however, is

challenging for mobile devices where computing and memory resources are limited and

4

the availability of which also depends on other running applications. To meet QoS for dif-

ferent mobile devices, existing works develop models for specific devices [21, 133, 162] or

use Neural Architecture Search (NAS) [58,88,106] to generate multiple hardware-tailored

models. However, none of these approaches considers the fluctuating resource environment

of mobile devices and often leads to poor QoS. In order to tackle this problem, we present

two first-of-a-kind methods that can design adaptive SR models in live inference systems

with fluctuating resource availability.

To summarize, this dissertation introduces seven different systems each tackling specific

challenges in each of the different phases of deep learning development and usage. We

provide details the contributions next.

1.2 Summary of Contributions

In this section, we summarize the major contributions of this dissertation.

1.2.1 Automated Deep Learning Model Design and Tuning

To simplify DL model design, we propose Efficient Progressive Neural-Architecture Search

(EPNAS) and FedCust to automatically design model architectures and tune hyperparame-

ters, respectively.

5

1.2.1.1 EPNAS: Efficient Progressive Neural Architecture Search

First, we propose Efficient Progressive Neural Architecture Search (EPNAS),a neural archi-

tecture search (NAS) that efficiently handles large search space through a novel progressive

search policy with performance prediction based on REINFORCE. EPNAS is designed

to search target networks in parallel, which is more scalable on parallel systems such as

GPU/TPU clusters. More importantly, EPNAS can be generalized to architecture search

with multiple resource constraints,e.g., model size, compute complexity or intensity, which

is crucial for deployment in widespread platforms such as mobile and cloud. We compare

EPNAS against other state-of-the-art (SoTA) network architectures (e.g., MobileNetV2)

and efficient NAS algorithms (e.g., ENAS, and PNAS) on image recognition tasks using

CIFAR10 and ImageNet. On both datasets, EPNAS is superior w.r.t. architecture searching

speed and recognition accuracy. We also show that our search can be configured such that

the models derived have overall lower resource footprints.

1.2.1.2 FedCust: Offloading Hyperparameter Customization for Federated Learn-

ing

To address the prohibitively expensive cost challenge, we explore the possibility of of-

floading hyperparameter customization to servers. We propose FedCust, a framework that

offloads expensive hyperparameter customization cost from the client devices to the central

server without violating privacy constraints. Our key discovery is that it is not necessary

to do hyperparameter customization for every client, and clients with similar data hetero-

geneity can use the same hyperparameters to achieve good training performance. We pro-

pose heterogeneity measurement metrics for clustering clients into groups such that clients

6

within the same group share hyperparameters. FedCust uses the proxy data from initial

model design to emulate different heterogeneity groups and perform hyperparameter cus-

tomization on the server side without accessing client data nor information. To make the

hyperparameter customization scalable, FedCust further employs a Bayesian-strengthened

tuner to significantly accelerates the hyperparameter customization speed. Extensive evalu-

ation demonstrates that FedCust achieves up to 7/2/4/4/6% better accuracy than the widely

adopted one-size-fits-all approach on popular FL benchmarks FEMNIST, Shakespeare, Ci-

far100, Cifar10, and Fashion-MNIST respectively, while being scalable and reducing com-

putation, memory, and energy consumption on the client devices, without compromising

privacy constraints.

1.2.2 Efficient and Robust Deep Learning Training

To provide efficient and robust distributed training while preserving privacy, we design

LEASGD, TiFL, and HDFL. We also conduct a study on the security aspect of distributed

learning by focusing on how data heterogeneity affects backdoor attacks and how to miti-

gate such threats.

1.2.2.1 LEASGD: Towards Decentralized Deep Learning with Differential Privacy

In distributed machine learning, while a great deal of attention has been paid on centralized

systems that include a central parameter server, decentralized systems have not been fully

explored. Decentralized systems have great potentials in the future practical use as they

have multiple useful attributes such as less vulnerable to privacy and security issues, better

7

scalability, and less prone to single point of bottleneck and failure. In this project, we focus

on decentralized learning systems and aim to achieve differential privacy with good conver-

gence rate and low communication cost. To achieve this goal, we propose a new algorithm,

Leader-Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a

novel Leader-Follower topology and differential privacy model. We also provide a theo-

retical analysis of the convergence rate of LEASGD and the trade-off between the perfor-

mance and privacy in the private setting. We evaluate LEASGD in real distributed testbed

with poplar deep neural network models MNIST-CNN, MNIST-RNN, and CIFAR-10. Ex-

tensive experimental results show that LEASGD outperforms state-of-the-art decentralized

learning algorithm DPSGD by achieving nearly 40% lower loss function within same iter-

ations and by 30% reduction of communication cost. Moreover, it spends less differential

privacy budget and has final higher accuracy result than DPSGD under private setting.

1.2.2.2 TiFL: A Tier-based Federated Learning System

Federated Learning (FL) enables learning a shared model across many clients without vi-

olating the privacy requirements. One of the key attributes in FL is the heterogeneity that

exists in both resource and data due to the differences in computation and communication

capacity, as well as the quantity and content of data among different clients. We conduct

a case study to show that heterogeneity in resource and data has a significant impact on

training time and model accuracy in conventional FL systems. To this end, we propose

TiFL- a Tier-based Federated Learning System, which divides clients into tiers based on

their training performance and selects clients from the same tier in each training round to

mitigate the straggler problem caused by heterogeneity in resource and data quantity. To

further tame the heterogeneity caused by non-IID (Independent and Identical Distribution)

data and resources, TiFL employs an adaptive tier selection approach to update the tiering

8

on-the-fly based on the observed training performance and accuracy. We prototype TiFL in

a FL testbed following Google’s FL architecture and evaluate it using the state-of-the-art

FL benchmarks. Experimental evaluation shows that TiFL outperforms the conventional

FL in various heterogeneous conditions. With the proposed adaptive tier selection policy,

we demonstrate that TiFL achieves much faster training performance while achieving the

same or better test accuracy across the board.

1.2.2.3 HDFL: Dropout and Multi-Performance Metrics Aware Fair Scheduler for

Federated Learning

Federated Learning (FL) enables training machine learning (ML) models on private data

that is heterogeneously distributed over many end devices. In cross-device FL, a small

number of mobile and internet-of-things (IoT) devices (clients) are selected to participate

in each training round. Clients typically vary significantly in data quantity and quality,

hardware resources, and stability (i.e., clients may dropout during the training). How many

and which clients to choose in each training round is a highly non-trivial scheduling de-

cision as it may impact the performance metrics such as model error, fairness, cost, and

training time. Existing works either overlook or over-simplify the data and resource het-

erogeneity as well as stability and focus on only one or two aforementioned performance

metrics. In this project, we systematically study how client selection scheduler impacts

the trade-offs among these performance metrics under practical considerations (i.e., with

heterogeneity and dropout) and propose HDFL a scheduler that makes intelligent client

selection decisions based on all the performance metrics. We implement HDFL on a real

distributed system and evaluate it on multiple benchmarks by comparing it with existing

solutions. The evaluation results show that HDFL outperforms existing works in terms of

model error, fairness, cost, and training time.

9

1.2.2.4 Curse or Redemption? How Data Heterogeneity Affects the Robustness of

Federated Learning

Data heterogeneity has been identified as one of the key features in federated learning but

often overlooked in the lens of robustness to adversarial attacks. This project focuses on

characterizing and understanding its impact on backdooring attacks in federated learning

through comprehensive experiments using synthetic and the LEAF benchmarks. The initial

impression driven by our experimental results suggests that data heterogeneity is the domi-

nant factor in the effectiveness of attacks and it may be a redemption for defending against

backdooring as it makes the attack less efficient, more challenging to design effective at-

tack strategies, and the attack result also becomes less predictable. However, with further

investigations, we found data heterogeneity is more of a curse than a redemption as the

attack effectiveness can be significantly boosted by simply adjusting the client-side back-

dooring timing. More importantly, data heterogeneity may result in overfitting at the local

training of benign clients, which can be utilized by attackers to disguise themselves and

fool skewed-feature based defenses. In addition, effective attack strategies can be made by

adjusting attack data distribution. Finally, we discuss the potential directions of defending

the curses brought by data heterogeneity. The results and lessons learned from our exten-

sive experiments and analysis offer new insights for designing robust federated learning

methods and systems.

1.2.3 Adaptive Deep Learning Model Deployment

We use super resolution (SR) as an example application to explore model adaptability for

cross platform deployment and dynamic runtime environment. Specifically, we propose

10

DySR and AdaSR frameworks which enable SR models to meet QoS by dynamically adapt-

ing to available resources instantly and seamlessly without excessive memory overheads.

1.2.3.1 DySR: Adaptive Super-Resolution via Algorithm and System Co-design

Super resolution (SR) is a promising approach for improving the quality of low resolu-

tion streaming services on mobile devices. On mobile devices, the available computing

and memory resources change dynamically depending on other running applications. Due

to the high computation and memory demands of SR models, it is essential to adapt the

model according to available resources to harvest the best possible model performance

while maintaining quality of service (QoS), such as meeting a minimum framerate and

avoiding interruptions. Nevertheless, there is no SR model or machine learning system that

supports adaptive SR, and enabling adaptive SR model on mobile devices is challenging be-

cause adapting model can cause significant framerate drop or even service interruption. To

address this challenge, we take an algorithm and system co-design approach and propose a

Dynamic Super Resolution framework called DySR that maintains QoS while maximizing

the model performance. During the training stage, DySR employs an adaption-aware one-

shot Neural Architecture Search to produce sub-graphs that share kernel operation weights

for low model adaption overhead while striking a balance between performance and fram-

erate. During the inference stage, an incremental model adaption method is developed for

further reducing the model adaption overhead. We evaluate on a diverse set of hardware

and datasets to show that DySR can generate models close to the Pareto frontier while

maintaining a steady framerate throughput with a memory footprint of around 40% less

compared to baseline methods.

11

1.2.3.2 AdaSR: Adaptive Super Resolution with Shared Architecture and Weights

for Cross Platform Deployment and Dynamic Runtime Environment

Image super resolution models (SR) have shown great capability in improving the visual

quality for low-resolution images. Due to the compute and memory budgets of diverse

platforms, e.g., cloud and edge devices, practitioners and researchers have to either (1)

design different architectures and/or (2) compress the same model to different levels, to

satisfy different resource constraints. Even on the same hardware, its compute resource dy-

namics change due to other running applications. As such, a model that satisfies required

frames-per-second (FPS) when executed in isolation may not be suitable when other run-

ning applications present. To overcome those issues, we propose AdaSR, an Adaptive SR

framework via shared architecture and weights for cross platform deployment and dynamic

runtime environment. Particularly, AdaSR can be used to (1) customize architectures for

different hardware (e.g., different security cameras), and (2) adaptively change the compute

graph in dynamic runtime environment (e.g., mobile phones with concurrently running ap-

plications). Different than prior arts, AdaSR achieves this by adaptively changing the depth

and the channel size with shared weights and architecture, which introduces no extra cost

on memory and/or storage. To stabilize the shared weight training of AdaSR, we propose a

progressive approach where we derive loss functions for each block and function matching

operations with max-norm regularization to address dimension mismatches. We exten-

sively test AdaSR on different block-based GAN models, and demonstrate that AdaSR can

maintain Pareto optimal performance with much smaller memory footprint and support

dynamic runtime environments.

12

1.3 Organization

The next chapters are organized as follows. Chapters 2 and 3 focuses on projects addressing

model design automation, i.e. EPNAS and FedCust. In EPNAS, we discuss the challenges

present in the development of Neural Architecture Search frameworks in general, and pro-

vide an extensive background and literature review. We then discuss the steps we take

to address challenges in NAS and how we make the framework search for smaller models,

along with empirically demonstrating that our method performs better than SotA. Chapter 3

details our novel Federated Learning Hyperparameter tuning framework FedCust. The next

chapters detail our solutions for robust and secure deep learning training. In Chapter 4, we

talk about LEASGD, which focuses on increasing distributed training scalability without

compromising model performance and privacy. For chapters 5 and 6, we start introducing

Federated Learning and how our two proposed systems TiFL and HDFL, serves to make

the training procedure robust to data quality distribution, local device resource heterogene-

ity and dropouts. Chapter 7 discusses the security aspects of Federated Learning and what

our analyses has revealed about the vulnerabilities of FL. Based on the observations, we

propose a few defense mechanisms that can be used for enhancing defenses. Lastly, we

talk about our deployment phase works DySR and AdaSR in Chapters 8 and 9 respectively.

We then conclude with chapter 10 and talk about the potential research directions we can

take as our future work.

13

CHAPTER 2

EPNAS: EFFICIENT PROGRESSIVE NEURAL ARCHITECTURE SEARCH

2.1 Introduction

Deep neural networks have demonstrated excellent performance on challenging tasks and

pushed the frontiers of impactful applications such as image recognition [224], image

synthesis [124], language translation [269], speech recognition and synthesis [186]. De-

spite all these advancements, designing neural networks remains as a laborious task, re-

quiring extensive domain expertise. Motivated by automating the neural network design

while achieving superior performance, neural architecture search (NAS) has been pro-

posed [23, 182, 192].

Conventional NAS algorithms are performed with limited search spaces (e.g. small num-

ber of operation type) due to lack of efficiency, which hinders the application of NAS to

various tasks. For example, [308] uses 800 GPUs, and takes 3 days to discover a model

on a small dataset like CIFAR10 [129] which is infeasible to directly search models over

larger datasets such as COCO [151] or ImageNet

Specifically, based on the framework of REINFORCE [264], to reduce necessary num-

ber of sampled models, we design a novel set of actions for network morphing such as

group-scaling and removing, additional to the adding or widening operations as proposed

in EAS [39]. It allows us to initiate NAS from a better standing point,e.g. a large ran-

dom generated network [273], rather than from scratch as in PNAS or a small network as

14

in EAS. Secondly, to reduce the model training time, we propose a strategy of aggressive

learning rate scheduling and a general dictionary-based parameter sharing, where a model

can be trained with one fifth of time cost than training it from scratch. Comparing to EAS

or PNAS, as shown in Sec. 4, EPNAS provides 2× to 20× overall searching speedup with

much larger search space, while providing better performance with the popular CIFAR10

datasets. Our model also generalizes well to larger datasets such as ImageNet.In addition to

model accuracy, deep neural networks are deployed in a wider selection of platforms (e.g.,

mobile device and cloud) today, which makes resource-aware architecture design a crucial

problem. Recent works such as MNASNet [239] or DPPNet [69] extend NAS to be device-

aware by designing a device-aware reward during the search. In our case,thanks to the pro-

posed efficient searching strategy, EPNAS can also be easily generalized to multi-objective

NAS which jointly considers computing resource related metrics, such as the model’s mem-

ory requirement, computational complexity, and power consumption.Specifically, we trans-

form those hard computational constraints to soft-relaxed rewards for effectively learning

the network generator. In our experiments, we demonstrate that EPNAS is able to perform

effectively with various resource constrains which fails random search.Finally, to better

align NAS with the size of datasets, we also supports two search pat-terns for EPNAS. For

handling small dataset, we use an efficient layer-by-layer search that exhaustively modify

all layers of the network. For handling larger dataset like ImageNet,similar with PNAS,

we adopt a module-based search that finds a cell using small dataset and stack it for gen-

eralization. We evaluate EPNAS’s performance for image recognition on CIFAR10 and

its generalization to ImageNet. For CIFAR10, EPNAS achieves 2.79% test error when

compute intensity is greater than 100 FLOPs/byte, and 2.84% test error when model size

is less than 4M parameters. For ImageNet, we achieve 75.2% top-1 accuracy with 4.2M

parameters. In both cases, our results outperform other related NAS algorithms such as

PNAS

15

2.2 Related Works

Neural architecture search (NAS). NAS has attracted growing interests in recent years

due to its potential advantages over manually-crafted architectures. As summarized by [75],

the core issues lie in three aspects: efficient search strategy, large search space, and integra-

tion of performance estimation. Conventionally, evolutionary algorithms [18,153,154,205]

are one set of methods used for automatic NAS. NAS has also been studied in the context of

Bayesian optimization [29,122], which models the distribution of architectures with Gaus-

sian process. Recently, reinforcement learning [23, 308] with deep networks has emerged

as a more effective method. However, these NAS approaches are computationally expen-

sive,with relatively small search space w.r.t. single target of model accuracy, e.g., [308]

used hundreds of GPUs for delivering a model comparable to human-crafted network on

CIFAR10. To tackle the search cost, network morphism [75] for evolutionary algorithm,

and efficient NAS approaches with parameter sharing such as ENAS [192] are proposed.

Specifically, ENAS employs weight-sharing among child models to eschew training each

from scratch until convergence. To handle larger datasets, one-shot NAS such as path selec-

tion [28] and operation selection such as DARTS [155] are also proposed. However, param-

eter sharing as ENAS and operation sharing as DARTS search within a pre-defined network

graph, which limits the scaling of search space,e.g., channel size and kernel size cannot be

flexibly changed for each layer in order to reuse the operations or weights. However, larger

search space is crucial for discovering architectures especially when multiple objective or

resource constraints are also considered. Another set of methods for reducing search cost

is to progressively adapt a given architectures such as EAS [39] and PNAS [153]. In each

step, one may freely choose to add an operation from a set, which enables larger search-

ing possibility for networks or a cell structure. Therefore, we follow this learning strategy

and propose a novel progressive search policy with performance prediction, which brings

16

additional efficiency and can reach higher accuracy as demonstrated in our experiments.

Resource-constraint NAS. It used to be that most effective approaches for optimizing

performance under various resource constraints rely on the creativity of the researchers.

Among many, some notable ones include attention mechanisms [165], depthwise-separable

convolutions [57,103], inverted residuals [212], shuffle features [165], and structured trans-

forms [225]. There are common approaches that reduce model size or improve inference

time as a post processing stage. For example, sparsity regularization [152], channel prun-

ing [94], connection pruning [134], and weights/activation quantization [109] are common

model compression approaches. Similarly, one may automatically design a resource con-

straint architecture through NAS. Most recently, AMC [93] adopts reinforcement learning

to design policy of compression operations. MorphNet [84] proposes to morph an existing

network,e.g. ResNet-101, by changing feature channel or output size based on a speci-

fied constraints. DPPNet [69] or MNASNet [239] propose to directly search a model with

resource-aware operations based on PNAS [153] or NAS [308] framework respectively. In

our work, as demonstrated in our experiments, EPNAS also effectively enables NAS with

multiple resource requirements simultaneously thanks to our relaxed objective and efficient

searching strategy.

2.3 Framework

In this section, for generality, we direct formulate EPNAS with various model constraints,

as one may simply remove the constraints when they are not necessary. Then, we elab-

orate our optimization and proposed architecture transforming policy networks.As stated

in Sec. 1, rather than rebuilding the entire network from scratch, we adopt a progressive

17

Figure 2.1: REINFORCE step for policy gradient. N is the number of parallel policy networks to adapt a
baseline architecture at episode of i

strategy with REINFORCE [264] for more efficient architecture search so that architec-

tures searched in previous step can be reused in subsequent steps. Similar ideas are pro-

posed for evolutionary algorithms recently, however, in conjunction with reinforcement

learning (RL), our method is more sample efficient. This strategy can also be considered

in the context of Markov Chain Monte Carlo sampling [38] (as the rewards represent a

target distribution and the policy network approximates the conditional probability to be

sampled from), which has been proven to be effective in reducing the sampling variation

when dealing with high dimensional objective, yielding more stable learning of policy net-

works.Formally, given an existing network architecture X, a policy network πθ(a|X) gener-

ates action a that progressively change X from our search space S , w.r.t. multiple resource

constraints objective:

maxX⊂S P(X|D) (2.1)

18

Figure 2.2: Policy Network of EPNAS. It is an LSTM-based network, which first generates network embed-
ding, and then outputs actions to modify the network with a “Scale LSTM”and an “Insert LSTM”.

such that -

(Ui(X) ⊂ [Cli,Cui]), i ⊂ 1, ...,K (2.2)

where P(X|D) is the performance of X under dataset D. ()is an indicator function, and

Ui(X) is the ith resource usage of the network, Cli and Cui are the corresponding constraint,

indicating the lower bound and upper bound for resource usage. Next, we show how to

optimize the objective with policy gradient for progressive architecture generation.

19

2.3.1 Policy Network

Policy network, shown in Fig. 2, adapts any input network by progressively modifying its

parameters (referred as the scale action), or by inserting/removing a layer (referred jointly

as the insert action). At every training step t, rather than building the target network from

scratch, EPNAS modifies the architecture from preceding training step via previously de-

scribed operations. This progressive search enables a more sample-efficient search. We use

a network embedding to represent the input neural network configuration. Initially, each

layer of the input neural network is mapped to layer embeddings by a trainable embedding

lookup table. Then, an LSTM layer (with a state size equal to the number of layers L)

sequentially processes these layer embeddings and outputs a network embedding.Next, the

network embedding is input to two different LSTMs that decide the scale, insert,and re-

move actions. The first LSTM, named as “scale LSTM”, outputs the hidden states at every

step t that correspond to a scaling action as from a scale lookup table which changes the

filter width or change the number of filters, for the network. For example, in layer-by-layer

search, we may partition the network into F parts, and for part f , the output as f can scale

a group of filters simultaneously. In our experiments, this is more efficient than per-layer

modification of ENAS, while more flexible than global modification of EAS.The second

LSTM, named as “insert LSTM”, outputs hidden states representing actions ai, which se-

lects to do insert, remove, or keep a certain layer,e.g., using a Conv operation from the

insert lookup table, at certain place l after the network is scaled. To encourage exploration

of insert LSTM,i.e., encourage inserting inside the network to explore inner structure,rather

than always appending at the end of the network, we constraint the output distribution of

inserting place l to be determinant on layer number of input network L using a check table.

Formally, we let P(ai(p) = l)˜DL, where DL stands for a discrete distribution with L + 5

values. We use this prior knowledge, and found the architectures are more dynamically

20

Figure 2.3: Left: A layer-by-layer search insert operation example. A conv operation is inserted after layer L,
and has skip connection with layer L-2. Right: A module search insert operation example. When the branch
3 is inserted, one of its source value is from branch 2. After insertion, the connection between branch 2 and
the next layer is cut off.

changed during search and able to find target model more efficiently.

2.3.2 Search Pattern

Following common strategies, EPNAS also supports two types of search patterns: (i) layer-

by-layer search, which exhaustively modifies each layer of a network when dataset is not

large, and (ii) module search, which searches a neural cell that can be arbitrarily stacked

for generalization. The former is relatively slow, while can reach high performance, and

the latter targets at architecture transformation applied on large datasets. We elaborate the

two search patterns in this section.In Layer-by-layer search, EPNAS progressively scales

and inserts layers that are potentially with skip connection. Fig. 3 exemplifies an insert

operation by the “Insert LSTM”,which is applied to an input network. “Src1” determines

the place to insert a given layer (a conv layer), and “Src2” indicates where to add a skip

connection. Here, “Src2” can be -1 to avoid a skip connection. Specifically, the search op-

erations are chosen based on the problem domain. For example, one can include recurrent

layers for discriminative speech models and convolution layers for discriminative image

21

models. More details are explained in Section 4. Module search aims to find an optimal

small network cell which can be repeatedly stacked to create the overall neural network.

It has relatively limited search space with multi-branch networks. The insert action by the

“Insert LSTM” no longer inserts a layer, but inserts a “branch”, and outputs the types of the

operation and corresponding scaling parameters(filter width, pooling width, channel size,

etc.). Similar to layer-by-layer search, each branch consists of two operations to be con-

catenated. We illustrate an insert operation in Fig. 3. Here, “Src1” and “Src2” determine

where these two operations get input values from, and“propagate” determines whether the

output of the branch gets passed to the next layer.

2.3.3 Speedup EPNAS with performance prediction

Training every sampled model till convergence can be time-consuming and redundant for

finding relative performance ranking. We expedite EPNAS with a performance prediction

strategy that provides efficient training and evaluation. Our approach is based on the ob-

servation that a similar learning pattern can be maintained as long as the learning rate and

batch size are kept proportionally [227]. By scaling up the batch size, we can use a large

learning rate with an aggressive decay, which enables accurate ranking with much fewer

training epochs. Besides, since relative performance ranking is more important, learn-

ing rate and batch size ratio can be increased. Additionally, we also allow the generated

networks to partially share parameters across steps. Differently, in our cases, we have addi-

tional operations rather than just insertion and widening in EAS. Therefore, we use a global

dictionary that is shared by all models within a batch of searched models. The parameters

are stored as key-value pairs, where the keys are the combination of the layer number, oper-

ation type,and the values are corresponding parameters. At the end of each step, if there is

22

Feature Search Space
Layer type [conv2d,dep-sep-conv2d,MaxPool2d,AvgPool2d, add]
Filter width [1, 3, 5, 7]

Pooling width [2, 3]
Channel size [16, 32, 64, 96, 128,256]

Nonlinear activation [”relu”, ”crelu”, ”elu”,”selu”, ”swish”]
Src1 Layer [i for i in range(MAX˙LAYERS)]
Src2 Layer [i for i inrange(MAX˙LAYERS)]

Table 2.1
Layer-by-Layer Search

a clash be-tween keys, the variables for the model with the highest accuracy is stored. For

operations where the layer and operation types match, but the dimensions do not (e.g., after

scaling a layer), the parameters with the closest dimensions are chosen and the variables

are spliced or padded accordingly. Equipped with performance prediction, EPNAS can

find the good models within much less time cost, which is critical for NAS with multiple

resource constraints.

2.4 Experimental Evaluation

In this section, we evaluate the efficiency of EPNAS for handling large search space over

two popular datasets: CIFAR-10 dataset and ImageNet. We first show model accuracy ver-

sus search time for five different search approaches used by EPNAS in Fig. 4. Then, we

compare EPNAS with other related NAS algorithms in Tab. 4 and show its generalization

to ImageNet. Finally, we compare EPNAS under three resource constraints,i.e.model size

(sz),compute complexity (c.c.) and compute intensity (c.i.), with SoTA models in Tab. 5.

Due to space limitation, we put the details of resource constraints, visualization of searched

models for layer-by-layer and module search in our supplementary materials. In our sup-

plementary files, we also experimented our algorithm to a language dataset, i.e.keyword

spotting using Google Speech Commands dataset [113], and obtain SoTA results.

23

Feature Search Space
Branch type [conv-conv, conv-maxpool,conv-avgpool,

conv-none,maxpool-none,avgpool-none,1×7-7×1-none]
Filter width [1, 3, 5, 7]

Pooling width [2, 3]
Channel size [8, 12, 16, 24, 32]
Src1 Layer [i for i in range(MAX˙BRANCHES+1)]
Src2 Layer [i for i in range(MAX˙BRANCHES+1)]
Propagate [0,1]

Table 2.2
Module Search

CIFAR-10 dataset contains 45K training images and 5K testing images with size of

32×32.Following PNAS, we apply standard image augmentation techniques, including ran-

dom flipping, cropping, brightness, and contrast adjustments. For all our experiments, we

start from a randomly generated architecture to fairly compare with other SoTA methods.

We first illustrated the search space in Tables 1 for two search patterns, which is much

larger than that proposed in EAS and PNAS, while we still have less GPU days for finding

a good model.

Training details. Our policy network uses LSTMs with 32 hidden units for network

embed-ding, while LSTMs with 128 hidden units for scale and insert actions. It is trained

with the Adam optimizer with a learning rate of 0.0006, with weights initialized uniformly

in [-0.1,0.1]. In total, 8 branches are constructed for training. Each generated neural net-

works are trained for 20 epochs with batch size (BZ) of 128 using Nesterov momentum

with a learning rate (LR) (lmax = 0.05, lmin = 0.001,T0 = 10,Tmul = 2) following the

cosine schedule. With performance prediction (p.p.), we increase LR to 0.5 and BS to

1024, and do early stop at 10 epochs for each model with parameter sharing. We use an

episode step of 10 and5 for layer-by-layer search and module search respectively, and se-

lect top 8 models from each episode to initialize the next. We run 15 episodes for searching

the best model, which is retrained following PNAS, yielding our final performance.

Ablation study. Fig. 4 shows that EPNAS achieves the test accuracy up to 96.2% with

24

Model Parameters Test error Test error w cutout (%)GPU days
AmoebaNet-B 2.8M 3.37 - 3150

NASNet-A 3.3M 3.41 2.65 1800
Progressive NAS 3.2M 3.63 - 150

EAS (DenseNet on C10+) 10.7 M 3.44 - 10
ENAS Macro Search 21.3 M 4.23 - 1
ENAS Micro Search 4.6 M 3.54 2.89 1.5
DARTS (first order) 3.3 M - 4.23 1.5

DARTS (second order) 3.3 M - 2.76 4
EPNAS Module Search 4.0 M 3.32 2.84 25

EPNAS
Layer-by-Layer

Search
3.4 M 3.87 - 16

EPNAS Module Search w prediction 4.3 M 3.2 2.79 8
EPNAS Layer-by-Layer

Search w prediction 7.8 M 3.02 - 4

Table 2.3
Comparison of EPNAS to automated architecture search literature for CIFAR-10. Note that ENAS

GPU days are evaluated on our own server with author implementation,with the same system
configuration with EPNAS’s evaluation. M stands for million.

p.p. and 95% w/o p.p. respectively after 6 GPU days, when started with a randomly

generated model with a test accuracy of 91%. Both layer-by-layer search and module

search significantly outperform random search, but layer-by-layer search slightly outper-

forms module search as it enables more fine-grained search space. Cutout marginally im-

proves searched accuracy by 0.5-0.6%.

Quantitative comparison. Tab. 2.4 compares EPNAS (with model size constraint) to

other notable NAS approaches. All techniques yield similar accuracy (within 0.5% differ-

ence) for comparable sizes. EPNAS with p.p. yields additional 1% accuracy gain compared

to EPNAS w/o p.p. as it enables searching more models within the same search time bud-

get. EPNAS significantly outperforms AmoebaNet, NASNet, PNAS, and EAS in search

time with larger search space. Specifically, comparing with PNAS, our module search w

p.p. train roughly 600 models (15 episodes 8 M40 GPUs and 5 steps for each episode) to

obtain a good model using module search (20 min per model with 10 epochs), and PNAS

trained 1160 models with longer time to reach similar performances. EPNAS slightly out-

performs both ENAS Macro Search and ENAS Micro Search in terms of model accuracy

and model size, but is slightly worse in search time.

25

Model Resource constraint Test error (%) Model size (sz) (c.i.) (c.c.)
ResNet50 - 6.97 0.86 M 32 10

DenseNet (L=40, k=12) - 5.24 1.02 M 43 21
DenseNet-BC (k=24) - 3.62 15.3 M 45 300
ResNeXt-29,8x64d - 3.65 34.4 M 58 266

MobileNetV2 - 5.8 1.9 M 10 10
DPPNet-PNAS - 5.8 1.9 M 10 10

MNASNet - 5.8 1.9 M 10 10
EPNAS: Module Search sz ≤ 3M 3.98 2.2 M 7.1 28

EPNAS: Layer-by-Layer Search sz ≤ 2M, c.i. ≥ 80 4.31 1.7 M 97 26
EPNAS: Layer-by-Layer Search c.i. ≥ 100, c.c. ≤ 200 2.95 29 M 107 194
EPNAS: Layer-by-Layer Search sz ≤ 8M, c.i. ≥ 80, c.c. ≤ 80 3.48 7.7 M 92 72
EPNAS: Layer-by-Layer Search sz ≤ 1M, c.i. ≥ 30, c.c. ≤ 15 5.95 0.88 M 31 13

Table 2.4
EPNAS with multiple resource constraints vs. the SoTA models on CIFAR10. sz meansModel size (M).

c.i. means compute intensity (FLOPs/byte) and c.c. means compute complexity (MFLOPs). Compute
intensity is not compute complexity divided by model size.It reflects how models reuse data without
loading data from slow memory. The higher com-pute intensity is, the better. MFLOPs stands for mega

floating-point operations per second.

Method Top-1 Top-5 Params
MobileDPP-Net-Panacea 25.98 8.21 4.8M

MnasNet-92 25.21 7.95 4.4M
PNASNet-5 25.8 8.1 5.1M

DARTS 26.7 8.7 4.7M
EPNAS-mobile 25.2 7.5 74.2M

LargeDPP-Net-PNAS 24.1 67.13 77.16M
EPNAS-large 21.4 95.1 678.33M

Table 2.5
Comparison of model generalization to ImageNet. Model error rate (%) is reported with Top-1 and Top-5

predictions.

EPNAS with resource constraints. Table 5 compares EPNAS and other SoTA models

with resource constraints. In particular, EPNAS is able to find model under 10M parameters

with 3.48% test error with 92 FLOPs/Byte c.i., and under 80 MFLOPs c.c. With tight

model size and FLOPs constraints, EPNAS is able to find model of similar size compared

to ResNet50 but is about 1% more accurate. With relaxed model size, EPNAS finds SoTA

model with 2.95% test error and high c.i. of 107 FLOPs/byte, which outperforms ENAS

macro search.

26

2.4.1 Results on ImageNet

We also have experiments which transfer optimal models from EPNAS module search in

Tab. 2.4 to ImageNet borrowing the stacking structure following PNAS with two settings:

1)Mobile: limiting the model size to be less than 5M parameters, 2)Large: without any

model size constraint. For a fair comparison, we set the input image size to 224×224 for

both settings. The upper part in Tab. 2.6 shows the results of mobile setting. We compare

against other SoTA resource-aware NAS methods, DPPNet and MNASNet, and DARTS.

Our model based on the searched module yields better results with similar model size. For

large setting, our results is also significantly better than that reported in DPP-Net, while we

omit that from PNAS since the input setting is different. caption subcaption

27

CHAPTER 3

FEDCUST: OFFLOADING HYPERPARAMETER CUSTOMIZATION FOR

FEDERATED LEARNING

3.1 Introduction

In conventional distributed learning, data needs to be centrally collected and managed for

model training. However, new legislation such as the General Data Protection Regulation

(GDPR) [83] and the Health Insurance Portability and Accountability Act (HIPAA) [187]

prohibit transferring user private data to a centralized location. Federated Learning (FL)

emerges as a popular distributed learning paradigm that offers privacy and security pro-

tection while supporting collaborative learning across different data owners (a.k.a, clients)

[128, 228]. In FL, a shared global model is managed by a central server, and a random se-

lection of client devices perform local learning with on-device data in each training round.

The clients then send the local learning model parameters to the centralized server for ag-

gregation (a.k.a, aggregator). Finally, the aggregated global model parameters are sent to

a new random selection of the client devices to perform the next training round. In this

process, since the user data never leaves clients, data privacy is preserved.

Although FL provides support on privacy and security, achieving high accuracy in a FL

setting is challenging due to data heterogeneity [140], i.e., feature distribution is imbal-

anced among clients. This is because conventional machine learning usually assumes that

data follows the independent and identical distribution (IID) [140, 185]. Recent works try

to alleviate the data heterogeneity impact by innovating on the aggregation algorithm and

28

client selection policy [35, 141, 250]. Despite that these approaches help reduce the im-

pact of data heterogeneity, data heterogeneity remains an open challenge, e.g., compared to

conventional learning on the same benchmark, FL usually suffers from significant accuracy

loss [44, 171, 278].

Similar to conventional training, learning hyperparameters (e.g., learning rate, batch size)

play an important role in Federated Learning. The state-of-the-practice approach adopted

by most existing works is to apply one set of hyperparameters to all clients indistinguish-

ably [62, 98, 126]. A naturally question is: would customized learning hyperparameters

for different clients, namely, hyperparameter customization, improve the model training in

FL? Unfortunately, there is no systematical study to answer this question. To verify this

hypothesis, we conduct an in-depth analysis and recognize that the existing one-size-fits-

all methods (a.k.a., heterogeneity-oblivious approach) leads to severe accuracy drops, and

hyperparameter customization is a promising approach to significantly improve the overall

model performance.

Some recent works also explore hyperparameter customization for FL [126, 178]. They

adopt Random Search [29] or Reinforcement Learning [263] on each device to find the

most suitable hyperparameters for the client. However, our experimental results show that

the amount of resources required to perform such customized tuning is disproportionately

high compared to the cost of local training. For example, the tuning algorithms require

many hundreds of train-and-evaluate iterations while, in contrast, a client is typically se-

lected only a few times to perform local training during the entire FL training process. This

creates a vast discrepancy in the hyperparameter customization vs. actual training cost

which brings the question of whether the benefits of hyperparameter customization is even

worth it. In addition, the resources of client device in cross-device FL are usually highly

constrained [36,183,215] and our results show that the amount of computational, memory,

29

energy, and time costs required for tuning hyperparameters on most IoT and mobile clients

may not even be feasible. There have also been ethical questions regarding the heavy usage

of user-owned devices for training third-party models and thus reducing the cost on clients

as much as possible is both urgent and critical [77, 238]. Furthermore, existing works per-

form hyperparameter customization during each training round and thus can significantly

slowdown the training speed, e.g., tuning a set of hyperparameters with 100 combinations

is similar to perform 100x of local training and is thus roughly 100x slower training speed.

These observations lead us to a conundrum - performing Hyperparameter Customization

on client devices is impractical due to the resource costs and the slowdown of training,

but at the same time it is difficult to offload hyperparameter customization to the server

without revealing client data or information. This motivates us to explore opportunities to

perform hyperparameter customization without using user data or information. Through

extensive characterization experiments, our key discovery is that it is not necessary to do

hyperparameter customization for every client, and clients with similar data heterogeneity

can use the same hyperparameters to achieve good training performance.

Based on the key discovery, we propose FedCust, a privacy-preserving hyperparame-

ter customization framework for FL that offloads the customization work to the server.

In FedCust, clients are clustered into different heterogeneity groups according to hetero-

geneity measurement metrics such as “Heterogeneity Index” [141]. Clients in the same

heterogeneity group use the same pre-tuned hyperparameters. To obtain pre-tuned hyper-

parameters, FedCust uses the proxy data from the initial model design to emulate different

heterogeneity groups, i.e., create non-IID datasets with different heterogeneity metric val-

ues, and then perform hyperparameter customization for each group on the server side. In

this way, the hyperparameters are tuned for each heterogeneity group without accessing any

client data nor information. To make the hyperparameter customization scalable, FedCust

30

further employs a Bayesian-strengthened tuner to significantly accelerates the hyperparam-

eter customization speed. The pre-tuned hyperparameters are stored in the Hyperparameter

Reference Table (HRT) - a table whose row and column combinations embody a specific

heterogeneity group and the cell’s value is its corresponding optimal hyperparameter set.

The HRT is very lightweight (typically less than 1 KB) and is distributed to clients with

model parameters. Clients choose the most profitable hyperparameters based on their het-

erogeneity group.

We prototype FedCust on a real distributed FL testbed and evaluate its effectiveness and

robustness using popular and sophisticated FL benchmarks. Our evaluation results show

that FedCust offers superior performance over existing methods that are heterogeneity-

oblivious (such as [36,128,141,256]) and are on-par with the significantly more expensive

on-client tuning methods [126, 178]. For FEMNIST of LEAF [41], the most sophisticated

available FL benchmark, we achieve up to 7% accuracy improvement as well as 2/4/4/6%

better accuracy than the widely adopted one-size-fits-all method for the Shakespeare, Ci-

far100, Cifar10, and Fashion-MNIST datasets respectively. We show empirically that our

method is scalable with the number of devices in the system, generalizable to different

data heterogeneity definitions and granularity, and completely reduces client-side tuning

resource costs.

In summary, FedCust has two major advantages over all prior art. First, it completely

offloads all tuning costs to the server and imposes no additional overhead on resource-

constrained client devices, which makes hyperparameter customization practical for cross-

device FL systems. And second, no client data is exposed throughout the whole process,

which allows for preserving of privacy constraints.

31

3.2 Background and Related Work

3.2.1 Data Heterogeneity in Federated Learning

FL often involves a large number of clients such as mobile or IoT devices with limited com-

puting capacity and unreliable communication. In each training round, only a small portion

of clients is selected to participate. Each participated client trains the latest model weights

locally and only sends the trained weights/gradients in a secured manner [36, 222] to the

central aggregator to produce the new aggregated weights. During the training process,

client’s data is not shared with other clients nor the aggregator, thus preserving privacy.

Data heterogeneity is an essential property of FL as clients usually have different amounts

and distributions of data [82, 143], with the extent of data heterogeneity being much more

pronounced than in conventional ML [143, 278]. As such, there are lots of recent works

targeting at addressing this issue. The first line of works focus on designing a client se-

lection policy for choosing devices with similar data distribution, such as FAVOR [250],

[199], [199], TiFL [44]. Another line of works propose strategies to identify which parts of

the model are mostly affected by data heterogeneity, and then apply regularization meth-

ods (such as weight regularization) to correct them. A notable example is [77] which uses

meta-learning to find an initial shared model that can be adapted to the heterogeneous data

of clients. SCAFFOLD [123] applies noise to the local weights before sending them to

the aggregator. However, all these solutions focus on using novel aggregation or client

selection schemes to mitigate data heterogeneity. Finally, another line of works innovate

on the aggregation algorithms to mitigate the data heterogeneity impact in FL. For ex-

ample, [206] proposes three different server-side optimization algorithms. FedDF [150]

32

allows flexible aggregation over heterogeneous client models by using ensemble distilla-

tion, while [194] uses means and medians instead of mean for aggregation. Some papers

such as [267, 283, 306] also fundamentally change the system architectures by enabling

server-side training and hierarchical aggregation. In this work, we focus on hyperparam-

eter customization, which is complementary to all the above works and we demonstrate

in our evaluation that together with our methodology, the performance can be further im-

proved.

3.2.2 Hyperparameter Optimization

The performance of machine learning models are sensitive to hyperparameters, such as

[8,10,96,217]. Hyperparameter optimization (HPO) aims at tuning the hyperparameters to

improve convergence speed and quality. However, due to the wide range of hyperparameter

choices and their corresponding dynamic schedules, tuning these hyperparameters is a time

and resource consuming task.

3.2.2.1 Hyperparameter Optimization for Data Centralized Learning

To improve the efficiency of hyperparameter optimization, various works have been pro-

posed for conventional data centralized learning, including multi-armed bandits, evolution-

ary algorithms, and Bayesian Optimization (BO) [135, 266, 284]. However, such conven-

tional wisdom is difficult to be adapted to FL as they either require IID data distribution or

knowing private information from training data, which is prohibited in FL.

33

3.2.2.2 One-size-fits-all Hyperparameter Optimization for FL

The state-of-the-practice hyperparameter optimization in FL is to hand tune a single set of

hyperparameters and apply them to all clients indistinguishably. Some recent works aim

at improving this process by using different approaches. [62] adopts Bayesian Optimiza-

tion to tune the local training hyperparameters on-device individually, but does not cus-

tomize the hyperparameters individually. Rather, it trains the acquisition function based on

clients’ data and uses it to predict a final global hyperparameter set for the full system. [63]

performs local Bayesian Optimization to find the best hyperparameters for differential pri-

vacy parameters, but not for local training hyperparameters. [98] performs an evaluation

of the [62] in an industrial setting, but does not propose anything new. In addition, they

perform the hyperparameter optimization on client devices, which slows down the training

process and degrades user experiences due to significantly longer computation and higher

power consumption. In comparison, FedCust offloads the tuning overheads to the server.

FLoRA [307] optimizes hyperparameters by formulating a non-linear loss function and

optimizes it for decisions trees, but the approach is not generalizable for deep learning

models.

3.2.2.3 Hyperparameter Customization for FL

There are a few works explore hyperparameter customization for FL, but they either fo-

cus on certain aspect or require information sharing that violates FL privacy requirements.

FedProx [141] and FedNova [252] hand tunes the local number of SGD steps to reduce

the communication overheads, but such an approach does not apply to general hyperpa-

rameters. FedTune [293] focuses on tuning systems hyperparameters instead of learning

34

hyperparameters to minimize resource usage and their approach also requires expensive

local tuning. Genetic CFL [9] observes data directly to assign similar clients together into

clusters. It needs to exchange loss, weight, and hyperparameter information among clients

and thus violates privacy requirements of FL. [178] uses Reinforcement Learning (RL)

to adapt the learning rates of clients over training rounds. It requires client information

to train the RL model and the tuning is performed on client devices, which slows down

the training process and degrades user experiences due to significantly longer computation

and higher power consumption. In comparison, FedCust is a more general approach that

supports other hyperparameters beyond learning rate and offloads the tuning overheads to

the server to reduce the burdens of client devices. FedCust employs Bayesian Optimiza-

tion which is much more lightweight than RL, and requires no client information to meet

stronger privacy requirements. FedEx [126] uses One-shot Neural Architecture Search to

develop customized models for each client, and also tunes the learning hyperparameters

along this process. Because they perform both architecture search and hyperparameter op-

timization on client during the training, the overhead is even more expensive. We compare

FedCust with [126, 178] in our evaluations to further validate the advantage of FedCust.

3.3 Federated Learning Hyperparameter Optimization Study

In this section, we first present a primer of FL that shows the difference of FL to conven-

tional distributed optimizations. Then we explain why heterogeneity-aware hyperparameter

optimization is critical in Federated Learning. Finally, we discuss why it is prohibitively

expensive to perform client-side hyperparameter customization and whether it is possible

to address this challenge by offloading hyperparameter customization to the server side.

35

3.3.1 Federated Learning: A Primer

Problem Formulation. The federated learning problem aims at learning a single, global

model from data stored distributedly on a large number of remote devices. Different from

conventional distributed training, FL has the constraints that device generated data is stored

and processed locally, with only intermediate model updates being communicated periodi-

cally to a centralized server. The server then performs an aggregation [170]. More formally,

the goal of FL is to minimize the following objective function:

min
θ

F(θ),where F(θ) :=
m∑

i=1

piFi(θ,Di) (3.1)

Here, m is the number of devices. pi is a coefficient that determines the impact of each

device, usually set to 1/m. Fi(·) is the local objective function for the ith device, and Di

represents the local data on the ith device. Data heterogeneity. One big challenge in

solving the above problem lies in the heterogeneity in data Di. In FL, each client has its

own private data with different data distribution and data quantity. This data heterogeneity

adds complexities in solving Equation 8.1, because it violates the independent and iden-

tically distributed (i.i.d.) data distribution assumption that many statistical optimization

methods (e.g. Stochastic Gradient Descent) rely on [143]. To further understand how data

heterogeneity affects FL performance, we need to look deeper into where data heterogene-

ity comes from. At the high level, there are two types of data heterogeneity: heterogeneity

in data distribution, and heterogeneity in data quantity.

Data quality heterogeneity means the data from different clients may have different types

and features, which are often associated with the user behavior of the client devices. Take

image classification of cats and dogs as an example, cat-owners usually have more cat im-

36

ages than dog images on their phones. Such data distribution heterogeneity may cause

performance issues, e.g., a model trained on cat owners may have better performance on

cat images than dog images, and vice versa [44, 128, 141, 143]. Some prior works propose

different metrics to quantify heterogeneity in data distribution for analysis and sensitivity

experiments. For example, [37] uses Poisson distribution to synthetically distribute the

datasets across clients, while [214] uses Gaussian distributions. Recent papers use real-

world distributions such as LEAF [41]. However, how to quantitatively measure hetero-

geneity in data distribution remains a challenging and open question.

Data quantity heterogeneity means that the amount of data may vary from client to client.

This is also due to user behaviors. For example, clients who text a lot have more data points

to train for a word-prediction model than clients who text very little. Such heterogeneity

also impacts performance during the training process.

Privacy constraints. The problem gets even more complicated when taking privacy con-

straints into account, where the private data of clients cannot be monitored nor manipulated

(e.g., to create more balanced data across different devices). This means that even if we

can measure and characterize the data heterogeneity of a client, that data heterogeneity in-

formation must remain as a black-box and cannot be shared outside of the client device.

Without knowing the data heterogeneity information, conventional wisdom for mitigating

data heterogeneity impact is difficult to be adopted in FL [140], making it even harder to

improve the FL process based on data heterogeneity.

37

(a) (b) (c)

Figure 3.1: Heterogeneity Impact - (a) Test accuracy vs. training rounds comparison. (b) The tuned learning
rates and the corresponding number of clients that use them. Derived after hand-tuning all clients. (c)
Scalability of the number of training steps that must be run to tune hyperparameters with varying number of
clients in the system.

(a) Sample set 1

(b) Sample set 2

(c) Sample set 3

Figure 3.2: Heterogeneity-aware Tuning Configurations - The Learning Rate, Batch Size and Local Epoch
parameter value distributions across distinct client sets chosen after Heterogeneity-aware tuning. Each of the
client sets is mutually exclusive and sampled as 10% from the full LEAF dataset.

3.3.2 Heterogeneity-oblivious vs. Heterogeneity-aware Hyperparam-

eter Optimization

In this section, we conduct an empirical study to understand the importance of heterogeneity-

aware hyperparameter customization, which adaptively chooses hyperparameters for indi-

vidual client devices in FL. For detailed experimental setup, please refer to Section 5.5.1.

38

Our key intuition is that given the heterogeneity in client data, the hyperparameters for

each client device should be customized based on the data heterogeneity to facilitate the

local learning process, and by improving the local learning of each individual client we can

obtain an overall improved global model. To test our hypothesis, we design a simulation

experiment to compare the performance of the following two different approaches.

• Heterogeneity-oblivious (H-oblivious): Following the common practice of FL (such

as FedAvg [128]), we hand tune a global set of hyperparameters and use it across all

clients.

• Heterogeneity-aware (H-aware): We hand tune the hyperparameters for each client

to have customized hyperparameters per client.

In the experiment, we use FEMNIST from LEAF [41], a popular image classification

benchmark with data heterogeneity (see Sec. 9.4). We hand tune the local hyperparam-

eters learning rate, batch size, and local epochs (defined as the number of training epochs

at each client) for each client. We follow the literature [41] to set the search range of hyper-

parameters for the learning rate between 0.0001 to 0.1, the batch size between 8 to 64, and

the local epochs between 1 to 30 which gives us a total number of combinations (or search

space) of 24,000 (details explained in the next section). We apply grid search to identify

the best hyperparameters for individual clients. The distribution of the learning rates are

given in Figure 3.1b (batch sizes are given in Table 7.1).

The comparison of test accuracy curves across training rounds is shown in Figure 3.1a.

We can see Heterogeneity-aware outperforms Heterogeneity-oblivious in accuracy during

the training process and yields a 7.4% better accuracy after the accuracy plateau. This is

presumably because the one-size-fits-all approach of Heterogeneity-oblivious is inevitably

39

unfavorable for some clients no matter how judiciously the tuning is due to the data het-

erogeneity across clients. On the other hand, the customization approach of Heterogeneity-

aware can tailor the hyperparameters for each client to maximize the performance benefits.

Figure 3.1b shows the hand-tuned learning rate distribution across clients. The distribution

demonstrates that while a majority of the learning rates are within the 0.0001 − 0.1 range,

there are lots of clients requiring a much more diverse range of values, making it difficult to

choose one set of hyperparameters that work well for all clients. These results indicate that

data heterogeneity-aware hyperparameter optimization approaches have the potential to

improve the learning performance compared to data heterogeneity-oblivious approaches.

To further understand the impact of data distribution on the impact on the hyperparameter

choice, we perform experiments where we vary the underlying data heterogeneity of the

clients and derive their Heterogeneity-aware hyperparameters and observe their differences.

In Figure. 3.2, we sample different client distributions from LEAF’s FEMNIST dataset. It

contains 62 classes of 805K black-and-white 64x64 images which are hand-written by

3,550 different users, and each user is represented as an individual client. Thus the dataset

provides a natural data distribution by default compared to other standard datasets which

are usually IID by nature and needs to be artificially split. Each of the clients also contain a

variable amount of datapoints, thus representing data quantity heterogeneity as well. For all

our experiments, we randomly sample 200 clients (as is the standard practice [35,141,185]).

For this experiment, we sample different parts of the full dataset.

In Fig. 3.2, we show the results of the Hyperparameter-aware hyperparameter choices

for different dataset samples. The samples are chosen such that only clients with certain

data quantities are used as the 200 clients in the full FL system. Lower data quantity clients

contain less number of classes and vice-versa, making it a simple metric for deriving dif-

ferent data heterogeneity distributions. Sample sets 2 and 3 contain clients with > 400

40

and < 150 datapoints respectively while set 1 has a mixture of both. From the differences

in distribution, we can clearly see that the type of sampling has a significant impact on

the hyperparameter choice. For Sample set 3 we have low number of datapoints and so

seems to favor low learning-rates, batch sizes and local epochs since they tend to be better

at reaching the global minima faster for low-noise planes [227] (while the full system is

heterogeneous, the data within each client tend to be similar and thus less noise in the local

datasets). For Sample set 2, we see the opposite effect since now we have more datapoints

and classes per client. Lower learning rates and batch sizes would result in overfitting on

the larger and diverse datasets and so are avoided. For Sample set 1, we see the hyper-

parameters are relatively more evenly spread out since it is a mixture of both. Based on

these observations, we see that the underlying data quality and quantity distributions influ-

ence the tuning results significantly, and there is a relationship between heterogeneity and

chosen hyperparameter sets which we can exploit for reducing the search space.

3.3.3 Resource Cost and Scalability

(a) (b) (c)

Figure 3.3: Resource Cost and Scalability - (a) Energy spent per client for tuning hyperparameters (b) Time
taken for each client for tuning and FL local training (c) Scalability of the number of search steps that must be
run to tune hyperparameters with varying number of clients in the system. The energy and time is measured
using the Android Profiler [114] over 200 clients with Samsung S20 devices.

Heterogeneity-oblivious methods only tune one set of hyperparameters and use it across

all clients, so the tuning cost is not associated with the number of devices. However, given

that there could be millions or even billions of remote devices, data heterogeneity-aware

41

methods that perform customized tuning on each client would incur significant accumu-

lated cost. More importantly, clients in FL are usually IoT or mobile devices with limited

computing capacity. Performing computing intensive hyperparameter tuning tasks on these

devices is slow and power demanding, which may significantly discourage user participa-

tion. For this section, we evaluate the resource cost of Heterogeneity-aware tuning on

low-powered devices to understand the cost-benefit tradeoffs of performance benefit vs.

resource usage.

For the first experiment, we compare the total power consumption on each client in the

tuning phase. Figure 3.3a shows the median and quartiles of energy consumption of all

200 clients against the search space. Here we see that the energy consumption is signifi-

cantly high during the hyperparameter tuning phase. Since searching involves training for

a few steps for each set being evaluated and it is computationally expensive. The most

common mobile devices tend to have between 60kJ to 240kJ of total battery life [43, 309],

and given that they usually run with multiple processes in the background, this load can

make it infeasible to tune on-device. Additionally, works such as [35, 87, 112, 183] make

the argument that the FL process must be minimally invasive which may not be possible

here as well. Next we look at the time spent tuning vs. training on-device across a wide

range of hardware (the results are presented in Figure 9.5b). Here we train for 2000 rounds

for 200 clients with 20 clients selected per round. For tuning, we use the search space de-

scribed above. The probability of having a client participate is very low. Even with a high

number of epochs, the small number of times a client gets selected means very minimal

time is spent on the local training process, which is a desired system property. Time spent

tuning, however, requires many more training runs and is therefore exponentially more ex-

pensive than the actual training phase. In resource-constrained systems, the clients’ may

not be willing to bear this extra cost for the boost in final model performance. These two

results shows a significantly more cost in both time and energy for Heterogeneous-aware

42

approach since tuning hyperparameters requires considerable trial and errors, As pointed

out in [36, 44, 112], clients can only be selected under certain circumstances, such as when

the devices are plugged in, not being used, with sufficient memory, to avoid impacts on

the user experience. Under such criteria, a significantly longer tuning and training time, re-

source consumption may prevent a large portion of clients from participating in the training

process.

Scalability is also a challenge for heterogeneity-aware tuning approaches. For the heterogeneity-

oblivious tuning approach (the global tuning), the traditional method is to train the full FL

system for a few rounds for each hyperparameter set being trialed [44, 199]. For the

Heterogeneity-aware approach, we explore each hyperparameter set by first selecting a

subset of clients randomly and training the client with the set for a few local epochs and

evaluate its final model performance, eventually selecting the best set for that client. In

Figure 3.8a, we show the total number of training iterations involved to find a good set of

hyperparameters (i.e. Search Steps) against the number of clients involved in the training

process. We see that there is a linear increase of the number of search steps proportional

to the number of clients. given that the tuning cost is already expensive for each device,

this linear scaling is also highly costly for the full system. As such, in order to design a

resource-efficient Heterogeneity-aware FL tuning framework, we must offload the search

phase from the clients.

3.4 Hyperparameter Customization Offloading

Considering the prohibitively expensive cost for client-side heterogeneity-aware hyperpa-

rameter customization, one natural question is: would it be possible to offload hyperpa-

43

rameter customization to the server side to reduce the cost? Even though offloading the

hyperparameter customization process to the server side seems straightforward as servers

are usually hosted in the cloud or data centers with plenty of computing resources, it is

actually very challenging. Due to the privacy constraints in FL, neither the data nor the

properties of data (e.g., including the data heterogeneity information) of a client can be

shared with the server. Without knowing the data or its property, offloading the tuning task

to the server becomes quite difficult as the hyperparameters decided by the server might

not be ideal for the clients if the server does not know the data information of the client.

Given the restrictions on client data, directly customizing hyperparameters using client

data on the server side is infeasible. However, since we know hyperparameters are depen-

dent upon data distribution, it is interesting to know whether we can group datasets based

on their data distribution properties and use the same hyperparameter for each group? In

other words, can hyperparameters tuned based on data heterogeneity offer consistent results

across different datasets? To test this out, we first have to define a quantitative measure

of data heterogeneity. We define Heterogeneity Index following literature [44, 143, 287].

Heterogeneity Index, denoted as HI(c), is defined as a normalized measurement of data

distribution heterogeneity:

HI(c) = 1 −
1

cmax − 1
× (c − 1), c ∈ [1, cmax] (3.2)

where c controls the heterogeneity by adjusting the number of classes per client out of the

total number of classes cmax in the full dataset. HI(c) ranges from 0 to 1, where 0 represents

a completely balanced synthetic dataset and 1 means there are only data points with 1 class

on the device, which is the highest level of imbalanced data distribution possible. We then

run a simple experiment where we use 6 different datasets with data quantity of 400 and

800 combined with HI of 0.15, 0.5, and 0.75 respectively. We set the batch size of 5

44

Table 3.1
Optimal learning rates - Under different data heterogeneity levels, batch sizes, and data sizes.

Heterogeneity
Index

Batch Size / Number of Data Points
5/400 10/400 20/800 30/800

0.15 0.021 0.04 0.041 0.061
0.50 0.032 0.065 0.071 0.105
0.75 0.042 0.086 0.081 0.125

and 10 for 400 samples dataset, and 20 and 30 for 800 samples dataset respectively. We

hand tune the learning rate to achieve the best performance. The optimal learning rates

is shown in Table 3.1. We can see the optimal learning rates have a clear pattern – with

the increasing of heterogeneity level while other factors are the same, the learning rate

increases. Also, with more training steps (the ratio of data set size and batch size), the

learning rate also increases. This observation is corroborated by the paper [227], where

they derive the relationship between the noise scale, i.e., the magnitude of the random

fluctuations in the training dynamics, and the learning hyperparameters. Specifically, they

suggest that the learning rate should increase with increased noise scale. In the federated

learning case, the higher the heterogeneity, the noisier the training process [143,305] which

is why we observe that an increase in data heterogeneity requires higher learning rates.

Such a pattern seems to be helpful in making offloading hyperparameter customization on

(a) (b)

Figure 3.4: Comparison of Tuning Methods - (a) Hand-tuned vs. estimated learning rate (LR) under differ-
ent heterogeneity index. Estimation is done via regression fitting. (b) Final test accuracy comparison between
hand-tuned vs. estimated LR under different heterogeneity index.

the server side possible even without the client data, since we can estimate the learning rate

for a client device based on the shared pattern in data heterogeneity. Figure 3.4a shows

the pattern of the optimal learning rates for the system’s corresponding HI (Hand-tuned

45

LR). We fit a quadratic regression model (Estimated LR) and interpolate the LR values for

other HI. Figure 3.4b shows the difference of the accuracies derived with the interpolated

learning rates against their optimal hand-tuned values. For example, here if we estimate

the learning rate at HI 0.36 via interpolation, the estimated learning rate is 0.029, very

close to the actual optimized learning rate 0.034. However, we observe from Figure 3.4b

that the accuracy when using the estimated learning rate is around 15% lower than the

accuracy of tuned learning rate. This study suggests it is challenging to utilize the patterns

of hyperparameters for estimating optimal hyperparameter values to reduce the tuning cost

since the learning rates are very sensitive. However, this pattern is sufficient such that it can

be used by the acquisition functions in BO as a guide during the exploration phase e.g., by

avoiding exploring known bad hyperparameters.

3.5 FedCust: Heterogeneity-aware Hyperparameter Optimization

Figure 3.5: FedCust System Design - Shows the major steps involved in the tuning process.

In summary, we make the following key observations from the above sections. First,

there can be significant increase in final model performance if hyperparameters are tuned

to fit the local data than using a single global Heterogeneity-oblivious set, and that the data

distribution per client is influential here. Second, privacy requirements means that we have

46

to tune hyperparameters on the client hardware if we are to achieve good results. Third,

local tuning is prohibitively expensive, especially on mobile hardware which is the ma-

jority of the system in cross-device FL and so we must design a technique to reduce this

burden. Lastly, it is possible to offload hyperparameter tuning to the server, but special con-

siderations must be taken into account when doing so. Based on these insights grained, we

propose an efficient and scalable hyperparameter customization framework named FedCust

that offloads hyperparameter customization to the central server without violating privacy

constraints. We describe the proposed system in this section.

3.5.1 Proxy dataset-based Hyperparameter Customization

Based on our observations, we know that per-client customized tuning based on data dis-

tribution can yield a significant boost in model performance, but privacy and resource con-

straints can make this impossible for cross-device FL systems. The main problem here is to

enable hyperparameter tuning to be performed on the server without being able to directly

access client data. We tackle this problem by using a representative dataset called the proxy

dataset. The main idea for FedCust is to manually configure this dataset to be representative

of the underlying clients’ data distributions and perform the hyperparameter customization

process on it on the server side. This allows us to search hyperparameters without any

client information nor accumulated client information being shared with the server. and

offloading the tuning overhead to the server completely. Our observations from the previ-

ous section showed that the hyperparameters are correlated with data heterogeneity. Using

this intuition, we can create a set of proxy datasets with different heterogeneity character-

istics and tune the hyperparameters on those sets. Then by grouping clients based on their

data heterogeneity characteristics to a similar proxy set, we can reuse the corresponding

47

tuned hyperparameters of the proxy set on the clients.

Now, the main question here is how to derive a good proxy dataset such that it is repre-

sentative of the underlying data. In practical FL settings, proxy datasets are quite common.

They are used for developing the model architecture and tune the global hyperparame-

ter set. In practice, such a dataset can be provided by the model developers, or from

user-shared/publicly available data [86, 281]. For example, the initial training datasets

used by the model developers when designing the architecture are derived from public

datasets [171, 292], or some datapoints are scrapped from consenting users to tune the

global hyperparameters [35, 86, 281]. We can use the same datasets for our case as well

for two main reasons - 1) the model itself is designed based on this proxy dataset so they

are well suited to each other, and 2) the global hyperparameter is tuned on it to capture

the correct features in the first place. Therefore, the proxy dataset only needs to reflect

some general information about the task such as the number of classes and input dimen-

sions. This is done in practice by using similar datasets. For example, MNIST [132] is

used as proxy for Fashion-MNIST [270] due to having similar input features and classes

even though they are separate datasets. The important point to note here is that this allows

us to have a representative dataset on the server without violating the clients’ privacy. We

do an analysis on the impact of proxy dataset choice in the Evaluation section to better

understand how it impacts the hyperparameter search and training phases.

48

Table 3.2
HRT - SampleHRT forHI data quality metric. Each cell contains the tuned learning rate/batch size/local
epochs for that distribution combination. - Sample HRT for HI data quality metric. Each cell contains the
tuned learning rate, batch size, local epochs for that distribution combination. The HI can be substituted
with any other heterogeneity metric, and is shown as an example only.

of data points
100 200 1000

HI
0.2 2e-4/8/4 5e-4/8/6 - 5e-4/8/20
0.4 4e-4/8/15 2e-3/6/20 - 2e-3/24/20
.... - - - -
1.0 4e-3/8/8 4e-3/16/20 - 4e-3/16/30

3.5.2 Privacy-Preserving Hyperparameter Customization via Hyper-

parameter Reference Table

Since the server does not have the client data, it is challenging to figure out what exact data

heterogeneity the client data may exhibit. To resolve this issue, FedCust takes a reference

table based approach, where FedCust would explore a large number of data qualities and

quantities that represent different combinations of data heterogeneity. For each data hetero-

geneity point, FedCust would let the server to perform a hyperparameter tuning to identify

a set of promising hyperparameters under that point. The results are recorded in a Hyper-

paramter Reference Table (HRT). HRT is a two-dimensional array where the rows are the

data distribution heterogeneity (e.g. Heterogeneity Index) and the columns are the data

quantity. Each cell contains the hyperparameter sets for the dataset with the corresponding

combination of data qualities and quantities.

In order for this HRT to function, we need to quantify the data quality and quantity such

that each cell can represent a certain type of data distribution as a measure of its combi-

nation of quality/quantity values. Quantity is a direct metric, but assessing data quality

is non-trivial. Ideally, data quality should be a measure of how much useful feature rep-

resentations can be learned by a model from that dataset. While this is well understood

49

conceptually in literature [141, 143], there is yet a formal quantifiable definition for it, and

this problem is over-arching for ML research in general. Data heterogeneity is a commonly-

faced issue in FL and therefore many works have provided metrics to quantify it in their

own way. However, there has yet to be a single formal definition and so we adapt these met-

rics for our purposes. These measures are usually based on class-wise random sampling

methods. Some of the most common definitions use Gaussian [208, 234], Poisson [6, 50],

Dirichlet [136,138] distributions or the HI value for sampling the from the full dataset. For

example, the Gaussian mean and variance parameters determine the spread of the sampling

of the number of classes where higher variance values mean more evenly distributed the

classes. Poisson and Dirichlet can also function similarly, and HI functions as explained

above. They are convenient to use since these functions are controllable, well-understood

and generalizable to different datasets (for non-classification tasks such as next-word pre-

diction [90] we can sample based on the similarity of the output word vectors [193]). While

not directly a measure of “quality“, they have been found sufficient by the latest FL litera-

ture and so we use them for our purposes as well.

After setting up the HRT with our chosen metrics, we sample from the proxy dataset

such that the cell metrics (i.e. data quantity and quality) are met. We then perform hy-

perparameter search to find the best hyperparameter set for that cell on that sampled proxy

dataset subset. We explain the search process in the next sub-sections. Once the HRT (ex-

ample given in Table 3.2) is fully populated in this way, it is sent one way from server to

clients. The table is typically a few KBs and sent with the global model, thus the network-

ing overhead is negligible. On the client-side, FedCust has a profiler that measures the local

dataset’s data quality and data quantity. This is profiler uses suitable distance metrics based

on the quality metric used. For example, for HI, the Euclidean distance is used. The client’s

data heterogeneity is first calculated on the client side by measuring the number of classes

and datapoints, which can give us the HI number. Then the Euclidean distance between

50

each of the cell’s row/column HI/quantity and the current client’s measured HI and quan-

tity is taken, and the most similar cell type to the client’s distribution is determined to be the

one with the lowest distance value. The client then uses the chosen cell’s hyperparameters

for local training. Similarly, for Gaussian, Poisson and Dirichlet distributions we use the

Chi-squared [195] or B-distance [118] values. Note that our framework is generalizable to

any type of such metrics, even novel ones that do not rely directly on class quantities such

as HI. For the rest of our project we use HI as an example since it is most intuitive but it

should work well regardless of the choice of metric. The main idea here is to be able to

derive an HRT that can sufficiently capture the possible clients’ heterogeneity, which can

be done with any suitable distribution and distance metrics. We provide empirical results

using different metrics in Section 9.4.

It is important here to note here that while the generation of the HRT occurs at the server,

the distance between the cells and the individual client’s local data distribution measures

are only kept at the client. Only the client knows the combination of quantity/quality that it

has and selects the hyperparameter by itself. The server acquires no information from the

clients at this stage, making this a fully private mechanism.

By having each client look up the HRT to choose the best matching entry based on its

profiler’s HI measure, the client then can use the customized hyperparameters provided by

HRT for local training. The rest of the FL training proceeds as usual. A description of all

the steps and a complete system overview is given in Figure 3.5. Note that in this process,

FedCust does not collect or monitor client data, so it respects the privacy constraints of FL.

At the same time, it also imposes almost no additional overhead to the clients.

51

3.5.3 Determining HRT Granularity

Since the hyperparameters are tuned across each cell of the HRT, it is a direct determinant

of the search space along in addition to the hyperparameter ranges. The higher the granu-

larity (i.e. the number of quantity/quality cell combinations) the more the search overhead

but more fine-grained the tuning and thus better local training results. Therefore, we need a

mechanism to determine the best suited granularity for the HRT. We do this by first setting

up and populating a low-granularity HRT (for example, with 24 total cell combinations

as in Table 3.2), then selecting a client and measuring its data distribution distance to the

closest HRT cell as described above. Note that this too is generalizable to the heterogeneity

metric choice. If this distance value is above a certain threshold τ, the client sends a signal

to the server to ask it to increase its granularity. The server then increases the number of

quantity/quality rows and columns and finds the new hyperparameters for the new combi-

nations, and FL training continues as usual. The τ value functions as a tradeoff threshold

between search cost and tuning performance. We analyse its effect in Section 9.4 in more

detail. This system is also private since the server still has no idea about the client’s data

distributions but only that the current available cells are insufficient for tuning.

At implementation, this calculation of the HRT granularity can be performed both before

the training begins and online. The former method can be applied by selecting client in

a round-robin fashion to determine whether they require finer granularity for HRT. The

latter method can be performed during training when a client gets selected. Either way

is equally effective, but the latter method may cause delays per round if in the worst case

scenario every client ends up asking for finer granularity. For the experiments in Section

9.4, we first try our basic FedCust implementation with a static HRT to demonstrate that

it is an efficient FL hyperparameter tuning platform. We then add the HRT granularity

52

determination on top of it to further enhance it for use in real-world scenarios.

3.5.4 Scalable Hyperparameter Customization via Bayesian Strength-

ened Tuner

One challenge raised from creating the HRT is that because we have to cover a wide range

of data heterogeneity (i.e. data quantity and distribution), as well as different hyperparam-

eters (e.g., learning rates, batch sizes), the combinations can be extremely large and the

customization process can still take excessively long to run even on the server side. To

accelerate the customization speed, we use Bayesian Optimization (BO) as our tuning

method as it has been proven to be quite useful in hyperparameter optimizations [229,266].

Here we leverage BO for tuning the hyperparameters in the tailored search space. For sim-

plicity, we define the search space for each cell in the HRT to be the same. For example,

if we set the learning rate range between 0.002, 0.8 with 0.002 increments (400 total learn-

ing rates), batch sizes 4, 8, 16, and local epochs are 5, 10, 15, the total number of possible

combinations of hyperparameters are 3,600 per cell.

BO judiciously selects the next points to explore based on the values of the predefined

acquisition function obtained from previous exploration steps. We use EI (Expected Im-

provement) [246] as our acquisition function as it does not require hyperparameter tuning

and it is easy for setting intuitive stop conditions. EI aims at maximizing the expected

improvement from the new explorations over the current best results and is defined as:

EI(Hp) = (yo − µ(Hp))Φ(γ(Hp)) + σ(Hp)ϕ(γ(Hp)) (3.3)

53

where µ(·) and σ(·) are the predictive mean function and predictive standard deviation func-

tion, respectively; yo is the best current value at argmin(Hp)y(Hp); γ(Hp) = yo−µ(Hp)
Hp ; Φ(·)

and ϕ(·) are predictive cumulative distribution function of standard normal and probability

density function of standard normal. FedCust also creates a small FL simulator that runs for

20 rounds with 5 clients which we find sufficient. This is done instead of simply evaluating

it directly on a single client due our observations of fairness as described in Section 8.3.

By tuning on a single client, we run the risk of yielding hyperparameters that overfit on the

local dataset, thus reducing generalizability. Instead, by participating in a full FL system,

we find that the hyperparameters found are more suited to deriving local models that result

in a better overall global model. The dataset heterogeneity properties of these clients are

set to those of the cell which the optimizer is running on. The FL simulator returns the final

accuracy as the function output, and the BO maximizes this output.

To populate the HRT, FedCust uses the BO-based tuner to traverse through each of the

possible combinations of quality and dquantity, searching the full hyperparameter space

to find the set that gives the highest accuracy. The search for each cell stops when there

was no increase in the FL simulator’s accuracy in the last n (e.g., 5) rounds. This traversal

continues until we find a hyperparameter set for each cell. Therefore, the total search

space is number of possible hyperparameters (e.g., 3,600) times the number of cells. The

decision to choose the number of cells is important since it is one of the most important

factors determining the total search space and thus the efficiency of the tuner. We conduct

a sensitivity analysis in the next section.

54

Table 3.3
Training setup - Describes the model, number of train/test datapoints, clients and global hyperparameter
sets.

Dataset Model Train/Test split Clients
Total/Per Round

Global LR
/Batch Size

Training
Rounds

FEMNIST 2 conv 2 dense 49,644/6,200 192/10 0.0004/8 2000
Shakespeare 128 hidden size LSTM 74,000/13,000 10/1 0.0003/4 100

Cifar100 Resnet18 50,000/10,000 50/5 0.045/16 1000
Cifar10 4 conv 2 dense 50,000/10,000 50/5 0.05/16 500

F-MNIST 2 conv 2 dense 50,000/10,000 50/5 0.002/8 500

3.6 Evaluation

3.6.1 Experiment Setup

Data Heterogeneity. Due to the lack of production level user datasets, prior literature in

FL [37, 171, 214, 287, 305] use controlled data distribution heterogeneity. We follow these

works for our evaluation as well. The total dataset is split into smaller separate datasets

which contains a specific data distribution and quantity heterogeneity (such as HI of 0.8

and 800 datapoints) and then assigned to a client (details are provided in 3.6.1). This

is similar to the distribution strategies used in [44, 143, 287]. Such controlled setups are

usually for the purpose of a systematic characterization and clear analysis. It is worth noting

that our approach does not assume any specific patterns in data distribution heterogeneity

and thus can be applied to any dataset. We also conduct experiments using the Gaussian,

Dirichlet and Poisson distributions as used by other papers [37, 214], as well as the default

distribution used in LEAF [41] to demonstrate that our approach is general and does not

depend on specific heterogeneity distribution.

Training and Proxy Dataset Setup. We perform our experiments using the popular

image classification datasets FEMNIST [41], Shakespeare [41], Cifar10/Cifar100 [129],

55

and Fashion MNIST [270] (F-MNIST), details in Table 7.1. We use the popular FEMNIST

dataset for the majority of our demonstrations (in the interest of space) since it was made

specifically for benchmarking Federated Learning applications 1. Since it does not have

a separate evaluation dataset, we use the same setup as in [41] and derive a balanced

test dataset of size 6,200 by randomly sampling 100 datapoints per class from the unused

datapoints. Unless otherwise specified, the overall trends are consistent for other datasets

too.

The set of proxy datasets are uniformly sampled from their full training datasets. Note

that this sampled dataset is removed from the full dataset. Therefore, all proxy datasets

have no overlap with either training nor testing datasets. Proxy datasets in FEMNIST,

Shakespeare, CIFAR10, CIFAR100, and FashionMNIST (F-MNIST) contain 5000, 15000,

5000, 5000, and 4000 samples, respectively. The remaining training datasets (after remov-

ing the sampled proxy datasets for training) are 44664, 45000, 45000, and 46000 samples,

respectively. We control the different data distributions within each client by splitting them

into groups and subgroups. We first create 6 groups of clients by splitting them equally

(e.g. in FEMNIST, 192 clients are split into 32 clients per group), and assign each of these

devices to get 100/200/400/600/800/1000 data points respectively. We further split these

groups into 4 more evenly split subgroups (e.g. in FEMNIST, 32 clients get split into 4

groups of 8). These groups are then assigned varying HIs between 0.2 and 1.0.

Hyperparameter Optimization Methods. We compare our BO-based solution to Ran-

dom Search (method used by FedEx) and Grid Search baselines since there are no dedicated

hyperparameter tuning frameworks for FL. For Random Search, we perform uniform ran-

dom sampling from the full search space without replacement and keep the hyperparameter

set that gives us the highest accuracy per cell. In Grid Search, we traverse the full space in

1https://github.com/TalwalkarLab/leaf/

56

Figure 3.6: Accuracy Curve Comparison
- The test accuracy comparisons between
FedCust, Hand-Tuned, and Global Tuning.

Dataset Global
Tuning FedCust Hand-

Tuning
FEMNIST 74.14% 81.24% 81.64%

Shakespeare 50.99% 54.23% 55.13%
Cifar10 68.13% 72.32/% 72.66%

Cifar100 52.52% 56.21% 56.89%
F-MNIST 73.99% 79.73% 80.03%

Table 3.4
AccuracyComparison - Accuracy over rounds com-
parison for different datasets.

order and only keep the best hyperparameter set. The total search space is 86,400 possible

combinations of hyperparameters, as explained in the previous sections.

Testbed. We build a FL testbed using Tensorflow for the datasets by deploying each client

on a cluster with its own exclusive Intel Xeon 2.2GHz CPU. The server (i.e. aggregator)

is deployed on a separate node with 40 CPUs. FedCust’s Bayesian Strengthened Tuner,

Random Search and Grid Search are performed on the server. The server and the clients

communicate their weights via sockets.

3.6.2 Performance Comparison

First, we run different datasets FEMNIST, Shakespeare, Cifar10, Cifar100, and F-MNIST

separately with the FL setting. We compare Global Tuning, FedCust, and Hand-tuning

method, and present the best test accuracy achieved in Table 3.4. We can find that our

proposed method FedCust outperforms Global Tuning by a large margin in all models. For

example, on FEMNIST dataset, the test accuracy by FedCust improves more than 7% than

Global Tuning (Figure 3.6). On other datasets, FedCust still gets better accuracy by at

least 3.69% increase. On the other hand, the accuracies achieved with FedCust come very

close to the Hand-Tuning method with less than 1% margin of error. This demonstrates

57

(a)

(b)

Figure 3.7: Cost Comparison - (a) Test accuracy of the global model achieved with hyperparameters derived
at different stages of tuning for the FEMNIST dataset. (b) Tuning iterations comparison across different
datasets.

Table 3.5
Accuracy Improvement - Increase in accuracy (%) over Global Tuning for different datasets and distri-
bution metrics.

Dataset Gaussian (β = 15) Poisson (λ = 70) Dirichlet (α = 0.01)
Grid Random FedCust Grid Random FedCust Grid Random FedCust

FEMNIST 11.8 8.2 11.1 7.4 4.3 6.7 9.3 7.2 8.9
Cifar10 9.1 4.3 8.8 7.6 2.5 6.8 11.3 8.5 10.3
Shakespeare 3.1 1.2 2.9 1.3 0.4 0.8 2.4 1.7 1.9

that our framework can achieve a model performance on par with the best case. Apart

from HI, state-of-the-art papers also use other methods of quantifying heterogeneity such

as Gaussian, Dirichlet and Possion distribution sampling for both quantity and distribution

heterogeneity [206, 287]. To demonstrate that FedCust works with the other distribution

metrics, we compare the accuracy increase we get after applying FedCust compared to

Global Tuning. We do this across the various metrics we discussed in Section 3.5.2, as

shown in Table 3.5. For this experiment, we generated data quality and quantity for each

client with the mean sampling distribution parameters given in the table (set by following

literature [50, 138, 234]). The number of total clients, clients per round and all other setup

parameters were kept the same as for the HI experiments. The HRT and search space also

58

uses the same cell granularities and search value ranges. Thus, with little changes in the

overall BO and HRT configurations, we can achieve reasonably good results. We observe

that across all datasets, FedCust results in varying degrees of accuracy improvement for

all different types of data heterogeneity metrics. FedCust incurs significantly less cost for

searching than Grid Search yet yields final model improvements within 0.5% using a static

HRT granularity and search space. These results demonstrate that FedCust is generaliz-

able to heterogeneity metrics or underlying data distributions, and can completely offload

hyperparameter tuning to the server. The main idea of simulating data distribution using

proxy datasets and tuning on it instead of on local devices is robust to whatever metric is

used to measure the data distribution.

3.6.3 Hyperparameter Optimization Cost

We next evaluate the efficiency of FedCust’s tuner compared to Random Search and Grid

Search (Hand-Tuning can be considered as Grid Search). In Figure 3.7a, we show the test

accuracies achieved by the FL system when using the hyperparameters found after search-

ing for that particular number of steps for the FEMNIST dataset. Each step represents

the number of total hyperparameter combinations searched. We observe that FedCust’s

Bayesian Strengthened Tuner explores the space efficiently and achieves the same accu-

racy as the Grid Search method (81.24%) after around 36,000 steps, which is less than half

the total search space. For Random Search, we show the mean accuracy vs. steps and their

95% error margin after 10 runs with different seeds. We find that while some runs initially

perform better than FedCust at around 5,000 steps, eventually FedCust performs better as

its improvement is steeper. The mean number of steps taken by Random Search is around

79,000 steps, which is more than twice as that for FedCust. The number of steps taken to

59

achieve terminal accuracy for the other datasets for FedCust and Random Search with their

error margins are given in Figure 3.7b. We see here that FedCust consistently outperforms

Random Search across all of them.

(a) (b)

(c)

Figure 3.8: Scalability of of clients and HRT - (a) Number of iterations for tuning vs. number of clients in
the FL system. This compares the search cost scalability of FedCust against using local Bayesian Optimiza-
tion. (b) The hyperparameter search space as a function of HRT cells against test accuracy and cost using
FEMNIST. (c) Analysis on how the HRT granularity varies depending on the τ threshold between the current
HRT data distribution combination cells and actual data distribution.

3.6.4 Scalability

Given the large scale of mobile and IoT based Federated Learning [35], an good hyperpa-

rameter tuning framework should efficiently scale with the number of participating client

devices. To evaluate this, we perform the experiments as shown in Figure 3.8a. Here, we

change the number of FL clients present in the system and train them from scratch. We

use the LEAF’s FEMNIST dataset since it can provide 300,000 clients with their own in-

60

dividual data distributions. Here we compare the number of tuning iterations needed for

our FedCust against local Bayesian Optimization (Local BO) performed on each individual

client. For FedCust, we run multiple variations of the search algorithm with different HRT

cell sizes labeled as FedCust-[size]. For Local BO, the black-box function of the Bayesian

Optimizer is the local training process and the tunable parameters are the learning rate,

batch size and number of local epochs, and we count the number of local optimization

steps used until convergence.

As the results show in Figure 3.8a, scaling up the number of clients can significantly

increase the number of tuning iterations required to yield a good set of hyperparameters for

every device for Local BO. The increase is linear, which is expected due to the number of

time the local Bayesian Optimization runs is directly proportional to the number of clients.

For FedCust search, we observe that the number of tuning iterations remains the same

regardless of the number of clients. This is because FedCust does not require the knowledge

of the local datasets for search and therefore the number of clients is inconsequential to the

search process. Instead, we clearly see that the number of cells of the HRT is what impacts

the tuning cost, which is because the search algorithm only uses the cells of the HRT for

tuning. We observe from these results that our method is scalable with the number of clients

and therefore can provide a practical method of hyperparameter tuning for large-scale FL

systems.

3.6.5 HRT Size

Figure 3.8b shows the results of the sensitivity analysis of how the number of cells in the

HRT impacts the search space. For example, 1 cell means that only one set of hyperparam-

61

eters is used to train the full system, i.e., a global tuning set. As we increase the number

of cells, there is a drastic increase in the total search space, making it expensive to tune. It

also shows how the final test accuracy for FEMNIST changes with varying number of HRT

cells for our approach. It is clear that the benefits of increasing the number of cells after 24

diminish greatly while the search space keeps on increasing. Thus, in our experiments, an

HRT with 24 cell blocks strikes a good balance between search cost and accuracy. Specif-

ically, we use HIs of 0.2, 0.4, 0.6, 0.8 and data quantities of 100, 200, 400, 600, 800, 1000

in our evaluation. We also perform an analysis of how the granularity threshold τ impacts

the size of HRT size for the default system described at the start of this section (Figure

3.8c). Since we are using HI as the data quality metric, we use the Eculidean distance as

the distance metric but it functions the same with other data quality metrics and its appro-

priate distance measures (we remove the results in the interest of space). As we increase

the threshold of τ, we observe that the lower the number of HRT cells are generated. This

is because with a high threshold, there is larger room for error between the actual client’s

data distribution and the HRT’s data distribution. This results in more coarse-grained tun-

ing since there is a larger difference between the actual fine-tuned hyperparameters and

the ones available in the HRT. As we know from Figure 3.8b, with increasing the number

of cells results in better fine-tuning and thus better final model performance but at higher

search cost. Therefore, the distance threshold τ acts as a trade-off parameter between search

cost and final model accuracy, and can be set as per requirement by the users.

3.6.6 Resource Cost

We next evaluate the memory, computation and power consumption of FedCust compared

to the local BO method of tuning. As mentioned above, FedCust offloads the complete

62

(a) (b)

(c)

Figure 3.9: Resource Cost - Resource consumption of the various resources for Local BO and FedCust
during hyperparameter tuning. The average values with the 90th percentile errors are shown.

search process on the server instead of executing them on the clients. Figure 3.9 shows

the results of memory, computation and power consumption on the mobile devices. For

this experiment, we set up our clients on a real Samsung S20 Android device (Qualcomm

Snapdragon 855 chipset) and profile the resources using the Android SDK Profiler [114].

Here we clearly see that our FedCust has almost 0 resource consumption across all resource

types during the hyperparameter tuning phase. The local BO consumes a large amount of

resources since it requires the training and evaluation of the deep models for every com-

bination of hyperparameters explored on device, which is significantly more compared to

the actual rounds of training conducted when the client is selected. The offloading of the

search process on the server by FedCust results in more resource consumption on the server

side but completely takes off the load from the device-side hardware. This is a extremely

beneficial in a mobile or IoT environment where these client devices will already have little

available resources [15,112,149]. Thus, our FedCust framework is proficient at conserving

resources on the client-side as well as being scalable, privacy-preserving and effective.

63

Table 3.6
Final model accuracy - Comparison of FedCust against the reported state-of-the-art performance. Missing
values are due to them not being reported in the paper.

Dataset Distribution Global FedEx FedRL
Cifar10 IID 81.1 83.9 - 84.3

non-IID 50.4 53.2 - 52.9

MNIST IID 97.8 97.9 - 98.0
non-IID 94.3 96.9 - 95.5

Shakespeare IID 55.2 58.1 57.0 -
non-IID 52.2 55.0 54.6 -

3.6.7 Comparison against State-of-the-art

Few works have tackled the challenge of customized hyperparameter tuning for FL. While

some of them tend to violate privacy constraints [62, 98], two of the latest works FedEx

[126] and [178] (which we name FedRL for space) avoid this problem by performing tun-

ing on-device per client. Apart from the resource cost, they also have other drawbacks as

pointed out in Sections 5.2. We compare the results of FL training using our hyperparame-

ter tuning against theirs, and the results are shown in Table 9.1.

Neither of them have their code open-sourced, so we report their numbers from the paper.

We set up our FL system as closely to their systems (i.e. the number of clients, clients per

round and per-client data distribution) based on their descriptions. We then use FedCust

and determine the HRT size using the mechanism defined in Section 3.5.3. For Cifar10

and MNIST, we observe that our method outperforms FedRL for the non-IID case. For the

IID case, we are on par. This is due to data heterogeneity being a central theme in our

solution and IID data will not effect our tuning customization much. For Shakespeare, we

use outperform in both situations since FedEx’s focus is more on finding good models and

ignore data heterogeneity and hyperparameter tuning mostly.

64

(a) (b)

Figure 3.10: Compatibility with other frameworks, robustness of proxy datasets. (a) Final test accuracy
of state-of-the-art FL frameworks when used with and without FedCust. (b) Test accuracy comparison of
one-size-fits-all approach (labeled as Global), FedCust with extremely poor quality of proxy dataset (i.e.,
use Double MNIST, Cifar100 and MNIST as proxy dataset for FEMNIST, Cifar10 and F-MNIST as training
dataset labeled as FedCust (Bad Proxy)), and FedCust using the same datasets for proxy and training, though
no overlapping between proxy and training labeled as FedCust (Good Proxy)).

3.6.8 Compatibility with Other Heterogeneity-aware FL Optimization

We perform additional experiments to demonstrate FedCust is compatible with other state-

of-the-art heterogeneity-aware optimizations in FL. In Figure 3.10, the first set of bars

shows the comparison of test accuracy at convergence between global tuning (Default) and

FedCust when using LEAF’s default distribution. We observe that using our customized

hyperparameter tuning can achieve an accuracy improvement of around 2.3%. The second

set of bars show the change in accuracy when using FedAdagrad ([206]) by itself (Default)

versus adding FedCust on top of it (FedCust). We observe that with the help of FedCust,

the final accuracy is improved around 4%, confirming that FedCust and FedAdagrad are

complementary to each other and can be combined to achieve an even better performance.

3.6.9 Impact of Proxy Dataset Quality

For the proxy dataset, we assume it contains no knowledge about the training data. In

this section, we evaluate the extreme case where the proxy dataset is completely different

65

from the training data. We emulate this situation by using a completely different dataset

that has the same number of classes as the proxy dataset to generate the HRT and the

accuracy results are present in Figure 3.10b. We observe that in such an extreme scenario,

the accuracy indeed drops compared to using a better proxy dataset. However, our approach

still outperforms the one-size-fits-all baseline. This verifies that a better quality proxy

dataset would indeed improve the model performance, but our method is robust even with

a very poor quality proxy dataset.

66

CHAPTER 4

LEASGD: TOWARDS DECENTRALIZED DEEP LEARNING WITH

DIFFERENTIAL PRIVACY

4.1 Introduction

With data explosion and ever-deeper neural network structures such as VGGnet [224] and

Resnet [92], distributed learning systems play an increasingly important role in training

large-scale models with big training data sources [3] [65] [275].

Training time can be greatly reduced by dividing the data set into subsets and distributing

them over different workers to train the model concurrently known as data parallelism

[196]. Many modern machine learning systems extend the data parallelism concept from

data center clusters to the server-client scenario, where clients help train a global model by

iterating the model over their own private data sets.

Most distributed learning systems have centralized parameter server(s) to maintain a

global copy of the model and coordinate information among workers/clients. However,

such system topology is vulnerable in privacy because once the central server(s) is com-

promised, information of the entire system can be exposed [7]. Decentralized distributed

learning systems are less vulnerable to privacy as the critical information such as training

data, model weights, and the states of all workers can no longer be observed or controlled

through a single point of the system [27], which greatly reduces the risk of privacy leak-

ages. Moreover, decentralized systems are more robust to problems like communication

67

bottleneck and single point of failure compared to the centralized design. Despite all these

advantages over centralized topology, decentralized systems usually perform worse in con-

vergence rate and are known to have higher communication cost due to the multi-way

communication behaviors, especially the connection across the network is relatively in-

tricate. In addition, most of the decentralized systems still can not guarantee deferentially

privacy [147] [277]. There are several recent works try to solve some of the above problems

of decentralized learning systems. For example, DPSGD [147] focuses on improving com-

munication efficiency and convergence rate of decentralized learning systems. However, it

is not deferentially private. [27] is the recent work that considers both decentralized design

and differential privacy. However, it is based on a simple linear classification task, not a

good representation of the modern neural networks, which have much more complex and

deeper structures. To this end, we propose a new algorithm called Leader-Follower Elas-

tic Averaging Stochastic Gradient Descent (LEASGD), which provides differential privacy

with improved communication efficiency and convergence rate. To improve both the com-

munication and training efficiency while also facilitate differential privacy preserving, we

propose a novel communication protocol that is driven by a dynamic leader-follower de-

sign. Workers with temporal better learning performance and can speedup the learning of

followers to improve learning efficiency. The parameters are only transferred between the

worker-follower pair, which significantly reduces the communication amount. To satisfy

differential privacy, we follow the approach proposed in [73] to add stochastic noise on the

information transmitted. We calibrate the noise scale by analyzing the sensitivity of the up-

dating functions in our algorithm and further demonstrate the trade-off between accuracy

and privacy theoretically.

LEASGD adopts the insight of the Elastic Averaging Stochastic Gradient Descent (EASGD)

algorithm [296] by exerting the elastic force between the leader and follower at each update.

Inspired by [4], we use momentum account to quantify the privacy budget which provides

68

a tighter bound of privacy budget ϵ than the classical Strong Composition Theorem [74].

Additionally, we mathematically prove the convergence rate of LEASGD.

To conclude the comparison, we comprehensively evaluate our algorithm and compare

it with the state-of-the-art approach DPSGD [147] on three main aspects: the conver-

gence rate, the communication cost, and the privacy level. The theoretical analysis shows

LEASGD converges faster than DPSGD after enough iterations. The experimental results

on MNIST-CNN, MNIST-RNN, and CIFAR-10 show LEASGD achieves higher accuracy

within the same iterations and within the same communication than DPSGD in the non-

private setting. Also, it outperforms DPSGD by spending less privacy budget and reaching

higher accuracy in the private setting.

4.2 Related Work

Decentralized Distributed Learning Algorithm. Different from centralized distributed

learning algorithms, decentralized algorithms do not need any central entity. Every work-

ers maintains its own copy of the training model and directly communicates with other

workers. Many decentralized algorithms aim at solving distributed consensus problems

[203] [181] [60], which is also the goal of our project. Lian et al. [147] proposed DPSGD,

which outperforms centralized algorithms by achieving the same convergence rate with

lower communication complexity. All the decentralized algorithms mentioned above de-

pend on a double stochastic matrix to organize the communication, which is hard to obtain

and tune in real-life applications and they also do not implement their algorithms in a

privacy-preseving setting. Moreover, adversarial attackers who reveal this matrix can eas-

ily obtain the model information by doing a simple linear combination, and even worse, to

69

reveal the private data. Yan et al. [277] developed a scheme to prevent such attack, but the

scheme depends on a specific communication topology. Our privacy-preserving scheme is

not limited by any specific communication topology and we coordinate the communication

in a random manner to reduce vulnerability.

EASGD. EASGD is first proposed by Zhang et al. [296] to solve the distributed consen-

sus optimization problem. The basic idea is to let multiple workers pull a single master

to the global optimum and the movement of model parameters is proportional to the dis-

tance between workers and master, which is so-called elastic force. They show EASGD

can achieve final better accuracy than the DOWNPOUR [64] and other parallel algorithms

and converge even faster in its momentum version EASGD. However, the communication

topology in EASGD highly resembles a centralized one. The master in its algorithm plays

a similar role as the central node. Moreover, they did not consider any privacy constraints

in their algorithm.

Differential Privacy in Machine Learning Differential Privacy (DP), first proposed by

Dwork, provides a specific quantitative method to measure and protect privacy [73]. It

was then studied and applied to fields in Machine Learning. For instance, Kairouz et al.

[120] studied utility and privacy trade-off of different mechanisms under local DP setting.

Abadi et al. [4] proposed differential privacy SGD and suggested the momentum account

method to compute a much tighter bound of ϵ, δ privacy budget (which we also adopt in this

project) than classical strong composition theorem [74]. For distributed machine learning,

Bellet et al. [27] proposed a completely decentralized and asynchronous algorithm to solve

personalized optimization problem and also use DP in their privacy-preserving method.

However, they did not compare with other parallel algorithms in the private setting and

their experiment only focused on simple linear classification task and light-weight dataset,

MovieLens-100K, rather than a more complex data set such as CIFAR-10 on which we

70

conduct the experiment for our method. Furthermore, the model in their experiment is

a simple p-dimensional vector. It is not clear whether their method could be applied for

deeper neural networks, which we demonstrate in our experiments.

In [54], the basic idea of LEASGD is outlined and some preliminary analysis and eval-

uation results are present. The current extended version of this project provides a more

detailed description of the LEASGD approach, as well as a more comprehensive theoreti-

cal analysis and experimental evaluation.

4.3 Non-private Leader-Follower Elastic Averaging Stochastic Gradi-

ent Descent Algorithm

In this section, we introduce LEASGD in a non-private setting. The proposed algorithm

includes both the model update at each worker and the communication protocol among

workers. We start with the synchronous version (Algorithm 1) and then extend it to the

asynchronous version (Algorithm 2), which is more commonly used in practice.

4.3.1 Problem Setting

Without loss of generality, we follow the problem setting of distributed decentralized au-

tonomous learning in [277]. We assume there are m workers each with a set of local data

S i and i ∈ {1, 2......m}, which can only be accessed locally by worker i. To solve con-

sensus problem, we assume all data sets S i are homogeneous but can have different data

71

distributions. Along the training process, each worker i computes a parameter vector wi
t at

each iteration t to represent the learning outcomes and then computes the corresponding

loss function f i
t (wi) = l(wi

t, x
i
t, y

i
t) with the input xi

t and given labels yi
t. It is worth noting

that fed data {xi
t, y

i
t} ⊆ S i. After learning from the data, each worker has two ways to con-

tribute to the global learning progress: 1) Update its model parameters by local gradient

descent; 2) Communicate with other workers to update each other’s model parameters. To

reduce the communication cost, communication is not always required at the end of each

iteration. We define a communication interval τ to represent how many iterations between

each update in our learning algorithm. When the training process is done, each worker

has its own variation of the same model (i.e., performing the same task but with different

trained model parameters wi). This is quite different compared to the personalized dis-

tributed learning [27], where different workers have completely different models to solve

personalized problems. It is also different from [147], where all workers have the same

version of the model.

Given each worker has its own local version of the model, it is necessary to assemble all

local models by averaging the loss function. We formulate it as an optimization problem as

follows:

w∗ = {w1, ...,wm}, (4.1)

argmin
wi∈Ω

F(w,T) =
1
m

m∑
i=1

f i
T (wi), s.t.Ω ⊆ Rn and T ∈ R, (4.2)

where T presents the predefined number of iterations in τ.

72

4.3.2 Decentralized leader-follower Topology

To support the decentralized design, we categorize all workers into two worker pools -

leader pool with workers of higher loss function values and follower pool with workers

of lower loss function values , see Figure 4.2(a). The core idea is to let followers to pull

leaders so that better performing leaders can guide the followers in the right direction to

improve the learning. Specifically, we use an elastic updating rule to regulate the learning

updates in each leader-follower pair as follows:

wi
t+1 = wi

t − ηg
i
t + ηρ(w

f
t − wi

t) and w f
t+1 = w f

t − ηg
f
t + ηρ(w

i
t − w f

t). (4.3)

We use i to denote a leader; f is a follower; k is the categorization interval; ρ is elastic

factor; g is gradient; and η is learning rate. Given learning is a dynamic process, the

two worker pools are dynamically updated based on the learning progress. The pools are

recategorized each kτ time interval. This protocol enables the convergence rate of our

algorithm to have a limited upper bound, which will be discussed in detail in Section 4.6.

To avoid over-fitting to one worker’s model during the training process, we add the L2-

normalization on the training loss function:

f i
t (wi) = l(wi

t, x
i
t, y

i
t) + λ ∥ wi ∥2 . (4.4)

We also randomly pair the leaders and followers after each learning updates to avoid one

follower’s model having excessive influence on others. This randomization mechanism also

73

Algorithm 1 Synchronous Follower Elastic Averaging Stochastic Gradient Descent Gradi-
ent Descent

1: Require: number of workers m, number of followers L, categorization interval k, com-
munication interval τ, elastic factor ρ, learning rate η

2:
3: for t = 1, 2,,T do
4: if t mod kτ is 0 then
5: if t = 0 then
6: randomly select L followers l1,, lL
7: else
8: sort m based on loss f and select top L
9: l1,, lL = argmaxL

i=1,...,m
f i
t (ωi)

10: end if
11: end if
12: if t mod τ is 0 then
13: for workers: i ∈ {l1,, lL} do
14: local SGD updating
15: end for
16: for workers: i /∈ {l1,, lL} do
17: randomly select a follower f from follower pool
18: transmit parameter vector with f and do elastic updating
19: end for
20: else
21: for all workers: i ∈ {1,,m} do
22: local SGD updating
23: end for
24: end if
25: end for

benefits the privacy-preserving as randomized communication can confuse the attacker and

make it more difficult to trace the information source.

4.3.3 Algorithm Hyperparameters

Next, we discuss in details of the hyperparameters in our algorithm.

Elastic factor ρ : This hyperparameter adjusts the exploration and exploitation trade-off

in our learning algorithm. A large ρ represents more exploitation, which leads to a faster

convergence rate at the beginning of training process especially in a convex case. How-

ever, workers can fall into a local optimum easily because the tight relations of the follower

74

Leader Pool

Follower Pool
(a) Learning Phase 1 (b) Recategorization Phase (c) Learning Phase 2

Leader
Follower

Elastic updating
Loss function transfer
Recategorized worker

Recategorization

Leader PoolLeader Pool

Follower Pool Follower Pool

w1
w2

w3 w4 w5
w6 w7

w2
w3 w4 w5

w9w1
w2

w3 w4 w5
w6

w7
w8

w9 w7 w9w8 w1
w8

w6

Figure 4.1: The dynamic leader-follower topology. (a) shows the structure of leader pool and follower pool.
(b) shows a recategorization phase where one of the workers is elected as recategorized worker and gathers
the latest loss function values from all other workers. (c) shows the new structure of leader pool and follower
pool after recategorization (note the randomization used for avoiding over-fitting).

prevent them from further exploring the parameter space and this may compromise the

final accuracy. On the the other hand, a rather small ρ leans towards exploration which

could avoid this to some extent, but it also causes a much slower convergence rate and

thus compromises the accuracy within the predetermined number of iterations. Selecting a

well-balanced ρ is therefore important for the final accuracy.

Number of Followers L : Similar to ρ, this hyperparameter reflects learning aggressive-

ness. Small L enables more leaders to guide followers to improve the convergence rate, the

formal analysis is provided in Section 4.6.1. However, if L is too small, the communication

between leaders and followers would increase. More importantly, workers with bad learn-

ing progress can be incorrectly categorized as leaders and thus could not receive help from

workers with good learning progress, which can eventually result in worse final accuracy.

Categorization Interval k: It represents how frequently we recategorize leaders and follow-

ers. A rather frequent categorization can ensure that leaders and followers are timely iden-

tified. However, each categorization comes with a communication cost as the loss function

values need to be collected and so a smaller k means higher communication cost. Our key

insight here is that k can be set smaller at the beginning of the training process as workers’

local models usually change more dramatically during that time and have more variance

between them. As the training progresses, the loss function values tend to be more stable

and we can decrease the recategorization frequency to reduce the communication overhead.

75

Algorithm 2 Asynchronous Follower Elastic Averaging Stochastic Gradient Descent Al-
gorithm

1: Require: all workers have the same follower list F, this worker index w,
current iteration ti, communication interval τ, categorization interval k

2:
3: if w is a follower then
4: compute local SGD
5: else
6: if ti mod τ is 0 then
7: randomly select follower f ∈ F
8: transmit parameter vector to f and do elastic updating
9: else

10: compute local SGD
11: end if
12: if ti mod kτ is 0 then
13: for all f ∈ F do
14: get f ’s loss function value l f
15: get w’s loss function value lw
16: if find l f < lw then
17: recategorize all workers’ follower pool by replacing f with w
18: break
19: end if
20: end for
21: end if
22: end if

4.3.4 Asynchronous LEASGD Algorithm

Next, we introduce LEASGD in the asynchronous manner as shown in Algorithm 2. To

make our learning system fully asynchronous and decentralized, there is no global clock

to coordinate all workers nor a global supervisor to master all workers. We set the number

of wake up iterations as ti for different workers according to a Poisson Stochastic Process

with different arrival rate λi based on local clock time t, that is P[ti(t + △t) − ti(t) = k] =

e−λi△t(λi△t)k

k! . The larger the λi, the more frequently the worker updates its model. Moreover,

the worker pools also updated asynchronously as shown in Line 17-24 in Algorithm 2.

Such mechanism may not guarantee all the leaders and followers are identified timely, but

it reduces the communication cost of re-categorization.

Note that the stochastic gradient descent in the algorithm can be replaced by other gradi-

76

ent descent optimization methods such as the mini-batch gradient descent without affecting

the theoretical results.

4.4 Non-private Leader-Follower Elastic Averaging Stochastic Gradi-

ent Descent Algorithm

In this section, we introduce LEASGD in a non-private setting. The proposed algorithm

includes both the model update at each worker and the communication protocol among

workers. We start with the synchronous version (Algorithm 1) and then extend it to the

asynchronous version (Algorithm 2), which is more commonly used in practice.

4.4.1 Problem Setting

Without loss of generality, we follow the problem setting of distributed decentralized au-

tonomous learning in [277]. We assume there are m workers each with a set of local data

S i and i ∈ {1, 2......m}, which can only be accessed locally by worker i. To solve con-

sensus problem, we assume all data sets S i are homogeneous but can have different data

distributions. Along the training process, each worker i computes a parameter vector wi
t at

each iteration t to represent the learning outcomes and then computes the corresponding

loss function f i
t (wi) = l(wi

t, x
i
t, y

i
t) with the input xi

t and given labels yi
t. It is worth noting

that fed data {xi
t, y

i
t} ⊆ S i. After learning from the data, each worker has two ways to con-

tribute to the global learning progress: 1) Update its model parameters by local gradient

descent; 2) Communicate with other workers to update each other’s model parameters. To

77

reduce the communication cost, communication is not always required at the end of each

iteration. We define a communication interval τ to represent how many iterations between

each update in our learning algorithm. When the training process is done, each worker

has its own variation of the same model (i.e., performing the same task but with different

trained model parameters wi). This is quite different compared to the personalized dis-

tributed learning [27], where different workers have completely different models to solve

personalized problems. It is also different from [147], where all workers have the same

version of the model.

Given each worker has its own local version of the model, it is necessary to assemble all

local models by averaging the loss function. We formulate it as an optimization problem as

follows:

w∗ = {w1, ...,wm}, (4.5)

argmin
wi∈Ω

F(w,T) =
1
m

m∑
i=1

f i
T (wi), s.t.Ω ⊆ Rn and T ∈ R, (4.6)

where T presents the predefined number of iterations in τ.

4.4.2 Decentralized Leader-Follower Topology

To support the decentralized design, we categorize all workers into two worker pools -

leader pool with workers of higher loss function values and follower pool with workers

of lower loss function values , see Figure 4.2(a). The core idea is to let followers to pull

leaders so that better performing leaders can guide the followers in the right direction to

improve the learning. Specifically, we use an elastic updating rule to regulate the learning

78

updates in each leader-follower pair as follows:

wi
t+1 = wi

t − ηg
i
t + ηρ(w

f
t − wi

t) and w f
t+1 = w f

t − ηg
f
t + ηρ(w

i
t − w f

t). (4.7)

We use i to denote a leader; f is a follower; k is the categorization interval; ρ is elastic

factor; g is gradient; and η is learning rate. Given learning is a dynamic process, the

two worker pools are dynamically updated based on the learning progress. The pools are

recategorized each kτ time interval. This protocol enables the convergence rate of our

algorithm to have a limited upper bound, which will be discussed in detail in Section 4.6.

To avoid over-fitting to one worker’s model during the training process, we add the L2-

normalization on the training loss function:

f i
t (wi) = l(wi

t, x
i
t, y

i
t) + λ ∥ wi ∥2 . (4.8)

We also randomly pair the leaders and followers after each learning updates to avoid one

follower’s model having excessive influence on others. This randomization mechanism also

benefits the privacy-preserving as randomized communication can confuse the attacker and

make it more difficult to trace the information source.

79

Algorithm 3 Synchronous Follower Elastic Averaging Stochastic Gradient Descent Gradi-
ent Descent

1: Require: number of workers m, number of followers L, categorization interval k, com-
munication interval τ, elastic factor ρ, learning rate η

2:
3: for t = 1, 2,,T do
4: if t mod kτ is 0 then
5: if t = 0 then
6: randomly select L followers l1,, lL
7: else
8: sort m based on loss f and select top L
9: l1,, lL = argmaxL

i=1,...,m
f i
t (ωi)

10: end if
11: end if
12: if t mod τ is 0 then
13: for workers: i ∈ {l1,, lL} do
14: local SGD updating
15: end for
16: for workers: i /∈ {l1,, lL} do
17: randomly select a follower f from follower pool
18: transmit parameter vector with f and do elastic updating
19: end for
20: else
21: for all workers: i ∈ {1,,m} do
22: local SGD updating
23: end for
24: end if
25: end for

Leader Pool

Follower Pool
(a) Learning Phase 1 (b) Recategorization Phase (c) Learning Phase 2

Leader
Follower

Elastic updating
Loss function transfer
Recategorized worker

Recategorization

Leader PoolLeader Pool

Follower Pool Follower Pool

w1
w2

w3 w4 w5
w6 w7

w2
w3 w4 w5

w9w1
w2

w3 w4 w5
w6

w7
w8

w9 w7 w9w8 w1
w8

w6

Figure 4.2: The dynamic Leader-Follower topology. (a) shows the structure of leader pool and follower pool.
(b) shows a recategorization phase where one of the workers is elected as recategorized worker and gathers
the latest loss function values from all other workers. (c) shows the new structure of leader pool and follower
pool after recategorization (note the randomization used for avoiding over-fitting).

4.4.3 Algorithm Hyperparameters

Next, we discuss in details of the hyperparameters in our algorithm.

Elastic factor ρ : This hyperparameter adjusts the exploration and exploitation trade-off

80

in our learning algorithm. A large ρ represents more exploitation, which leads to a faster

convergence rate at the beginning of training process especially in a convex case. How-

ever, workers can fall into a local optimum easily because the tight relations of the follower

prevent them from further exploring the parameter space and this may compromise the

final accuracy. On the the other hand, a rather small ρ leans towards exploration which

could avoid this to some extent, but it also causes a much slower convergence rate and

thus compromises the accuracy within the predetermined number of iterations. Selecting a

well-balanced ρ is therefore important for the final accuracy.

Number of Followers L : Similar to ρ, this hyperparameter reflects learning aggressive-

ness. Small L enables more leaders to guide followers to improve the convergence rate, the

formal analysis is provided in Section 4.6.1. However, if L is too small, the communication

between leaders and followers would increase. More importantly, workers with bad learn-

ing progress can be incorrectly categorized as leaders and thus could not receive help from

workers with good learning progress, which can eventually result in worse final accuracy.

Categorization Interval k: It represents how frequently we recategorize leaders and follow-

ers. A rather frequent categorization can ensure that leaders and followers are timely iden-

tified. However, each categorization comes with a communication cost as the loss function

values need to be collected and so a smaller k means higher communication cost. Our key

insight here is that k can be set smaller at the beginning of the training process as workers’

local models usually change more dramatically during that time and have more variance

between them. As the training progresses, the loss function values tend to be more stable

and we can decrease the recategorization frequency to reduce the communication overhead.

4.4.4 Asynchronous LEASGD Algorithm

81

Algorithm 4 Asynchronous Follower Elastic Averaging Stochastic Gradient Descent Al-
gorithm

1: Require: all workers have the same follower list F, this worker index w,
current iteration ti, communication interval τ, categorization interval k

2:
3: if w is a follower then
4: compute local SGD
5: else
6: if ti mod τ is 0 then
7: randomly select follower f ∈ F
8: transmit parameter vector to f and do elastic updating
9: else

10: compute local SGD
11: end if
12: if ti mod kτ is 0 then
13: for all f ∈ F do
14: get f ’s loss function value l f
15: get w’s loss function value lw
16: if find l f < lw then
17: recategorize all workers’ follower pool by replacing f with w
18: break
19: end if
20: end for
21: end if
22: end if

Next, we introduce LEASGD in the asynchronous manner as shown in Algorithm 2. To

make our learning system fully asynchronous and decentralized, there is no global clock

to coordinate all workers nor a global supervisor to master all workers. We set the number

of wake up iterations as ti for different workers according to a Poisson Stochastic Process

with different arrival rate λi based on local clock time t, that is P[ti(t + △t) − ti(t) = k] =

e−λi△t(λi△t)k

k! . The larger the λi, the more frequently the worker updates its model. Moreover,

the worker pools also updated asynchronously as shown in Line 17-24 in Algorithm 2.

Such mechanism may not guarantee all the leaderss and followers are identified timely, but

it reduces the communication cost of recategorization.

Note that the stochastic gradient descent in the algorithm can be replaced by other gradi-

ent descent optimization methods such as the mini-batch gradient descent without affecting

the theoretical results.

82

4.5 Private-preserving Scheme

In this section, we consider the privacy-preserving setting of the proposed algorithm. We

first explain the notion of differential privacy, which serves as the theoretical foundation

for our scheme. We then introduce our privacy-preserving scheme and the privacy budget

ϵ spent along the iterations.

4.5.1 Differential Privacy Model

Despite there is no direct exchange of raw data in the communication, the risk of leaking the

data still exists when we transmit the parameter vectors. If the two consecutive transmitted

vectors wi
t and wi

t+1 are from same worker i, the attacker can easily derive the gradient by

subtracting one vector from the other and due to the gradient gi
t is proportional to the raw

data xi
t. More details about this type of attack can be referred to [277].

There are several methods proposed to preserve the privacy of distributed learning sys-

tems and prevent eavesdropping in the communication network. For example, Yan et.al.

proposed a series of communication topologies to prevent the sensitive message from leak-

ing to malicious workers [277]. In this work, we rely on a more general and flexible theory

that does not depend on specific topology specified in the differential privacy theory in [73].

The basic property of differential privacy mechanism is that under a little perturbation of

the input of the algorithm, the change of its output’s probability distribution is within a

limited bound. The specific definition is as below:

Definition 1 A randomized mechanism M with domain D and range R satisfies (ϵ, δ)-

83

differential privacy if for any two adjacent inputs D, D′ ∈ D and for any subset of outputs

S ⊆ R it holds that

Pr(M(D) ∈ S) ≤ eϵPr(M(D′) + δ. (4.9)

When differential privacy applied in the machine learning, adjacent inputs D, D′ refer two

datasets that are only different at one training sample and the randomized mechanismM is

the training update algorithm. In our setting we use elastic updating rule in Eq. 4.7. The

factor ϵ in Eq. 4.9 denotes the privacy upper bound to measure an algorithm and δ denotes

the probability of breaking this bound. The δ is generally set smaller than the reciprocal of

the number of samples in the local data set S i, which ensures that none of the samples can

be revealed by the differential private attack.

4.5.2 Privacy-preserving Scheme

The general idea to preserve differential privacy is to add noise on the output of the al-

gorithm and the noise scale is based on the sensitivity of the output function as defined

in [73].

Definition 2 - For f : D → Rd, the L2 − sensitivity of f :

△ f = max
D,D2
∥ f (D1) − f (D2) ∥2 (4.10)

84

for allD1, D2 differing in at most one element.

For different input data, Eq. 4.7 only differs in the gradient gi
t part. In other words, the

sensitivity of the updating rule of LEAGSD is same as the gradient gi
t. Thus we use the

similar scheme as the differentially private SGD algorithm in [4]. To limit the sensitivity of

gradient, we clip the gradient into a constant C. The clipped gradient gi
t = gi

t/max(1, ∥g
i
t∥2

C).

Then, we add Gaussian noise on the clipped gradient

g̃i
t = gi

t +N(0, σ2
2C

2). (4.11)

By using g̃i
t to replace gi

t in equation 4.7, we obtain the differential-privacy preserving

scheme of LEASGD as:

w̃i
t+1 = w̃i

t − ηg̃
i
t + ηρ(w̃

j
t − w̃ j

t) and w̃ j
t+1 = w̃i

t − ηg̃
i
t + ηρ(w̃

j
t − w̃i

t). (4.12)

When we choose the variance of Gaussian noise σ2 =

√
2ln(1.25/δ)

ϵ
, we ensure that each

communication step of LEAGSD is (ϵ, δ)-DP. Using the property of DP-mechanism in [74],

the composition of a series of DP-mechanisms remains DP, which guarantees that for each

worker i, its training algorithm Mi at each iteration is DP. To compute the total (ϵ, δ),

we don’t use the strong composition theory [74]. Instead, we use the momentum account

method [4], which provides a much tighter bound of ϵ to evaluate the privacy-preserving

performance of our algorithm.

85

4.6 Analysis

4.6.1 Convergence Rate Analysis

In this section, we conduct a convergence rate analysis for Synchronous LEASGD in a

strongly-convex case and also compare it with the DPSGD theoretically. Before we show

the result of the convergence rate, we first introduce some assumptions held in the analysis.

Assumption 1 These assumptions are held throughout the analysis:

1. i.i.d. Assumption: We divide our system into several sub-systems with only 1 follower

and p . And all the variables in these sub-systems are i.i.d.

2. Correct Categorization: Assume that since the categorization step in Algorithm 1 is

implemented, the identity of all workers will not change until the next categorization

3. Bounded Stochastic Gradient: Assume that the variance of all the local gradients is

bounded for any w for any workers from 1, ...,m and input xi
t. There exist constant σ1 such

that

E[gi
t − ▽ f (wi

t)] = 0 and E[∥ gi
t − ▽ f (wi

t) ∥
2] ≤ σ2

1. (4.13)

4. Strongly Convex Condition: We focus on the strongly-convex case in this analysis.

Correspondingly, there exists 0 < µ ≤ L for all the loss functions described in Eq. 4.8, we

have:

86

µ ∥ wi − w j ∥
2≤ ⟨▽ f (wi),▽ f (w j)⟩ ≤ L ∥ wi − w j ∥

2 . (4.14)

We define that

dt =
E
∑p

i=1 ∥ wi
t − w∗ ∥2 +E ∥ w f

t − w∗ ∥2

p + 1
. (4.15)

Proposition 1 (Convergence rate of Algorithm 1) If 0 ≤ η ≤ 2(1−β)
µ+L and 0 ≤ α = ηρ < 1,0 ≤

β = pα < 1, then we obtain the convergence of dt as follows:

dt ≤ htd0 + (c0 −
η2σ2

1

γ
)(1 − γ)t(1 − (

p
p + 1

)t) + η2σ2
1
1 − ht

γ
,

where 0 < h =
p(1 − γ)

p + 1
< 1, k =

1 − γ
p + 1

, γ = 2η
µL
µ + L

,

andc0 = max
i=1,...,p, f

∥ wi
0 − w∗ ∥2 .

(4.16)

Under the Assumption 1.1, we simplify our system by dividing it into several subsystems

and each includes only 1 follower and p leaders. We assume that the convergence rate of

each subsystem is same as that of the whole system. To obtain this convergence rate, we

rely on the following theorem.

Theorem 1 Let yt =
1
p

∑p
i=1 wi

t, at = E ∥ yt − w∗ ∥2, bt =
1
p

∑p
i=1 E ∥ wi

t − w∗ ∥2, ct = E ∥

w f
t − w∗ ∥2, α = ηρ, β = pα,γ = 2η µL

µ+L . If 0 ≤ η ≤ 2(1−β)
µ+L ,0 ≤ α < 1,0 ≤ β < 1, then

bt+1 ≤ (1 − γ − α)bt + αct + η
2σ2

1, (4.17)

ct+1 ≤ (1 − γ − β)ct + βat + η
2σ2

1. (4.18)

87

Proof of Proposition 1: from the sorting rule and the Assumption 1.1, we can easily obtain

the inequality relation of at,bt,ct and dt

at ≤ dt ≤ ct and bt ≤ dt ≤ ct (4.19)

Applying (15) in (14) and iterating through t times, we have

ct ≤ (1 − γ)tc0 + η
2σ2

1
1 − (1 − γ)t

γ
. (4.20)

Now replacing dt =
pbt+ct

p+1 in (13), (14), we have

dt ≤ hdt−1 + kct−1 + η
2σ2

1. (4.21)

Applying (15) in (16), we have:

dt ≤ hdt−1 + k(c0 −
η2σ2

1

γ
)(1 − γ)t−1 + (1 +

k
γ

)η2σ2
1. (4.22)

Iterating t times though this inequality, we have

dt ≤ htd0 + k(c0 −
η2σ2

1

γ
)
(1 − γ)t − ht

1 − γ − h
+ (1 +

k
γ

)η2σ2
1
1 − ht

1 − h
. (4.23)

To simplify (19), we note that

k + h = 1 − γ, (4.24)

1 + k
γ

1 − h
=

1 +
1−γ
p+1

γ

1 − p(1−γ)
p+1

=
p + 1 + 1−γ

γ

p + 1 − p(1 − γ)
=

p + 1
γ

1 + pγ
=

1
γ
. (4.25)

88

So (19) can be rewritten as

dt ≤ htd0 + (c0 −
η2σ2

1

γ
)(1 − γ)t(1 − (

p
p + 1

)t) + η2σ2
1
1 − ht

γ
. (4.26)

This concludes the proof.

Under this proposition, it implies that the average gap between all workers and optimum

in a subsystem includes three parts, which could also be applied to the whole system based

on Assumption 1.1. The first part is a shrinkage part of itself by a constant factor 0 <

h < 1, which shows a exponential decreasing relationship between the gap and iteration t.

The second part is tend to be 0 with the increase of t. The third part is a inherent noisy

part with the variance of η2σ2
1. If we ignore the influence of the inherent noise on the

gradient and extend t → ∞, we can obtain an purely exponential decline of the gap, that is

E[dt+1] ≤ hE[dt]. Note that the shrink factor h is negatively correlated to p, which implies

that, when our system is operating in a strongly convex setting, the larger worker scale can

correspondingly result in a faster convergence rate of the system, which is in line with the

hyperparameter analysis above.

According to the convergence rate analysis in DPSGD [147], its convergence rate is

O(1/[(p + 1)t]) with our denotation in the strongly-convex setting. Compared with our

O(ht) rate, the convergence rate of DPSGD is relatively slower when we extend the t → ∞.

4.6.2 Privacy Trade-off Analysis

In this section, we provide the trade-off analysis between the accuracy and privacy. Fol-

lowing the convergence rate analysis above, we can obtain the modified convergence rate

89

of dt after adding the extra noise as the only part that needs to be changed is the third

part of equation 4.16. In the private setting, the noise is composed of two different parts.

First, the inherent noise, which is the same as defined in Assumption 1.3. Second, the

differential-privacy preserving noise, which is defined in the equation 4.11.

We assume that the two noise is independent of each other. Thus, the variance of the

composed noise is the sum of the two independent noise variances and it satisfies σ2 <

σ2
1 +C2σ2

2. Finally, the convergence rate in the private setting is as below:

Proposition 2 (Trade-off for privacy) With the limits held in the Proposition 1, we can

obtain the convergence of dt after adding the Gaussian Noise:

dt ≤ htd0 + (c0 −
η2σ2

γ
)(1 − γ)t[1 − (

p
p + 1

)t] + η2σ2 1 − ht

γ

< htd0 + (c0 −
η2σ2

γ
)(1 − γ)t[1 − (

p
p + 1

)t] + η2σ2
1

1 − ht

γ
+ η2C2σ2

2
1 − ht

γ
.

(4.27)

According to this proposition, the extra trade-off for privacy is η2C2σ2
2

1−ht

γ
and when

t → ∞, this trade-off can be formulated as η
2C2σ2

2
γ

. Note that this trade-off remains the

same when p grows, which implies that our algorithm has stable scalability when applied

in the private setting. In other words, despite the group of workers become larger, the

noise in the communication is not accumulated to further compromise the performance.

Additionally, this analysis is under the assumption of strongly-convex setting. In fact, when

applied in a non-convex setting, the adding noise in an appropriate scale could improve the

performance as the noise motivates workers to explore more space and it becomes easier

for those workers in the local optimum to get out of it.

90

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Comparison between LEASGD, DPSGD, and PS. Training Loss VS Iterations for (a) MNIST-
CNN, (b) MNIST-RNN, and (c) CIFAR 10. Training Loss VS Number of Transmitted vectors for (d) MNIST-
CNN, (e) MNIST-RNN, and (f) CIFAR 10.

4.7 Experimental Evaluation

4.7.1 Experiment Setup

Non-private setting setup. In this setting, we perform experiments using MNIST-CNN,

MNIST-RNN, and CIFAR-10. The structure of MNIST-CNN is a 3-layer Multi-layer Per-

ceptron (MLP), and the MNIST-RNN has 32 hidden layers. For CIFAR-10, we use the

ConvnetJS [1] as the model.

Private setting setup. In this setting, the neural network models and hyper-parameters

are the same as in non-private setting. We test two algorithms of different worker sizes of

m = 5, 15, respectively shown in Table 1 . Additionally, we tune the elastic factor ρ = 10

for MNIST-CNN and ρ = 100 for CIFAR-10. For the private factors, we set Gaussian noise

91

variance σ = 4, clipping constant C = 4, and fixed δ budget δ = 10−5.

4.7.2 Non-private Setting Comparison

Accuracy Comparison. We first conduct experiments on a cluster of 15 nodes to compare

our against DPSGD in the non-private setting for MNIST-CNN and CIFAR 10 models. For

the MNIST-RNN model, we compare against Parameter Server (PS) as DPSGD does not

support RNN models. DPSGD has various communication topologies when communica-

tion matrix is set differently. We only test the ring topology for simplicity, which allows

each worker to accept the information from two other neighbor workers. The training loss

as a function of iterations is shown in Figure 2 (a)(b)(c), which demonstrate that converges

faster than DPSGD and PS at the beginning of the training process and also achieves a

lower loss function at the end across all models.

Communication Cost. To quantitatively evaluate the communication cost, we track the

average training loss of all workers with regard to the number of transmitted vectors as

shown in Figure 2 (d)(e)(f). The results verify that also outperforms DPSGD and PS in

the efficiency of communication usage as within the same number of transmitted vectors,

the loss function of almost always under that of DPSGD and PS across all models. Theo-

retically, in each iteration, has less transmitted vectors compared to DPSGD and PS even

though communication in is two-way instead of one-way in DPSGD. In , the number of

transmitted vectors per iteration is (m−L)∗2 (14 in this experiment). In DPSGD, the num-

ber of transmitted vectors per iteration is the sum of numbers of neighbors of all workers,

which is typically 2m (20 in this experiment) in a ring network.

92

(a) (b)

Figure 4.4: Scalability of LEASGD (m is the total number of nodes).

Scalability. We also evaluate the scalability of using MNIST-CNN and MNIST-RNN by

varying the number of total nodes from 10 to 20 while keeping the percentage of leaders

at 75%. The results are organized in Figure 3, where we can see outperforms PS across all

cases. We also observe that the training loss becomes slightly worsen when the number of

nodes increases, but the degrading speed becomes slower, i.e., the gap between 20 nodes

and 15 nodes are much smaller than the gap between 15 nodes and 10 nodes. This indicates

that scales well.

4.7.3 Differential Private Comparison

MNIST - CNN
Algorithm Final accuracy Total ϵ

LEASGD (m=5) 0.97 4.183
DPSGD (m=5) 0.97 4.505

LEASGD (m=15) 0.97 4.651
DPSGD (m=15) 0.95 4.843

CIFAR-10 - CNN
Algorithm Final accuracy Total ϵ

LEASGD (m=5) 0.74 4.655
DPSGD (m=5) 0.71 4.925

LEASGD (m=15) 0.72 4.116
DPSGD (m=15) 0.68 4.56

Table 4.1
Private setting result of final accuracy and ϵ.

In the private setting, we use the momentum account to compute the totally spent ϵ and the

adding noise scales are the same for two algorithms. As shown in Table 1, achieves better

accuracy with less ϵ than DPSGD. More importantly, the final accuracy of our algorithm

does not vary greatly when the worker scale m increases. We believe this result benefits

93

from two attributes of : 1) the DP noise helps improve the accuracy by encouraging space

exploration and helping workers trapped in local optimum to get out; 2) the great scalability

that prevents DP noise from accumulating when the worker scale expands.

94

CHAPTER 5

TIFL: A TIER-BASED FEDERATED LEARNING SYSTEM

5.1 Introduction

Modern mobile and IoT devices are generating massive amount of data every day, which

provides opportunities for crafting sophisticated machine learning (ML) models to solve

challenging AI tasks [197]. In conventional high-performance computing (HPC), all the

data is collected and centralized in one location and proceed by supercomputers with hun-

dreds to thousands of computing nodes. However, security and privacy concerns have led

to new legislation such as the General Data Protection Regulation (GDPR) [240] and the

Health Insurance Portability and Accountability Act (HIPAA) [187] that prevent transmit-

ting data to a centralized location, thus making conventional high performance computing

difficult to be applied for collecting and processing the decentralized data. Federated Learn-

ing (FL) [128] shines light on a new emerging high performance computing paradigm by

addressing the security and privacy challenges through utilizing decentralized data that is

training local models on the local data of each client (data parties) and using a central

aggregator to accumulate the learned gradients of local models to train a global model.

Though the computing resource of individual clients may be far less powerful than the

computing nodes in conventional supercomputers, the computing power from the massive

number of clients can accumulate to form a very powerful “decentralized virtual super-

computer”. Federated learning has demonstrated its success in a range of applications

ranging from user-end devices to medical analysis systems. There has also been a rise of

FL tools and framework development, such as Tensorflow Federated [105], LEAF [41],

95

PaddleFL [104] and PySyft [211] to facilitate these demands. Depending on the usage

scenarios, FL is usually categorized into cross-silo FL and cross-device FL [119]. In cross-

device FL, the clients are usually a massive number of mobile or IoT devices with various

computing and communication capacities [119,128,172] while in cross-silo FL, the clients

are a small number of organizations with ample computing power and reliable communica-

tions [119, 280]. In this project, we focus on the cross-device FL (for simplicity, we call it

FL in the following), which intrinsically pushes the heterogeneity of computing and com-

munication resources to a level that is rarely found in datacenter distributed learning and

cross-silo FL. More importantly, the data in FL is also owned by clients where the quantity

and content can be quite different from each other, causing severe heterogeneity in data that

usually does not appear in datacenter distributed learning, where data distribution is well

controlled.

We conduct a case study to quantify how data and resource heterogeneity in clients im-

pacts the training performance and model accuracy of FL. The key findings are below:

(1) training throughput is usually bounded by slow clients (a.k.a. stragglers) with less

computational capacity and/or slower communication, which we name as the resource het-

erogeneity. Asynchronous training is often employed to mitigate this problem in datacenter

distributed learning. However, in FL, almost all the existing privacy methods [4, 36, 173]

are built with the assumption of synchronous training, which makes asynchronous training

difficult to be applied here.

(2) Different clients may train on different quantity of samples per training round and

results in different round time (similar to straggler effect), which impacts the training time

and potentially also the accuracy. We name this observation the data quantity heterogene-

ity. (3) In datacenter distributed learning, the classes and features of the training data are

uniformly distributed among all clients, namely Independent Identical Distribution (IID).

96

However, in FL, the distribution of data classes and features depends on the data owners,

thus resulting in a non-uniform data distribution, known as non-Identical Independent Dis-

tribution (non-IID data heterogeneity). Our experiments show that such heterogeneity can

significantly impact the training time and accuracy.

Driven by the above observations, we propose TiFL , a Tier-based Federated Learning

System. The key idea here is adaptively selecting clients with similar per round training

time so that the heterogeneity problem can be mitigated without impacting the model ac-

curacy. Specifically, we first employ a lightweight profiler to measure the training time of

each client and group them into different logical data pools based on the measured latency,

called tiers. During each training round, clients are selected uniform randomly from the

same tier based on the adaptive client selection algorithm of TiFL . In this way, the het-

erogeneity problem is mitigated as clients belonging to the same tier have similar training

time. In addition to heterogeneity mitigation, such tiered design and adaptive client selec-

tion algorithm also allows controlling the training throughput and accuracy by adjusting the

tier selection intelligently, e.g., selecting tiers such that the model accuracy is maintained

while prioritizing selection of faster tiers.

While resource heterogeneity and data quantity heterogeneity information can be re-

flected in the measured training time, the non-IID data heterogeneity information is difficult

to capture. This is because any attempt to measure the class and feature distribution vio-

lates the privacy-preserving requirements. To solve this challenge, TiFL offers an adaptive

client selection algorithm that uses the accuracy as indirect measure to infer the non-IID

data heterogeneity information and adjust the tiering algorithm on-the-fly to minimize the

training time and accuracy impact. Such approach also serves as an online version to be

used in an environment where the characteristics of heterogeneity change over time.

97

We prototype TiFL in a FL testbed that follows the architecture design of Google’s FL

system [35] and perform extensive experimental evaluation to verify its effectiveness and

robustness using popular ML benchmarks such as LEAF [41]. The experimental results

show that in the resource heterogeneity case, TiFL can improve the training time by a mag-

nitude of 6× without affecting the accuracy. In the data quantity heterogeneity case, a 3×

speedup is observed in training time with comparable accuracy to the conventional FL.

Overall, TiFL outperforms the conventional FL with 3× improvement in training time and

8% improvement in accuracy in CIFAR10 [130] and 3× improvement in training time using

FEMINIST [41] under LEAF.

5.2 Related Work

The straggler problem is not new in FL, and it has been well studied in datacenter dis-

tributed learning. However, the privacy requirement and significantly higher heterogeneity

level in FL impose new challenges. [91] proposes to use P2P communication among work-

ers to detect slowed workers, performs work re-assignment, and exploits iteration knowl-

edge to further reduce how much data needs to be preloaded on helpers. However, migrat-

ing data between users is strictly restricted in FL. SpecSync is proposed in [291], where

each worker speculates about the parameter updates from others, and if necessary, it aborts

the ongoing computation, pulls fresher parameters to start over, so as to opportunistically

improve the training quality. However, information sharing between clients is not allowed

in FL.

For general background of FL, we recommend readers to read these papers [119, 139].

Some recent research efforts in FL focus on the functionality [128] and privacy [36, 173],

98

where they assume no heterogeneity in resource and data. [82] proposes a general statisti-

cal model for Byzantine machines and clients with data heterogeneity and uses it to cluster

edge devices such that their datasets are similar. However, the authors do not consider the

impact of clustering on training time or accuracy. FedCS [185] proposes to solve client se-

lection issue via a deadline-based approach that filters out slowly-responding clients. How-

ever, FedCS does not consider how this approach effects the contributing factors of straggler

clients in model training. [141] takes into account the resource heterogeneity in FL. The

proposed approach assumes only two types of clients - stragglers and non-stragglers. But

in a real FL environment there is a wide range of heterogeneity levels. In addition, their

proposed solution involves partial training on stragglers which can lead to biasness in the

trained model. [35] proposes a simple approach to handle stragglers problem in FL, where

the aggregator selects 130% of the target number of devices to initially participate, and

discards stragglers during training process. However, simply dropping the slower clients

might exclude certain data distributions on the slower clients from contributing towards

training the global model.

Asynchronous training is a common approach for mitigating the straggler problem in

datacenter distributed learning, but it is difficult to be applied in FL as almost all the existing

privacy methods [4, 36, 173] are built with the assumption of synchronous model weight

updates.For instance, Differential Privacy [4] applies noise to each client’s weights and

the noise is determined by the variations of weights between other client’s weights in that

round. Similarly, Secure Aggregation [36] depends on Secret Sharing, where clients share

secret keys to each other’s encryption, thus requiring all secret sharing clients to be present

during aggregation.

99

Algorithm 5 Federated Averaging Training Algorithm
1: Aggregator: initialize weight w0
2: for each round r = 0 to N − 1 do
3: Cr = (random set of |C| clients)
4: for each client c ∈ Cr in parallel do
5: wc

r+1 = TrainClient(c)
6: sc = (training size of c)
7: end for
8: wr+1 =

∑|C|
c=1 wc

r+1 ∗
sc∑|C|

c=1 sc

9: end for

5.3 Heterogeneity Impact Study

Compared with datacenter distributed learning and cross-silo FL, one of the key features

of cross-device FL is the significant resource and data heterogeneity among clients, which

can potentially impact both the training throughput and the model accuracy. Resource

heterogeneity arises as a result of vast number of computational devices with varying com-

putational and communication capabilities involved in the training process. The data het-

erogeneity arises as a result of two main reasons - (1) the varying number of training data

samples available at each client and (2) the non-uniform distribution of classes and features

among the clients.

5.3.1 Formulating Vanilla Federated Learning

5.3.2 Heterogeneity Impact Analysis

The resource and data heterogeneity among involved clients may lead to varying response

latencies (i.e., the time between a client receives the training task and returns the results) in

100

the FL process, which is usually referred as the straggler problem.

We denote the response latency of a client ci as Li, and the latency of a global training

round is defined as

Lr = Max
(
L1, L2, L3, L4...L|C|

)
. (5.1)

where Lr is the latency of round r. From Equation (5.1), we can see the latency of a global

training round is bounded by the maximum training latency of clients in C, i.e., the slowest

client.

We define τ levels of clients, i.e., within the same level, the clients have similar response

latencies. Assume that the total number of levels is m and τm is the slowest level with |τm|

clients inside. In the baseline case (Alg. 5), the aggregator selects the clients randomly,

resulting in a group of selected clients with composition spanning multiple client levels.

We formulate the probability of selecting |C| clients from all client levels except the slow-

est level τm as follows:

Pr =

(
|K|−|τm |
|C|

)(
|K|
|C|

) . (5.2)

Accordingly, the probability of at least one client in C comes from τm can be formulated

as:

Prs = 1 − Pr. (5.3)

Because a−1
b−1 <

a
b , while 1 < a < b, we have

101

Prs = 1 −

(
|K|−|τm |
|C|

)(
|K|
|C|

)
= 1 −

(|K|−|τm|)...(|K|−|τm|−|C|+1)
|K|...(|K|−|C|+1)

= 1 −
|K|−|τm|

|K|
...
|K|−|τm|−|C|+1
|K|−|C|+1

.

where Prs is probability of at least one client in C comes from τm. By applying the above

proof, we get:

Prs > 1 −
|K|−|τm|

|K|
...
|K|−|τm|

|K|

= 1 − (
|K|−|τm|

|K|
)
|C|

(5.4)

In real-world scenarios, large number of clients can be selected at each round, which makes

|K| extremely large. As a subset of K, the size of C can also be sufficiently large. Since

|K|−|τm |
|K| < 1, we get (|K|−|τm |

|K|)|C| ≈ 0, which makes Prs ≈ 1, meaning in a vanilla FL training

process, the probability of selecting at least one client from the slowest level is reasonably

high for each round. According to Equation (5.1), the random selection strategy adopted

by state-of-the-art FL system may suffer from a slow training performance.

102

5.3.3 Experimental Study

To experimentally verify the above analysis and demonstrate the impact of resource het-

erogeneity and data quantity heterogeneity, we conduct a study with a setup similar to the

paper [45]. The testbed is briefly summarized as follows:

• We use a total of 20 clients and each client is further divided into 5 groups with 4

client per group.

• We allocate 4 CPUs, 2 CPUs, 1 CPU, 1/3 CPU, 1/5 CPU for every client from group

1 through 5 respectively to emulate the resource heterogeneity.

• The model is trained on the image classification dataset CIFAR10 [130] using the

vanilla FL process 5.3.1 (model and learning parameters are detailed in Section 5.5).

• Experiments with different data size and non-IIDness level for clients are conducted

to produce data heterogeneity results.

As shown in Fig. 5.1 (a), with the same amount of CPU resource, increasing the data

size from 500 to 5000 results in a near-linear increase in training time per round. As the

amount of CPU resources allocated to each client increases, the training time gets shorter.

Additionally, the training time increases as the number of data points increase with the

same number of CPUs. These preliminary results imply that the straggler issues can be

severe under a complicated and heterogeneous FL environment. To evaluate the impact of

data distribution heterogeneity, we keep the same CPU resources for every client (i.e., 2

CPUs) and generate a biased class and feature distribution following [305]. Specifically,

we distribute the dataset in such a way that every client has equal number of images from

2 (non-IID(2)), 5 (non-IID(5)) and 10 (non-IID(10)) classes, respectively. We train the

103

(a) Average training time per round

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(b) Accuracy across rounds

Figure 5.1: (a) Training time per round (logscale) for one client with varying amount of resource and training
data quantity (number of training points) ; (b) accuracy under varying number of classes per client (non-IID)
with fixed amoumd of computational resources.

model on Cifar10 dataset using the vanilla FL system as described in Section 5.3.1 with

the model and training parameters detailed in Section 5.5. As seen in Fig. 5.1 (b), there is

a clear difference in the accuracy with different non-IID distributions. The best accuracy is

given by the IID since it represents a uniform class and feature distribution. As the number

of classes per client is reduced, we observe a corresponding decrease in accuracy. Using

10 classes per client reduces the final accuracy by around 6% compared to IID (it is worth

noting that non-IID(10) is not the same as IID as the feature distribution in non-IID(10) is

skewed compare to IID). In the case of 5 classes per client, the accuracy is further reduced

by 8%. The lowest accuracy is observed in the 2 classes per client case, which has a

significant 18% drop in accuracy.

These studies demonstrate that the data and resource heterogeneity can cause significant

impact on training time and training accuracy in FL. To tackle these problems, we propose

TiFL — a tier-based FL system which introduces a heterogeneity-aware client selection

methodology that selects the most profitable clients during each round of the training to

minimize the heterogeneity impact while preserving the FL privacy proprieties, thus im-

proving the overall training performance of FL.

104

Figure 5.2: Overview of TiFL .

5.4 TiFL : A Tier-based Federated Learning System

In this section, we present the design of the proposed tier-based federated learning system

TiFL . The key idea of a tier-based system is that given the global training time of a round

is bounded by the slowest client selected in that round (see Equation 5.1), selecting clients

with similar response latency in each round can significantly reduce the training time. We

first give an overview of the architecture and the main flow of TiFL system. Then we in-

troduce the profiling and tiering approach. Based on the profiling and tiering results, we

explain how a tier selection algorithm can potentially mitigate the heterogeneity impact

through a straw-man proposal as well as the limitations of such static selection approach.

To this end, we propose an adaptive tier selection algorithm to address the limitations of the

straw-man proposal. Finally, we propose an analytical model through which one can esti-

mate the expected training time using selection probabilities of tiers and the total number

of training rounds.

105

5.4.1 System Overview

The overall system architecture of TiFL is present in Fig. 5.2. TiFL follows the system de-

sign to the state-of-the-art FL system [36] and adds two new components: a tiering module

(a profiler & tiering algorithms) and a tier scheduler. These newly added components can

be incorporated into the coordinator of the existing FL system [35]. It is worth to note that

in Fig. 5.2, we only show a single aggregator rather than the hierarchical master-child ag-

gregator design for a clean presentation purpose. For large scale system in practice, TiFL

supports master-child aggregator design for scalability and fault tolerance.

In TiFL , the first step is to collect the latency metrics of all the available clients through

a lightweight profiling as detailed in Section 5.4.2. The profiled data is further utilized

by our tiering algorithm. This groups the clients into separate logical pools called tiers.

Once the scheduler has the tiering information (i.e., tiers that the clients belong to and the

tiers’ average response latencies), the training process begins. Different from vanilla FL

that employs a random client selection policy, in TiFL the scheduler selects a tier and then

randomly selects targeted number of clients from that tier. After the selection of clients, the

training proceeds as state-of-the-art FL system does. By design, TiFL is non-intrusive and

can be easily plugged into any existing FL system in that the tiering and scheduler module

simply regulate client selection without intervening the underlying training process.

5.4.2 Profiling and Tiering

Given the global training time of a round is bounded by the slowest client selected in

that round (see Equation 5.1), if we can select clients with similar response latency in each

106

round, the training time can be improved. However, in FL, the response latency is unknown

a priori, which makes it challenging to carry out the above idea. To solve this challenge,

we introduce a process through which the clients are tiered (grouped) by the Profiling and

Tiering module as shown in Fig. 5.2.

Offline Profiling and Tiering. As the first step, all available clients are initialized with a

response latency Li of 0. The profiling and tiering module then assigns all the available

clients the profiling tasks. The profiling tasks execute for sync rounds rounds and in each

profiling round, the aggregator asks every client to train on the local data and waits for

their acknowledgement for Tmax seconds. All clients that respond within Tmax have their

response latency value RTi incremented with the actual training time, while the ones that

have timed out are incremented by Tmax. After sync rounds rounds are completed, the

clients with Li >= sync rounds ∗ Tmax are considered dropouts and excluded from the rest

of the calculation. The collected training latencies through profiling of clients creates a

histogram, which is split into m groups and the clients that fall into the same group forms a

tier. The response latency of each client are then stored by the scheduler and recorded per-

sistently which is used later for scheduling and selecting tiers. The total overhead incurred

by the offline profiling would be sync rounds ∗ Tmax.

Online Profiling and Tiering. The profiling and tiering can be conducted online to reflect

the dynamic computation and communication performance so that clients can be adaptively

grouped into the right tiers. It is important for online profiling to be lightweight, thus our

online profiling method only measures the training throughput of a client instead of running

a complete iteration. The training throughput can be paired with the quantity of training

data to estimate the training latency. We also utilize the latency of the already participated

clients to reduce the number of clients that need to be profiled to further reduce the profiling

overhead.

107

5.4.3 Straw-man Proposal: Static Tier Selection Algorithm

In this section, we present a naive static tier-based client selection policy and discuss its

limitations, which motivates us to develop an advanced adaptive tier selection algorithm

in the next section. While the profiling and tiering module introduced in Section 5.4.2

groups clients into m tiers based on response latencies, the tier selection algorithm focuses

on how to select clients from the proper tiers in the FL process to improve the training

performance. The natural way to improve training time is to prioritize towards faster tiers,

rather than selecting clients randomly from all tiers (i.e., the full K pool). However, such

selection approach reduces the training time without taking into consideration of the model

accuracy and privacy properties. To make the selection more general, one can specify

each tier n j is selected based on a predefined probability, which sums to 1 across all tiers.

Within each tier, | C | clients are selected according to inner-tier selection policy. While

a sophisticated inner-tier selection policy can further optimize the performance, it needs

to be carefully co-designed with the privacy method (detailed in Section 5.4.6). In this

project, we present a simple uniform selection policy to illustrate our approach and defer

more sophisticated inner-tier selection policy as our future work.

In a real-world FL scenarios, there can be a large number of clients involved in the FL

process [36, 119, 139]. Thus in our tiering-based approach, the number of tiers is set such

that m << |K| and number of clients per tier n j is always greater than |C|. Another con-

sideration for the number of clients per tier is that too few clients in a tier may introduce

training bias as these clients can be selected too often, causing overfitting on the data for

these clients. One way to solve this issue is by adjusting the tier selection probabilities.

However, adjusting the tier selection probabilities results in different trade-offs. If the

108

users’ objective is to reduce the overall training time, they may increase the chances of

selecting the faster tiers. However, drawing clients only from the fastest tier may inevitably

introduce training bias due to the fact that different clients may own a diverse set of het-

erogeneous training data spread across different tiers; as a result, such bias may end up

affecting the accuracy of the global model. To avoid such undesired behavior, it is prefer-

able to involve clients from different tiers so as to cover a diverse set of training datasets.

We perform an empirical analysis on the latency-accuracy trade-off in Section 5.5.

5.4.4 Adaptive Tier Selection Algorithm

While the above naive static selection method is intuitive, it does not provide a method to

automatically tune the trade-off to optimize the training performance nor adjust the selec-

tion based on changes in the system. In this section, we propose an adaptive tier selection

algorithm that can automatically strike a balance between training time and accuracy, and

adapt the selection probabilities adaptively over training rounds based on the changing sys-

tem conditions. The observation here is that heavily selecting certain tiers (e.g., faster

tiers) may eventually lead to a biased model, TiFL needs to balance the client selection

from other tiers (e.g., slower tiers). The question being which metric should be used to

balance the selection. Given the goal here is to minimize the bias of the trained model, we

can monitor the accuracy of each tier throughout the training process. A lower accuracy

value of a tier t typically indicates that the model has been trained with less involvement

of this tier, therefore tier t should contribute more in the next training rounds. To achieve

this, we can increase the selection probabilities for tiers with lower accuracy. To achieve

good training time, we also need to limit the selection of slower tiers across training rounds.

Therefore, we introduce Creditst, a constraint that defines how many times a certain tier

109

Algorithm 6 Adaptive Tier Selection Algorithm. Creditst: the credits of Tier t, I: the
interval of changing probabilities, TestDatat: evaluation dataset specific to that tier t, Ar

t :
test accuracy of tier t at round r, τ: set of Tiers.

1: Aggregator: initialize weight w0, currentT ier = 1, TestDatat, Creditst, equal probability
with 1

T , for each tier t.
2: for each round r = 0 to N − 1 do
3: if r%I == 0 and r ≥ I then
4: if Ar

currentT ier ≤ Ar−I
currentT ier then

5: NewProbs = ChangeProbs(Ar
1, A

r
2...A

r
T)

6: end if
7: end if
8: while True do
9: currentT ier = (select one tier from T tiers with NewProbs)

10: if CreditscurrentT ier > 0 then
11: CreditscurrentT ier = CreditscurrentT ier − 1
12: break
13: end if
14: end while
15: Cr = (random set of |C| clients from currentT ier)
16: for each client c ∈ Cr in parallel do
17: wc

r = TrainClient(c)
18: sc = (training size of c)
19: end for
20: wr =

∑|C|
c=1 wc

r+1 ∗
sc∑|C|

c=1 sc

21: for each t in τ do
22: Ar

t = Eval(wr,TestDatat)
23: end for
24: end forChangeProbs(AccuraciesByTier)
25: A = S ortAscending(AccuraciesByTier)
26: D = n ∗ (n − 1)/2 where n = # of tiers with Creditst > 0
27: NewProbs = []
28: for each Index i, Tier t in A do
29: NewProbs[t] = (n − i)/D
30: end for
31: return NewProbs

can be selected.

Specifically, a tier is initialized randomly with equal selection probability. After the

weights are received and the global model is updated, the global model is evaluated on

every client for every tier on their respective TestData and their resulting accuracies are

stored as the corresponding tier t’s accuracy for that round r. This is stored in Ar
t , which is

the mean accuracy for all the clients in tier t in training round r. In the subsequent training

rounds, the adaptive algorithm updates the probability of each tier based on that tier’s test

accuracy at every I rounds. This is done in the function ChangeProbs, which adjusts the

110

probabilities such that the lower accuracy tiers get higher probabilities to be selected for

training. With the new tier-wise selection probabilities (NewProbs), a tier that has remain-

ing Creditst is selected from all available tiers τ. The selected tier will have its Creditst

decremented. As clients from a particular tier gets selected over and over throughout the

training rounds, the Creditst for that tier ultimately reduces down to zero, meaning that it

will not be selected again in the future. This is a way of limiting the number of times a

tier can be selected so as to control the training time by controlling the maximum num-

ber of times the slower tiers are selected. This serves as a control knob for the number of

times a tier is selected and by setting this upper-bound, we can limit the amount of times a

slower tier contributes to the training, thereby effectively gaining some control over setting

a soft upper-bound on the total training time. For the straw-man implementation, we used

a skewed probability of selection to manipulate training time. Since we now wish to adap-

tively change the probabilities, we add the Creditst to gain control over limiting training

time.

On one hand, the tier-wise accuracy At
r essentially makes TiFL ’s adaptive tier selection

algorithm data heterogeneity aware; as such, TiFL makes the tier selection decision by

taking into account the underlying dataset selection biasness, and automatically adapt the

tier selection probabilities over time. On the other hand, Creditst is introduced to inter-

vene the training time by enforcing a constraint over the selection of the relatively slower

tiers. While Creditst and Ar
t mechanisms optimize towards two different and sometimes

contradictory objectives — training time and accuracy, TiFL cohesively synergizes the

two mechanisms to strike a balance for the training time-accuracy trade-off. More impor-

tantly, with TiFL , the decision making process is automated, thus relieving the users from

intensive manual effort. The adaptive algorithm is summarized in Algo. 6. One potential

problem is that the uneven selection probability might impact the overall accuracy due to

overfitting on data from particular tiers or training too long on tiers with “bad” data. We

111

denote such tiers as “bad tiers”. “Bad tier(s)” can result in lower accuracy on other tiers due

to overfitting. In Algo. 6, we use the function ChangeProbs to change the selection proba-

bility of tiers. ChangeProbs sorts the tiers in ascending order based on their accuracies and

assigns higher tier selection probabilities to the lower accuracy tiers and vice versa. Given

“bad tier(s)” have higher accuracy, in the next rounds other tiers would get selected more

often, and thus mitigate the overfitting impact of “bad tier(s)”.

5.4.5 Training Time Estimation Model

In real-life scenarios, the training time and resource budget is typically finite. As a result,

FL users may need to compromise between training time and accuracy. A training time

estimation model would facilitate users to navigate the training time-accuracy trade-off

curve to effectively achieve desired training goals.

Therefore, we build a training time estimation model that can estimate the overall training

time based on the given latency values and the selection probability of each tier:

Lall =

n∑
i=1

(max(Ltier i) ∗ Pi) ∗ R. (5.5)

where Lall is the total training time, Ltier i is the response latency of all the clients in tier

i, Pi is the probability of tier i, and R is the total number of training rounds. The model is

a sum of products of the tier and maximum latency of each tier, which gives the latency

expectation per round. This is multiplied by the total number of training rounds to get the

total training time.

112

5.4.6 Discussion: Compatibility with Privacy-Preserving Federated

Learning

FL has been used together with privacy preserving approaches such as differential privacy

to prevent attacks that aim to extract private information [179, 223].

Privacy-preserving FL is based on client-level differential privacy, where the privacy guar-

antee is defined at each individual client. This can be accomplished by each client imple-

menting a centralized private learning algorithm as their local training approach. For ex-

ample, with neural networks this would be running one or more epochs using the approach

proposed in [4], wherein each client adds the appropriate noise into their local learning to

protect the privacy of their individual datasets. Here we demonstrate that TiFL is compati-

ble with such privacy preserving approaches.

Assume that for client ci, one round of local training using a differentially private algo-

rithm is (ϵ, δ)-differentially private, where ϵ bounds the impact any individual may have on

the algorithm’s output and δ defines the probability that this bound is violated. Smaller ϵ

values therefore signify tighter bounds and provide a stronger privacy guarantee. Enforcing

smaller values of ϵ requires more noise to be added to the model updates sent by clients

to the FL server which leads to less accurate models. Selecting clients at each round of

FL has distinct privacy and accuracy implications for client-level privacy-preserving FL

approaches. Let us consider the scenario wherein a tier is chosen randomly each round

according to a pre-defined probability distribution. Recall that each client adds differential

privacy noise to its model updates every time it replies to a query and that this noise pre-

vents any leakage of private information. In our approach, clients are queried according

to a tier-based random process, where the number of times a client gets selected depends

113

both on the tier selection policy and the inner-tier selection policy. Because of the com-

position property of differential privacy and the fact that each client adds its own noise,

each client can monitor and control how their differential privacy budget is spent and thus

their differential privacy guarantee. Therefore, it is possible for each client to meet their

privacy requirements by stopping their replies if their budget has been consumed. In this

fashion, it is possible to combine our approach and differential privacy. While additional

optimizations to further reduce the amount of differential private noise (e,g. by incorpo-

rating techniques that would enable random sampling amplification [26]) are interesting

research directions, these optimizations are orthogonal to the scope of this project.

5.5 Experimental Evaluation

We prototype TiFL with both the naive and our adaptive selection approach and perform

extensive testbed experiments under three scenarios: resource heterogeneity, data hetero-

geneity, and resource plus data heterogeneity.

5.5.1 Experimental Setup

Testbed. As a proof of concept case study, we build a FL testbed for the syntehtic datasets

by deploying 50 clients on a CPU cluster where each client has its own exclusive CPU(s)

using Tensorflow [3]. In each training round, 5 clients are selected to train on their own data

and send the trained weights to the server which aggregates them and updates the global

model similar to [35, 172]. [35] introduces multiple levels of server aggregators in order

to achieve scalability and fault tolerance in extreme scale situations, i.e., with millions of

114

clients. In our prototype, we simplify the system to use a powerful single aggragator as it

is sufficient for our purpose here, i.e., our system does not suffer from scalabiltiy and fault

tolerance issues, though multiple layers of aggregator can be easily integrated into TiFL .

We also extend the widely adopted large scale distributed FL framework LEAF [41] in

the same way. LEAF provides inherently non-IID with data quantity and class distribu-

tions heterogeneity. LEAF framework does not provide the resource heterogeneity among

the clients, which is one of the key properties of any real-world FL system. The current

implementation of the LEAF framework is a simulation of a FL system where the clients

and server are running on the same machine. To incorporate the resource heterogeneity

we first extend LEAF to support the distributed FL where every client and the aggregator

can run on separate machines, making it a real distributed system. Next, we deploy the

aggregator and clients on their own dedicated hardware. This resource assignment for ev-

ery client is done through uniform random distribution resulting in equal number of clients

per hardware type. By adding the resource heterogeneity and deploying them to separate

hardware, each client mimics a real-world edge-device. Since we do not assume specific

data distribution within each tier, we randomly distribute data across clients (i.e., clients

can have very similar or widely different datasets per tier). Specifically, for LEAF, we use

the data distribution provided by the framework. For Cifar10/MNIST/FMNIST, we set the

level of Non-IIDness per client and distribute the data following [172]. The clients hosting

these datasets are uniform randomly assigned to a node (for generating resource hetero-

geneity). Given that LEAF already provides non-IIDness, with the newly added resource

heterogeneity feature the new framework provides a real world FL system which supports

data quantity, quality and resource heterogeneity. For our setup, we use exactly the same

sampling size used by the LEAF [41] paper (0.05) resulting in a total of 182 clients, each

with a variety of image quantities. The test sets for all the datasets are generated through

sampling 10% of the total data per client. As such, the test distribution is representative of

115

Table 5.1
Scheduling Policy Configurations.

DataSet Policy Selection probabilities

Cifar10 / FEMNIST

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
vanilla N/A N/A N/A N/A N/A
slow 0.0 0.0 0.0 0.0 1.0

uniform 0.2 0.2 0.2 0.2 0.2
random 0.7 0.1 0.1 0.05 0.05

fast 1.0 0.0 0.0 0.0 0.0

MNIST
FMNIST

vanilla N/A N/A N/A N/A N/A
uniform 0.2 0.2 0.2 0.2 0.2

fast1 0.225 F0.225 0.225 0.225 0.1
fast2 0.2375 0.2375 0.2375 0.2375 0.05
fast3 0.25 0.25 0.25 0.25 0.0

Table 5.2
Estimated VS Actual Training Time.

Policy Estimated [s] Actual [s] MAPE [%]
slow 46242 44977 2.76

uniform 12693 12643 0.4
random 5143 5053 1.8

fast 1837 1750 5.01

the distribution of the training set.

5.5.2 Experimental Results

Models and Datasets. We use four image classification applications for evaluating TiFL .

We use MNIST * and Fashion-MNIST [270], where each contains 60,000 training images

and 10,000 test images, where each image is 28x28 pixels. We use a CNN model for

both datasets, which starts with a 3x3 convolution layer with 32 channels and ReLu ac-

tivation, followed by a 3x3 convolution layer with 64 channels and ReLu activation, a

MaxPooling layer of size 2x2, a fully connected layer with 128 units and ReLu activa-

tion, and a fully connected layer with 10 units and ReLu activation. Dropout 0.25 is added

after the MaxPooling layer, dropout 0.5 is added before the last fully connected layer.

We use Cifar10 [130], which contains richer features compared to MNIST and Fashion-

*http://yann.lecun.com/exdb/mnist/

116

 0

 10

 20

 30

 40

 50

vanilla

slow
uniform

random

fast

Tr
a
in

in
g
 t

im
e
 [

1
0

3
 s

]

(a) Training time 500 rounds

 0
 1
 2
 3
 4
 5
 6
 7
 8

vanilla

slow
uniform

random

fast

Tr
a
in

in
g
 t

im
e
 [

1
0

3
 s

]

(b) Training time 500 rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

vanilla
slow
uniform
random
fast

(c) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

vanilla
slow
unifrom
random
fast

(d) Accuracy over round

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(e) Accuracy over time

 0

 0.2

 0.4

 0.6

 0.8

 0 1 2 3 4 5

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(f) Accuracy over time

Figure 5.3: Comparison results for different selection policies on Cifar10 with resource heterogeneity (0.5 to
4 CPUs) and homogenous data quantity (Column 1), and data quantity heterogeneity with with homogenous
resources (2 CPUs per client) (Column 2).

117

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500
A

cc
u
ra

cy
Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(a) vanilla

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(b) slow

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(c) uniform

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500
A

cc
u
ra

cy
Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(d) random

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(e) fast

Figure 5.4: Comparison results for different selection policies on Cifar10 with different levels of non-IID
heterogeneity (Class) and fixed resources.

MNIST. There is a total of 60,000 colour images, where each image has 32x32 pixels.

The full dataset is split evenly between 10 classes, and partitioned into 50,000 training and

10,000 test images. The model is a four-layer convolution network ending with two fully-

connected layers before the softmax layer. It was trained with a dropout of 0.25. Lastly we

also use the FEMNIST data set from LEAF framework [41]. This is an image classification

dataset which consists of 62 classes and the dataset is inherently non-IID with data quantity

and class distributions heterogeneity. We use the standard model architecture as provided

118

in LEAF [42].

Training Hyperparameters. We use RMSprop as the optimizer in local training and set

the initial learning rate (η) as 0.01 and decay as 0.995. Local batch size of each client

is 10, and local epochs is 1. For CIFAR10 the total number of clients (|K|) is 50 and

the number of participated clients (|C|) at each round is 5. For FEMNIST the number of

total clients is 182, clients per round is 18 and default training parameters provided by the

LEAF Framework (SGD with lr 0.004, batch size 10). We train for a total of 2000 rounds

for FEMNIST and 500 rounds for the synthetic datasets. Every experiment is run 5 times

to produce average values.

Heterogeneous Resource Setup. Among all the clients, we split them into 5 groups with

equal clients per group. For MNIST and Fashion-MNIST, each group is assigned with 2

CPUs, 1 CPU, 0.75 CPU, 0.5 CPU, and 0.25 CPU per part respectively. For the larger

Cifar10 and FEMINIST model, each group is assigned with 4 CPUs, 2 CPUs, 1 CPU, 0.5

CPU, and 0.1 CPU per part respectively. This leads to varying training time for clients

belong to different groups. By using the tiering algorithm of TiFL , there are 5 tiers

Heterogeneous Data Distribution. FL differs from the datacenter distributed learning in

that the clients involved in the training process may have non-uniform data distribution in

terms of amount of data per client and the non-IID data distribution. • For data quantity

heterogeneity, the training data sample distribution is 10%, 15%, 20%, 25%, 30% of total

dataset for difference groups, respectively, unless otherwise specifically defined. • For non-

IID heterogeneity, we use different non-IID strategies for different datasets. For MNIST

and Fashion-MNIST, we adopt the setting in [172], where we sort the labels by value

first, divide into 100 shards evenly, and then assign each client two shards so that each

client holds data samples from at most two classes. For Cifar10, we shard the dataset

119

unevenly in a similar way and limit the number of classes to 5 per client (non-IID(5))

following [305], [158] unless explicitly mentioned otherwise. In the case of FEMINIST

we use its default non-IID-ness.

Scheduling Policies. We evaluate several different naive scheduling policies of the pro-

posed tier-based selection approach, defined by the selection probability from each tier,

and compare it with the state-of-the-practice policy (or no policy) that existing FL works

adopt, i.e., randomly select 5 clients from all clients in each round [35,172], agnostic to any

heterogeneity in the system. We name it as vanilla . fast is a policy that TiFL only selects

the fastest clients in each round. random demonstrates the case where the selection of the

fastest tier is prioritized over slower ones. uniform is a base case for our tier-based naive

selection policy where every tier has an equal probability of being selected. slow is the

worst policy that TiFL only selects clients from the slowest tiers and we only include it here

for reference purpose so that we can see a performance range between the best case and the

worst case scenarios for static tier-based selection approach. We use the above policies for

CIFAR-10 and FEMINIST training. For MNIST and Fashion-MNIST, given it is a much

more lightweight workload, we focus on demonstrating the sensitivity analysis when the

policy prioritizes more aggressively towards the fast tier, i.e., from fast1 to fast3 , the

slowest tier’s selection probability has reduced from 0.1 to 0 while all other tiers got equal

probability. We also include the uniform policy for comparison, which is the same as in

CIFAR-10. Table 5.1 summarizes all these scheduling policies by showing their selection

probabilities.

120

 0

 5

 10

 15

 20

 25

 30

vanilla

uniform

fast1
fast2

fast3

Tr
a
in

in
g
 t

im
e
 [

1
0

3
 s

]
(a) Training time 500 rounds

 0

 5

 10

 15

 20

 25

 30

vanilla

uniform

fast1
fast2

fast3

Tr
a
in

in
g
 t

im
e
 [

1
0

3
 s

]

(b) Training time 500 rounds

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

vanilla
uniform
fast1
fast2
fast3

(c) Accuracy over round

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy
Rounds

vanilla
uniform
fast1
fast2
fast3

(d) Accuracy over round

Figure 5.5: Comparison results for different selection policies on MNIST (Column 1) and FMNIST (Column
2) with resource plus data heterogeneity.

5.5.2.1 Training Time Estimation via Analytical Model

In this section, we evaluate the accuracy of our training time estimation model on different

naive tier selection policies by comparing the estimation results of the model with the

measurements obtained from test-bed experiments. The estimation model takes as input

of the profiled average latency of each tier, the selection probabilities, and total number

of training rounds to estimate the training time. We use mean average prediction error

(MAPE) as the evaluation metric, which is defined as follows:

MAPE =
|Lest

all − Lact
all |

Lact
all

∗ 100, (5.6)

121

where Lest
all is the estimated training time calculated by the estimation model and Lact

all is

the actual training time measured during the training process. Table 5.2 demonstrates the

comparison results. The results suggest the analytical model is very accurate as the esti-

mation error never exceeds more than 6 % with slight variations occurring due to system

randomness.

5.5.2.2 Resource Heterogeneity

In this sections, we evaluate the performance of TiFL with static selection policies in terms

of training time and model accuracy in a resource heterogeneous environment as depicted

in 5.5.1 and we assume there is no data heterogeneity. We evaluated TiFL with adaptive

selection policy in section 5.5.2.5. In practice, data heterogeneity is a norm in FL, we

evaluate this scenario to demonstrate how TiFL tame resource heterogeneity alone and we

evaluate the scenario with both resource and data heterogeneity in Section 5.5.2.4.

In the interest of space, we only present the Cifar10 results here as MNIST and Fashion-

MNIST share the similar observations. The results are organized in Fig. 5.3 (column 1),

which clearly indicate that when we prioritize towards the fast tiers, the training time re-

duces significantly. Compared with vanilla, fast achieves almost 11 times improvement

in training time, see Fig. 5.3 (a). One interesting observation is that even uniform has an

improvement of over 6 times over the vanilla. This is because the training time is always

bounded by the slowest client selected in each training round. In TiFL , selecting clients

from the same tier minimizes the straggler issue in each round, and thus greatly improves

the training time. While there can be variation in training time among the clients, it can be

mitigated by tuning the number of tiers used for client binning. For accuracy comparison,

Fig. 5.3 (c) shows that the difference between polices are very small, i.e., less than 3.71%

122

after 500 rounds. However, if we look at the accuracy over wall-clock time, TiFL achieves

much better accuracy compared to vanilla, i.e., up to 6.19% better if training time is con-

straint, thanks to the much faster per round training time brought by TiFL , see Fig. 5.3

(e). Note here that different policies may take very different amount of wall-clock time to

finish 500 rounds. It is worth pointing out that the accuracy of FL is expected to be lower

than traditional distributed machine learning due to the skewed data distribution among the

clients as well as the different batching and gradients aggregation methods [128].

5.5.2.3 Data Heterogeneity

In this section, we evaluate data heterogeneity due to both data quantity heterogeneity

and non-IID heterogeneity as depicted in Section 5.5.1. To demonstrate only the impact

from data heterogeneity, we allocate homogeneous resource to each client, i.e., 2 CPUs per

client.

• Data quantity heterogeneity. The training time and accuracy results are show in Fig. 5.3

(column 2). In the interest of space, we only show Cifar10 results here. From the training

time comparison in Fig. 5.3 (b), it is interesting that TiFL also helps in data heterogeneity

only case and achieves up to 3 times speedup. The reason is that data quantity hetero-

geneity may also result in different round time, which shares the similar effect as resource

heterogeneity. Fig. 5.3 (d) and (f) show the accuracy comparison, where we can see fast

has relatively obvious drop compared to others because Tier 1 only contains 10% of the

data, which is a significant reduction in volume of the training data. slow is also a heavily

biased policy towards only one tier, but Tier 5 contains 30% of the data thus slow maintains

good accuracy while worst training time. These results imply that like resource hetero-

geneity only, data heterogeneity only can also benefit from TiFL . However, policies that

123

 0

 10

 20

 30

 40

 50

vanilla

slow
uniform

random

fast

Tr
a
in

in
g

 t
im

e
 [

1
0

3
 s

]
(a) Training time 500 rounds

 0
 10
 20
 30
 40
 50
 60
 70
 80

vanilla

slow
uniform

random

fast

Tr
a
in

in
g

 t
im

e
 [

1
0

3
 s

]

(b) Training time 500 rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

A
cc

u
ra

cy

Rounds

vanilla
slow
uniform
random
fast

(c) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500
A

cc
u
ra

cy
Rounds

vanilla
slow
uniform
random
fast

(d) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(e) Accuracy over time

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(f) Accuracy over time

Figure 5.6: Comparison results for different selection policies on Cifar10 with resource plus non-IID het-
erogeneity heterogeneity (Column 1) and resource, data quantity, and non-IID heterogeneity heterogeneity
(Column 2).

are too aggressive toward faster tier needs to be used very carefully as clients in fast tier

achieve faster round time due to using less samples. It is also worth pointing out that in our

experiments the total amount of data is relatively limited. In a practical case where data is

significantly more, the accuracy drop of fast is expected to be less pronounced.

• non-IID heterogeneity. We observe that non-IID heterogeneity does not impact the train-

124

ing time. Hence, we omit the results here. However, non-IID heterogeneity effects the

accuracy. Fig. 5.4 shows the accuracy over rounds given 2, 5, and 10 classes per client in a

non-IID setting. We also show the IID results in plot for comparison. These results show

that as the heterogeneity level in non-IID heterogeneity increases, the accuracy impact also

increases for all policies due to the strongly biased training data. Another important obser-

vation is that vanilla case and uniform have a better resilience than other policies, thanks to

the unbiased selection behavior, which helps minimize further bias introduced during the

client selection process.

5.5.2.4 Resource and Data Heterogeneity

This section presents the most practical case study with static selection policies as we

evaluate with both resource and data heterogeneity combined. We evaluated TiFL for both

resource and data heterogeneity combined with adaptive selection policy in section 5.5.2.5.

MNIST and Fashion-MNIST (FMNIST) results are shown in Fig. 5.5 columns 1 and

2 respectively. Overall, policies that are more aggressive towards the fast tiers bring more

speedup in training time. For accuracy, all polices of TiFL are close to vanilla, except fast3

falls short as it completely ignores the data in Tier 5.

Cifar10 results are shown in Fig. 5.6 column 1. It presents the case of resource hetero-

geneity plus non-IID data heterogeneity with equal data quantities per client and the results

are similar to resource heterogeneity only since non-IID data with the same amount of data

quantity per client results in a similar effect of resource heterogeneity in terms of training

time. However, the accuracy degrades slightly more here as because of the non-IID-ness

the features are skewed, which results in more training bias among different classes.

125

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500

A
cc

u
ra

cy

Rounds

vanilla
uniform
TiFL

(a) 2-class per client

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500
Rounds

vanilla
uniform
TiFL

(b) 5-class per client

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500
Rounds

vanilla
uniform
TiFL

(c) 10-class per client

Figure 5.7: Comparison results of Cifar10 under non-IID heterogeneity (Class) for different client selection
policies with fixed resources (2 CPUs) per client.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Class

Am
ount

Com
bine

Tr
a
in

in
g

 T
im

e
 [

1
0

3
 s

e
c]

vanilla
uniform
TiFL

(a) Training time for 500 rounds

 50

 55

 60

 65

 70

 75

 80

Class

Am
ount

Com
bine

A
cc

u
ra

cy
 [

p
e
rc

e
n
t] vanilla

uniform
TiFL

(b) Accuracy at 500 rounds

Figure 5.8: Comparison results for different selection policies on Cifar10 with data quantity heterogeneity
(Amount), non-IID heterogeneity (Class), and resource plus data heterogeneity (Combine).

Fig. 5.6 column 2 shows the case of resource heterogeneity plus both the data quantity

heterogeneity and non-IID heterogeneity. As expected, the training time shown in Fig. 5.6

(b) is similar to Fig. 5.6 (a) since the training time impact from different data amounts can

be corrected by TiFL . However, the behaviors of round accuracy are quite different here

as shown in Fig. 5.6 (d). The accuracy of fast has degraded a lot more due to the data

quantity heterogeneity as it further amplifies the training class bias (i.e., the data of some

classes become very little to none) in the already very biased data distribution caused by the

non-IID heterogeneity. Similar reasons can explain for other policies The best performing

policy in accuracy here is the uniform case and is almost the same as vanilla, thanks to

the even selection nature which results in little increase in training class bias. Fig. 5.6 (f)

shows the wall-clock time accuracy. As expected, the significantly improved per round time

126

in TiFL shows its advantage here as within the same time budget, more iterations can be

done with shorter round time and thus remedies the accuracy disadvantage per round. fast

still falls short than vanilla in the long run as the limited and biased data limits the benefits

of more iterations. fast also perform worse than vanilla as it has no training advantage.

5.5.2.5 Adaptive Selection Policy

The above evaluation demonstrate the naive selection approach in TiFL can significantly

improve the training time, but sometimes can fall short in accuracy, especially when strong

data heterogeneity presents as such approach is data-heterogeneity agnostic. In this sec-

tion, we evaluate the proposed adaptive tier selection approach of TiFL , which takes into

consideration of both resource and data heterogeneity when making scheduling decisions

without privacy violation. We compare adaptive with vanilla and uniform, and the later is

the best accuracy performing static policy.

Fig. 5.8 shows adaptive outperforms vanilla and uniform in both training time and ac-

curacy for resource heterogeneity with data quantity heterogeneity (Amount) and non-IID

heterogeneity (Class), thanks to the data heterogeneity-aware schemes. In the combined

resource and data heterogeneity case (Combine), adaptive achieves comparable accuracy

with vanilla with almost half of the training time and a slightly higher training time com-

pared to uniform. The time difference arises when the adaptive policy tries to balance

training time and accuracy, i.e. the 10% difference in training time is for the tradeoff of

achieving around 5% better accuracy. The other policy which achieves this accuracy is

vanilla, which has almost 2x more training time. Considering this, we note that the train-

ing time difference is not significant, and performs similar as uniform in training time while

improves significantly in accuracy.

127

The above robust performance of adaptive is credited to both the resource and data

heterogeneity-aware schemes. To demonstrate the robustness of adaptive, we compare the

accuracy over rounds for different policies under different non-IID heterogeneity in Fig.

5.7. It is clear that adaptive consistently outperforms vanilla and uniform in different level

of non-IID heterogeneity.

5.5.2.6 Adaptive Selection Policy (LEAF)

This section provides the evaluation of TiFL using a widely adopted large scale distributed

FL dataset FEMINIST from the LEAF framework [41] . We use exactly the same configu-

rations (data distribution, total number of clients, model and training hyperparameters) as

mentioned in [41] resulting in total number of 182 clients, i.e. deploy-able edge devices.

Since LEAF provides it’s own data distribution among devices the addition of resource het-

erogeneity results in a range of training times thus generating a scenario where every edge

device has a different training latency. We further incorporated TiFL ’s tiering module and

selection policy to the extended LEAF framework. The profiling modules collects the train-

ing latency of each clients and creates a logical pool of tiers which is further utilized by

the scheduler. The scheduler selects a tier and then the edge clients within the tier in each

training round. For our experiments with LEAF we limit the total number of tiers to 5 and

during each round we select 10 clients, with 1 local epoch per round.

Figure 5.9 shows the training time and accuracy over rounds for LEAF with different

client selection policies. Figure 5.9a shows the training time for different selection policies.

The least training time is achieved by using the fast selection policy however, it impact the

final model accuracy by almost 10% compared to vanilla selection policy. The reason for

the least accuracy for fast is the result of less training point among the clients in tier 1. One

128

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

vanilla

slow
uniform

random

fast
TiFL

Tr
a
in

in
g

 t
im

e
 [

1
0

3
 s

]
(a) Training time for 2000 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

A
cc

u
ra

cy

Rounds (x100)

vanilla
slow
uniform
random
fast
TiFL

(b) Accuracy over rounds

Figure 5.9: Comparison results for different selection policies on LEAF with default data heterogeneity
(quantity, non-IID heterogeneity), and resource heterogeneity.

interesting observation is slow out performs the selection policy fast in terms of accuracy

even though each of these selection policies rely on data from only one tier. It must be

noted that the slow tier is not only the reason of less computing resources but also the

higher quantity of training data points. These results are consistent with our observations

from the results presented in Section 5.5.2.3.

Figure 5.9b shows the accuracy over-rounds for different selection policies. Our proposed

adaptive selection policy achieves 82.1% accuracy and outperforms the slow and fast se-

lection policies by 7% and 10% respectively. The adaptive policy is on par with the vanilla

and uniform (82.4% and 82.6% respectively). when comparing the total training time for

2000 rounds adaptive achieves 7 × and 2 × improvement compare to vanilla and uniform

respectively. fast and random both outperformed the adaptive in terms of training time

however, even after convergence the accuracy for both of these selection policies show a

noticeable impact on the final model accuracy. The results for FEMNIST using the ex-

tended LEAF framework for both accuracy as well as training time are also consistent with

the results reported in Section 5.5.2.5.

129

CHAPTER 6

CURSE OR REDEMPTION? HOW DATA HETEROGENEITY AFFECTS THE

ROBUSTNESS OF FEDERATED LEARNING

6.1 Introduction

Federated Learning (FL) is widely successful in training machine learning (ML) models

collaboratively across clients without sharing private data [35,172,305]. In FL, models are

trained locally at clients to preserve data privacy and the trained model weights are sent to a

central server for aggregation to update the global model. During the aggregation, privacy

mechanisms such as differential privacy [4] and secure aggregation [36] are often employed

to strengthen the privacy.

There are two types of poisoning attacks: performance degradation attacks where the

goal of the adversary is to reduce the accuracy/F1 scores of the model (such as Byzantine

attacks) and backdoor attacks aiming at creating targeted misclassifications without affect-

ing the overall performance on the main tasks [22,52,272]. Defending such attacks usually

requires complete control of the training process or monitoring the training data [232],

which is challenging in FL due to the privacy requirements. In this project, we choose the

popular and sophisticated backdoor attacks as an example for our study. Although some

work exists to defend against backdoor attacks, including activation clustering [47] and k-

means clustering [219], these approaches require access to the training data making them

inapplicable for FL settings. Some attack strategies tailored for FL have also been studied

130

including sybil attacks [79], model replacement [22], GANs based attacks [294], and dis-

tributed attacks [272]. However, a comprehensive study on the effectiveness of backdoor

attacks under a variety of data distribution among parties remains at unexplored.

The training data in FL is generated by clients and thus heterogeneous inherently [35,44,

214, 305]. As the training is conducted locally at each client, the data cannot be balanced

nor monitored like in conventional data-centralized or distributed ML. Such uncontrollable

and severe data heterogeneity is one of the key challenges of FL as it is rarely seen in con-

ventional ML. Despite its uniqueness and importance, data heterogeneity has been largely

overlooked through the lens of robustness to backdoor attacks. Existing FL backdoor at-

tacks either assume IID training data distribution among clients or only conduct a simpli-

fied study on non-IID data [22,32,272]. None of them provides a comprehensive study nor

understanding on how data heterogeneity impacts the backdoor attacks and defenses.

In this project, we focus on quantifying and understanding the implications brought by

data heterogeneity in FL backdoor attacks through extensive empirical experiments and

comprehensive analysis. We define Heterogeneity Index to quantify the extent of hetero-

geneity in training data. From our initial investigation driven by both synthetic and the

practical LEAF benchmark [41], we surprisingly found that data heterogeneity seems to

be a redemption for defending against backdoor attacks. Redemption 1: the attack ef-

fectiveness (usually measured as Attack Success Rate or ASR) reduces sharply when the

heterogeneity of training data increases. Redemption 2: we found the malicious data

distribution is an overlooked important factor when defining an attack strategy given the

training data is heterogeneous. A poor selection of malicious data distribution can result

in poor attack effectiveness. Redemption 3: we further discovered that malicious data

distribution plays as a dominant factor in the effectiveness of backdooring. E.g., contrary

to the common belief in existing works that higher attack scale (defined as the number of

131

compromised clients) and local attack budget (defined as the quantity of backdoored data

per client) always leads to higher attack effectiveness, our study demonstrates that this is

not always the case as malicious data distribution often outperforms the impact of attack

scale/budget. This discovery indicates that data heterogeneity makes the design of effec-

tive attack strategies more challenging as the attack effectiveness is less correlated to the

straightforward attack scale/budget but rather the less intuitive malicious data distribution.

Further investigations, however, reveal that data heterogeneity actually brings curses for

the robustness of FL. Curse 1: data heterogeneity makes the client-side training very sen-

sitive to the backdoor attack timing. With a proper attack timing, e.g., at the last local

batch, the effectiveness of attack can be significantly boosted with only a fraction of at-

tack budget. Curse 2: what’s worse is that data heterogeneity makes the most promising

skewed-feature based defense strategies such as cosine similarity fall short. Such defend-

ing method detects compromised clients by realizing their features are more overfitted than

the benign clients. However, with data heterogeneity, benign clients may also have over-

fitted features that look similar to those of compromised clients. This allows the backdoor

attackers to disguise themselves and fool the skewed-feature checking. Curse 3: more ef-

fective attack strategies can be derived by making the backdoor clients’ data distribution

close to the overall data distribution with the help of distribution distance measures such as

the Chi-Square statistics. To defend these curses brought by data heterogeneity, we discuss

how existing defense mechanisms fit here and the potential directions on data-heterogeneity

aware defending strategies.

In summary, our empirical experimental studies show that data heterogeneity appears

to be a redemption for the robustness of FL as it makes the attack less effective and more

challenging to design good attack strategies. However, our further investigations reveal that

data heterogeneity also brings several curses for FL backdooring as it is harder to detect

132

and the attack effectiveness can be significantly boosted by adjusting the local attack timing

and malicious data distribution. The defending strategies we propose help alleviate these

curses. The results and lessons learned from our thorough experiments and comprehensive

analysis offer new insights for designing robust FL methods and systems.

6.2 Related Works

Data Heterogeneity in Federated Learning. While data heterogeneity is not new in the

ML, the extent of data heterogeneity is much more prevalent in FL compared to data cen-

tralized learning [44,139]. [143] theoretically demonstrates the bounds on convergence due

to heterogeneity, while [214] providing empirical results on how changing heterogeneity af-

fects model performance. [139] discusses the challenges of heterogeneity for FL and [305]

demonstrates how the clients’ local model weights diverge due to data heterogeneity.

Backdoor Attack. Backdoor attacks for deep learning models are presented in [52],

where an adversary can insert a pattern in a few training samples from a source class and

relabel them to a target class, causing a targeted missclassification. One of the earlier

papers [22] proposes the model replacement technique, whereby they eventually replace the

global model with a backdoored model stealthily. [32] demonstrates that boosting model

weights can help attackers and shows that FL is highly susceptible to backdoor attacks. [79]

introduces sybil attacks in the context of FL using label-flipping and backdooring. [294]

uses GANs to attack the global model, while [272] takes a different approach by focusing

on decentralized, colluding attackers, and creating efficient trigger patterns. Our project

takes a different angle by focusing on analyzing the impact of data heterogeneity on attack

effectiveness. This subject is rarely studied even though data heterogeneity is a critical

133

aspect of FL.

Backdoor Defense. There have been various proposals to defend DNN from suscepti-

ble adversarial attacks such as filtering techniques [232] and fine-pruning [157], but are

mainly focused on traditional data-centralized ML methods. Clustering techniques specif-

ically for FL are proposed in [47, 219, 244] and in [79], FoolsGold is proposed to defend

against sybil attacks by using cosine similarities. [167] proposes defending with differen-

tial privacy without compromising user confidentiality. The authors of [234] extend this

by demonstrating weak differential privacy and norm-clipping mitigate attacks, but do not

provide any strong defense mechanisms. None of these defenses explore defending effec-

tiveness under various extent of data heterogeneity.

6.3 Experiment Setups for FL Backdooring

Dataset Model Train/Test split Clients
Total/Per Round

Learning Rate
/Batch Size

Local Epochs/
Total Rounds

FEMNIST 2 conv 2 dense 49,644/4,964 179/17 0.004/10 1/2000
Sent140 100 cell lstm 2 dense 6,553/655 50/10 0.0003/4 1/10

CIFAR10 4 conv 2 dense 50,000/10,000 200/20 0.0005/32 1/500

Table 6.1
Training Setup.

Figure 6.1: An overview of the FL backdooring procedure.

Federated Learning Setup. We use LEAF [41], an open-source practical FL bench-

mark, for our experiments. Most existing works simulate data heterogeneity by partitioning

134

a dataset among clients using probability distributions, but LEAF * provides more realisti-

cally distributed datasets. In this project, we use the FEMNIST dataset provided by LEAF

as an example for CNN model, which is a handwritten character classification task for 62

classes. We use Sent140 from LEAF as an example for LSTM model, a sentiment classifi-

cation task for 2 classes (positive/negative) on tweets. As the total dataset contains millions

of data points, LEAF [41] suggests sampling the dataset and provides a reference imple-

mentation. We also use CIFAR10 (partitioned across 200 clients) for reference as it is

commonly used in FL literature. More details of the dataset, model, training settings, and

learning hyperparameter parameters are summarized in Table 7.1.

Control and Quantify Heterogeneity. FEMNIST, Sent140, and CIFAR10 have their de-

fault data distributions. To explore the impact of different heterogeneity on FL backdoor-

ing, we control the heterogeneity by varying the number of maximum classes per client

following [79,305]. Less number of classes per client results in less evenly distributed data

and thus is more heterogeneous. To better quantify heterogeneity, we define Heterogeneity

Index (HI) as a normalized heterogeneity measure:

HI(c) = 1 −
1

Cmax − 1
∗ (c − 1), (6.1)

where c adjusts the maximum number of classes per client (i.e. the parameter controlling

heterogeneity), and Cmax is the total number of classes in the dataset. The scaling performed

here is to normalize the value between 0 and 1, with 1 being the highest data heterogeneity,

vice versa. We also use another data heterogeneity measure: use Gaussian sampling from

the total dataset with the variance denoting the amount of heterogeneity and the results (see

Appendix) are consistent with HI.

*LEAF: https://github.com/TalwalkarLab/leaf

135

Threat Model. We use the same threat model in literature [47, 234, 272]. Specifically,

an adversary (impersonated by a malicious client) can manipulate its model updates sent to

the aggregator as well as its local training process in every aspect such as the training data,

learning hyperparameters, model weights, and any local privacy mechanisms. The attacker

has the capacity to compromise multiple parties and multiple attackers can collude towards

the same goal. The aggregation algorithm, as well as the local training mechanisms of

benign clients are trusted. Our threat model assumes that only the attacker clients have ma-

licious intent, i.e., the benign clients train their models as expected, without manipulating

the data or the training procedure.

Objective and Method of Backdooring Attacks. We focus on backdoor attacks, where

the objective of the attacker is to inject a trigger to cause a targeted misclassification without

compromising the model accuracy or disrupting convergence [22, 272]. In classification

applications, backdoor attacks are achieved by adding one or more extra patterns to benign

images for vision tasks and appending a trigger string for NLP tasks so that the classifier

deliberately misclassifies the backdoored samples as a (different) target class. We adopt the

decentralized attack method proposed in [272]. We randomly select a configured number of

clients as malicious clients, where data points are backdoored by injecting a trigger pattern.

Fig. 6.1 provides an overview of the attack process. We keep the learning hyperparameters

the same for both malicious and benign clients. For testing successful backdoor injection,

we apply the trigger on 50% of the test dataset and evaluate the global model on it. If the

classification result is the same as the label of the target class, we report a successful attack.

And the portion of successful attacks is defined as Attack Success Rate (ASR). It is worth

noting that we do not consider data points that are originally from the target class when

calculating ASR.

Relation to Model Poisoning. When the scaling factor is large, backdooring is effec-

136

(a) (b) (c)

Figure 6.2: Attack Success Rate (ASR) vs. Heterogeneity Index (HI).

tively doing model replacement (aka model poisoning), see analysis provided in litera-

ture [22]. We show the scaling factor analysis in Appendix.

6.4 Data Heterogeneity Seems to Be a Redemption

(a) (b) (c)

Figure 6.3: Attack Success Rate (ASR) vs. malicious data distribution (each bar represents a unique malicious
data distribution).

6.4.1 Redemption 1: Data Heterogeneity Reduces Attack Effective-

ness of Backdooring

Our initial study suggests data heterogeneity seems to be a redemption for defending back-

door attacks in FL as it reduces the attack effectiveness and also challenges the design of

good attack strategies. To understand how data heterogeneity affects backdoor attacks in

137

FL, we first conduct a set of experiments by simply varying Heterogeneity Index from 0 to 1

to observe how the extent of data heterogeneity affects the effectiveness of attacks measured

as ASR. We fix all other configurable parameters across experiments, i.e., 50% malicious

clients per round and 50% of data points per batch is backdoored at each client (we evaluate

other ratios of malicious clients and malicious data points in later sections), and the rest of

configurations are the same as explained in Section 6.3. We run the experiment for each

Heterogeneity Index 10 times with different malicious data distribution and report ASR as

a box-and-whisker plot shown in Fig. 6.2. The results clearly suggest that the overall attack

effectiveness reduces when higher heterogeneity exists in the training data as the medium

ASR decreases when Heterogeneity Index increases. Another interesting observation is that

the box and whisker become much wider as Heterogeneity Index becomes higher, which

indicates that the attack effectiveness also becomes less stable when higher heterogeneity

presents in training data.

Backdoor attacks essentially make the model learn the trigger features. In FL, each client

performs its own local training and the local model learns towards reaching the optima of

the feature space of that client’s local data. When the training data is more heterogeneous

across clients, some features at a client may be more pronounced due to the more skewed

local data, i.e., results in overfitting. Such more augmented features may suppress backdoor

features (e.g., in the extreme case, the backdoor features may become noise compared to

the augmented features), and thus make the attack less effective.

138

6.4.2 Redemption 2: An Overlooked Key Factor: Malicious Data Dis-

tribution

In Fig. 6.2, even though the trend that data heterogeneity reduces attack effectiveness is

clear, from the box-and-whisker plot, we can see that some malicious data distribution is

more effective than others. This indicates that the malicious data distribution can be an

important factor in attack effectiveness. Given this has not been studied in the literature,

we perform empirical experiments to verify this. In this set of experiments, we follow the

similar setup as in Section 6.4.1, except that we fix the Heterogeneity Index. Specifically,

we use the original training data distribution from LEAF, i.e., Heterogeneity Index is 0.2

and 0.0 for FEMNIST and Sent140, respectively. For CIFAR10, we choose a distribution

with Heterogeneity Index equal to 0.5. We report the average ASR for 20 rounds of at-

tack across 25 different malicious data distributions in Fig. 6.3, where each bar represents

a unique malicious data distribution. Note that the data distribution of benign clients re-

mains the same. The results indeed demonstrate that the attack effectiveness depends on

malicious data distribution as the ASR changes significantly when different malicious data

distribution is used. Such behavior can be explained as the effectiveness of learning back-

door trigger depends on the difference in feature space between training data distribution

and malicious data distribution, which we provide further analysis in Section 6.5.3. This

brings a redemption for the robustness of FL as an improper selection of malicious data

distribution may result in poor attack effectiveness.

139

(a) (b) (c)

Figure 6.4: Attack Success Rate (ASR) scalability in terms of attack scale and total attack budget.

6.4.3 Redemption 3: Effective Attack Strategies are More Challeng-

ing to Make

Since malicious data distribution is an important factor in FL backdoor attacks, the nat-

ural question is how would it compare to other factors such as the number of malicious

clients (attack scale) and the number of backdoored data samples (total attack budget). To

understand this, we conduct experiments by varying the configuration tuple (attack scale,

total attack budget, malicious data distribution) and organize the results into a heat map in

Fig. 6.4. To make a fair comparison, when we increase the number of attackers, we keep

the total number of poisoned datapoints (attack budget) the same and spread evenly across

devices. All other parameters are the same as defined in the experimental setup.

The results are quite surprising as there is no clear pattern in the heat maps of all three

benchmarks, which is in contrary to the conclusion made by almost all existing work [22,

79,234,272] that higher attack scale and total attack budget always leads to more effective

attacks. These counter-intuitive results suggest that the overlooked malicious data distri-

bution is actually a dominant factor in FL backdoor attacks. Different from homogeneous

training data case, where malicious data distribution can be simply configured as IID (the

140

total distribution is a public secret) to maximize the attack effectiveness, malicious data dis-

tribution is more difficult to find a reference when training data is heterogeneous. Unlike

the attack scale and the total attack budget, malicious data distribution is not straightfor-

ward to configure, which makes designing effective attack strategies more challenging and

the attack effectiveness is thus less predictable. Because of this, data heterogeneity brings

another redemption for the robustness of FL. To demonstrate the observed behaviour is not

unique to our chosen attack mechanism, we further evaluated the backdoor attacks pro-

posed in [234] and [47] and the results (see Appendix) are consistent with Fig. 6.4.

6.5 Data Heterogeneity Brings Unseen Curses

Despite of the redemption brought by data heterogeneity, our further investigations reveal

that data heterogeneity can result in several curses for FL backdooring as the attack effec-

tiveness can be significantly boosted by applying proper local attack timing and malicious

data distribution, and the backdooring can camouflage itself much easier compared to the

homogeneous data case.

(a) ASR vs. attack timing. (b) Global (upper case) and local (lower case) attack timing.

Figure 6.5: Comparison of different attack timing on FEMNIST.

141

(a) (b) (c)

Figure 6.6: Comparison between evenly vs. last batch attack timing under various Heterogeneity Index.

6.5.1 Curse 1: Local Attack Timing: a New Vulnerability

One important observation is that the local attack timing at each client is important for

attack effectiveness, especially with data heterogeneity. To demonstrate this, we compare

four different local attack timing strategies: 1) evenly distribute the local attack budget

across 10 batches (i.e., the default attack strategy in almost all literature); 2) only attack the

first 5 batches; 3) attack the middle 5 batches; 4) attack the last 5 batches. To make a fair

comparison, all the four cases have the same local attack budget, i.e., backdoor 10% data

per batch in evenly strategy while backdoor 20% data per batch for the other three timing

strategies. We use default data heterogeneity of LEAF (i.e., HI=0.2) and all other config-

ures are the same as Section 6.4.1. The ASR comparison results are presented in Fig 6.5a

and we can see the difference is quite large between different strategies with last 5 being

the highest. Similar to the reason that data heterogeneity results in less effective attack due

to overfitting, here later attack helps backdoor features to be easily overfitted while earlier

attack may let the backdoor features easier to be forgotten [157]. To understand the behav-

iors of considering both local and global attack timing, we combine different global attack

timing strategies (EARLY, MID, LATTER that represents different beginning time of the

attack) with different local attack timing strategies (evenly, last). Note that last is attacking

only the last batch as we found it performs similar as last 5 but with 80% less attack budget

but with the same attack scale. The comparison results are shown in Fig. 6.5b, where we

142

can see the local attack timing defines the ASR while global attack timing has little impact.

Another important observation is that in LATTER(last), the total attack budget is only 0.2%

of the total training data, one order of magnitude lower than literature [22, 234, 272]. Such

extremely low budget but highly effective attack makes the local attack timing under data

heterogeneity a new vulnerability. We further investigate how data heterogeneity impacts

the effects of local attack timing. We perform the same experiments by varying HI and

present the results in Fig 6.6. In the evenly strategy, as expected, higher heterogeneity re-

sults in less attack effectiveness as discussed in Section 6.4.1. For last strategy, it is overall

more robust under different heterogeneity and the improvement over evenly increases with

data heterogeneity. Therefore, the local attack timing can be manipulated by attackers to

increase attack effectiveness, especially in high data heterogeneity case.

6.5.2 Curse 2: Failure of Skewed-Feature Based Defense

(a) (b) (c)

Figure 6.7: Cosine Similarity Comparison between benign and malicious clients under different Heterogene-
ity Index.

One of the most effective ways to detect FL backdoor attacks is through differentiation be-

tween benign features and malicious features (skewed-feature based defense) as they have

quite different footprints. For instance, cosine similarity can be used to detect anomalous

weights [22,79]. However, data heterogeneity may increase the weight divergences among

the benign clients [305] thus may make it less distinguishable from malicious clients. To

143

illustrate this, we use cosine similarity as an example. Specifically, we compute the cosine

similarity of the last dense layer weights of each client against the last dense layer weights

of the previous round’s global model under different data heterogeneity. We use the last

attack timing strategy and the same experiment setup as in Section 6.4.1. We use box-and-

whisker plot to show the distribution of the cosine similarity values of benign clients and

malicious clients respectively in Fig. 6.7. From the results, it is clear that higher data het-

erogeneity (i.e., higher HI) causes more weights dissimilarity in benign clients (i.e., lower

cosine similarity). More importantly, such high data weights dissimilarity in benign data

may be even higher than the dissimilarity of backdoored data, which allows malicious data

stealth themselves under the radar of skewed-feature based defense.

6.5.3 Curse 3: Malicious Data Distribution as Leverage

(a) (b) (c)

Figure 6.8: ASR trend with ChiSq Distance

In our experiments from Figure 6.2, we discovered that malicious data distribution is a

dominant factor for the attack effectiveness and it is more difficult to control compared

to attack scale and budget. With further investigation, we found a simple yet efficient

way to generate malicious data distributions that are more effective in attack. Specifically,

we find the distribution distance between malicious data distribution and overall training

data distribution is strongly correlated with the attack effectiveness. We tested a number

of divergence metrics such as KL divergence, Jensen-Shannon divergence, Wasserstein

144

distance and B-Distance, and all of them can serve as a good metric here. We use the

simple Chi-squared distance (ChiSq or χ2) as an example for illustration, which is defined

as:

χ2 =c
i=1

(Oi − Ei)2

Ei
, (6.2)

(a) (b)

Figure 6.9: ASR comparison between different total attack budget, attack scale, and ChiSq distance.

where Ei is the frequency of class i in the training dataset and Oi is frequency of class i

in the malicious dataset. The smaller the χ2 value, the more similar the two distributions

are. Intuitively, when drawing a sample from the malicious dataset, it quantifies how close

the drawn sample is compared to the training dataset. To demonstrate the correlation, we

do a scatter plot between ASR and ChiSq and perform a linear regression using the scatter

points, see Figure 6.8. The experiments follow the same setup as in Section 6.4.2. The

regression curve demonstrates a good correlation between ASR and ChiSq and the points

are more clustered when ChiSq distance is smaller. These results suggest that if attackers

can generate the malicious data distribution from the total data distribution with a small

distribution distance, they can perform an effective attack. To verify this, we perform

experiments by varying the configuration tuples (total attack budget, ChiSq) and (attack

scale, ChiSq) respectively and organize the results into heat maps, see Fig. 6.9. The results

show that overall lower ChiSq attack achieves better ASR and can even outperform attacks

145

with higher budget but also higher ChiSq. Although these results are “expected”, it is

contrary to the findings in Fig. 6.4, which indicates that the existing works on robustness

of FL have not been fully evaluated on stronger attacks.

6.6 Defending the Curses Brought by Data Heterogeneity

In this section, we discuss the challenges and potential directions of defending the curses

brought by data heterogeneity in FL backdoor attacks.

Table 6.2
Attack Success Rate comparison between without and with the proposed active defense.

Dataset ASR w/o Defense ASR w/ Defense
CIFAR10 0.76 0.26
FEMNIST 0.96 0.21
Sent140 1.0 0.36

Defending Curse 1: Cut the Short Path of Overfitting. Backdooring the last batch

of a malicious client results in overfitting of the local model on triggered data samples.

Accumulating the overfitted model weights of malicious clients to the global model may

lead to high ASR. To defend against such a strategy, evading the overfitted weight updates

during the aggregation process is critical. There is a rich line of work for addressing this

problem in traditional ML [157, 219, 248], but all of them require knowledge from the

training data, which is infeasible in FL due to privacy requirement. Therefore, we propose

an active defense mechanism in which the aggregator assumes all clients are malicious.

The aggregator maintains a global (but small) IID dataset to train the updated weights of

all the participating clients before aggregation. The overfitting due to backdoor triggers is

thus minimized and the model becomes more generalizable. This mechanism is inspired

by a previous paper [305], where the goal is to increase task accuracy while we focus on

mitigating attack effectiveness. The evaluation results are presented in Table 6.2, where

146

we use an IID dataset with a size equal to 10% of the total dataset on the aggregator. The

results show ASR is significantly reduced after applying this defense. The limitation of this

method is that if secure aggregation is used, it may be difficult to train individual client on

the IID dataset.

Defending Curse 2: An Overfitting Mitigating Mechanism for Client Selection. Given

skewed-feature based defense is difficult to distinguish whether the overfitting is from data

heterogeneity or malicious attack, we suggest diversifying the selection of clients so that

even if the local model is overfitted by backdoor triggers, the overfitted local model weights

have less chance to be accumulated to the global model. We implemented a scheduling pol-

icy as proof of concept to avoid selecting the same client in nearby rounds (e.g., a client

needs to wait at least 20 rounds to be selected again) so that the malicious clients are spread-

ing out further away, which allows FL to forget backdoors easier over time. The results

show that with the help of this defend policy, ASR decreases across every heterogeneity

level and none of them achieving over 23% ASR. We also plan to investigate more com-

plex detection methods such as using activation clustering [47], spectral signatures [244],

and gradient shaping [100] in our future work and potentially combine them with the client

selection mechanism.

Defending Curse 3: Protect the Training Data Distribution. As observed in Sec-

tion 6.5, attackers can design an efficient attack by generating a similar malicious data

distribution as the global data. Existing works that change or augment training data still

preserve its distribution and thus difficult to be employed here [157, 219, 244, 248]. To

defend such attack strategies, we need to avoid revealing the global data distribution. We

also set up a simple experiment where we simulate faking the actual global data distribu-

tion, and the malicious clients end up building their attack based on a distribution that has

a high Chi-Squared value (e.g., about 0.8 in our experiments) compared to the real global

147

distribution. With this defending strategy, the ASRs are much lower – on average 0.46

(reduced from on average 0.8). When this is not possible, we can try to mislead the attack-

ers to believe a wrong global data distribution. We can also try to disrupt the global data

distribution, such as having extra data reserved at the aggregator (similar to the proposal in

Defending Curse 1), or through GAN like data anonymization [111], which can be used to

design a more robust aggregation method.

148

CHAPTER 7

HDFL: DROPOUT AND MULTI-PERFORMANCE METRICS AWARE FAIR

SCHEDULERFOR FEDERATED LEARNING

7.1 Introduction

The prevalence of mobile and internet-of-things (IoT) devices in recent years has led to

massive amount of data that can be potentially used to train state-of-the-art machine learn-

ing models. However, regulations such as HIPAA [5] and GDPR [207] have put stringent

restrictions on the access and transmission of personal data in consideration of security

and privacy. To enable training ML models using personal data with privacy protection,

Federated Learning (FL) has been proposed [128, 172] by introducing a new paradigm

where data-owners/clients train ML models locally and send model weights to an aggrega-

tor that aggregates the individually trained model’s weights (e.g., FedAvg [172]) to update

the global ML model.

Many factors are very important to a FL system, which includes model error, training

time, cost, and fairness, among others. The definition of the first two metrics in FL is the

same to conventional ML, whereas cost and fairness are defined differently. The cost in

conventional ML is usually measured by CPU or GPU hours. However, due to the highly

heterogeneous resources across FL clients, we use training samples instead of resource

hours to get a more consistent cost measure in FL. Similarly, one common definition of

fairness in conventional ML is the accuracy discrepancy among different data classes. How-

ever, in FL, clients are the main contributors and thus it is important to consider them when

149

defining fairness. In this project, we adopt the good-intent fairness introduced in [177],

which measures the variance of accuracies of the global model being evaluated on the data

of individual client as test datasets.

In conventional ML training, data is typically owned by a single party and maintained in

a centralized location. Thus both data and computation can be distributed over a cluster of

computing nodes in a balanced way (i.e., IID data distribution and load balancing). Unlike

conventional ML training, data in FL is generated and owned by clients and the privacy

requirements prevent accessing or moving the personal data during training. Therefore,

data in FL can vary significantly in features and quantity among clients, which is known as

data heterogeneity. In addition, given data is trained locally at each client, the training time

can also vary greatly across clients depending on their client available resources and data

quantity, known as resource heterogeneity. Furthermore, mobile and IoT devices are not

dedicated to the training tasks. Only when clients meet certain criteria, such as charging and

connected to an unmetered network [36], they can participate in training. The fulfillment of

criteria may also change in the middle of training, leading to interruptions, which is called

dropout.

Data heterogeneity, resource heterogeneity, and dropouts are important characteristics of

FL and our study demonstrates that they can heavily impact model error, fairness, cost, and

training time of a model. However, existing works usually overlook or oversimplify them

when designing FL methodologies and systems. For example, [35] considers resource

heterogeneity, but ignores data heterogeneity, resulting in sub-par fairness. Conversely,

[177] considers data heterogeneity but ignores resource heterogeneity. [142] focuses on

fairness, but ignores the dropout’s impact.

To fill the gap, we systematically study the impact of data heterogeneity, resource het-

150

erogeneity, and dropout on model error, fairness, cost, and training time. Based on the

findings, we propose a fair scheduler named HDFL that makes judicious client selection

decisions to achieve the most profitable training results. HDFL formulates the problem as

a multi-objective optimization and considers two key properties when making a schedul-

ing decision: selection probability and selection mutualism. Both properties are derived

by taking into considerations of data heterogeneity, resource heterogeneity, and dropout.

Selection probability describes how often a client should be selected and its quantification

is empowered by a training efficiency assessment approach that employs Underestimation

Index (UEI) [121] as a unified measure to represent model error, fairness, and cost while

preserving the privacy requirements. Selection mutualism captures the mutualism among

clients in terms of training time in a specific training round and aims at minimizing the

straggler and dropout effects to improve training time.

We implement HDFL on a real distributed cluster where the clients and the aggregation

servers are deployed on their own hardware and evaluate our system using three bench-

marks (FEMNIST, Cifar10 and Shakespeare). We compare our proposed method, HDFL

with the state-of-the-art large-scale FL system by [35] and the widely used bare-bone FL

system used [172]. We show that our system can achieve anywhere between 4-10% lower

model accuracy error, better good-intent fairness, lower cost, and better training time com-

pared to the state-of-the-art and state-of-the-practice systems.

7.2 Background and Related Work

Fairness in ML. Fairness of models is an extensively explored concept in traditional ML

and many works have defined their own notions of “fairness“. For example, [131] intro-

151

duces counterfactual fairness where a decision is considered fair towards an individual if

the decision taken by a model would be the same if that individual belonged to a different

sample group. A survey in this topic can be found in [174]. These approaches mainly

focus on mitigating bias for unprivileged groups, e.g., race or gender, which correspond to

protected attributes. In contrast, our fairness definition does not consider such protected

attributes.

Fairness in Federated Learning. Good-intent fairness was defined as the variance of

client test accuracies of a model in [177]. If a model performs well on one client’s dataset

and bad on another, it indicates that the model is biased against the features of the worse-

performing client and therefore is not fair. In this project we use this fairness definition.

[177] also propose a minimax optimization framework called Agnostic Federated Learn-

ing (AFL) to reduce overfitting on local client data by optimizing with learning bounds on

the clients with the highest losses. However, AFL does not consider resource usage or the

biased participation of clients which are practical concerns in FL. [142] proposes q-FFL,

which is a method to reduce biasness in the global model by making the client accura-

cies more uniform (i.e. - increasing good-intent fairness). They do this by assigning more

weights to the client updates with higher empirical loss values, thereby ensuring that the

worst client updates can still contribute enough to the global model and get a more uni-

form testing accuracy across clients. For our project, we use the same definition of fairness

and our objective is the same. However, instead of focusing on the aggregation algorithm,

we focus on the dropouts phenomenon of FL (i.e., how to be fair to clients if they do not

consistently contribute to the FL training process). This project works under the same as-

sumptions as [177] in that they assume equal participation of all clients. [285] talks about

fairness not in terms of good-intent fairness but how much value a client gets from partic-

ipation. Costs are considered in terms of monetary compensation, which is orthogonal to

our project. We focus more on cost in terms of resources instead.

152

Resource Usage in Federated Learning. Most works in FL focus on communication and

energy efficiency [213, 233, 282], but few have explored policy-driven schedulers. [256]

theoretically analyzes the trade-off between local update and global parameter aggrega-

tion to minimize the loss function under a given resource budget. [256] uses reinforcement

learning for optimizing caching, local computation and communication efficiency. [185]

selects clients every round such that they can complete training within a given time limit,

thereby controlling the amount of resources consumed per round. [42] focuses on reducing

model size using compression methods and update frequencies resulting in less resources

used overall, while works such as [35, 101] proposes systems to enable large-scale dis-

tributed FL frameworks. Some works also focus on resource and data heterogeneity. [141]

introduces FedProx, an aggregation algorithm that takes into account data heterogeneity to

get a better model. [44] proposes a novel system to mitigate the effect of stragglers without

compromising model performance. In this project we take a different perspective on re-

source usage focusing less on optimizing resource usage at the local and global levels and

more on reducing resource usage bias, which to our knowledge is the first work addressing

this issue in the scope of FL

7.3 Characterization Study

7.3.1 Performance Metrics

The incentive for the global model owners in FL is to train a highly accurate and gener-

alizable ML model using other clients’ private data that would otherwise be unavailable.

Model performance and training time are two relevant metrics that impact final applications

153

for model owners. On the other hand, the incentive for the local data owners in FL is to

get better services from global model owners by contributing their data to training under

privacy protection. Thus data owners usually prefer good user experience (i.e., with as

less cost as possible) and fair reward (i.e., the trained model performs well on their data).

We identify four important performance metrics when evaluating FL: model error, training

time, cost, and fairness. We define them as follows:

• Model Error is defined as the test accuracy error on all datasets, i.e., mean error of

the global model on each of the client’s sampled test data, i.e., 1 −
∑n

i=0 Ai

n where Ai is

the accuracy of global model on test data of i and n is the total number of clients.

• Training time is defined as the wall-clock time of training. We choose wall-clock

time instead of training rounds, as the round time can differ significantly due to data

and resource heterogeneity.

• Cost is defined as the samples that have been used for training. Note that even if

a client drops out during training, the used data samples also count into the cost.

We use training samples instead of resource hours as the resource in FL is highly

heterogenous across clients. It is worth noting that more sophisticated cost metrics

can also be used such as carbon footprint, executed floating point operations, which

we defer to our future work.

• Fairness is defined as good-intent fairness [177] that measures the accuracy variance

when the global model is evaluated using test datasets of individual clients, i.e., the

variance of the accuracies of the global model on each of the client’s test data rep-

resented as
√∑n

i=0(Ai−Ā)2

n−1 where Ai is the accuracy of global model on test data of i, n

is the total clients and Ā is the mean accuracy. We chose good-intent fairness as it

effectively reflects the bias issue among clients – the main contributors in FL. The

lower the Fairness value, the more fair the model is.

154

7.3.2 Tradeoff Between Fairness and Training Time

(a) Model Error over Rounds (b) Training Time

Figure 7.1: Tradeoff between fairness and training time.

One of the focuses of state-of-the-art large-scale FL systems such as [35] is on the reduc-

tion of overall training time. Due to the highly heterogeneous nature of the local clients,

the training latencies (defined as client’s local training time) vary greatly. Given the round

training time is bounded by the slowest client (i.e., straggler), the straggler effects signif-

icantly impact the overall training time. To address this, [35] suggests selecting 130% of

clients but only use the weights from the first 100% for training the global model and dis-

card the weights of the slowest 30%. While this does handle the straggler problem, it also

results in biased training since this approach always drops out the slower clients.

Figure 7.1a demonstrates the tradeoff between fairness and training time (see the Eval-

uation section for the experiment setup). The GLOBAL curve represents the mean of all

the clients’ error. The FAST curve presents the mean error of the global model on the

fastest 70% of the clients. SLOW is the mean error of the slowest 30% of clients. Finally,

DEFAULT shows the mean global error for default FL systems where no client update is

dropped. We observe a difference in test error of around 15% between the fastest 70% and

slowest 30% of the clients, showing a significant difference in model performance between

faster and slower clients, leading to poor fairness. However, Figure 7.1b shows a signifi-

cant reduction in total training time if the [35] policy (LS-FL) is implemented, proving that

it can indeed reduce training time. We observe from these results that the choice of client

155

selection policy greatly affects model’s fairness and training time, which demonstrates a

tradeoff relationship.

7.3.3 Impact of Dropout on Fairness and Model Error

(a) Error Distribution (b) DR vs. Accuracy

Figure 7.2: (a) Model error distribution and (b) dropout ratio (DR) vs. accuracy.

Apart from policy, dropouts can also be caused on the client-side. As pointed out in [35,

42, 119, 140], one major issue of training on IoT devices is the availability as clients can

dropout even in the middle of training. As such, FL training may suffer from dropped

weights due to client-side downtime (client-side dropouts) even with a selection policy

which is all-inclusive. This client-side dropout is non-deterministic and thus can be mod-

eled as a probability. To study the effects of client-side dropouts, we randomly assign a

probability we call the Dropout Ratio (DR) to every client with an exponential distribu-

tion with a scale of 0.4, resulting a skewed DR distribution across clients. During training,

whenever a client is selected it has the probability of dropping out equal to its assigned

DR. We run the same experiment as in the previous section using LEAF FEMNIST with

the default policy instead of [35]. We present the CCDF of each of the client’s test error

distribution at convergence in Figure 7.2a for DROPOUTS and compare it to the test error

distribution derived if none of the clients had any DR (DEFAULT). We observe that for

the DROPOUTS error distribution has a significantly longer tail than the DEFAULT distri-

bution. The clients on that end are those with higher dropout ratios (DR > 0.7) and they

156

tend to perform much worse than other clients. This demonstrates that dropping out clients

from the training process results in the global model from being unable to train well on

them and thus performing very badly on their test dataset. We also observe that the mean

model error in the case of DROPOUTS is also significantly higher than DEFAULT, indicat-

ing that the loss of training data due to dropouts adversely effects the model’s performance.

In Figure 7.2b we show the correlation between the DR assigned to a set of clients and their

corresponding test accuracies at convergence. We observe a clear trend where it shows that

with lower DR, the clients tend to participate more in the training process and so achieves

higher accuracies and vice versa. From these results, we conclude that dropouts reduce

participation of clients throughout the whole training process resulting in reduced global

accuracy as well as unfairness. In order to make up for the skewed participation due to

dropouts, we shall come up with a selection policy that can increase participation of high

dropout clients without a significant bump in cost.

7.3.4 Tradeoff Between Cost and Model Error

(a) Cost (b) Model Error

Figure 7.3: Cost and model error with increased participation.

One simple method of increasing overall participation is increasing the number of clients

selected per round. This causes all the clients to have more opportunity to be selected in a

round, thereby increasing total participation. We conduct the same experiment as in Fig-

ure 7.2a with dropouts, but increase the total number of clients selected per round from

157

10 to 20 and observe its impact on Cost and Model Error in Figure 7.3. In Figure 7.3a

we show the total number of samples trained over the same number of rounds (2000) for

different number of clients selected per round for comparison. As expected, increasing the

total participants by a factor of two also yields a two-fold increase in resources consumed.

While this does cause a decrease in the mean error (Figure 7.3b) of the global model due to

the increased participation, a two-fold increase is a significant burden on the local clients

which are already resource constrained. From this experiment, we conclude that increasing

participation can benefit in the training of the global model, but with a significant increase

in local resource usage. In the next Section, we detail our proposed client selection ap-

proach based on these findings.

7.4 Methodology

7.4.1 Problem Formulation

Our goal is to design an effective client selection scheduler that optimizes the performance

metrics in FL. The scheduling parameter is defined as the selection probability of a client in

each training round. Given there are four performance metrics (model error, fairness, cost,

and training time) to consider, we formulate the problem as multi-objective optimization.

Assume we train a global model G on a set of clients D = [d1, d2, d3, ...dn, ...dN] according

to a client selection scheduler S defined as the selection probability of each client in training

round i: S i = [si
1, s

i
2, s

i
3, ...s

i
n, ...s

i
N]. Let the evaluation error of G on the data of individual

client in D as A = [a1, a2, a3, ...an, ...aN]. The goal is to optimize the model’s mean test

error defined as a(S) = 1 − mean(A), good-intent fairness defined as f (S) = var(A), total

158

training cost c(S) defined as the total number of data points processed (including dropped

out data points), and the training time t(S):

min(a(S), f (S), c(S), t(S)). (7.1)

7.4.2 HDFL Overview

Simultaneously optimizing model error, fairness, cost, and training time in FL is challeng-

ing as the data distribution is not accessible due to privacy requirements. In addition, the

scheduling probability is difficult to be directly connected with these performance metrics.

To solve the above challenges, our key idea is to find a measurable metric that have the

following properties: 1) preserve the privacy requirements; 2) easy to be modeled with

scheduling probability; 3) can represent and unify some or all the optimization metrics.

The Underestimation Index (UEI) proposed in [121] has potential to meet the above

requirements. UEI is a metrics for measuring the distance between a model’s prediction

results and the actual labels, which is a good indicator of how well a model has learned the

features of that dataset. It is defined as:

UEIn =
1
√

2
||

√
Ppred

n −
√

Pact
n ||2 (7.2)

where n is the client index number, Pact
n is the class distribution of the training dataset and

Ppred
n is the predicted class distribution of global model. UEI values range from 0.0 to

1.0, where higher UEI means more bias against the training dataset. A client with a high

UEI value indicates that the features in the data of this client are not well captured in the

159

global model, thus the client is “disenfranchised” so far and more training involvement of

this client helps fairness. In addition, reducing UEI across all clients means the features

of global data has been well captured and thus improve model error. Furthermore, the

participation of clients with low UEI benefits less the training progress, thus such partici-

pation may reduce resource efficiency and incur high cost. For clients with the same UEI,

their resource efficiency can be different, e.g., to reduce UEI by 10%, some client needs to

train 10,000 samples while other client may only need to train 500 samples. To reflect the

resource efficiency difference, we introduce cost normalized UEI, defined as

CUEIn =
UEIn

cn
(7.3)

Therefore, CUEI provides a good representation for model error, fairness, cost metrics and

a client selection scheduler that minimizes CUEI leads to min(a(S), f (S), c(S)).

For optimizing training time, our main idea is to minimize the straggler and dropout ef-

fects. Here we propose the idea of selection mutualism, which captures the mutualism

among training time of clients in a specific training round. Specifically, clients with sim-

ilar round training latency are given higher probability to be selected in the same round

to reduce the straggler effects and the average dropout ratio of all clients in a round needs

to be smaller than a user defined threshold. The selection mutualism is inspired by the

tiered FL approach proposed in [44]. The proposed selection mutualism approach is more

general as it removes the fixed tiers in [44] and adds support to mitigate dropout effects to

optimize training time. HDFL employs the above methods to make optimal client selection

scheduling decisions. Next, we introduce in details how to quantify selection probability

and selection mutualism and combine them in HDFL to solve the multi-objective optimiza-

tion problem defined in Eq. 7.1.

160

7.4.3 Selection Probability

Due to the dropout effects in FL, the eventual participation rate of a client PRn depends on

both the selection probability of a client S n and its dropout ratio DRn, specifically:

PRn = S n × (1 − DRn). (7.4)

To design a client selection scheduler that can minimize model error, fairness, and cost,

the select probability can be set so that CUEI is minimized. In other words, client with

higher CUEI needs higher selection probability. In addition, clients with high dropout

ratio also need to be compensated with higher selection probability so that their eventual

participation rate can be consistent with their selection probability. Therefore, we first

define the participation rate of client n as a function of CUEI and then add the dropout

ratio to compute selection probability. For the function, we choose a standard exponential

function as it produces a proper skew from CUEI to participation rate. Specifically:

PRi
n = f (CUEIi

n) = σ ∗
1

e−CUEIi
n

(7.5)

where i is the round index and n is the client index. σ is a normalization term that convert

CUEI based metrics into a probability based metrics. By adding the dropout ratio, we have

the selection probability of a client n at round i as:

S i
n =

PRi

n
1−DRi

n
= σ ∗ 1

e−CUEIi
n×(1−DRi

n)
i f DRi

n < 1.0

PRi
n = σ ∗

1
e−CUEIi

n
i f DRi

n = 1.0
(6)

161

Because the client selection probability sums to 1 (
∑N

n=1 S i
n = 1). We can compute σ as:

σ =

1∑N

n=1
1

e−CUEIi
n×(1−DRi

n)

i f DRi
n < 1.0

1∑N
n=1

1

e−CUEIi
n

i f DRi
n = 1.0

(7)

7.4.4 Selection Mutualism

As the round training time is bonded by the slowest client (i.e., straggler), the key idea to

minimize the straggler effect is to adjust the selection probability so that clients with similar

training latency can be selected in the same round. Specifically, in a training round, after

selecting the first client, we use its training latency as the standard of this round, denoted as

L. We adjust clients’ selection probability based on the training latency difference between

theirs and L, we formulate the mutualism adjusted selection probability as:

S ′in = f (S i
n, Ln, L) = θ ∗ S i

n ∗ e|Ln−L| (7.8)

where Ln is the training latency of client n. We select exponential function as an example

to reflect the training latency difference’s impact on selection probability and such function

can be changed to adjust the impact. θ is normalization coefficient such that
∑N

i=1 S ′in = 1

and can be computed as

θ =
1∑N

n=1 S i
n ∗ e|Ln−L|

. (7.9)

To minimize the dropout effects, we require the average dropout ratio of selected clients to

162

Algorithm 7 HDFL Algorithm. wi: the global model for round i, D: List of all participating
clients, R: Total of training rounds, I: Metric update frequency, UEI, c,DR, L: List of
UEI,C,DR and training time metrics for each client, DRmax: minimum average DR in a
round

1: Aggregator: initialize weight w0.
2: for each round i = 1 to R do
3: if i%I == 0 then
4: S endGlobalModel(wi,D)
5: UEI, c,DR, L = GetClientMetrics(D)
6: end if
7: S = (Calculate using Eq. 6 and 7 with UEI, c,DR)
8: d = (randomly select one client from all clients using S)
9: S ′ = (Calculate using Eq. 8 and 9 S , L)

10: s = (randomly select n clients using S ′ such that DRmax is met)
11: wi+1 = Train(s + d)
12: end for

be below a threshold DRmax. This is to avoid the situation where too many clients dropped

out and the remaining number of clients could not meet the requirement of minimum par-

ticipants (e.g., too few participants may result in privacy protection such as differential

privacy fail). DRmax can be configured based on the specific scenarios.

The total training time t(S) can be compute as:

t(S) =
I∑

i=1

LS i, (7.10)

where i is the training round index and I is the total number of rounds. LS i is the train-

ing latency of the slowest client selected in round i, which is impacted by the mutualism

based selection probability adjustment above. The detailed algorithm of HDFL is present

in Algorithm 7.

Table 7.1
Training Setup.

Dataset Model Train/Test split Total Clients/
Selected Per Round

Learning Rate
/Batch Size

Local
Epochs

FEMNIST 2 conv 2 dense 53,839/5,383 179/10 0.004/10 1
CIFAR10 4 conv 2 dense 50,000/10,000 100/10 0.0005/32 1

Shakespeare 256 cell lstm 1 dense 115,135/11,513 30/3 0.0003/2 1

163

(a) FEMNIST (b) Cifar10 (c) Shakespeare

Figure 7.4: Model error distribution of global model.

7.5 Evaluation

In this section, we evaluate HDFL against [35] (we name it LS-FL) and the DEFAULT FL

system [172] by comparing the four performance metrics (model error, fairness, cost, and

training time) using different applications.

(a) FEMNIST (b) FEMNIST

(c) Cifar10 (d) Cifar10

(e) Shakespeare (f) Shakespeare

Figure 7.5: Training time vs. model error and fairness.

Testbed setup: We evaluate HDFL on a real distributed cluster with three classification

datasets. Cifar10 is an image classification dataset with 10 classes, FEMNIST is an im-

age classification dataset for handwritten character recognition. We use FEMNIST from

164

the LEAF [41] framework that distributes the images such that it is has realistic data het-

erogeneity among the clients (i.e., each client has the same user’s writing). Shakespeare

dataset is a character prediction dataset, which is also provided by LEAF with its own data

heterogeneity distribution.

We set up our cluster by deploying the aggregation server exclusively on a 32-CPU node

and every client is deployed on separate 2-CPU nodes. We launch 30, 100, and 179 clients

in total for Shakespeare, Cifar10, and FEMNIST datasets, respectively. We implement our

system using TensorFlow Keras and communication is handled via the socket protocol.

We manually set training latencies on each client through a sleep function. We randomly

assign training latencies per client using a Gaussian distribution sampling using a mean of 5

seconds and a standard deviation of 1.5 seconds. This generates a set of clients with variable

training latencies to reflect resource heterogeneity and help us analyze the training time.

We also assign dropout ratios manually for each client using an exponential distribution

of 0.4, which is used to reflect the client-side dropouts. For each of the datasets, we use

the same dropout ratios and training latency distributions. For Cifar10, we generate data

heterogeneity using the class-wise distribution as defined in [305] such that each client will

have images from no more than 5 classes. In order to vary the data quantity per client, we

use Gaussian sampling with a mean of 500 images per client and a deviation of 100. For

FEMNIST and Shakespear, we use the data heterogeneity and data quantity provided by

default from LEAF. Further details of the datasets and training setup is given in Table 7.1.

End-to-End Analysis: To perform end-to-end analysis, we let the training of each method

run till convergence. Figure 7.4 shows the CCDF of the test errors on the clients. We ob-

serve that each of the three systems we compare show different distribution characteristics.

For all datasets, we note that the worst-performing system is LS-FL. We observe that it has

a large tail in its error distribution, as well as distinctly higher median and mean errors than

165

DEFAULT and HDFL. This is mainly due to two factors - 1) the policy implementation of

LS-FL is such that it actively discards slower clients and thus causing less participation of

clients, and 2) it has no mechanism to handle client-side dropouts, thereby falling victim

to skewed participation. The combined effect of skewed participation as well as actively

dropping out slower clients results in a much more clients dropping out than DEFAULT,

significantly lowering the accuracy. Since DEFAULT does not implement a dropout policy,

the participation of clients are not as low as LS-FL and therefore achieves an overall lower

mean and median error distributions. DEFAULT also has shorter right-tails compared to

LS-FL due to not being completely dropping out slower clients. HDFL performs best over-

all in terms of both mean and variance in distribution. It has the shortest tails as well as a

lower overall mean and median error. This can be attributed to the policy taking into ac-

count a clients dropout as well as CUEI when making participation decisions. Since HDFL

promotes the participation of high-dropout clients as well as clients with data on which the

model is under-fitting (clients with high UEI), for every round it chooses the clients that

are most important to the model performance and fairness. We observe this trend for all

three datasets.

Training Time vs. Mean Test Error and Variance: In Figure 7.5, we plot the total

training time against the mean and variance for error distributions. We observe that HDFL

consistently has lower mean and variance of the test error distributions, demonstrating that

it takes care of not just model performance but fairness as well, which neither of the other

frameworks do. We also observe here that DEFAULT has the highest training times across

the board, with LS-FL performing the best. For example, looking at FEMNIST, we see

that DEFAULT has a training time of 35 hrs, while LS-FL is around 24 hrs (around 0.7),

while HDFL takes around 29 hrs. This trend is seen for each dataset. It is expected that

LS-FL will perform the best since the slowest 30% of the clients are never used at all,

meaning that the training time completely removes the impact of stragglers. However, this

166

training time reduction comes at the cost of performance and fairness. LS-FL has highest

variance and test error across the board. HDFL performs better than the DEFAULT but

is always slower than LS-FL. This is due to the fact that it does not discriminate against

slower clients, allowing them to participate more as required. However, it does perform

better than DEFAULT due to selection mutualism. It allows for more consistency of training

times within rounds, meaning that it groups together clients such that within any round it

only selects faster or slower clients, but not both. This reduces the probability of selecting

slower clients in every round, making the overall training times less. However, due to not

completely dropping slower clients, it still has some rounds where it selects all slow clients,

making it slower overall than LS-FL.

(a) FEMNIST (b) Cifar10 (c) Shakespeare

Figure 7.6: Cost comparison when training to convergence.

Cost comparison: Figure 7.6 shows the cost comparison for different approaches. We

observe that HDFL performs better than the other two systems across all datasets. This

is due to the fact that it is the only system that takes into account the cost. Since both

DEFAULT and LS-FL use the same number of clients selected per round and have the same

selection probabilities for each client, they also have the relatively similar costs.

Fixed Time Analysis: Another aspect of the system that needs evaluation is how they

perform under constraints. As part of our objective function, we mention that the goal of

HDFL is to minimize variance (maximizing fairness), cost and training time, while mini-

mizing model test error. For the next set of experiments, we evaluate HDFL, LS-FL and

167

(a) FEMNIST (b) Cifar10 (c) Shakespeare

Figure 7.7: Cost comparison with the same training time.

DEFAULT FL systems within a time constraint and observe their impacts on the fairness,

model performance and resource utilization.

Table 7.2
Model error/fairness comparison when the training time is the same (lower the better).

FEMNIST Cifar10 Shakespeare
DEFAULT 0.35/0.026 0.30/0.008 0.58/0.03

LS-FL 0.32/0.031 0.31/0.013 0.57/0.037
HDFL 0.26/0.022 0.27/0.004 0.54/0.03

We set the training time limit equal to the time taken by LS-FL which is the fastest system

to converge (24, 5, and 14 hours for the FEMNIST, Cifar10 and Shakespeare datasets,

respectively). Table 2 shows the model performance metrics. We observe that for all the

datasets, the mean test error for DEFAULT is now higher than LS-FL. The reason is that

in fixed time interval, LS-FL finished more rounds of training to reach round 2000, 500

and 50 for FEMNIST, Cifar10 and Shakespeare, respectively. While in the same time,

DEFAULT finished rounds 1400, 340, 33 only. This results in less training for DEFAULT

than LS-FL and thus achieves much lower mean accuracy and therefore a higher error.

Regarding HDFL, it performs better than both DEFAULT and LS-FL. The number of rounds

completed for HDFL are also less than that of LS-FL but the selection of clients are fairer

than those of LS-FL.

On analyzing the resource cost, shown in Figure 7.7, we observe that the HDFL also per-

168

forms best across all datasets as other systems do not have any mechanisms for managing

resource cost. These results demonstrate that even under constraints, HDFL provides bet-

ter performance in terms of less test error, less variance (more fairness) and less resource

consumption within reasonable training time.

169

CHAPTER 8

DYSR: ADAPTIVE SUPER-RESOLUTION VIA ALGORITHM AND SYSTEM

CO-DESIGN

8.1 Introduction

Deep super-resolution (SR) has been widely used in applications such as medical imag-

ing [145], satellite imaging [220], and image restoration [200]. SR has attracted lots of

attentions in recent years due to the surging demands in mobile services such as video con-

ference, content sharing, and video streaming, where it helps provide high-resolution visual

content from low-resolution data source [144, 145, 290].

SR models are resource demanding [145,163] and need to meet Quality of Service (QoS)

standards to provide good user experience in visual services. Examples of QoS including

meeting a minimum framerate and avoiding interruptions so that users perceive smooth

motions. This, however, is challenging for mobile devices where computing and memory

resources are limited and the availability of which also depends on other running applica-

tions.

To meet QoS for different mobile devices, existing works develop models for specific

devices [21, 133, 162] or use Neural Architecture Search (NAS) [58, 88, 106] to generate

multiple hardware-tailored models. However, none of these approaches considers the fluc-

tuating resource environment of mobile devices and often leads to poor QoS. One potential

way to achieve good QoS is to dynamically adapt the model based on available resources.

170

The challenges are two folds. First, how to design an adaptive model. Second, how to

enable model adaption in a live inference system.

To enable adaptive model, we employ NAS to generate a set of models with different

sizes so that the most profitable model is used under each resource availability situation

to ensure a steady framerate while maximizing the model performance. Unfortunately,

none of existing machine learning frameworks supports live model adaption. To enable

model adaption in actual system, we explore two ideas. The first idea is to use an assemble

method to keep all models loaded in the system at all times to avoid model switching

overhead. However, such a method results in a significantly larger memory footprint, which

is unsuitable for mobile devices. The second idea is to load a single model at a time, but

the the model switching overhead is high as it interrupts the steaming for 1-3 seconds each

time it switches models, leading to even worse QoS.

To achieve low resource consumption while minimizing the model switching overhead,

we propose DySR, an algorithm and system co-design approach for adaptive SR. To keep

a small memory footprint and minimize adaption overhead, DySR employs an adaption-

aware one-shot NAS approach, where a large meta-graph is trained in one-shot such that

sub-graphs share kernel operation weights while exploring the best tradeoffs between per-

formance and frames-per-second (FPS). During inference, the meta-graph is fully loaded

in the memory and operations are dynamically adapted according to the real-time resource

availability in an incremental manner, i.e., only affected operations are swapped or rerouted.

This way, the amount of data moved during an adaption is minimized to significantly reduce

the model adaption overhead and avoid any interruption.

We evaluate DySR against baselines across a wide variety of hardware (from powerful

GPUs to low-end mobile processors) using image and video SR datasets (e.g., Urban100

171

[107] and Vimeo90k [276]). Results show that our adaption-aware one-shot NAS approach

can generate models close to the Pareto frontier of the performance vs. FPS tradeoffs and

DySR can maintain a steady framerate throughput with low memory footprint (40% less

compared to ensemble method).

8.2 Related Works

SR. [66] is among the first works that employs deep learning models for super-resolution.

Since then deeper and more complex models such as [180, 230] were proposed for better

performance. Generative Adversarial Networks (GANs) [14, 61, 249, 259] and its varia-

tions [88, 198, 218] have been shown to be highly effective in tackling this task. Attention

mechanisms were introduced to SR as well [53, 175, 303]. Methods such as network prun-

ing, knowledge distillation, and quantization have been applied to reduce computational

overhead of existing SR deep learning models [99, 115, 251, 302]. However, all the above

efforts focus on building a single model for each hardware and do not consider the dynamic

resource environment in mobile devices, and thus fall short in meeting streaming QoS for

mobile devices.

NAS. Earlier neural architecture search methods rely on Reinforcement Learning (RL)

[308] and evolutionary algorithms [164, 245] for architecture engineering. However, these

methods are extremely resource demanding and often require thousands of GPU hours.

Later works such as [116, 261] introduce performance prediction, shared weight training,

and proxy training to speed up the architecture engineering process. DARTS [155] and

its followups [51, 265] adopt a differentiable architecture search paradigm. The once-for-

all work [40] proposes the idea of generating a single model for multiple hardware de-

172

ployments though pruning and model swapping is needed for each deployment. One-shot

NAS [28] and its variations [108, 295, 304] can generate models with few search iterations

and have been explored for SR [58,88,160,289] but existing works only focus on designing

a single model and do not consider QoS for streaming on mobile devices. In Section 9.4,

we compare our method with existing SR models. The results show that our model achieves

Pareto optimal performance while meeting QoS.

8.3 Motivation and Challenges

(a) Utilization Trace (b) Snapdragon 855 (c) Intel i5-560M (d) 1080Ti

Figure 8.1: (a) Resource utilization cap over time for each device. (b-d) FPS drop due to reduced resources.
Uses FALSR-C, FALSR-B [58], and CARN [14] models respectively due to being designed specifically for
the corresponding hardware.

On mobile devices, SR tasks are often running along with other applications, e.g., users

often watch streaming videos while browsing websites or doing online shopping; making

video calls while playing games or taking notes. Therefore, the available computing and

memory resources for SR is constantly changing on the already resource constraint mobile

devices. We demonstrate the impact of changing available resources on framerate for static

models running on real mobile devices. We test a set of state-of-the-art SR models on the

mobile devices they were targeted for and manually limit the amount of resource available

over time, i.e., by limiting GPU power and adding background loads to CPU. We use a

workload trace to show how the utilization changes over time, see Figure 8.1. We observe

that reducing the processing power available for the models over time results in significant

frames-per-second (FPS) drop. These results demonstrate that state-of-the-art SR models

173

do not perform as expected under practical circumstances, and to maintain QoS (i.e., min-

imum FPS), models need to be adapted according to the available resources. To fill this

gap, however, is challenging. First, we need to design a set of models that can achieve

Pareto-optimal performance under different framerate. However, no existing works can

generate such a set of models. Second, we need to adapt models within milliseconds in the

real-time system to meet QoS requirements. Unfortunately, no existing machine learning

frameworks support real-time model adaption.

(a) Snapdragon 855 (b) Intel i5-560M (c) 1080Ti (d) Avg. reload time

Figure 8.2: (a-c) FPS over time when models are reloaded every 5 seconds. (d) Total number of parameters
in memory against the number of static models loaded as one assembled set.

One potential solution is to switch between a list of static models according to the avail-

able resources. We prototype this idea and perform experiments on different devices, see

Fig. 8.2. Here, we unload and reload static models as soon as the utilizations change at

the intervals 5, 10, and 15 seconds, see (a), (b), and (c) respectively. Across all devices,

we observe an interruption of service during each model swapping period. As pointed out

in [148], such interruption is the time it takes to read the new model from storage and initial-

ize all the parameters in memory. Pre-loading multiple static models as one is a potential

solution to advoid such interruption. However, the assembled model has a significantly

higher memory consumption, see Fig. 9.5a, which is not practical for resource constraint

mobile devices.

174

8.4 Algorithm and System Co-design: DySR

To address the aforementioned challenges, in this section, we adopt an algorithm and sys-

tem co-design approach and propose DySR. DySR employs adaptive-aware one-shot NAS

to create a set of models that achieve Pareto-optimal performance under different framerate

with minimum adaption overhead during runtime. DySR also introduces an incremental

adaption approach to further reduce the model adaption overhead to meet QoS.

8.4.1 Adaption-aware One-shot Neural Architecture Search

Neural Architecture Search (NAS) allows creating multiple models in an automated fash-

ion, and thus we choose it for model generation. However, for SR, existing NAS methods

only target for a finding a single model with the highest performance while ignoring the

framerate and model adaption overhand. To provide QoS on mobile devices, we design an

adaptive-aware one-shot NAS method for generating a set of models that achieves Pareto-

optimal performance with framerate constraint and low model adaption overhead under

different hardware devices and resource availability.

Following [28, 155], we define the architecture search space as S , which is represented

as a single Directed Acyclic Graph (DAG) containing all possible path and operation com-

binations, called the meta-graph. The main idea here is to train a meta-graph such that it

contains sub-graph models with Pareto-optimal performance across a range of framerates.

The sub-graphs are all part of the same meta-graph, so that during inference the full meta-

graph is deployed and the sub-graphs can be adapted in real time to maintain QoS using

sub-graph adaption policy.

175

Adaption-aware Sub-graph Selection. The generation of adaption-aware sub-graphs re-

quires two unique criteria to be fulfilled during the NAS search phase to be effective. First,

in order to reduce resource consumption, we need to reduce total memory of the meta-

graph to be significantly less than an assembled model. Second, we need to minimize

the sub-graph adaption time to ensure uninterrupted service. In order to keep memory

consumption at a minimum, we design our meta-graph space to share operations between

sub-graphs wherever possible (e.g. two sub-graphs requiring a 3x3x64 convolutional oper-

ation at the same layer will use the same meta-graph operation, and thus have intersecting

execution paths). To keep the switching time between models low, we need to reduce the

number of execution path re-routings between sub-graphs to a minimum. Luckily, we find

that both of these properties are related based on the observation that the number of total

operations meta-graph and the number of path re-routes are inversely proportional to the

number of shared operations. In other words, the more operations that are shared among

sub-graphs, the less number of redundant operations there are and so meta-graph memory

size is reduced. At the same time, more shared operations also means more common ex-

ecution paths between sub-graphs and so less number of paths need to be changed while

adapting.

We use this observation to develop the custom search policy to generate our adaptive

models. Thus the objective of our sub-graph selection policy can be formally defined as

the constrained joint optimization problem -

P∗ = Eval(A(α,D)) + µ(α, A − α) s.t. f ps(α,D) ≥ Fρmin (8.1)

Here, P is the HR quality metric (i.e. PSNR or SSIM), Eval(A(α,D)) is the evaluation value

of sub-graph α of meta-graph A on dataset D, µ is the number of operations α has shared

with all other sub-graph A − α. f ps is the frames-per-second and Fρmin is the minimum

176

FPS allowed under available resource ρ. Note that ρ can change over time and can be

generalizable to any type of computational resource even though in our case we mainly

demonstrate using the available processing power. The implementation details on how we

solve this is described in detail below.

(a) (b)

Figure 8.3: Meta-graph with (a) search space and (b) example of adaptive sub-graph cell architectures. Each
cell is search-able and all layers after 15 are skippable. Four types of upscaling layers can be searched.

Meta-Graph Design. The first step in designing a NAS framework is the Meta-graph.

This needs to be diverse enough to generate a wide range of efficient candidate architectures

with competitive performance with state-of-the-art. In our case, we focus on designing a

meta-graph with a variety of inference FPS with a good set of PSNR values, rather than

developing a single novel cell architecture that beats all state-of-the-art SR models.

We design our meta-graph as a cell-based architecture (see Figure 8.3a). The input layer

and the last output layer are kept constant, and the architecture between them consists

of layers of cells followed by an upsampling layer. During the search phase, we sample

paths within each searchable cell such that only one type of cell block is chosen at any

one time. Existing works have already proposed a wide variety of cell blocks which were

demonstrably efficient and also have many operations in common, and so we use them for

our search space. Specifically, we use the cells from CARN [14], FALSR [58], RCAB

[299], AutoGAN [78], WDSR [286], ESRGAN [259] and MoreMNAS [59] since they

are well-known, efficient, self-contained blocks. Another large benefit is that all these

cell blocks share many of the same operation types, making it possible for them to share

177

weights. The most commonly shared operations between them are the convolutional and

dense layers. As such, we set their parameter search spaces as: • Convolutional Filters -

1x1, 3x3, 5x5, • Convolutional Channels - 3, 16, 32, 64, •Dense - 64, 128, 256. Cell blocks

for RCAB, AutoGAN, ESGRAN and FALSR also have attention and residual connections,

which we can enable or disable as paths since we find that while their inclusion result in an

increase in performance, it is not significant at the higher end models when considering the

FPS increases.

Layers. The number of layers is one of the most important factors when determining

the overall FPS and is therefore a very important search parameter. Additionally, different

layer types perform distinctly with different layer numbers [14, 58, 259]. Therefore, we set

the range of our number of layers of cells from between 15 to 50 with intervals/groups of 5

for every single cell type. Lastly, for our upscaling layer, we keep the choices between four

types – RCAN [299], Deconvolutional [68], Depth2Space [33] and Multi-branch bicubic

[25]. We have a total of number of possible cell types of 12 when including blocks with and

without attention and residual networks and a total number of parameter combinations of 3

* 4 * 3 = 36, giving us a total number of 12 * 36 = 432 cell combinations. With possible

layer combinations of 3 to 10, we have a permutation formula 432P10+
432P9+

432P8+ ...
432P3

times 4 for the number of possible upscaling layers, which gives us a total of 5.8e1023

possible networks.

Sampling Paths. Given such a large number of possible graphs, we need an efficient

method for traversal. Fortunately, our hard constraint of Eq. 8.1 for FPS can play an

important part in reducing the space here. We first start with setting the number of layers to

the minimum possible (15 in our case) and start random uniform sampling models without

replacement. We profile them on the desired hardware to ensure the FPS is under the Fmax.

If not, it is permanently discarded. Once we have Nl models, we move to the next layer

178

limit and iterate until we have reached the last layer limit I (50 in our current setting) which

gives us a total of Nl ∗ I models. Note that for our scenario, we need multiple models across

a wide FPS spectrum such that for the same dataset so that we have choices on which

models to deploy for different hardware and levels of resource availability. Therefore,

before starting the training we first determine suitable models by binning them. We select

how many bins of FPS we need as B with each bin having a window size of 200ms, and

we bin our profiled models within each bin. We then train and evaluate each model within

each bin for 5 epochs and evaluate them which gives us a sufficient estimate of final model

performance. We now need to use an evaluation criteria to rank Nb models per bin. For

this method, we set a desired PSNR threshold for bin b decided by the Pareto frontier.

For example, from figure 8.7 we see that models on 1080Ti with 20 FPS needs to have

at least 34 PSNR to be competitive, so we select that as the threshold. Then we take all

models above that threshold and rank them based on the number of intersecting operations

with others µ from Eq.8.1 We iterate this process until all bins B have Nb models. This

way, we have a total of Nb ∗ B models for exploration. The parameters Nl, Nb and B are

very important for determining the search and model efficiency for our framework and

their choice is discussed later in Section 9.4. We throw out all other models which are not

within the bins and redeploy the meta-graph with only the selected model operations. This

reduces the number of models in the search space drastically and reduces weight sharing

which further alleviates the co-sharing issue.

Training. After reducing the search space to Nb ∗ B models, we then train them till

convergence. As mentioned above, we perform GAN training. Our predictor models are

the searched models and for our discriminator we use the pre-trained VGG-16 model. We

use the Adam optimizer with loss function for the generator defined as -

lgen = 1e2 ∗ |xhr −G(xlr)|+lvgg(G(xlr, xhr)) + (5e−3 − mean(D(G(xlr)))) (8.2)

179

where xhr and xlr are the HR and LR images respectively, G is the generator network, lvgg

is the VGG loss [260] and D is the discriminator. This loss is discussed in detail in [260].

8.4.2 Adaptive Sub-Graphs

Standard implementations employ static graphs with fixed inputs and outputs pre-set be-

tween operations and are not changed during forward passes. As a result, traditionally

designed meta-graphs cannot change operation sequences in real time. Instead, they have

to reroute the batches among different model inputs for inference.

For our case, we have a single large model in the form of a meta-graph. It contains sub-

graph architectures which share operations. In order to switch between sub-graphs, we

can change the input-output paths for the operations. We take advantage of the non-static

graph property to implement this. We first define the sub-graphs as a network with the

nodes representing the operations and the input-output variables as the end-point for paths

between them. We store each of the meta-graph operations as node objects with its input

and output variable references within. During inference, we can change the input/output

variables of one operation node to point to and from another node. This effectively decides

the execution path of the input batch, thereby defining the sub-graph architecture itself.

Since we have all the operations with their trained weights loaded in memory, we can

call every available operation with our desired input values at any time. Thus, when we

want to execute a specific sub-graph path, we start by first selecting the required operations

from the list of all operation nodes. We then create the sub-graph architecture by routing

the output variables (which are pointers to Tensors in memory) of one operation to the

180

input of the next desired operation by changing the variable references. We can do this

by applying the equal operation of the output variable of one operation node to the input

variable of the next operation node, which essentially links them together into a direct

execution path. Since we can set the output pointer variables to the input variables at any

time between forward passes without disrupting the computation results, we can re-route

paths at a per-batch granularity. Thus, by changing the pointer variables of input-outputs,

we can select sub-graphs architectures as per our requirements. This allows us to adapt

between sub-graphs in real-time without degrading QoS.

8.4.3 Model Adaption Policy

Algorithm 8 Model Selection Policy
Inputs: Meta-graph after training A∗, all hardware resources ρ, maximum allowed FPS
Fmax, empty profile table T , αsel is the list of sub-graphs that meet the selection criteria.
for each αi in A∗ do

for each ρ j do
Ti, j = Pro f ile(αi, ρ j)

end for
end for
while True do
ρc = CurrentResources(), αsel = []
for each αi in A∗ do

if Ti,c ≤ Fmax then
αsel += αi

end if
end for
αsel = S ort(αsel) based on max PSNR
Switch to model αsel[0]

end while

We design an adaption policy to decide the model adaption strategy in real time for a given

resource availability. This is done in two steps. First, we generate a profiling table which

contains the framerate of each model under different resource availability (e.g., utilization)

for a device. We profile each model using 20 image frames and use the average latency to

infer framerate. The profiling cost is no. o f models ∗ resource availability granularity.

181

Hardware FLOPS Freq.
Snapdragon 855 899G 2.8 GHz
Intel i5-560M 388G 2.9 GHz
Nvidia 1080Ti 11.3T 1.4 GHz
Nvidia A100 312T 1.3 GHz

Table 8.1
Model and hardware device specification comparison.

This step is a one-time offline effort and thus the profiling cost is not a major overhead.

During the real-time SR task, we keep track of the resource availability of system via

resource monitoring tools. Once we observe a change in resource availability, we adapt

the model by using the search criteria αsel where f ps(αsel) ≤ Fmax and sort the candidates

based on their performance. We use the adaptive sub-graph mechanism to select the top

performing sub-graph in real time and use adapt to it to maintain QoS (see Alg. 8 for

details).

8.5 Evaluation

Model # of Params. Chkpt. Size
Assembled 11.3M 88MB

DySR 8.44M 67MB

Figure 8.4: Size comparison between the Assembled baseline and DySR with 10 models.

8.5.1 Training Setup

We implement DySR using PyTorch and perform the search and training using 4 A100

GPUs, taking 21 GPU days to complete per run. For training the searched models till

convergence, we use Div2K training dataset with 64x64 patch size, batch size of 16 and

learning rate of 0.0043. For the search parameters, we use the values 15, 2 and 5 for Nl, Nb

182

and B respectively. For the video super-resolution dataset, we train with Vimeo90k [276].

The LR images and frames were generated by bicubic downsampling them by a factor of 2

and 4. To generate the Pareto Optimality curve, we use the the models as shown in Figure

8.5a).

8.5.2 Baselines and Parameters

(a) (b)

Figure 8.5: (a) State-of-the-art model’s PSNR vs. FPS. Used to generate the Pareto curve determining the
optimal trade-offs. Shown here for Div2K dataset run with 1080Ti for 2x scale. (b) Comparison of RAM
consumption for Assembled, Static (CARN) and DySR with different numbers of sub-graphs generated by the
Nb and B parameters. Calculated as the sum of the model memory (number of parameters * sizeof(int8)) and
activation memory (measured in PyTorch).

We now describe our choice of baselines and search parameters. Since no other works

(to our knowledge) address this problem in the SR scope, we create our baseline model by

combining all the models from Figure 8.5a (referred to as Assembled). It contains high-

performing models over a wide FPS spectrum, which is what our DySR should ideally gen-

erate as well and so makes for a fair comparison. As mentioned above, the parameters Nb

and B are very important in determining the quality of the models. Together they determine

the total number of sub-graphs generated which in turn determines the amount of memory

taken up by the meta-graph. It also indirectly determines how much weight is shared by

the sub-graphs (more sub-graphs means more chances of operations being shared). In Fig-

ure 8.5b we show the memory consumed when executing DySR, Assembled and the single

static CARN model after applying dynamic 8-bit quantization for all of them [188]. As

183

we tune the Nb and B, we get 5, 10, 15 and 20 models (no. of models = Nb ∗ B). We

see that even with 15 models, DySR has almost equal consumption to Assembled due to

weight sharing among sub-graphs. With 5 models, DySR only consumes around twice as

much memory compared to the single model, thus illustrating the memory efficiency of our

weight-shared NAS system. Since Assembled contains 10 models, we select 10 models for

our DySR as well for fair comparison for the rest of the experiments. Table 8.4 shows that

with equal number of models, our framework has less number of parameters and size on

disk.

(a) (b) (c)

(d) Div2k (e) Urban100 (f) Vimeo90k

Figure 8.6: PSNR vs. FPS for DySR generated sub-graphs for different datasets. Top row - 2X upscaling.
Bottom row - 4X upscaling.

8.5.3 Pareto Optimality

We now test our searched and fully trained sub-graphs against state-of-the-art models. Fig-

ure 8.6 shows the PSNR vs. FPS performance of each of the 10 sub-networks in DySR for

different datasets. The sub-graphs are evaluated by passing the input through the execu-

tion path of the specific sub-graphs and their corresponding inference time measured. We

184

observe here that across both image super-resolution and video super-resolution datasets

for 2X and 4X upscaling, our sub-graphs achieve Pareto Optimality for the PSNR vs. FPS

tradeoff created by the state-of-the-art models across the full FPS spectrum, demonstrating

the efficiency of our search space.

(a) 1080Ti (b) A100

(c) Intel i5-560M (d) Snapdragon 855

Figure 8.7: Pareto Optimality for different hardware. Generated by running DySR once and profiling FPS on
1080Ti to generate models between 15 and 30 FPS. While the FPS spectrum shifts across datasets, the Pareto
Optimality is maintained.

We next evaluate our generated models against a diverse set of hardware, and the results

are shown in Figure 8.7. We use a mobile CPU Snapdragon 855, a laptop CPU Intel i5-

560M, a desktop grade GPU 1080Ti and a server-grade GPU A100 (see Table 8.1). This

figure shows the results for 2X scaling for the Div2k dataset (other datasets show similar

results, so we eliminate them for lack of space). We search our models on the 1080Ti to

be above 15 FPS. Therefore, the model’s FPS shift for different hardware but still have

models above 15 FPS (as was our search criteria). We see that across all these hardware,

the Pareto Optimality of our generated sub-graphs are maintained, demonstrating that even

with one search run we can generate efficient models for inference for such a wide variety

of models. This property allows for model adaptivity since this allows the selection of

models with any desired FPS for any hardware, and ensures close to the optimal HR output

quality. Along with the ability to change models on-the-fly, DySR allows for optimal PSNR

185

(a) (b) 1080Ti (c)

(d) (e) (f)

(g) Bursty (h) Random (i) Stable

Figure 8.8: CDF comparison between DySR and baselines for FPS and PSNR based on bursty, random and
stable trace.

vs. FPS tradeoff for resource adaptivity as well, as will be demonstrated next.

8.5.4 Dynamic Resource Adaptivity

To demonstrate the resource adaptivity of our adaptive sub-graphs and model selection

policy, we use three traces to generate real world resource fluctuation scenarios. We use

a bursty trace to simulate extreme changes in resource availability, stable to illustrate a

relatively small variation in resource availability and random. Since resource adaptivity

has rarely been discussed in the SR context, we create two possible baselines. The static

baseline contains a single model deployed at any one time from the list of state-of-the-art

186

models used above for generating the Pareto Optimality curve. Assembled baseline contains

all the models from the state-of-the-art list deployed at the same time to represent the

scenario of keeping models preloaded. Based on available resources, we use our real-time

swapping policy to choose the best model for both our DySR as well as the two baselines.

Figure 8.8 shows the results of our experiment using the Div2k dataset on 1080Ti for

2x scaling. The top row shows the trace used, the middle row shows the CDF of the

resulting FPS fluctuation over time, and the bottom row shows the CDF of the PSNR values.

The CDFs represent the probability of the FPS or PSNR being less than a certain value,

therefore the higher y-axis values at lower p values mean the better they perform.

Here we observe that across all traces, DySR achieves overall higher values of PSNR

compared to the baselines. The FPS for Assembled and DySR are somewhat similar due

to both having little to no reloading overhead. However, Assembled performs worse for

PSNR due to having less granularity of models available across the full FPS spectrum. For

example, between 20 to 25 FPS in Figure 8.6 for Div2K with 2X upscaling, we see that our

framework generates four models but the Assembled only has two. Therefore, Assembled

has less options and tends to choose models with lower PSNR in order to be able to maintain

its FPS. The Static models perform the worst due to having many interruption of services

as expected. For the PSNR values, Static has a significant portion of its CDF distribution at

0 and therefore performs much worse than the others, especially at the lower p values. Our

framework outperforms all baselines by having the highest PSNR probabilities. Another

observation is that the largest improvement in PSNR and FPS gained from DySR is for the

bursty workload. This is mainly due to there being more model switches required here

compared to the other two workloads. This amplifies the benefits derived from the model

selection policy and granularity and thus a greater difference is observed. As the workloads

grow more stable, the numbers vary less, illustrating that the more unstable a system the

187

more it should benefit from our solutions. Based on all these observations, we conclude

that DySR outperforms both baselines and can address the resource adaptivity issue.

188

CHAPTER 9

ADASR: ADAPTIVE SUPER RESOLUTION WITH SHARED ARCHITECTURE

AND WEIGHTS FOR CROSS PLATFORM DEPLOYMENT AND DYNAMIC

RUNTIME ENVIRONMENT

9.1 Introduction

Image super-resolution models (SR) improve visual quality of low-resolution images and

have been widely used in many applications such as video streaming, compression, image

recovery, enhancement [189]. Driven by recent advances in deep neural network models

(DNN) [24,67,68], the performance of SR has been greatly improved. To use SR models in

real world environment, such as cloud and edge devices, it needs to meet Quality of Service

(QoS) standards [298], e.g., maintaining a minimum frames per second (FPS) to provide

a smooth perceived visual experience. Given the high computation and memory demands

of SR models [48], practitioners and researchers usually need to customize architectures

for different platforms to meet QoS while achieving the high performance. In addition, the

available computing and memory resources may dynamically change due to other running

applications, which requires SR models to be adaptive in real-time.

To provide cross platform deployment support, earlier works handcraft efficient DNN ar-

chitectures for different hardware [71,133,166]. Later works employ compression schemes

such as quantization [21,99], pruning [115,302], and Knowledge Distillation (KD) [11,80]

to reduce model sizes. However, these methods only produce singular models for certain

devices, or require significant hand-tuning efforts to generate a set of models for different

189

devices. Recent works explore Neural Architecture Search (NAS) [24, 78] to automate the

model generation process for different hardware. However, NAS usually requires costly

time and resources to come up with good search space and search proper architectures for

each hardware [209]. More importantly, none of the above works addresses the challenges

in dynamic runtime environment where SR models need to swiftly adapt to dynamically

changing resources without high memory cost.

To address the aforementioned issues, we propose AdaSR, an Adaptive SR framework

via shared architecture and weights for cross platform deployment and dynamic runtime

environment. Our key insight here is to adaptively change the depth and the channel size

of SR models with shared weights and architecture so that SR models can adapt quickly

with little extra memory cost. We achieve this by employing a progressive knowledge

distillation approach to train the size/compute-adaptive models in a layer-wise manner.

Such a function matched training enables improved consistency in learning representation

between the original and adapted models. However, performing progressive knowledge

distillation on SR models is non-trivial because the large variety of blocks makes it imprac-

tical to hand tune each. To stabilize the training of AdaSR such that it is robust to dynamic

changes in operations, we propose a progressive approach to derive loss functions for each

block and function matching operations with max-norm regularization to address dimen-

sion mismatches. Thanks to the above design, AdaSR can distill knowledge with different

compression levels for different hardware (e.g., different security cameras), and also sup-

port adaptively change the compute graph in dynamic runtime environments (e.g., mobile

phones with concurrently running applications).

We perform extensive evaluation by comparing AdaSR with popular efficient SR models

CARN [14], ESRGAN [259], RCAN [299] and the state-of-the-art FMEN model from

the 2022 NTIRE challenges NJU JET team [146]. The results show that AdaSR achieves

190

Pareto frontier of the prior arts while having 80% smaller memory footprint and can adapt

to dynamically available resources in dynamic runtime environments.

9.2 Related Works

Figure 9.1: Network diagrams of CARN, RCAN, and ESRGAN models. They use repetitive blocks
stacked on top of each other with residual connections. Cascading and Res-E block architectures from CARN
are shown in detail here as an example of how the blocks of these models use the convolutional operations.

Efficient SR models. There is a rich set of works use novel architectural properties to hand

tune SR models. For example, DRCN and DRRN [127, 237], GhostSR [184], SESR [55]

uses recursive layers to improve efficiency, makes lightweight residual blocks based on

a variety of group convolutions, and replaces the standard convolutions with collapsible

linear blocks, respectively. Another line of works [161, 175] exploit attention mechanism

for efficient representation capacities of SR models. [110] splits the channels such that the

number of channels used during inference are reduced. FSRCNN [68] shifts the position

of the upsampling operator earlier to reduce later operation sizes. The winner of the PIRM

191

challenge [34], MobiSR [133], and other related works [17, 46, 146] explore optimized

deployment for resource constrained environment. While all these works yield good per-

formance, the SR models are usually singular models which are difficult to be adapted for

cross platform deployment and is even more challenging to support real-time adaption in

dynamic runtime environment.

SR Compression. Another line of works aim to reduce the operations and parameters of

existing models using compression techniques such as pruning [156], quantization [81],

and knowledge distillation [253]. Recent SR pruning works include SMSR [254], ASSLN

[301], and SRPN [302], which employ techniques such as learning sparse masks, structure-

regularizers, and applying alignment filters to prune redundant operations during inference.

Recent SR quantization methods [21, 99, 274] uses low-level hardware capabilities, looks

at channels that contribute less during inference, and converts all weight and activation

outputs to binaries, respectively. Knowledge Distillation has also been used to compress SR

models [49,80,235,297]. SRKD [49] uses a smaller student sub-network for the upscaling

portion. [95] uses feature affinity between the teacher and student models. [271] distills

knowledge from LSTM-based networks. However, all these works focus on generating

single models and are not suitable for cross platform deployment nor dynamic resource

adaptability. We compare our AdaSR with [14,66,72,133,259,299,300] in our evaluation.

NAS for SR. Neural Architecture Search (NAS) [209] has been explored to find efficient,

lightweight, and accurate SR models. They define the latency and performance tradeoffs

in SR as a multi-objective optimization problem. Tri-level NAS [268] uses a hierarchical

search strategy with one-shot search [89]. AutoGAN Distiller [78] leverages Differentiable

Architecture Search (DARTS) and Knowledge Distillation [155] to derive compact student

models. FALSR [58] uses a hierarchical search similar to Tri-level NAS, but uses a combi-

nation of evolutionary, one-shot, and DARTS. DeCoNAS [13] and MoreMNAS [59] lever-

192

age the more expensive reinforcement learning to achieve real-time SR on mobile devices.

While these frameworks can create multiple models for different hardware, they are very

time and resource demanding and require separate searches for each hardware. In addition,

they do not support real-time adaption in dynamic runtime environment. We compare our

AdaSR with the Tri-level, AutoGAN, and FALSR NAS approaches in our evaluation.

9.3 Proposed Method

To support cross platform deployment and dynamic runtime environment of SR models,

our key insight is to share architecture and weights to enable quick model adaption while

reducing memory consumption. Specifically, the model is adapted by changing the depth

and the channel size to meet the QoS requirements under different resource constraints.

However, direct reduction of depth and width usually results in significant performance

degradation [102, 258].

To address this challenge, we employ progressive knowledge distillation and loss func-

tion optimization to improve the performance of the adapted SR models. We use a loss

function at each layer to minimize the output distribution discrepancy between the adapted

model and the original model. This allows the adapted model to be consistent in learning

representation of the original model. To derive the loss functions in an automated way, we

introduce a Bayesian tuning method. We further introduce output matching operations with

max-norm regularization to address the dimension mismatch issue between the original and

adapted models.

193

Figure 9.2: AdaSR Model Architecture. This figure shows the steps for progressive knowledge distilled
training. Every mth block of the original model is distilled to the adaptable model’s block. The backpropa-
gation starts from the current distilled block to the block at the beginning. L is the loss function using output
values of OT and OS from the original and adapted models, respectively.

9.3.1 Operation Reduction

First, we demonstrate how to precisely adapt the model size by changing the channel size

and the number of blocks. Here we use the popular CARN model [14] as an example to

illustrate our idea, but it is generalizable to all block-based convolutional GANs. We denote

the original model as BT and input size for any block as Hi
in×W i

in×Ci
in, where H, W and C

are the height, width, and channel dimensions respectively for block i. Here we leave out

the bias and activation terms for simplicity. For a convolutional layer with kernel size K

and channel size Cout, the computational cost is:

K · K ·Ci
in · Hout ·Wout ·Cout, (9.1)

where Hout and Wout are the output height and width dimensions respectively.

For each block, the output dimensions are padded to keep them equal to the the input

dimensions Hin×Hout since every block has the same set of operations. For simplicity and

without loss of generalizability, we have Hi
in=W i

in=Hout=Wout=F. As shown in Fig. 9.1,

multiple N convolutional operations are stacked to make a single block, and are some-

194

times followed by more operations such as identity convolutions, activation functions, and

concatenation operations. We can compute their cost as a function fcost(F,Cout), where f

is generalizable to a wide variety of operations in the block architecture. Thus, we can

simplify the cost of a full block as:

N∑
1

(K2 · F2 ·Cin ·Cout) + f (F,Cout). (9.2)

Because there are multiple blocks M in an architecture followed by upsampling layers,

which is denoted as fup, we can derive a generalizable total cost function for the original

model:

BT
cost =

M∑
1

(
N∑
1

(K2 · F2 ·Cin ·Cout) + f (F,Cout))

+ fup(F,Cout).

(9.3)

If we consider the operation costs for f , fup are directly proportional to the input dimensions

F×F×Cout, we can simplify the cost function as:

BT
cost = Cout · M(N · K2 · F2 ·Cin + f (F)) + fup(F). (9.4)

For the adapted model BS , if we keep the overall architecture the same and only reduce

the filter sizes Cout across all the blocks with a ratio of c and reduce the number of blocks

M to a ratio of m, we have the cost function of adapted model as follows:

BS
cost =

Cout

c
·

M
m

(N · K2 · F2 ·Cin + f (F)) + fup(F), (9.5)

195

which is c·m times less than BT . Therefore, a reduction in channel size (width) and number

of blocks (depth) can bring a proportional reduction in model size with little architecture

re-engineering efforts.

9.3.2 AdaSR Architecture Design

Next, we explain how to utilize operation reduction to adapt SR models with the most prof-

itable performance. Operation reduction may degrade the model performance [11,85,298]

because training operation reduced models from scratch may not capture all the feature

representations of the larger SR counterpart. To address this challenge, we propose a

Knowledge Distillation (KD) [117] based adaption scheme to optimize the performance

of adapted models. The intuition behind using KD is that by using the already learned fea-

ture representations of larger SR models to teach the smaller adapted ones, we can preserve

the performance while speedup the model adaption process. However, existing KD works

for SR [17, 80, 95] mainly focus on matching the output distributions after a large number

of layers, which falls short in maintaining consistent mapping of learned representations

between the high and low dimensional spaces in the inner layers, even for networks with

the same operation structures.

To better reflect the original models’ feature representation in each layer of the adapted

models in low dimensional space, we propose a new approach that can match output dis-

tributions at regular intervals. Specifically, we use the original SR model to progressively

train the adaptable models layer-by-layer instead of simply training on the loss of the last

layer’s output distributions. The overall training method is shown in Fig. 9.2. As pointed

out in [31,117,176], having such anchor points during training or function matched training

196

can yield better performance for distilled models. This is because such a training procedure

allows greater consistency between the original and distilled model’s learning representa-

tions for the inner layers. We introduce Bayesian Tuning [247] to automatically get the

appropriate loss function for each layer. We calculate the gradients based on this loss for

each possible adapted models (i.e. every combination of width and depth possible) and

then apply them together to make the trained weights robust to direct reductions in con-

volutional channels and blocks. To ensure the per-layer output dimensions of the smaller

adaptable models to match with the original models, we further introduce function match-

ing operations with max-norm regularization.

9.3.2.1 Progressive Knowledge Distillation

To simplify the illustration, we also use the CARN model [12,243] as an example, although

the approach can be applied to any block-based convolutional GANs. We start building the

adaptable model by choosing the lowest possible channel size and number of blocks (e.g.,

in CARN the smallest channel size is 8 and the smallest number of blocks is 1). We do this

by rerouting computation from the excluded blocks and by throwing away the undesired

channel dimensions when using the block’s output. We then take a batch of low-resolution

input images, preprocess them and perform a forward pass to get the output distribution of

the chosen block from both original and adaptable model. In the next step, we increase the

size of the adaptable model in one dimension at a time (as shown step-by-step in Fig. 9.2),

and repeat the process until we have derived the gradients for all adapted models. In this

way, we progressively increase the adaptable model’s size during the forward pass.

Next, we explain the details on how we use function matching, regularization, depth con-

solidation, Bayesian tuning, and one-shot backward propagation to derive a single adapt-

197

able model that can change its size to be deployed in different platforms and also adapt its

size in real time in dynamic runtime environments.

9.3.2.2 Function Matching and Regularization

The reduced number of channels of adaptable models may cause the output dimensions of

each block mismatch with those of the original models. To make the loss function work,

the output distributions need to have the same dimensions. To address this issue, we add

another layer on top of the last layer of the adaptable model’s block such that this mapping

layer’s output matches the original model’s. This mapping layer is only used during the

training of that layer and is dropped for layers already progressed from or during inference.

The mapping layer can either be a linear layer which changes the output dimensions via

matrix multiplication to match dimensions, or a convolutional layer with kernel and channel

sizes equal to that of the original model’s. We find convolutional layers work better since

its learned feature representations are closer to the interpretations of the original model’s

convolutional layers.

While this method solves the matching problem between the original model and the

adaptable model when calculating loss, it also results in a tandem training of the map-

ping layer weights and the adaptable model layer weights. The removal of the mapping

layer during inference may yield worse performance. Here we employ max-norm regu-

larization [231] on the mapping layer to enforce upper bound of weights. The max-norm

constraint ||w||2< c regulates the impact of that layer’s weights and helps train the previous

layers to closely represent the original model’s output distributions. We find other regular-

ization techniques such as L2 norm and dropouts are less effective because max-norm has

a more direct bound on weights. We find c = 0.0002 is sufficient and we use this value for

198

all experiments.

9.3.2.3 Depth Consolidation

One way to reduce parameters is to remove a block entirely. Since consistency and pa-

tient training helps performance [31], we perform knowledge distillation for each block on

the adaptable model using the original model blocks. Ideally, the adaptable model has the

same depth as the original model so that there is a one-to-one distillation mapping between

each block. On removal of a block from the adaptable model, we re-adjust the anchor as

m = ⌊MT

MS ⌋, where an adapted model with MS blocks gets distilled every mth layer from

the original model’s MT , with the last block including the last leftover blocks. One issue

here is that changing the number of blocks may cause dimension mismatch. For example,

concatenation of the outputs of current and previous blocks is a common structural opera-

tion [14, 259], which results in that dimensions depend on the number of blocks. In such

cases, we also perform dimension matching using the aforementioned mapping layers.

9.3.2.4 Bayesian-tuned Loss Function

Figure 9.3: Comparison between our KD-trained models against state of the art against MACs and PSNR.
Shown for Set14 at 4x upscaling with patch size 256x256. AdaSR is capable of producing models across a
range of sizes suitable for different hardware platforms.

199

Algorithm 9 AdaSR Training
1: Inputs: Pre-trained original model T , dataset Dataset, adapted model to train S , train-

ing epochs Epochs, adapted model’s depth and width options depth, width, loss func-
tion L.

2: Random initialize weights for S
3: for each epoch in Epochs do
4: for each batch in Dataset do
5: global grads = []
6: t1..N = T (batch)
7: for each D in depth do
8: grads = []
9: for each W in width do

10: sW
D = S (batch,W,D)

11: Depth Consolidation to get anchoring ti
12: Function Matching to match sW

D to ti
13: λ = BayesianOptimization(L)
14: l = L(λ, sW

D , ti)
15: grads.append(l.gradients())
16: end for
17: global grads.append(grads)
18: end for
19: S .update(grads)
20: end for
21: end for

The most commonly used distribution distance loss functions for knowledge distillation

methods in SR are the Kullback-Leibler divergence metric (KL) [17,78,85] and the Mean-

squared Error (MSE). These loss functions are hand-tuned since in the conventional KD

methods they are only used once at the final output layers. However, in our progressive

KD method we need to calculate the loss at each block level, which makes hand tuning

each function impractical. To address this challenge, we use Bayesian Optimization (BO)

to automatically optimize the loss functions. Our loss function for block output pairs is:

L = λKL(t, s) + (1 − λ)MS E(t, s). (9.6)

Whenever we associate original model and output distributions to get the loss values, we

run BO to derive the best λ value for that anchor point. We use Expected Improvement

(EI) [246] as our acquisition function as it does not require hyperparameter tuning and it is

200

easy for setting intuitive stop conditions. Our λ values range between 0.0 − 1.0 with a 0.01

granularity. The stopping condition is when the last 20 trials do not improve PSNR value.

We run BO for each anchor point until it reaches the stop condition. Then we use the found

λ value to calculate the loss that we use to train the adaptable model weights.

9.3.3 AdaSR Training

To support dynamic runtime environment with constantly changing available resources, it

is critical to adapt the model in real time to achieve the most profitable performance while

maintaining QoS. One potential approach is to ensemble a set of models and dynamically

switch between them. However, this method results in a significantly larger memory foot-

print, which is infeasible for resource constraint environment such as mobile and IoT de-

vices. To address this challenge, we a training method with shared architecture and weights

as outlined in Algorithm 9. For each batch in every epoch, we get the output t of each block

of the original model T . For each combination of reduced depth and width options W,D

of the adapted model S , we take the output sW
D of the same batch. We match the original

model’s output to the corresponding adapted model’s ith block output using Depth Consoli-

dation and Function Matching. We then use Bayesian to set λ for Equation 9.6 to calculate

the gradients. Once gradients for all depth and width combinations are derived, we apply

them all at once to update the adapted model S .

This training method has two advantages: 1) The weights are trained to reduce output

distribution discrepancy between the original and adapted models; and 2) applying the

gradients together ensures the final trained weights are shared. Weight sharing allows us

to dynamically change the channel and block sizes in real time with no extra memory

201

overhead and less performance impact. Changing the channel and block sizes can be done

by bypassing channels and blocks to get the final output on-the-fly to avoid the overhead of

reloading models.

(a)

(b)

(c)

Figure 9.4: Comparison of PSNR vs. inference latency trade-off between AdaSR and state-of-the-art models
designed for resource constrained deployments. AdaSR is developed by changing the depth and width of the
original CARN model. Experiment is run on Set14 with 4x upscaling factor for path sizes 256x256.

202

9.4 Evaluation

Experimental Setup. We use 800 RGB images with patch sizes 64x64 from the standard

DIV2K [12,243] dataset to train our original models for pre-training. We apply our method

on CARN [14], ESRGAN [259], RCAN [299], and FMEN [72]. The pre-training of the

original models are done as explained in their corresponding papers. We then freeze our

original model and train the adapted models using AdaSR with the same dataset. For the

adapted models, we use batch size of 16 with standard data augmentations of random ro-

tation, random horizontal flipping, and normalization. We use the ADAM optimizer with

β1 = 0.9, β2 = 0.99 for all models. We use learning rates for each compact model as

described in their corresponding papers, and apply exponential learning rate scheduling.

Training till convergence takes between 50 to 200 rounds depending on the model. We

train on 4 1080Ti GPUs with batch parallelism. Evaluation is done on Urban100 [107],

Set5 [30], Set14 [288], BSD100 [168], and DIV2k [12, 243] datasets for both 2x and 4x

scaling but present with 4x in the interest of space.

Model Implementation. Since we reduce the width and depth of existing a variety of exist-

ing models, we denote models as [model name] [depth ratio] [width ratio]. For example,

the original CARN model has 3 block layers and uses 64 cell channel size. So a CARN

model with 1 block layer and 32 channel size is denoted as CARN 0.3 0.5. We implement

our framework in Pytorch with fp16 quantization and deployed with ONNX [2].

203

(a) (b)

Figure 9.5: Memory cost and interruption time comparison between AdaSR and state-of-the-art model as-
sembly.

Table 9.1
Comparison between AdaSR and state-of-the-art models. Evaluated for 4x SISR and trained on Div2K.
Patch size is 256x256.

Model Params FLOPS Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

RCAN 1.6 130.2G 32.63 / 0.900 28.87 / 0.788 27.77 / 0.743 27.01 / 0.814
ESRGAN-Prune 1.6 113.1G 28.07 / 0.737 25.21 / 0.634 25.22 / 0.641 22.45 / 0.584

AGD-L 0.90 139.4G 31.86 / 0.892 28.40 / 0.801 27.47 / 0.724 25.55 / 0.695
MDDC-L 0.79 96.6G 31.74 / 0.887 28.31 / 0.773 27.36 / 0.729 25.46 / 0.763

RCAN-1 0.75 (Ours) 0.97 98.5G 31.64 / 0.889 28.37 / 0.781 27.25 / 0.732 25.59 / 0.739

CARN-M 0.4 74.32 31.92 / 0.890 28.42 / 0.776 27.44 / 0.730 25.63 / 0.768
AGD-M 0.45 110.9G 30.36 / 0.833 27.41 / 0.754 27.59 / 0.742 24.39 / 0.688

Tri-Level NAS - B 0.51 117.4G 30.34 / 0.821 27.29 / 0.722 26.43 / 0.682 25.45 / 0.756
MDDC-M 0.36 59.6G 31.53 / 0.884 28.19 / 0.770 27.29 / 0.727 25.24 / 0.756

CARN-0.6 0.5 (Ours) 0.39 68.5G 31.60 / 0.878 28.46 / 0.759 27.34 / 0.717 25.68 / 0.783

DRRN 0.29 32.4G 31.40 / 0.852 28.01 / 0.761 27.82 / 0.699 25.35 / 0.757
Tri-Level NAS - A 0.24 15.4G 29.80 / 0.753 27.60 / 0.748 26.22 / 0.679 24.77 / 0.666

MDDC-S 0.25 14.8G 31.31 / 0.879 28.04 / 0.767 27.19 / 0.723 25.03 / 0.747
FMEN-0.75 0.8 (Ours) 0.23 14.6G 31.38 / 0.874 28.09 / 0.773 27.16 / 0.731 25.11 / 0.714

9.4.1 Cross Platform Pareto Optimality

First, we evaluate AdaSR’s ability to generate models for a wide variety of hardware plat-

forms. We adapt existing models to a range of sizes. We apply our training method to

serveral original models, such as CARN [14], ESRGAN [259], RCAN [299], and FMEN

[72]. The adapted models are evaluated against state-of-the-art models in Fig. 9.3. Note

that AdaSR can generate models for a wide range of MAC values, while most other frame-

204

works are only capable of generating single models. Even though NAS frameworks such as

AutoGAN [78], Tri-Level NAS [268], and FALSR [58] can generate multiple models, the

range of model sizes are limited by their search spaces. Tri-Level NAS can generate Pareto

optimal architectures, but the others have relatively low performance since they are more

focused on automating SR model generation than achieving state-of-the-art performance.

In comparison, our method can utilize a wide variety of existing architectures and gen-

erate a wide range of models with different sizes that are Pareto optimal. These results

demonstrate that our framework can develop optimal models for different hardware de-

ployments.

9.4.2 Dynamic Runtime Environment

Next, we evaluate our framework’s ability to create models for dynamic runtime environ-

ments. Here we take a single CARN model and use our framework to train it. This gen-

erates a single adaptable CARN model that is capable of running inference using various

shared operation sizes. We deploy our trained adaptable model along with state-of-the-art

models on a desktop GPU (1080Ti), a laptop CPU (i5-5560), and a mobile CPU (Snap-

dragon 845). We choose these models specifically since they are on the inexpensive end

of the SR model space and are designed for deployment on resource constrained hardware.

We then compare our adaptable model’s performance against the others on inference la-

tency. The results are shown in Fig. 9.4. It is worth noting that the state-of-the-art models

assembled together set the Pareto frontier, while ours is a single model which is capable of

adapting to various sizes and can be changed on-the-fly without model reloads.

205

The results show that our adapted CARN model outperforms hand-designed and NAS-

designed models in terms of performance against latency. FMEN [72] is finely tuned for

reducing inference latency and is one of the efficient models from the 2022 NTIRE chal-

lenge [146], and it outperforms our original model at the beginning. Since FMEN is a

block-based GAN, our AdaSR can be applied on FMEN as well (results presented later).

For MobiSR [133], it is specifically developed with consideration to mobile CPU compil-

ers and hardware architectures, which is why it performs better on CPU deployments but

not on GPUs. Nonetheless, our adapted CARN model outperforms most efficient models

in this size range, and is relatively close to highly efficient hand-designed models.

Figure 9.6: Visual qualitative comparison between AdaSR models and the corresponding original models.
Images taken from Urban100 (above) and Set14 (below) datasets for 4x resolution with their Low resolution
(LR) input and ground-truth High Resolution (HR) samples.

One additional advantage we have over other models is that our model has a single set

of weights. Different model sizes simply bypasses channels and blocks during inference

and so can be done without any interruptions. In a dynamic runtime environment, available

resource for inference fluctuate and so we need to swap among models such that a minimum

inference latency is maintained. We can do this by having an assembled set of models and

rerouting the execution pipeline to the appropriate models as required.

In Fig. 9.5a, we present the results comparing the total number of parameters of the state-

206

of-the-art models from Fig. 9.4 assembled together against our single adaptable model.

Here, we see clearly that our model is around 20% of the assembled models, so our single

model approach is significantly more memory efficient for dynamic runtime environments.

Fig. 9.5b shows the distribution of the amount of time taken to swap between the state-

of-the-art models vs. time for our single adaptable model to change between compression

levels. The assembled models take magnitudes larger time to load compared to AdaSR

since they have to swap between models through expensive memory loading/unloading

operations from disk, whereas ours is a single model completely loaded into the memory

at all times. This causes less interruption of service during runtime. Thus, our approach is

much more suitable to dynamic runtime environments than others in current literature.

9.4.3 Comparison with State-of-the-art Methods

In addition to support adapting models for cross platform deployment and dynamic runtime

environment, AdaSR also achieves state-of-the-art performance (or close to it). In Table

9.1, we present the comparison between AdaSR and state-of-the-art models of similar sizes

across a variety of SR benchmark datasets. Here, our adapted models perform close to the

best performing models for all ranges. In some cases (e.g., Set14), we outperform all other

works. One interesting observation is that our adaptation of the highly efficient FMEN

model also gives highly competitive results, implying that the original model chosen for

adaptation is important for the performance of adapted models. This shows the effective-

ness of AdaSR’s focus on reducing output discrepancy between the original and adapted

models.

207

9.4.4 Visual Qualitative Results

We present our qualitative results in Fig. 9.6. Here, we compare the SR outputs of the

original models and the outputs generated by AdaSR. We observe that as we reduce the

sizes of the models progressively, we note a drop in quantitative values as expected, but

also that the qualitative difference is not significant and even our smallest models provide

large improvements over the LR images.

208

CHAPTER 10

CONCLUSION AND FUTURE WORKS

10.1 Conclusion

The primary objective of this dissertation is to investigate the challenges associated with

scaling up the state-of-the art in secure machine learning training. We explore four different

aspects - model design, training robustness and efficiency, and deployment. The main

contributions are summarized below:

10.1.1 Automated Deep Learning Model Design and Tuning

We have proposed two frameworks - Efficient Progressive Neural-Architecture Search (EP-

NAS) and FedCust. They automatically design model architectures and tune hyperparam-

eters, respectively.

10.1.1.1 EPNAS: Efficient Progressive Neural Architecture Search

We first devised Efficient Progressive NAS (EPNAS), which is a novel network transform

policy with REINFORCE and an effective learning strategy. It supports large search space

and can generalize well to NAS multiple resource constraints through a soft penalty func-

209

tion. We show empirically that EPNAS has achieved SoTA results for image recognition

and KWS even with tight resource constraints.

10.1.1.2 FedCust: Offloading Hyperparameter Customization for Federated Learn-

ing

We then developed FedCust, a framework which provides important new insights for effi-

cient hyperparameter customization in FL by identifying the opportunities and challenges

via empirical experiments. We have observed that the hyperparameter choices vary de-

pending on data heterogeneity and we leverage this to group clients based on heterogeneity

to share hyperparameters. Inspired by our study, we proposed FedCust, a privacy preserv-

ing and data heterogeneity-aware hyperparameter customization framework for FL which

customizes hyperparameters for clients on the server side to avoid imposing overheads on

client devices. The core of FedCust is the use of heterogeneity measurement metrics such

as HI, Gaussian, and Dirichlet distributions for clustering clients into heterogeneity groups

and a sever-side proxy dataset based hyperparameter customization approach for address-

ing the privacy and tuning cost challenges. We evaluated FedCust in a real test bed and

showed that it outperforms baselines and state-of-the-art methods. Therefore, FedCust is

an effective, privacy-preserving, scalable, and robust hyperparameter customization frame-

work for FL that incurs no additional computational cost on client devices.

210

10.1.2 Efficient and Robust Deep Learning Training

Our next set of projects work towards developing systems for efficient and robust dis-

tributed training while preserving privacy. To this end, we designed the LEASGD, TiFL,

and HDFL, frameworks which can balance resource efficiency with model performance.

We also conducted a study on the security aspect of distributed learning by focusing on

how data heterogeneity affects backdoor attacks and how to mitigate such threats.

10.1.2.1 LEASGD: Towards Decentralized Deep Learning with Differential Privacy

We proposed a new decentralized algorithm, LEASGD, for training deep neural network

with differential privacy. LEASGD ensures differential privacy with improved conver-

gence rate and communication efficiency, thanks to the novel leader-follower protocol and

privacy-preserving schemes. We theoretically proved its exponential decreasing conver-

gence rate as a function of iterations and good scalability. We also provided a thorough

analysis of the performance and privacy trade-off. The real distributed test bed evaluation

results show LEASGD outperforms the state-of-the-art decentralized learning algorithm

DPSGD in both convergence rate and privacy budget.

10.1.2.2 TiFL: A Tier-based Federated Learning System

In the next project, we investigated and quantified the heterogeneity impact on “decentral-

ized virtual supercomputer” - FL systems. Based on the observations of our case study,

we proposed and prototyped a Tier-based Federated Learning System called TiFL. Tack-

211

ling the resource and data heterogeneity, TiFL employs a tier-based approach that groups

clients in tiers by their training response latencies and selects clients from the same tier in

each training round. To address the challenge that data heterogeneity information cannot be

directly measured due to the privacy constraints, we further designed an adaptive tier selec-

tion approach that enables TiFL be data heterogeneity aware and outperform conventional

FL in various heterogeneous scenarios: resource heterogeneity, data quantity heterogene-

ity, non-IID data heterogeneity, and their combinations. We implemented TiFL in a real

system, and showed that it can achieve an improvement over conventional FL by up to 3×

speedup in overall training time and by 6% in accuracy.

10.1.2.3 HDFL: Dropout and Multi-Performance Metrics Aware Fair Scheduler for

Federated Learning

We also systematically studied the impact of data heterogeneity, resource heterogeneity,

and dropout on model error, fairness, cost, and training time. Based on the findings, we

proposed HDFL, which is a fair scheduler that takes into consideration of practical FL

factors and optimize all FL performance metrics. HDFL formulates the problem as a multi-

objective optimization and employs selection probability and selection mutualism to solve

the optimization problem. We developed a prototype HDFL in real distributed FL system

and the evaluation results show HDFL outperforms both state-of-the-art and state-of-the-

practice approaches.

212

10.1.2.4 Curse or Redemption? How Data Heterogeneity Affects the Robustness of

Federated Learning

We then focused on the robustness of FL security integrity. We performed extensive em-

pirical experiments to quantify and understand the impact brought by data heterogeneity

in backdoor attacks of federated learning. We identified several redemptions and curses,

and proposed some potential remedy strategies. The results show that depending on the

extent of data heterogeneity the impacts of backdooring can vary significantly. The lessons

learned here offered new insights for designing defenses for Federated Learning.

10.1.3 Adaptive Deep Learning Model Deployment

Finally, we used super resolution (SR) as an example application to explore model adapt-

ability for cross platform deployment and dynamic runtime environment. Specifically, we

proposed the DySR and AdaSR frameworks which enable SR models to meet QoS by

dynamically adapting to available resources instantly and seamlessly without excessive

memory overheads.

10.1.3.1 DySR: Adaptive Super-Resolution via Algorithm and System Co-design

We mainly focused on providing QoS for super resolution used in steaming services of

mobile devices. We proposed an algorithm and system co-design approach called Dy-

namic Super-Resolution (DySR), which employs an adaptive-aware one-shot NAS to gen-

erate models with Pareto-optimal performance, low switching overhead, and frame rate

213

constraint that can be adapted in real-time via our low cost incremental adaption method.

DySR outperformed existing state-of-the-art models as well as the simple assemble method

we explored by achieving the best performance while providing a steady framerate through-

put with a memory footprint that was 40% less compared to baselines.

10.1.3.2 AdaSR: Adaptive Super Resolution with Shared Architecture and Weights

for Cross Platform Deployment and Dynamic Runtime Environment

In a similar vein, we also proposed AdaSR, which can be used to adapt existing SR mod-

els for different hardware and adaptively change the compute graph in dynamic runtime

environment. This is achieved by changing the depth and the channel size in real time on

a single architecture, which introduces no extra cost on memory and/or storage. To re-

duce performance impact caused by model adaption, we performed shared weight training

using a progressive training approach to reduce output discrepancies between the original

and adapted model. We further employed a combination of function matching, max-norm

regularization, Bayesian-tuned loss functions, and gradient aggregated training to improve

training performance. Extensive tests on a variety of hardware and datasets showed that

AdaSR has Pareto optimal performance, reduced memory footprint, and supports real-time

adaption in dynamic runtime environments.

10.2 Future Works

This section discusses on-going work which aims to further address challenges in scalabil-

ity, security, and practicality of deep learning systems.

214

10.2.1 Holistic Approach for Broader Federated Learning Architec-

tures

As demonstrated in the HDFL project, data heterogeneity is highly influential on the out-

come of the training process. It interacts with other systems and hyperparameter properties

such as dropout rates, participation rate, clients selected per round, etc. Here, we have

empirically demonstrated that such multiple factor have complex interactions that directly

impact overall model performance. However, our implementation is specific to the base-

line Cross-device Federated Learning architecture. Additional challenges are introduced if

considering the variety of FL architectures that exist such as hierarchical aggregation [88],

asynchronous selections [50] and split learning [242]. For example, in hierarchical aggre-

gation systems, there exists multiple aggregation nodes organizes as a hierarchical tree.

This leads to design decision questions such as whether HDFL can function equally well

if placed on top level servers and if modeling unreliability as a probability function is suf-

ficient for crashing server nodes. Fairness and bias also becomes harder to control since

now training must be balanced across multiple nodes. Another direction to explore is how

to derive a theoretical model via which the complex interplay between the system proper-

ties such as dropout ratio, resource usage and fairness can be described. Modeling such a

system is complicated due to the various parts each with their own nuanced behavior. For

our next work, we will adapt our holistic approach on these more complicated architectures

and attempt to model them theoretically.

215

10.2.2 Adaptive Transformer Models

Super-resolution models are expensive compared to other common visual tasks such as im-

age classification. However, even more expensive models are found in the natural language

processing domain. Language modeling deep learning networks such as BERT [241],

UniLM [70] and GPT-2 [201] contain billions of parameters which is magnitudes larger

than Super-resolution models. NLP applications have seen significant rise in popularity

in recent years for mobile applications for tasks such as translation [255], annotation [210]

and text generation [257]. This has resulted in an increased demand for NLP models. These

models are generally based on the complex and heavy Transformer architectures. A sin-

gle forward pass on a full sentence can require several seconds on mobile devices [202],

which is detrimental to the user experience. This is a major hurdle for widespread NLP

model usage. For our next project, we will attempt to apply our dynamic approach towards

Transformer models for better applicability on mobile devices. We will explore options

for model pruning, shared weight training and dynamic algorithms to reduce the overall

inference burden placed on resources in mobile device deployments.

10.2.3 Privacy-Preserving Federated NLP Model Fine-tuning

One more future research direction is how to enable fine-tuned training for Transformer-

based NLP models in a Privacy-Preserving Federated Learning setting (PPFL). The com-

monly applied method for training large Transformer-based NLP models is to first per-

form unsupervised training on general language data to create a language model. Then

the model is further fine-tuned through supervised training on a specific task or dataset.

216

This fine-tuning phase uses knowledge distillation. However, in a Cross-device Federated

Learning setting it is prohibitively expensive to train such large models due to resource

constraints and shared tenancy. Therefore, some of the backward propagation computation

must be offloaded to the server. This requires the application of the split-learning training

paradigm [242], which in turn has extra privacy implications since now some intermediate

results need to be transferred to the server. Therefore, we will attempt to develop a more

secure FL framework which can feasibly train a large NLP model on resource constrained

devices.

217

BIBLIOGRAPHY

[1] Convnetjs. https://cs.stanford.edu/people/karpathy/convnetjs/demo/
cifar10.html.

[2] Onnx. https://github.com/onnx/onnx, 2022.

[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Davis, et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’16, pages 265–
283, Berkeley, CA, USA, 2016. USENIX Association.

[4] Martin Abadi, Andy Chu, Ian J Goodfellow, H Brendan Mcmahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. computer and
communications security, pages 308–318, 2016.

[5] Accountability Act. Health insurance portability and accountability act of 1996.
Public law, 104:191, 1996.

[6] Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for dif-
ferentially private federated learning. Advances in Neural Information Processing
Systems, 34:5052–5064, 2021.

[7] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H Brendan
Mcmahan. cpsgd: Communication-efficient and differentially-private distributed
sgd. arXiv preprint arXiv:1805.10559, 2018.

[8] Ahmad Aghaebrahimian and Mark Cieliebak. Hyperparameter tuning for deep
learning in natural language processing. In 4th swiss text analytics conference (swis-
stext 2019), winterthur, june 18-19 2019. Swisstext, 2019.

[9] Shaashwat Agrawal, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Mad-
dikunta, Thippa Reddy Gadekallu, and Quoc-Viet Pham. Genetic cfl: hyperparam-
eter optimization in clustered federated learning. Computational Intelligence and
Neuroscience, 2021, 2021.

[10] Tanay Agrawal. Hyperparameter optimization in machine learning: make your ma-
chine learning and deep learning models more efficient. Springer, 2021.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://github.com/onnx/onnx

218

[11] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya Patil, Kolten Pearson,
and Soheil Feizi. Compressing gans using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019.

[12] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-
resolution: Dataset and study. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, July 2017.

[13] Joon Young Ahn and Nam Ik Cho. Neural architecture search for image super-
resolution using densely constructed search space: Deconas. In 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR), pages 4829–4836. IEEE, 2021.

[14] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and
lightweight super-resolution with cascading residual network. In Proceedings of
the European conference on computer vision (ECCV), pages 252–268, 2018.

[15] Mohammed Aledhari, Rehma Razzak, Reza M Parizi, and Fahad Saeed. Federated
learning: A survey on enabling technologies, protocols, and applications. IEEE
Access, 8:140699–140725, 2020.

[16] Basemah Alshemali and Jugal Kalita. Improving the reliability of deep neural net-
works in nlp: A review. Knowledge-Based Systems, 191:105210, 2020.

[17] Simone Angarano, Francesco Salvetti, Mauro Martini, and Marcello Chiaberge.
Generative adversarial super-resolution at the edge with knowledge distillation.
arXiv preprint arXiv:2209.03355, 2022.

[18] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An evolutionary
algorithm that constructs recurrent neural networks. IEEE transactions on Neural
Networks, 5(1):54–65, 1994.

[19] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson,
Maxim Krikun, Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Mas-
sively multilingual neural machine translation in the wild: Findings and challenges.
arXiv preprint arXiv:1907.05019, 2019.

[20] HIPAA Compliance Assistance. Summary of the hipaa privacy rule. Office for Civil
Rights, 2003.

[21] Mustafa Ayazoglu. Extremely lightweight quantization robust real-time single-
image super resolution for mobile devices. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 2472–2479, 2021.

219

[22] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. arXiv preprint arXiv:1807.00459,
2018.

[23] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-
ing neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

[24] Syed Muhammad Arsalan Bashir, Yi Wang, Mahrukh Khan, and Yilong Niu. A
comprehensive review of deep learning-based single image super-resolution. PeerJ
Computer Science, 7:e621, 2021.

[25] Parichehr Behjati, Pau Rodriguez, Armin Mehri, Isabelle Hupont, Carles Fernan-
dez Tena, and Jordi Gonzalez. Overnet: Lightweight multi-scale super-resolution
with overscaling network. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2694–2703, 2021.

[26] Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the
sample complexity for private learning and private data release. In Theory of Cryp-
tography Conference, pages 437–454. Springer, 2010.

[27] Aurelien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personalized
and private peer-to-peer machine learning. AISTATS, 2018.

[28] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. Understanding and simplifying one-shot architecture search. In International
Conference on Machine Learning, pages 550–559. PMLR, 2018.

[29] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. Journal of machine learning research, 13(2), 2012.

[30] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi
Morel. Low-complexity single-image super-resolution based on nonnegative neigh-
bor embedding. In British Machine Vision Conference (BMVC), 2012.

[31] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and
Alexander Kolesnikov. Knowledge distillation: A good teacher is patient and consis-
tent. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10925–10934, 2022.

[32] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. An-
alyzing federated learning through an adversarial lens. In International Conference
on Machine Learning, pages 634–643, 2019.

220

[33] Kartikeya Bhardwaj, Milos Milosavljevic, Liam O’Neil, Dibakar Gope, Ramon
Matas, Alex Chalfin, Naveen Suda, Lingchuan Meng, and Danny Loh. Collapsible
linear blocks for super-efficient super resolution. arXiv preprint arXiv:2103.09404,
2021.

[34] Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-
Manor. The 2018 pirm challenge on perceptual image super-resolution. In Proceed-
ings of the European Conference on Computer Vision (ECCV) Workshops, pages
0–0, 2018.

[35] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan
McMahan, et al. Towards federated learning at scale: System design. Proceedings
of Machine Learning and Systems, 1:374–388, 2019.

[36] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1175–1191, 2017.

[37] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierar-
chical clustering of local updates to improve training on non-iid data. In 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

[38] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
markov chain monte carlo. CRC press, 2011.

[39] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architec-
ture search by network transformation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[40] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-
all: Train one network and specialize it for efficient deployment. In International
Conference on Learning Representations, 2019.

[41] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark
for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[42] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Ex-
panding the reach of federated learning by reducing client resource requirements.
arXiv preprint arXiv:1812.07210, 2018.

221

[43] Gilles Callebaut, Guus Leenders, Jarne Van Mulders, Geoffrey Ottoy, Lieven
De Strycker, and Liesbet Van der Perre. The art of designing remote iot de-
vices—technologies and strategies for a long battery life. Sensors, 21(3):913, 2021.

[44] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A tier-based federated
learning system. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing, pages 125–136, 2020.

[45] Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie Bara-
caldo, Heiko Ludwig, and Yue Cheng. Towards taming the resource and data het-
erogeneity in federated learning. In 2019 {USENIX} Conference on Operational
Machine Learning (OpML 19), pages 19–21, 2019.

[46] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. Ba-
sicvsr++: Improving video super-resolution with enhanced propagation and align-
ment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5972–5981, 2022.

[47] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks
on deep neural networks by activation clustering. arXiv preprint arXiv:1811.03728,
2018.

[48] Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray E Sheriff,
and Ce Zhu. Real-world single image super-resolution: A brief review. Information
Fusion, 79:124–145, 2022.

[49] Hongyuan Chen, Yanting Pei, Hongwei Zhao, and Yaping Huang. Super-resolution
guided knowledge distillation for low-resolution image classification. Pattern
Recognition Letters, 155:62–68, 2022.

[50] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical
asynchronous federated learning. arXiv preprint arXiv:2007.06081, 2020.

[51] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1294–1303, 2019.

[52] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

222

[53] Yuantao Chen, Linwu Liu, Volachith Phonevilay, Ke Gu, Runlong Xia, Jingbo Xie,
Qian Zhang, and Kai Yang. Image super-resolution reconstruction based on feature
map attention mechanism. Applied Intelligence, 51(7):4367–4380, 2021.

[54] Hsin-Pai Cheng, Patrick Yu, Haojing Hu, Feng Yan, Shiyu Li, Hai Li, and Yiran
Chen. LEASGD: an efficient and privacy-preserving decentralized algorithm for
distributed learning. CoRR, abs/1811.11124, 2018 (appeared in PPML’18 Workshop
- co-located with NeurIPS’18).

[55] Xi Cheng, Xiang Li, Jian Yang, and Ying Tai. Sesr: Single image super resolution
with recursive squeeze and excitation networks. In 2018 24th International confer-
ence on pattern recognition (ICPR), pages 147–152. IEEE, 2018.

[56] Hyunjin Choi, Judong Kim, Seongho Joe, and Youngjune Gwon. Evaluation of bert
and albert sentence embedding performance on downstream nlp tasks. In 2020 25th
International conference on pattern recognition (ICPR), pages 5482–5487. IEEE,
2021.

[57] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1251–1258, 2017.

[58] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accu-
rate and lightweight super-resolution with neural architecture search. In 2020 25th
International Conference on Pattern Recognition (ICPR), pages 59–64. IEEE, 2021.

[59] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective reinforced evolution
in mobile neural architecture search. In European Conference on Computer Vision,
pages 99–113. Springer, 2020.

[60] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual
averaging for decentralized optimization of pairwise functions. In Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 1388–1396, New York, New York, USA, 20–
22 Jun 2016. PMLR.

[61] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sen-
gupta, and Anil A Bharath. Generative adversarial networks: An overview. IEEE
Signal Processing Magazine, 35(1):53–65, 2018.

[62] Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Federated bayesian
optimization via thompson sampling. Advances in Neural Information Processing
Systems, 33, 2020.

223

[63] Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Differentially private
federated bayesian optimization with distributed exploration. Advances in Neural
Information Processing Systems, 2021.

[64] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep
networks. In Advances in neural information processing systems, pages 1223–1231,
2012.

[65] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, and Paul Tucker. Large
scale distributed deep networks. In International Conference on Neural Information
Processing Systems, pages 1223–1231, 2013.

[66] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-
volutional network for image super-resolution. In European conference on computer
vision, pages 184–199. Springer, 2014.

[67] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE transactions on pattern analysis
and machine intelligence, 38(2):295–307, 2015.

[68] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution
convolutional neural network. In European conference on computer vision, pages
391–407. Springer, 2016.

[69] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-
net: Device-aware progressive search for pareto-optimal neural architectures. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 517–
531, 2018.

[70] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for
natural language understanding and generation. Advances in Neural Information
Processing Systems, 32, 2019.

[71] Zhekang Dong, Chun Sing Lai, Zhao Xu, and Donglian Qi. Single image super-
resolution via the implementation of the hardware-friendly sparse coding. In 2018
37th Chinese Control Conference (CCC), pages 8132–8137. IEEE, 2018.

[72] Zongcai Du, Ding Liu, Jie Liu, Jie Tang, Gangshan Wu, and Lean Fu. Fast and
memory-efficient network towards efficient image super-resolution. In Proceedings

224

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
853–862, 2022.

[73] Cynthia Dwork. Differential privacy. 33rd International Colloquium on Automata,
Languages and Programming, part II (ICALP 2006), 2006.

[74] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential pri-
vacy. Foundations of Computer Science Annual Symposium on, 26(2):51–60, 2010.

[75] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:
A survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[76] Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mot-
taghi, Yun Liu, Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled
medical computer vision. NPJ digital medicine, 4(1):1–9, 2021.

[77] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated
learning: A meta-learning approach. arXiv preprint arXiv:2002.07948, 2020.

[78] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang
Wang. Autogan-distiller: Searching to compress generative adversarial networks. In
International Conference on Machine Learning, pages 3292–3303. PMLR, 2020.

[79] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in feder-
ated learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

[80] Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong. Image super-resolution using
knowledge distillation. In Asian Conference on Computer Vision, pages 527–541.
Springer, 2018.

[81] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. A survey of quantization methods for efficient neural network infer-
ence. arXiv preprint arXiv:2103.13630, 2021.

[82] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust fed-
erated learning in a heterogeneous environment. arXiv preprint arXiv:1906.06629,
2019.

[83] Michelle Goddard. The eu generalhi data protection regulation (gdpr): European
regulation that has a global impact. International Journal of Market Research,
59(6):703–705, 2017.

225

[84] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Ed-
ward Choi. Morphnet: Fast & simple resource-constrained structure learning of deep
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1586–1595, 2018.

[85] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge
distillation: A survey. International Journal of Computer Vision, 129(6):1789–1819,
2021.

[86] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning.
arXiv preprint arXiv:1902.11175, 2019.

[87] Yinghao Guo, Zichao Zhao, Ke He, Shiwei Lai, Junjuan Xia, and Lisheng Fan. Effi-
cient and flexible management for industrial internet of things: A federated learning
approach. Computer Networks, 192:108122, 2021.

[88] Yong Guo, Yongsheng Luo, Zhenhao He, Jin Huang, and Jian Chen. Hierarchical
neural architecture search for single image super-resolution. IEEE Signal Processing
Letters, 27:1255–1259, 2020.

[89] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. Single path one-shot neural architecture search with uniform sampling.
In European Conference on Computer Vision, pages 544–560. Springer, 2020.

[90] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[91] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger, Phillip B
Gibbons, Garth A Gibson, and Eric P Xing. Addressing the straggler problem for
iterative convergent parallel ml. In Proceedings of the Seventh ACM Symposium on
Cloud Computing, pages 98–111. ACM, 2016.

[92] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[93] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European conference on computer vision (ECCV), pages 784–800, 2018.

226

[94] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE international conference on computer
vision, pages 1389–1397, 2017.

[95] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. Fakd: Feature-affinity
based knowledge distillation for efficient image super-resolution. In 2020 IEEE
International Conference on Image Processing (ICIP), pages 518–522. IEEE, 2020.

[96] Lars Hertel, Julian Collado, Peter Sadowski, Jordan Ott, and Pierre Baldi. Sherpa:
Robust hyperparameter optimization for machine learning. SoftwareX, 12:100591,
2020.

[97] Ali HeydariGorji, Siavash Rezaei, Mahdi Torabzadehkashi, Hossein Bobarshad,
Vladimir Alves, and Pai H Chou. Hypertune: Dynamic hyperparameter tuning for
efficient distribution of dnn training over heterogeneous systems. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–8. IEEE,
2020.

[98] Stephanie Holly, Thomas Hiessl, Safoura Rezapour Lakani, Daniel Schall,
Clemens Heitzinger, and Jana Kemnitz. Evaluation of hyperparameter-
optimization approaches in an industrial federated learning system. arXiv preprint
arXiv:2110.08202, 2021.

[99] Cheeun Hong, Heewon Kim, Sungyong Baik, Junghun Oh, and Kyoung Mu Lee.
Daq: Channel-wise distribution-aware quantization for deep image super-resolution
networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2675–2684, 2022.

[100] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nico-
las Papernot. On the effectiveness of mitigating data poisoning attacks with gradient
shaping. arXiv preprint arXiv:2002.11497, 2020.

[101] Seyyedali Hosseinalipour, Christopher G Brinton, Vaneet Aggarwal, Huaiyu Dai,
and Mung Chiang. From federated learning to fog learning: Towards large-scale
distributed machine learning in heterogeneous wireless networks. arXiv preprint
arXiv:2006.03594, 2020.

[102] Zejiang Hou and Sun-Yuan Kung. Multi-dimensional dynamic model compression
for efficient image super-resolution. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 633–643, 2022.

[103] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

227

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications.

[104] Paddlefl, 2020. [Online; accessed 21-January-2020].

[105] Tensorflow federated, 2020. [Online; accessed 21-January-2020].

[106] Han Huang, Li Shen, Chaoyang He, Weisheng Dong, Haozhi Huang, and Guang-
ming Shi. Lightweight image super-resolution with hierarchical and differentiable
neural architecture search. arXiv preprint arXiv:2105.03939, 2021.

[107] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution
from transformed self-exemplars. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5197–5206, 2015.

[108] Sian-Yao Huang and Wei-Ta Chu. Ponas: Progressive one-shot neural architecture
search for very efficient deployment. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–9. IEEE, 2021.

[109] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Quantized neural networks: Training neural networks with low precision
weights and activations. The Journal of Machine Learning Research, 18(1):6869–
6898, 2017.

[110] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-
resolution via information distillation network. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 723–731, 2018.

[111] Håkon Hukkelås, Rudolf Mester, and Frank Lindseth. Deepprivacy: A generative
adversarial network for face anonymization. In International Symposium on Visual
Computing, pages 565–578. Springer, 2019.

[112] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. A
survey on federated learning for resource-constrained iot devices. IEEE Internet of
Things Journal, 2021.

[113] Google Inc. Launching the speech commands dataset, 2017.

[114] Google Inc. The android profiler, 2022.

[115] Xinrui Jiang, Nannan Wang, Jingwei Xin, Xiaobo Xia, Xi Yang, and Xinbo Gao.

228

Learning lightweight super-resolution networks with weight pruning. Neural Net-
works, 144:21–32, 2021.

[116] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architec-
ture search system. In Proceedings of the 25th ACM SIGKDD international confer-
ence on knowledge discovery & data mining, pages 1946–1956, 2019.

[117] Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan,
and Xiaolin Hu. Knowledge distillation via route constrained optimization. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1345–1354, 2019.

[118] Thomas Kailath. The divergence and bhattacharyya distance measures in signal
selection. IEEE transactions on communication technology, 15(1):52–60, 1967.

[119] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977, 2019.

[120] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for
local differential privacy. In Advances in neural information processing systems,
pages 2879–2887, 2014.

[121] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning
through regularization approach. In 2011 IEEE 11th International Conference on
Data Mining Workshops, pages 643–650. IEEE, 2011.

[122] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and
Eric P Xing. Neural architecture search with bayesian optimisation and optimal
transport. Advances in neural information processing systems, 31, 2018.

[123] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for
federated learning. In International Conference on Machine Learning, pages 5132–
5143. PMLR, 2020.

[124] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

[125] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

229

Lehtinen, and Timo Aila. Alias-free generative adversarial networks. Advances in
Neural Information Processing Systems, 34:852–863, 2021.

[126] Mikhail Khodak, Tian Li, Liam Li, M Balcan, Virginia Smith, and Ameet Talwalkar.
Weight sharing for hyperparameter optimization in federated learning. In Int. Work-
shop on Federated Learning for User Privacy and Data Confidentiality in Conjunc-
tion with ICML 2020, 2020.

[127] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional
network for image super-resolution. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1637–1645, 2016.

[128] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[129] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Uni-
versity of Toronto, Technical Report, 2009.

[130] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[131] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual
fairness. In Advances in neural information processing systems, pages 4066–4076,
2017.

[132] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[133] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and
Nicholas D Lane. Mobisr: Efficient on-device super-resolution through heteroge-
neous mobile processors. In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–16, 2019.

[134] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for
the internet of things with edge computing. IEEE network, 32(1):96–101, 2018.

[135] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[136] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In

230

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 10713–10722, 2021.

[137] Shaofeng Li, Shiqing Ma, Minhui Xue, and Benjamin Zi Hao Zhao. Deep learning
backdoors. In Security and Artificial Intelligence, pages 313–334. Springer, 2022.

[138] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust
federated learning through personalization. In International Conference on Machine
Learning, pages 6357–6368. PMLR, 2021.

[139] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-
ing: Challenges, methods, and future directions. arXiv preprint arXiv:1908.07873,
2019.

[140] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-
ing: Challenges, methods, and future directions. IEEE Signal Processing Magazine,
37(3):50–60, 2020.

[141] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

[142] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in federated
learning. arXiv preprint arXiv:1905.10497, 2019.

[143] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the
convergence of fedavg on non-iid data. In International Conference on Learning
Representations, 2019.

[144] Xiaofang Li, Yirui Wu, Wen Zhang, Ruichao Wang, and Feng Hou. Deep learning
methods in real-time image super-resolution: a survey. Journal of Real-Time Image
Processing, 17(6):1885–1909, 2020.

[145] Y Li, Bruno Sixou, and F Peyrin. A review of the deep learning methods for medical
images super resolution problems. IRBM, 42(2):120–133, 2021.

[146] Yawei Li, Kai Zhang, Radu Timofte, Luc Van Gool, Fangyuan Kong, Mingxi Li,
Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, et al. Ntire 2022 challenge
on efficient super-resolution: Methods and results. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1062–1102, 2022.

[147] Xiangru Lian, Ce Zhang, Zhang, et al. Can decentralized algorithms outperform

231

centralized algorithms? a case study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Processing Systems 30, pages 5330–
5340. 2017.

[148] Zhuofan Liao, Ruiming Zhang, Shiming He, Daojian Zeng, Jin Wang, and Hye-Jin
Kim. Deep learning-based data storage for low latency in data center networks.
IEEE Access, 7:26411–26417, 2019.

[149] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-
Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in
mobile edge networks: A comprehensive survey. IEEE Communications Surveys &
Tutorials, 22(3):2031–2063, 2020.

[150] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation
for robust model fusion in federated learning. arXiv preprint arXiv:2006.07242,
2020.

[151] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014.

[152] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.
Sparse convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 806–814, 2015.

[153] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. In Proceedings of the European conference on computer vision
(ECCV), pages 19–34, 2018.

[154] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. arXiv
preprint arXiv:1711.00436, 2017.

[155] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture
search. In International Conference on Learning Representations, 2018.

[156] Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. Pruning algorithms
to accelerate convolutional neural networks for edge applications: A survey. arXiv
preprint arXiv:2005.04275, 2020.

232

[157] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In International Symposium
on Research in Attacks, Intrusions, and Defenses, pages 273–294. Springer, 2018.

[158] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Edge-assisted hierarchical
federated learning with non-iid data. arXiv preprint arXiv:1905.06641, 2019.

[159] Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco:
Diverse conditional image synthesis via contrastive generative adversarial network.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 16377–16386, 2021.

[160] Shaoli Liu, Chengjian Zheng, Kaidi Lu, Si Gao, Ning Wang, Bofei Wang, Diankai
Zhang, Xiaofeng Zhang, and Tianyu Xu. Evsrnet: Efficient video super-resolution
with neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2480–2485, 2021.

[161] Xiangbin Liu, Shuqi Chen, Liping Song, Marcin Woźniak, and Shuai Liu. Self-
attention negative feedback network for real-time image super-resolution. Journal of
King Saud University-Computer and Information Sciences, 34(8):6179–6186, 2022.

[162] Xin Liu, Yuang Li, Josh Fromm, Yuntao Wang, Ziheng Jiang, Alex Mariakakis,
and Shwetak Patel. Splitsr: An end-to-end approach to super-resolution on mobile
devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(1):1–20, 2021.

[163] Enmin Lu and Xiaoxiao Hu. Image super-resolution via channel attention and spatial
attention. Applied Intelligence, 52(2):2260–2268, 2022.

[164] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik
Goodman, and Wolfgang Banzhaf. Nsga-net: A multi-objective genetic algorithm
for neural architecture search. 2018.

[165] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practi-
cal guidelines for efficient cnn architecture design. In Proceedings of the European
conference on computer vision (ECCV), pages 116–131, 2018.

[166] Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. Efficient super resolution
using binarized neural network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[167] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private
learners: Attacks and defenses. arXiv preprint arXiv:1903.09860, 2019.

233

[168] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of
human segmented natural images and its application to evaluating segmentation al-
gorithms and measuring ecological statistics. In Proceedings Eighth IEEE Inter-
national Conference on Computer Vision. ICCV 2001, volume 2, pages 416–423.
IEEE, 2001.

[169] Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed in-
frastructures: Challenges, techniques, and tools. ACM Computing Surveys (CSUR),
53(1):1–37, 2020.

[170] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from de-
centralized data. In Artificial Intelligence and Statistics, pages 1273–1282. PMLR,
2017.

[171] H Brendan McMahan et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1), 2021.

[172] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629, 2016.

[173] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differ-
entially private recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

[174] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. A survey on bias and fairness in machine learning. arXiv preprint
arXiv:1908.09635, 2019.

[175] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-resolution with non-local
sparse attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3517–3526, 2021.

[176] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-
sukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher as-
sistant. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 5191–5198, 2020.

[177] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learn-
ing. In International Conference on Machine Learning, pages 4615–4625. PMLR,
2019.

234

[178] Hesham Mostafa. Robust federated learning through representation matching and
adaptive hyper-parameters. arXiv e-prints, pages arXiv–1912, 2019.

[179] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis
of deep learning: Stand-alone and federated learning under passive and active white-
box inference attacks. arXiv preprint arXiv:1812.00910, 2018.

[180] Kamyar Nazeri, Harrish Thasarathan, and Mehran Ebrahimi. Edge-informed single
image super-resolution. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019.

[181] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[182] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and
training deep architectures. arXiv preprint arXiv:1704.08792, 2017.

[183] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and
H Vincent Poor. Federated learning for internet of things: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[184] Ying Nie, Kai Han, Zhenhua Liu, An Xiao, Yiping Deng, Chunjing Xu, and Yunhe
Wang. Ghostsr: Learning ghost features for efficient image super-resolution. arXiv
preprint arXiv:2101.08525, 2021.

[185] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with
heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE International
Conference on Communications (ICC), pages 1–7. IEEE, 2019.

[186] Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg,
et al. Parallel wavenet: Fast high-fidelity speech synthesis. In International confer-
ence on machine learning, pages 3918–3926. PMLR, 2018.

[187] Jacquelyn K O’herrin, Norman Fost, and Kenneth A Kudsk. Health insurance porta-
bility accountability act (hipaa) regulations: effect on medical record research. An-
nals of surgery, 239(6):772, 2004.

[188] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. Dynamic bit-width
reconfiguration for energy-efficient deep learning hardware. In Proceedings of the
International Symposium on Low Power Electronics and Design, pages 1–6, 2018.

235

[189] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution image re-
construction: a technical overview. IEEE signal processing magazine, 20(3):21–36,
2003.

[190] Shuai Peng, Hongbo Huang, Weijun Chen, Liang Zhang, and Weiwei Fang. More
trainable inception-resnet for face recognition. Neurocomputing, 411:9–19, 2020.

[191] Felisberto Pereira, Ricardo Correia, Pedro Pinho, Sérgio I Lopes, and Nuno Borges
Carvalho. Challenges in resource-constrained iot devices: Energy and communi-
cation as critical success factors for future iot deployment. Sensors, 20(22):6420,
2020.

[192] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural
architecture search via parameters sharing. In International conference on machine
learning, pages 4095–4104. PMLR, 2018.

[193] Mohammad Taher Pilehvar and Jose Camacho-Collados. Embeddings in natural
language processing: Theory and advances in vector representations of meaning.
Synthesis Lectures on Human Language Technologies, 13(4):1–175, 2020.

[194] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for
federated learning. arXiv preprint arXiv:1912.13445, 2019.

[195] Robin L Plackett. Karl pearson and the chi-squared test. International statistical
review/revue internationale de statistique, pages 59–72, 1983.

[196] Barnabas Poczos, Ruslan Salakhutdinov, Alexander Smola, and co chair. Scaling
distributed machine learning with system and algorithm co-design.

[197] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on
deep learning: Algorithms, techniques, and applications. ACM Computing Surveys
(CSUR), 51(5):1–36, 2018.

[198] Kalpesh Prajapati, Vishal Chudasama, Heena Patel, Kishor Upla, Kiran Raja,
Raghavendra Ramachandra, and Christoph Busch. Direct unsupervised super-
resolution using generative adversarial network (dus-gan) for real-world data. IEEE
Transactions on Image Processing, 30:8251–8264, 2021.

[199] Jia Qian, Xenofon Fafoutis, and Lars Kai Hansen. Towards federated learning: Ro-
bustness analytics to data heterogeneity. arXiv preprint arXiv:2002.05038, 2020.

236

[200] Yajun Qiu, Ruxin Wang, Dapeng Tao, and Jun Cheng. Embedded block residual
network: A recursive restoration model for single-image super-resolution. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages 4180–
4189, 2019.

[201] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[202] Md Atiqur Rahman and Mohamed Hamada. Lossless text compression using gpt-2
language model and huffman coding. In SHS Web of Conferences, volume 102, page
04013. EDP Sciences, 2021.

[203] S Sundhar Ram, Angelia Nedic, and Venugopal V Veeravalli. Distributed subgradi-
ent projection algorithm for convex optimization. In Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International Conference on, pages 3653–
3656. IEEE, 2009.

[204] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for im-
age classification: A comprehensive review. Neural computation, 29(9):2352–2449,
2017.

[205] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image
classifiers. In International Conference on Machine Learning, pages 2902–2911.
PMLR, 2017.

[206] Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated
optimization. In International Conference on Learning Representations, 2020.

[207] General Data Protection Regulation. Regulation (eu) 2016/679 of the european par-
liament and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing directive 95/46. Official Journal of the European Union (OJ), 59(1-
88):294, 2016.

[208] Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Ro-
bust federated learning: The case of affine distribution shifts. Advances in Neural
Information Processing Systems, 33:21554–21565, 2020.

[209] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang

237

Chen, and Xin Wang. A comprehensive survey of neural architecture search: Chal-
lenges and solutions. ACM Computing Surveys (CSUR), 54(4):1–34, 2021.

[210] Alexander M Rush. The annotated transformer. In Proceedings of workshop for
NLP open source software (NLP-OSS), pages 52–60, 2018.

[211] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. A generic framework for privacy pre-
serving deep learning. arXiv preprint arXiv:1811.04017, 2018.

[212] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[213] Yuris Mulya Saputra, Dinh Thai Hoang, Diep N Nguyen, Eryk Dutkiewicz,
Markus Dominik Mueck, and Srikathyayani Srikanteswara. Energy demand pre-
diction with federated learning for electric vehicle networks. In 2019 IEEE Global
Communications Conference (GLOBECOM), pages 1–6. IEEE, 2019.

[214] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Ro-
bust and communication-efficient federated learning from non-iid data. IEEE trans-
actions on neural networks and learning systems, 31(9):3400–3413, 2019.

[215] Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. Federated learning with coop-
erating devices: A consensus approach for massive iot networks. IEEE Internet of
Things Journal, 7(5):4641–4654, 2020.

[216] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the
first adversarially robust neural network model on mnist. In International Confer-
ence on Learning Representations, 2018.

[217] Patrick Schratz, Jannes Muenchow, Jakob Richter, Eugenia Iturritxa, and Alexan-
der Brenning. Performance evaluation and hyperparameter tuning of statistical and
machine-learning models using spatial data. In 10th International Conference on
Ecological Informatics, volume 24, 2018.

[218] Ali Shahsavari, Sima Ranjbari, and Toktam Khatibi. Proposing a novel cascade en-
semble super resolution generative adversarial network (cesr-gan) method for the
reconstruction of super-resolution skin lesion images. Informatics in Medicine Un-
locked, 24:100628, 2021.

238

[219] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against poisoning
attacks in collaborative deep learning systems. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 508–519, 2016.

[220] Jacob Shermeyer and Adam Van Etten. The effects of super-resolution on object
detection performance in satellite imagery. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[221] Reza Shokri et al. Bypassing backdoor detection algorithms in deep learning. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages 175–
183. IEEE, 2020.

[222] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications secu-
rity, pages 1310–1321, 2015.

[223] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

[224] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[225] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-
footprint deep learning. Advances in Neural Information Processing Systems, 28,
2015.

[226] Satya P Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli, Parasuraman Padmanab-
han, and Balázs Gulyás. 3d deep learning on medical images: a review. Sensors,
20(18):5097, 2020.

[227] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay
the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[228] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated
multi-task learning. arXiv preprint arXiv:1705.10467, 2017.

[229] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International conference on machine learn-
ing, pages 2171–2180. PMLR, 2015.

239

[230] Jae Woong Soh, Gu Yong Park, Junho Jo, and Nam Ik Cho. Natural and realistic
single image super-resolution with explicit natural manifold discrimination. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8122–8131, 2019.

[231] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Interna-
tional conference on computational learning theory, pages 545–560. Springer, 2005.

[232] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data
poisoning attacks. In Advances in Neural Information Processing Systems, pages
3517–3529, 2017.

[233] Yuxuan Sun, Sheng Zhou, and Deniz Gündüz. Energy-aware analog aggregation
for federated learning with redundant data. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pages 1–7. IEEE, 2020.

[234] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can
you really backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

[235] Anushri Suresh, JS Nisha, Varun P Gopi, et al. Rich feature distillation with feature
affinity module for efficient image dehazing. Optik, 267:169656, 2022.

[236] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Thirty-first AAAI conference on artificial intelligence, 2017.

[237] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive
residual network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3147–3155, 2017.

[238] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized
federated learning. IEEE Transactions on Neural Networks and Learning Systems,
2022.

[239] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2820–2828, 2019.

[240] Colin Tankard. What the gdpr means for businesses. Network Security, 2016(6):5–8,
2016.

240

[241] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp
pipeline. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4593–4601, 2019.

[242] Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and
Lichao Sun. Splitfed: When federated learning meets split learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pages 8485–8493,
2022.

[243] Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei Zhang, Ming-Hsuan
Yang, Muhammad Haris, et al. Ntire 2018 challenge on single image super-
resolution: Methods and results. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2018.

[244] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor
attacks. In Advances in Neural Information Processing Systems, pages 8000–8010,
2018.

[245] Gerard Jacques van Wyk and Anna Sergeevna Bosman. Evolutionary neural ar-
chitecture search for image restoration. In 2019 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[246] Emmanuel Vazquez and Julien Bect. Convergence properties of the expected im-
provement algorithm with fixed mean and covariance functions. Journal of Statisti-
cal Planning and inference, 140(11):3088–3095, 2010.

[247] A Helen Victoria and G Maragatham. Automatic tuning of hyperparameters using
bayesian optimization. Evolving Systems, 12(1):217–223, 2021.

[248] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor at-
tacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 707–723. IEEE, 2019.

[249] Han Wang, Wei Wu, Yang Su, Yongsheng Duan, and Pengze Wang. Image super-
resolution using a improved generative adversarial network. In 2019 IEEE 9th In-
ternational Conference on Electronics Information and Emergency Communication
(ICEIEC), pages 312–315. IEEE, 2019.

[250] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learn-
ing on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 1698–1707. IEEE, 2020.

241

[251] Hu Wang, Peng Chen, Bohan Zhuang, and Chunhua Shen. Fully quantized image
super-resolution networks. In Proceedings of the 29th ACM International Confer-
ence on Multimedia, pages 639–647, 2021.

[252] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tack-
ling the objective inconsistency problem in heterogeneous federated optimization.
Advances in Neural Information Processing Systems, 33, 2020.

[253] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning
for visual intelligence: A review and new outlooks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[254] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei
An, and Yulan Guo. Exploring sparsity in image super-resolution for efficient infer-
ence. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4917–4926, 2021.

[255] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. Learning deep transformer models for machine translation. In ACL
(1), 2019.

[256] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya,
Ting He, and Kevin Chan. Adaptive federated learning in resource constrained
edge computing systems. IEEE Journal on Selected Areas in Communications,
37(6):1205–1221, 2019.

[257] Tianming Wang, Xiaojun Wan, and Hanqi Jin. Amr-to-text generation with graph
transformer. Transactions of the Association for Computational Linguistics, 8:19–
33, 2020.

[258] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skip-
net: Learning dynamic routing in convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 409–424, 2018.

[259] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial
networks. In Proceedings of the European conference on computer vision (ECCV)
workshops, pages 0–0, 2018.

[260] Zheng Wang, Mang Ye, Fan Yang, Xiang Bai, and Shin’ichi Satoh. Cascaded sr-
gan for scale-adaptive low resolution person re-identification. In IJCAI, volume 1,
page 4, 2018.

242

[261] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kinder-
mans. Neural predictor for neural architecture search. In European Conference on
Computer Vision, pages 660–676. Springer, 2020.

[262] Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao
Zheng, and Ben Y Zhao. Backdoor attacks against deep learning systems in the
physical world. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6206–6215, 2021.

[263] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation,
learning, and optimization, 12(3):729, 2012.

[264] Ronald J Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3):229–256, 1992.

[265] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,
Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10734–10742, 2019.

[266] Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and Andrew Gordon Wilson. Prac-
tical multi-fidelity bayesian optimization for hyperparameter tuning. In Uncertainty
in Artificial Intelligence, pages 788–798. PMLR, 2020.

[267] Wentai Wu, Ligang He, Weiwei Lin, and Rui Mao. Accelerating federated learning
over reliability-agnostic clients in mobile edge computing systems. IEEE Transac-
tions on Parallel and Distributed Systems, 2020.

[268] Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte,
and Luc Van Gool. Trilevel neural architecture search for efficient single image
super-resolution. arXiv preprint arXiv:2101.06658, 2021.

[269] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

[270] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

243

[271] Zeyu Xiao, Xueyang Fu, Jie Huang, Zhen Cheng, and Zhiwei Xiong. Space-time
distillation for video super-resolution. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2113–2122, 2021.

[272] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor at-
tacks against federated learning. In International Conference on Learning Repre-
sentations, 2019.

[273] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring
randomly wired neural networks for image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1284–1293, 2019.

[274] Jingwei Xin, Nannan Wang, Xinrui Jiang, Jie Li, Heng Huang, and Xinbo Gao.
Binarized neural network for single image super resolution. In European conference
on computer vision, pages 91–107. Springer, 2020.

[275] Eric P. Xing, Qirong Ho, Wei Dai, Kyu Kim Jin, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new plat-
form for distributed machine learning on big data. IEEE Transactions on Big Data,
1(2):1335–1344, 2015.

[276] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video
enhancement with task-oriented flow. volume 127, pages 1106–1125. Springer,
2019.

[277] Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed au-
tonomous online learning: Regrets and intrinsic privacy-preserving properties. IEEE
Transactions on Knowledge and Data Engineering, 25(11):2483–2493, 2013.

[278] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. Characterizing impacts of heterogeneity in federated learning
upon large-scale smartphone data, 2021.

[279] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning
algorithms: Theory and practice. Neurocomputing, 415:295–316, 2020.

[280] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 10(2):1–19, 2019.

[281] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. Applied federated learning: Im-

244

proving google keyboard query suggestions. arXiv preprint arXiv:1812.02903,
2018.

[282] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad
Shikh-Bahaei. Energy efficient federated learning over wireless communication net-
works. arXiv preprint arXiv:1911.02417, 2019.

[283] Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. Federated
learning with unbiased gradient aggregation and controllable meta updating. arXiv
preprint arXiv:1910.08234, 2019.

[284] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. Optimizing deep learning hyper-parameters through an evolu-
tionary algorithm. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, pages 1–5, 2015.

[285] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato,
and Qiang Yang. A fairness-aware incentive scheme for federated learning. In Pro-
ceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 393–399,
2020.

[286] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Zhaowen Wang, Xinchao Wang,
and Thomas Huang. Wide activation for efficient and accurate image super-
resolution. arXiv preprint arXiv:1808.08718, 2018.

[287] Syed Zawad, Ahsan Ali, Pin-Yu Chen, Ali Anwar, Yi Zhou, Nathalie Baracaldo,
Yuan Tian, and Feng Yan. Curse or redemption? how data heterogeneity affects the
robustness of federated learning. arXiv preprint arXiv:2102.00655, 2021.

[288] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using
sparse-representations. In International conference on curves and surfaces, pages
711–730. Springer, 2010.

[289] Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun
Zhang, Malith Jayaweera, David Kaeli, Bin Ren, et al. Achieving on-mobile real-
time super-resolution with neural architecture and pruning search. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4821–4831,
2021.

[290] Anlan Zhang, Chendong Wang, Xing Liu, Bo Han, and Feng Qian. Mobile volumet-
ric video streaming enhanced by super resolution. In Proceedings of the 18th Inter-
national Conference on Mobile Systems, Applications, and Services, pages 462–463,
2020.

245

[291] Chengliang Zhang, Huangshi Tian, Wei Wang, and Feng Yan. Stay fresh: Specu-
lative synchronization for fast distributed machine learning. In 2018 IEEE 38th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 99–109.
IEEE, 2018.

[292] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson. Engineering federated
learning systems: A literature review. In International Conference on Software Busi-
ness, pages 210–218. Springer, 2020.

[293] Huanle Zhang, Mi Zhang, Xin Liu, Prasant Mohapatra, and Michael DeLucia. Auto-
matic tuning of federated learning hyper-parameters from system perspective. arXiv
preprint arXiv:2110.03061, 2021.

[294] Jiale Zhang, Junjun Chen, Di Wu, Bing Chen, and Shui Yu. Poisoning attack in
federated learning using generative adversarial nets. In 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 374–380. IEEE, 2019.

[295] Jianwei Zhang, Dong Li, Lituan Wang, and Lei Zhang. One-shot neural architecture
search by dynamically pruning supernet in hierarchical order. International journal
of neural systems, 31(07):2150029, 2021.

[296] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging sgd. In Advances in Neural Information Processing Systems, pages 685–
693, 2015.

[297] Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, and Yunhe
Wang. Data-free knowledge distillation for image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7852–7861, 2021.

[298] Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang
Song, and Hu Tuo. Improving quality of experience by adaptive video streaming
with super-resolution. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 1957–1966. IEEE, 2020.

[299] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image
super-resolution using very deep residual channel attention networks. In Proceed-
ings of the European conference on computer vision (ECCV), pages 286–301, 2018.

[300] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense

246

network for image super-resolution. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2472–2481, 2018.

[301] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learn-
ing for efficient image super-resolution. Advances in Neural Information Processing
Systems, 34:2695–2706, 2021.

[302] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Learning efficient image super-
resolution networks via structure-regularized pruning. In International Conference
on Learning Representations, 2021.

[303] Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. Efficient
image super-resolution using pixel attention. In European Conference on Computer
Vision, pages 56–72. Springer, 2020.

[304] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-
shot neural architecture search. In International Conference on Machine Learning,
pages 12707–12718. PMLR, 2021.

[305] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[306] Haifeng Zheng, Min Gao, Zhizhang Chen, and Xinxin Feng. A distributed hier-
archical deep computation model for federated learning in edge computing. IEEE
Transactions on Industrial Informatics, 2021.

[307] Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samu-
lowitz, and Heiko Ludwig. Flora: Single-shot hyper-parameter optimization for
federated learning. arXiv preprint arXiv:2112.08524, 2021.

[308] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

[309] Ahmed Zouinkhi, Aymen Flah, and Lucian Mihet-Popa. A novel energy-safe al-
gorithm for enhancing the battery life for iot sensors’ applications. Energies,
14(20):6613, 2021.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Overview
	Summary of Contributions
	Automated Deep Learning Model Design and Tuning
	EPNAS: Efficient Progressive Neural Architecture Search
	FedCust: Offloading Hyperparameter Customization for Federated Learning

	Efficient and Robust Deep Learning Training
	LEASGD: Towards Decentralized Deep Learning with Differential Privacy
	TiFL: A Tier-based Federated Learning System
	HDFL: Dropout and Multi-Performance Metrics Aware Fair Scheduler for Federated Learning
	Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated Learning

	Adaptive Deep Learning Model Deployment
	DySR: Adaptive Super-Resolution via Algorithm and System Co-design
	AdaSR: Adaptive Super Resolution with Shared Architecture and Weights for Cross Platform Deployment and Dynamic Runtime Environment

	Organization

	EPNAS: Efficient Progressive Neural Architecture Search
	Introduction
	Related Works
	Framework
	Policy Network
	Search Pattern
	Speedup EPNAS with performance prediction

	Experimental Evaluation
	Results on ImageNet

	FedCust: Offloading Hyperparameter Customization for Federated Learning
	Introduction
	Background and Related Work
	Data Heterogeneity in Federated Learning
	Hyperparameter Optimization
	Hyperparameter Optimization for Data Centralized Learning
	One-size-fits-all Hyperparameter Optimization for FL
	Hyperparameter Customization for FL

	Federated Learning Hyperparameter Optimization Study
	Federated Learning: A Primer
	Heterogeneity-oblivious vs. Heterogeneity-aware Hyperparameter Optimization
	Resource Cost and Scalability

	Hyperparameter Customization Offloading
	FedCust: Heterogeneity-aware Hyperparameter Optimization
	Proxy dataset-based Hyperparameter Customization
	Privacy-Preserving Hyperparameter Customization via Hyperparameter Reference Table
	Determining HRT Granularity
	Scalable Hyperparameter Customization via Bayesian Strengthened Tuner

	Evaluation
	Experiment Setup
	Performance Comparison
	Hyperparameter Optimization Cost
	Scalability
	HRT Size
	Resource Cost
	Comparison against State-of-the-art
	Compatibility with Other Heterogeneity-aware FL Optimization
	Impact of Proxy Dataset Quality

	LEASGD: Towards Decentralized Deep Learning with Differential Privacy
	Introduction
	Related Work
	Non-private Leader-Follower Elastic Averaging Stochastic Gradient Descent Algorithm
	Problem Setting
	 Decentralized leader-follower Topology
	Algorithm Hyperparameters
	Asynchronous LEASGD Algorithm

	Non-private Leader-Follower Elastic Averaging Stochastic Gradient Descent Algorithm
	Problem Setting
	 Decentralized Leader-Follower Topology
	Algorithm Hyperparameters
	Asynchronous LEASGD Algorithm

	Private-preserving Scheme
	Differential Privacy Model
	Privacy-preserving Scheme

	Analysis
	Convergence Rate Analysis
	Privacy Trade-off Analysis

	Experimental Evaluation
	Experiment Setup
	Non-private Setting Comparison
	Differential Private Comparison

	TiFL: A Tier-based Federated Learning System
	Introduction
	Related Work
	Heterogeneity Impact Study
	Formulating Vanilla Federated Learning
	Heterogeneity Impact Analysis
	Experimental Study

	TiFL : A Tier-based Federated Learning System
	System Overview
	Profiling and Tiering
	Straw-man Proposal: Static Tier Selection Algorithm
	Adaptive Tier Selection Algorithm
	Training Time Estimation Model
	Discussion: Compatibility with Privacy-Preserving Federated Learning

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Training Time Estimation via Analytical Model
	Resource Heterogeneity
	Data Heterogeneity
	Resource and Data Heterogeneity
	Adaptive Selection Policy
	Adaptive Selection Policy (LEAF)

	Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated Learning
	Introduction
	Related Works
	Experiment Setups for FL Backdooring
	Data Heterogeneity Seems to Be a Redemption
	Redemption 1: Data Heterogeneity Reduces Attack Effectiveness of Backdooring
	Redemption 2: An Overlooked Key Factor: Malicious Data Distribution
	Redemption 3: Effective Attack Strategies are More Challenging to Make

	Data Heterogeneity Brings Unseen Curses
	Curse 1: Local Attack Timing: a New Vulnerability
	Curse 2: Failure of Skewed-Feature Based Defense
	Curse 3: Malicious Data Distribution as Leverage

	Defending the Curses Brought by Data Heterogeneity

	HDFL: Dropout and Multi-Performance Metrics Aware Fair Schedulerfor Federated Learning
	Introduction
	Background and Related Work
	Characterization Study
	Performance Metrics
	Tradeoff Between Fairness and Training Time
	Impact of Dropout on Fairness and Model Error
	Tradeoff Between Cost and Model Error

	Methodology
	Problem Formulation
	HDFL Overview
	Selection Probability
	Selection Mutualism

	Evaluation

	DySR: Adaptive Super-Resolution via Algorithm and System Co-design
	Introduction
	Related Works
	Motivation and Challenges
	Algorithm and System Co-design: DySR
	Adaption-aware One-shot Neural Architecture Search
	Adaptive Sub-Graphs
	Model Adaption Policy

	Evaluation
	Training Setup
	Baselines and Parameters
	Pareto Optimality
	Dynamic Resource Adaptivity

	AdaSR: Adaptive Super Resolution with Shared Architecture and Weights for Cross Platform Deployment and Dynamic Runtime Environment
	Introduction
	Related Works
	Proposed Method
	Operation Reduction
	AdaSR Architecture Design
	Progressive Knowledge Distillation
	Function Matching and Regularization
	Depth Consolidation
	Bayesian-tuned Loss Function

	AdaSR Training

	Evaluation
	Cross Platform Pareto Optimality
	Dynamic Runtime Environment
	Comparison with State-of-the-art Methods
	Visual Qualitative Results

	Conclusion and Future Works
	Conclusion
	Automated Deep Learning Model Design and Tuning
	EPNAS: Efficient Progressive Neural Architecture Search
	FedCust: Offloading Hyperparameter Customization for Federated Learning

	Efficient and Robust Deep Learning Training
	LEASGD: Towards Decentralized Deep Learning with Differential Privacy
	TiFL: A Tier-based Federated Learning System
	HDFL: Dropout and Multi-Performance Metrics Aware Fair Scheduler for Federated Learning
	Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated Learning

	Adaptive Deep Learning Model Deployment
	DySR: Adaptive Super-Resolution via Algorithm and System Co-design
	AdaSR: Adaptive Super Resolution with Shared Architecture and Weights for Cross Platform Deployment and Dynamic Runtime Environment

	Future Works
	Holistic Approach for Broader Federated Learning Architectures
	Adaptive Transformer Models
	Privacy-Preserving Federated NLP Model Fine-tuning

	Bibliography

