7 research outputs found

    Sistema para medição e análise de balistocardiografia baseado em MEMS

    Get PDF
    Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e ComputadoresO bombeamento do sangue estimulado pelo coração provoca uma variação do centro de massa do corpo, dando origem ao aparecimento de micromovimentos devido às forças de repulsão para que este mantenha o seu momento físico. Um sistema de balistocardiografia convenciona um método não invasivo, que tira proveito desses micromovimentos produzindo um sinal representativo do comportamento mecânico do sistema cardiovascular e do corpo. Nas últimas décadas, os avanços tecnológicos possibilitaram o desenvolvimento de sistemas de medição de BCG (balistocardiografia) de maior capacidade de diagnóstico, já que antigamente caíram em desuso devido ao aparecimento do ECG (Eletrocardiograma) e da Ressonância Magnética. Recentemente, têm sido desenvolvidos alguns sistemas para medição de BCG em diferentes abordagens, no entanto ainda apresentam certos inconvenientes uma vez que impõem algum limite prático na medição devido à posição desconfortável do utilizador, ou relativamente às características do sensor utilizado que exige a necessidade de estar em contacto com o corpo para uma aquisição plausível do sinal. Por outro lado, o progresso a nível da microtecnologia e do desenvolvimento de acelerómetros MEMS tem possibilitado a criação de sensores de elevada resolução. Entre eles, surge o desenvolvimento de acelerómetros MEMS baseados no tempo de pull-in que utilizam o tempo como mecanismo de transdução da aceleração, permitindo alcançar resoluções na ordem dos micro-g. Surge assim a oportunidade de implementar um sistema para aquisição de sinais de BCG que integre um acelerómetro MEMS baseado na medição de tempos de pull-in. Esta dissertação reflete o dimensionamento e implementação desse sistema de medição de BCG assim como o desenvolvimento de software para aquisição e visualização do sinal medido em tempo real. Com o intuito de averiguar a qualidade do dispositivo desenvolvido na deteção dos sinais de BCG, são implementadas métricas para identificação das ondas típicas desse sinal e que permitem determinar alguns eventos referentes ao comportamento cardíaco. Estes procedimentos habilitam a utilização deste sistema na realização de análises clinicas para uma investigação mais consistente da capacidade de diagnóstico desta técnica.The heart pumping causes a variation of the body's center of mass, which creates micro movements due to the repulsive forces that keep the physical momentum. A ballistocardiography system is a non-invasive method, which takes advantage of these micro movements producing a representative signal of the mechanical behavior of the cardiovascular system and body. In recent decades, technological advances have enabled the development of ballistocardiography (BCG) measurement systems with reasonable performance, as opposed to the initial systems that revealed weaknesses and have fallen into disuse due to the appearance of the ECG (electrocardiogram) and Magnetic Resonance. Recently some BCG systems have been developed using different technological approaches, however they still present drawbacks related to signal acquisition such as uncomfortable user position during measurements, or using sensors that need to be in contact with the body to a plausible signal acquisition. On the other hand, the progress level of microtechnology and MEMS accelerometers has enabled the creation of high-resolution sensors. Among them, MEMS accelerometers based on the pull-in time, using time as the acceleration transduction mechanism, have been demonstrated and enable the measurement of micro-g signals. This raises the opportunity of implementing an acquisition system for BCG signals that incorporate a MEMS accelerometer based on the measurement of pull-in time. This dissertation addresses the design and implementation of such BCG measuring system as well as the development of software for the acquisition and visualization of the measured signal in real time. To determine the quality of the device developed in the detection of BCG signals, metrics for identification of the typical waves of the signal and for determining some events related to cardiac performance are also implemented. These procedures enable the use of this system to perform clinical analysis aiming a more consistent study of the diagnostic capability of this technique

    Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate

    No full text
    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by motion artifacts rather than instrumentation

    Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate

    No full text
    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by motion artifacts rather than instrumentation

    Physics-Based Model-Guided Machine Learning Analysis of Wrist Ballistocardiography for Cuff-Less Blood Pressure Monitoring

    Get PDF
    Cuff-less blood pressure (BP) monitoring technology is being widely pursued today. In this research we investigated the wrist ballistocardiogram (BCG) as a limb BCG, to develop a scientific basis to use the limb BCG to for cuff-less BP monitoring. In our study, we pursue two alternative approaches to the use of wrist BCG signal for BP monitoring: (1) use of the wrist BCG as proximal timing in pulse transit time (PTT) based methods; (2) use of wrist BCG wave features for BP monitoring. In this regard, the physics-based model is developed to elucidate the mechanism responsible for the generation of the BCG signal at the body’s extremity limb locations. The developed and experimentally validated mathematical model can predict the limb BCG in responses to the arterial BP waves in the aorta. The model suggests that the limb BCG waveform reveals the timings and amplitudes associated with the aortic BP waves and it exhibits meaningful morphological changes in response to the alterations in the CV risk predictors. Such understanding combined with machine learning techniques has helped us to extract viable features, and construct predictive models that can estimate BP. The findings of this study show that limb BCG has the potential to realize convenient cuff-less BP monitoring. First, it is a strong candidate to extract the proximal timing for PTT based methods. Second, BCG wave features are associated with BP and it could be used for BP monitoring. Third, we can combine the PTT with BCG wave features to achieve more comprehensive prediction models with superior performance

    Advanced bioimpedance signal processing techniques for hemodynamic monitoring during anesthesia

    Get PDF
    Aplicat embargament des de la data de defensa fins els maig 2020.Cardiac output (CO) defines the blood flow arriving from the heart to the different organs in the body and it is thus a primary determinant of global 02 transport. Cardiac output has traditionally been measured using invasive methods, whose risk sometimes exceeds the advantages of a cardiac output monitoring. In this context, the minimization of risk in new noninvasive technologies for CO monitoring could translate into major advantages for clinicians, hospitals and patients: ease of usage and availability, reduced recovery time, and improved patient outcome. Impedance Cardiography (ICG) is a promising noninvasive technology for cardiac output monitoring but available information on the ICG signals is more scare than other physiological signals such as the electrocardiogram (ECG). The present Doctoral Thesis contributes to the development of signal treatment techniques for the ICG in order to create an innovative hemodynamic monitor. First, an extensive literature review is provided regarding the basics of the clinical background in which cardiac output monitoring is used and concerning the state of the art of cardiac output monitors on the market. This Doctoral Thesis has produced a considerable amount of clinical data which is also explained in detail. These clinical data are also useful to complement the theoretical explanation of patient indices such as heart rate variability, blood flow and blood pressure. In addition, a new method to create synthetic biomedical signals with known time-frequency characteristics is introduced. One of the first analysis in this Doctoral Thesis studies the time difference between peak points of the heart beats in the ECG and the ICG: the RC segment. This RC segment is a measure of the time delay between electrical and mechanical activity of the heart. The relationship of the RC segment with blood pressure and heart interval is analyzed. The concordance of beat durations of both the electrocardiogram and the impedance cardiogram is one of the key results to develop new artefact detection algorithms and the RC could also have an impact in describing the hemodynamics of a patient. Time-frequency distributions (TFDs) are also used to characterize how the frequency content in impedance cardiography signals change with time. Since TFDs are calculated using concrete kernels, a new method to select the best kernel by using synthetic signals is presented. Optimized TFDs of ICG signals are then calculated to extract severa! features which are used to discriminate between different anesthesia states in patients undergoing surgery. TFD-derived features are also used to describe the whole surgical operations. Relationships between TFD-derived features are analyzed and prediction models for cardiac output are designed. These prediction models prove that the TFD-derived features are related to the patients' cardiac output. Finally, a validation study for the qCO monitor is presented. The qCO monitor has been designed using sorne of the techniques which are consequence of this Doctoral Thesis. The main outputs of this work have been protected with a patent which has already been filed. As a conclusion, this Doctoral Thesis has produced a considerable amount of clinical data and a variety of analysis and processing techniques of impedance cardiography signals which have been included into commercial medical devices already available on the market.El gasto cardíaco (GC) define el flujo de sangre que llega desde el corazón a los distintos órganos del cuerpo y es, por tanto, un determinante primario del transporte global de oxígeno. Se ha medido tradicionalmente usando métodos invasivos cuyos riesgos excedían en ocasiones las ventajas de su monitorización. En este contexto, la minimización del riesgo de la monitorización del gasto cardíaco en nuevas tecnologías no invasivas podría traducirse en mayores ventajas para médicos, hospitales y pacientes: facilidad de uso, disponibilidad del equipamiento y menor tiempo de recuperación y mejores resultados en el paciente. La impedancio-cardiografía o cardiografía de impedancia (ICG} es una prometedora tecnología no invasiva para la monitorización del gasto cardíaco. Sin embargo, la información disponible sobre las señales de ICG es más escasa que otras señales fisiológicas como el electrocardiograma (ECG). La presente Tesis Doctoral contribuye al desarrollo de técnicas de tratamiento de señal de ICG para así crear un monitor hemodinámico innovador. En primer lugar, se proporciona una extensa revisión bibliográfica sobre los aspectos básicos del contexto clínico en el que se utiliza la monitorización del gasto cardíaco así como sobre el estado del arte de los monitores de gasto cardíaco que existen en el mercado. Esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos que también se explican en detalle. Dichos datos clínicos también son útiles para complementar las explicaciones teóricas de los índices de paciente de variabilidad cardíaca y el flujo y la presión sanguíneos. Además, se presenta un nuevo método de creación de señales sintéticas biomédicas con características de tiempo-frecuencia conocidas. Uno de los primeros análisis de esta Tesis Doctoral estudia la diferencia temporal entre los picos de los latidos cardíacos del ECG y del ICG: el segmento RC. Este segmento RC es una medida del retardo temporal entre la actividad eléctrica y mecánica del corazón. Se analiza la relación del segmento RC con la presión arterial y el intervalo cardíaco. La concordancia entre la duración de los latidos del ECG y del ICG es uno de los resultados claves para desarrollar nuevos algoritmos de detección de artefactos y el segmento RC también podría ser relevante en la descripción de la hemodinámica de los pacientes. Las distribuciones de tiempo-frecuencia (TFD, por sus siglas en inglés) se utilizan para caracterizar cómo el contenido de las señales de impedancia cardiográfica cambia con el tiempo. Dado que las TFDs deben calcularse usando núcleos (kernels, en inglés) concretos, se presenta un nuevo método para seleccionar el mejor núcleo mediante el uso de señales sintéticas. Las TFDs de ICG optimizadas se calculan para extraer distintas características que son usadas para discriminar entre los diferentes estados de anestesia en pacientes sometidos a procesos quirúrgicos. Las características derivadas de las distribuciones de tiempo-frecuencia también son utilizadas para describir las operaciones quirúrgicas durante toda su extensión temporal. La relación entre dichas características son analizadas y se proponen distintos modelos de predicción para el gasto cardíaco. Estos modelos de predicción demuestran que las características derivadas de las distribuciones tiempo-frecuencia de señales de ICG están relacionadas con el gasto cardíaco de los pacientes. Finalmente, se presenta un estudio de validación del monitor qCO, diseñado con alguna de las técnicas que son consecuencia de esta Tesis Doctoral. Las principales conclusiones de este trabajo han sido protegidas con una patente que ya ha sido registrada. Como conclusión, esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos y una variedad de técnicas de procesado y análisis de señales de cardiografía de impedancia que han sido incluidas en dispositivos biomédicos disponibles en el mercadoPostprint (published version

    Advanced bioimpedance signal processing techniques for hemodynamic monitoring during anesthesia

    Get PDF
    Cardiac output (CO) defines the blood flow arriving from the heart to the different organs in the body and it is thus a primary determinant of global 02 transport. Cardiac output has traditionally been measured using invasive methods, whose risk sometimes exceeds the advantages of a cardiac output monitoring. In this context, the minimization of risk in new noninvasive technologies for CO monitoring could translate into major advantages for clinicians, hospitals and patients: ease of usage and availability, reduced recovery time, and improved patient outcome. Impedance Cardiography (ICG) is a promising noninvasive technology for cardiac output monitoring but available information on the ICG signals is more scare than other physiological signals such as the electrocardiogram (ECG). The present Doctoral Thesis contributes to the development of signal treatment techniques for the ICG in order to create an innovative hemodynamic monitor. First, an extensive literature review is provided regarding the basics of the clinical background in which cardiac output monitoring is used and concerning the state of the art of cardiac output monitors on the market. This Doctoral Thesis has produced a considerable amount of clinical data which is also explained in detail. These clinical data are also useful to complement the theoretical explanation of patient indices such as heart rate variability, blood flow and blood pressure. In addition, a new method to create synthetic biomedical signals with known time-frequency characteristics is introduced. One of the first analysis in this Doctoral Thesis studies the time difference between peak points of the heart beats in the ECG and the ICG: the RC segment. This RC segment is a measure of the time delay between electrical and mechanical activity of the heart. The relationship of the RC segment with blood pressure and heart interval is analyzed. The concordance of beat durations of both the electrocardiogram and the impedance cardiogram is one of the key results to develop new artefact detection algorithms and the RC could also have an impact in describing the hemodynamics of a patient. Time-frequency distributions (TFDs) are also used to characterize how the frequency content in impedance cardiography signals change with time. Since TFDs are calculated using concrete kernels, a new method to select the best kernel by using synthetic signals is presented. Optimized TFDs of ICG signals are then calculated to extract severa! features which are used to discriminate between different anesthesia states in patients undergoing surgery. TFD-derived features are also used to describe the whole surgical operations. Relationships between TFD-derived features are analyzed and prediction models for cardiac output are designed. These prediction models prove that the TFD-derived features are related to the patients' cardiac output. Finally, a validation study for the qCO monitor is presented. The qCO monitor has been designed using sorne of the techniques which are consequence of this Doctoral Thesis. The main outputs of this work have been protected with a patent which has already been filed. As a conclusion, this Doctoral Thesis has produced a considerable amount of clinical data and a variety of analysis and processing techniques of impedance cardiography signals which have been included into commercial medical devices already available on the market.El gasto cardíaco (GC) define el flujo de sangre que llega desde el corazón a los distintos órganos del cuerpo y es, por tanto, un determinante primario del transporte global de oxígeno. Se ha medido tradicionalmente usando métodos invasivos cuyos riesgos excedían en ocasiones las ventajas de su monitorización. En este contexto, la minimización del riesgo de la monitorización del gasto cardíaco en nuevas tecnologías no invasivas podría traducirse en mayores ventajas para médicos, hospitales y pacientes: facilidad de uso, disponibilidad del equipamiento y menor tiempo de recuperación y mejores resultados en el paciente. La impedancio-cardiografía o cardiografía de impedancia (ICG} es una prometedora tecnología no invasiva para la monitorización del gasto cardíaco. Sin embargo, la información disponible sobre las señales de ICG es más escasa que otras señales fisiológicas como el electrocardiograma (ECG). La presente Tesis Doctoral contribuye al desarrollo de técnicas de tratamiento de señal de ICG para así crear un monitor hemodinámico innovador. En primer lugar, se proporciona una extensa revisión bibliográfica sobre los aspectos básicos del contexto clínico en el que se utiliza la monitorización del gasto cardíaco así como sobre el estado del arte de los monitores de gasto cardíaco que existen en el mercado. Esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos que también se explican en detalle. Dichos datos clínicos también son útiles para complementar las explicaciones teóricas de los índices de paciente de variabilidad cardíaca y el flujo y la presión sanguíneos. Además, se presenta un nuevo método de creación de señales sintéticas biomédicas con características de tiempo-frecuencia conocidas. Uno de los primeros análisis de esta Tesis Doctoral estudia la diferencia temporal entre los picos de los latidos cardíacos del ECG y del ICG: el segmento RC. Este segmento RC es una medida del retardo temporal entre la actividad eléctrica y mecánica del corazón. Se analiza la relación del segmento RC con la presión arterial y el intervalo cardíaco. La concordancia entre la duración de los latidos del ECG y del ICG es uno de los resultados claves para desarrollar nuevos algoritmos de detección de artefactos y el segmento RC también podría ser relevante en la descripción de la hemodinámica de los pacientes. Las distribuciones de tiempo-frecuencia (TFD, por sus siglas en inglés) se utilizan para caracterizar cómo el contenido de las señales de impedancia cardiográfica cambia con el tiempo. Dado que las TFDs deben calcularse usando núcleos (kernels, en inglés) concretos, se presenta un nuevo método para seleccionar el mejor núcleo mediante el uso de señales sintéticas. Las TFDs de ICG optimizadas se calculan para extraer distintas características que son usadas para discriminar entre los diferentes estados de anestesia en pacientes sometidos a procesos quirúrgicos. Las características derivadas de las distribuciones de tiempo-frecuencia también son utilizadas para describir las operaciones quirúrgicas durante toda su extensión temporal. La relación entre dichas características son analizadas y se proponen distintos modelos de predicción para el gasto cardíaco. Estos modelos de predicción demuestran que las características derivadas de las distribuciones tiempo-frecuencia de señales de ICG están relacionadas con el gasto cardíaco de los pacientes. Finalmente, se presenta un estudio de validación del monitor qCO, diseñado con alguna de las técnicas que son consecuencia de esta Tesis Doctoral. Las principales conclusiones de este trabajo han sido protegidas con una patente que ya ha sido registrada. Como conclusión, esta Tesis Doctoral ha producido una considerable cantidad de datos clínicos y una variedad de técnicas de procesado y análisis de señales de cardiografía de impedancia que han sido incluidas en dispositivos biomédicos disponibles en el mercad
    corecore