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Abstract: Cuff-less blood pressure (BP) monitoring technology is being widely pursued 

today. In this research we investigated the wrist ballistocardiogram (BCG) as a limb BCG, 

to develop a scientific basis to use the limb BCG to for cuff-less BP monitoring. In our study, 

we pursue two alternative approaches to the use of wrist BCG signal for BP monitoring: (1) 

use of the wrist BCG as proximal timing in pulse transit time (PTT) based methods; (2) use 

of wrist BCG wave features for BP monitoring. In this regard, the physics-based model is 

developed to elucidate the mechanism responsible for the generation of the BCG signal at 

the body’s extremity limb locations. The developed and experimentally validated 

mathematical model can predict the limb BCG in responses to the arterial BP waves in the 

aorta.  The model suggests that the limb BCG waveform reveals the timings and amplitudes 

associated with the aortic BP waves and it exhibits meaningful morphological changes in 

response to the alterations in the CV risk predictors. Such understanding combined with 

machine learning techniques has helped us to extract viable features, and construct 

predictive models that can estimate BP. The findings of this study show that limb BCG has 

the potential to realize convenient cuff-less BP monitoring. First, it is a strong candidate to 

extract the proximal timing for PTT based methods. Second, BCG wave features are 

associated with BP and it could be used for BP monitoring. Third, we can combine the PTT 

with BCG wave features to achieve more comprehensive prediction models with superior 

performance.   
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1. Introduction 

Cardiovascular disease (CVD) is a leading cause of mortality and morbidity that produces 

immense health and economic impacts in the United States and globally[1].  Considering 

its prevalence and implications on the quality of life and healthcare cost, one ideal solution 

to effective prevention and treatment of CVD is to enable ubiquitous surveillance and 

monitoring of CV risk predictors based on ultra-convenient techniques.  However, the 

majority of state-of-the-art techniques for non-invasive measurement and assessment of 

CV risk predictors suffer from inconvenience.  Indeed, techniques such as carotid-femoral 

tonometry for pulse wave velocity measurement[2]–[7], flow-mediated dilatation for 

endothelial function assessment[8]–[11], and ankle-brachial index for peripheral artery 

disease screening[12]–[14] necessitate at least a subset of the following inconvenience and 

discomfort: trained operators, specialized costly equipment, access to privately sensitive 

body sites, and interventions. 

The BCG, defined as the body movement in response to the blood ejected by the heart, 

is increasingly receiving interest as an emerging modality equipped with the great potential 

to realize ultra-convenient CV health monitoring and assessment by virtue of its direct 

relationship to CV functions[15] and its amenity to ultra-convenient measurement.  

Indeed, early investigations have demonstrated that the BCG may have clinical value due 

to the close association between its waveform morphology and various cardiac 

events[16]–[21].  In addition, rapid advances in the electronics and wearable technology 

opened up the possibility to ultra-conveniently measure the BCG during daily 

activities[22]–[30].  These unique advantages combined, recent applications of the BCG to 

CV health monitoring have reported success in estimating a range of CV parameters and 

risk predictors: heart rate[22], [23], pulse transit time and pulse wave velocity[24], [31]–

[34], arterial BP[28], [30], [32], [33], stroke volume and cardiac output[29], [32], and 

cardiac contractility[35]–[37] to list a few.   

Despite the reasonable success and demonstrated promise, there are a few critical 

challenges common to most, if not all, prior endeavors on the BCG-based CV health 

monitoring.  One salient challenge is that prior endeavors lack in rigor in terms of insights 

related to the physical meaning of the BCG.  In the absence of established physical 

understanding of the BCG, most prior efforts have pursued brute-force data-driven 

approaches in which the association between a set of subjectively selected features in the 

BCG waveform versus the target CV parameters and risk predictors of interest was sought 

[27]–[30], [37].  The other salient challenge is that the BCG waveform morphology is known 

to exhibit large variability with respect to the measurement instruments, postures, and 
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locations [36], [38], [39].  These challenges altogether complicate the interpretation of the 

successful data-driven associations obtained in prior works, as well as hamper the seamless 

translation and generalization of the compelling findings obtained for the BCG pertaining 

to a specific instrument, posture, and location to other instruments, postures, and 

locations.  It is contended that a viable solution to address these challenges is to drastically 

enhance the physiological understanding of the BCG, its association with the underlying 

CV physiology, and its variability with respect to the alterations in the instrument, posture, 

and location.  Such physical insights, if established and properly integrated with the 

ongoing success of the data-driven BCG-based approaches to CV health monitoring, may 

open up new opportunities toward next generation of BCG-based CV healthcare 

techniques embedded with transparency, interpretability, and robustness against the 

external variability.  

Currently, the most popular approach to cuff-less BP monitoring is based on the 

principle of PTT [40]. PTT is the time delay for the pressure wave to travel between two 

arterial sites. An increase in BP causes PTT to decline, as artery stiffens with an increase in 

BP, thereby increasing the velocity of travel of the pressure wave. Hence, PTT is often 

inversely correlated with BP. One main drawback of the PTT approach, especially from a 

convenience standpoint, is that it requires the instrumentation of two arterial pulse 

waveforms to compute PTT. In the past, this requirement has been fulfilled by measuring 

arterial pulse waveforms from two distinct locations in the body (e.g., from carotid and 

femoral arteries for the well-known carotid-femoral PTT [41]), which is quite inconvenient 

and cumbersome. Hence, a recent effort to enable ultra-convenient BP monitoring has 

focused on the development of techniques to infer BP from a single wearable device. Some 

of these efforts employ multiple pulse waveforms from a single device (e.g., an 

electrocardiogram and a photoplethysmogram (PPG) at an extremity site [42], [43], or 

multiple PPGs within a known short distance [44]) to still leverage the PTT principle for BP 

monitoring, while some other efforts strive to infer BP from the analysis of a single pulse 

waveform [45]–[47]. In both cases, PPG has been the preferred choice of modality for 

arterial pulse measurement due to its amenity to easy placement and stable 

instrumentation. 

It is demonstrated that the whole-body BCG measured with, e.g., a weighing scale-like 

platform, may be leveraged in conjunction with a second pulse waveform (e.g., PPG at an 

extremity location) for PTT-based BP monitoring [31], [48]. It is also demonstrated that 

whole-body BCG alone may suffice for cuff-less BP monitoring, where previous studies 

attempted the use of waveform features in the whole-body BCG that (at least qualitatively) 

represent aortic PTT and distal aortic pulse pressure (PP) to achieve independent 

monitoring of diastolic (DP) and systolic (SP) BPs [33]. 
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Despite the potential of the whole-body-BCG signal to improve the cuff-less BP 

monitoring techniques explored thus far, there are still extra rooms for improvement both 

in convenience and accuracy. In terms of convenience, the measurement of whole-body 

BCG may require bulky devices such as scale and bed. Hence, a viable option to improve 

convenience may be to explore wearables that can be worn on limb locations (e.g., wrist 

watch and arm band) for instrumentation of the BCG. In terms of accuracy, whole-body 

BCG measurement systems like scales are dependent on load measurement techniques. 

In these techniques, deflection of a beam supporting the body mass is measured using a 

strain gauge. It is possible that the dynamic of the scale affects the body motion and 

consequently changes the morphology and accuracy of the BCG signal. We can avoid such 

a problem by measuring the wrist BCG with a small accelerometer. 

Motivated by the above rationale, this research is coordinated in the following 

sequence. First, we need to understand the origin of the limb BCG. In this regard, the 

mechanical model of the whole body in response to the blood extraction by heart is 

developed in chapter 3. The model is analyzed to understand the BCG signal morphology 

and discover any meaningful association of the features in the signal with heart-related 

activities, like aortic BP timings or amplitudes. The model illustrates that there are some 

features in the BCG signal that could be used as a proximal timing to calculate PTT. In 

addition, it is also discovered that there are some features inside the BCG signal that are 

representative of PTT. For example, J-K interval in wrist BCG is highly correlated with aortic 

PTT. In the next chapters, we will use these findings to develop physics-based BP 

predictors.    

In the next chapters, we develop predictive models to estimate BP by levering the 

physics-based insights discovered in chapter 3, as well as using machine learning 

techniques to select and create predictors using BCG and PPG signals. In chapter 4, limb 

BCG-based PTT is constructed for BP estimation, using the Physics-based insights obtained 

in the previous chapter. In this chapter, we compare the performance of the wrist-based 

BCG with whole-body-based BCG as proximal timing and illustrate that wrist BCG could 

serve as superior proximal timing in PTT calculation. In chapter 5, the idea of only using 

BCG signal to estimate the BP is examined, as a more convenient alternative compared to 

the PTT method that needs two BCG and PPG signals. In chapter 6, a hybrid model is 

examined, in which both PTT and BCG-based features are utilized. In chapter 7, subject-

specific models are examined for both BCG-based and hybrid approach. Chapter 8 

concludes the thesis, and chapter 9 explains the limitations of this work and suggests 

future works.  
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2. Concepts and Literature Review 

In this section, a quick introduction of the BP waveform and classical BP monitoring 

methods are presented. Then basic concepts of the novel methods for noninvasive 

continuous monitoring of BP is reviewed. In this regard, three physiological signal will be 

used to estimate BP.  

 ECG (Electrocardiogram): is a time variant voltage produced by the myocardium during 

the cardiac cycle. It contains P, QRS, and T peaks which reflect rhythmic electrical 

depolarization and repolarization of the myocardium, representing the contraction of 

the arteria and ventricles.  

 PTT (Pulse Transit Time): is the time taken for the arterial pulse pressure wave to travel 

from proximal to a peripheral site. The PTT is believed to be inversely correlated with the 

BP [49].   

 PPG (Photoplethysmography): indicated the amount of the oxygen in artery by emitting 

a light to the artery and measuring the reflected or transmitted value of the light.  

 BCG (Ballistocardiography): measures the reactionary forces of the body in response to 

cardiac ejection of blood into aorta [2].  

The next sections will discuss how to use each or combination of the mentioned signals 

to estimate the blood pressure.  

2.1. BP Waveforms 

According to the illustrated diagram of blood circulation in Fig. 2.1. , oxygenized blood 

in the lungs is pumped by the left side of the heart through aorta to reach into various 

body organs. Then it returns to the right side of the heart through veins and is pumped 

into the lungs. As blood flows through the systemic circulation, pressure decreases 

progressively because of the resistance to blood flow. Thus, it is highest in the aorta, and 

lowest when it returns to the heart. 

Blood flow can be expressed by the following equation: 

P
Q

R


  

Eq. 2.1 

in which Q  is flow or cardiac output (ml/min), P is pressure gradient (mm Hg), and R  

is resistance (mm Hg/mL/min). The equation can be rewritten as  
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Mean arterial pressure - Right arterial pressure
CariacOutput=

Total peripheral resistance (TPR)
 

Eq. 2.2 

 

 

Fig. 2.1. Circuitry of the cardiovascular system [50].  

Blood flow in the vessels can be either laminar or turbulent. Laminar flow is streamlined 

in a straight line, while the turbulent flow is not. Reynold’s number predicts whether it is 

laminar or turbulent, increases with blood velocity and decreases with viscosity. At high 

Reynold’s numbers, there is a tendency for turbulent, which causes audible vibrations 

called bruits.  

As mentioned earlier, arterial blood pressure is not constant during cardiac cycle. As 

illustrated in It is pulsatile and varies over time and location. Systolic pressure is the highest 

arterial blood pressure during a cardiac cycle. Systolic BP is measured when the blood is 

ejected into the arterial system after the heart contraction (systole in Fig. 2.3). Contrary to 

systolic BP, diastolic pressure is the lowest arterial pressure during the cardiac cycle. 

Diastolic BP is measured when the heart is relaxed (diastole in Fig. 2.3) and blood is 

returned to the heart via the veins. The difference between the systolic and diastolic 

pressure is known as pulse pressure. As blood is ejected from the left ventricle into the 

arterial system, arterial pressure increases because of the low capacitance of the arteries. 

Stroke volume is the most important determinant of pulse pressure [50].   
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Fig. 2.2. A typical human blood pressure waveform [50].  

 

Fig. 2.3. Human heart in systole and diastole [51].  

2.2. Introduction to Conventional BP Measurement Methods 

Among the several BP monitoring methods [2], Catheterication is the most accurate 

method to measure the BP. In this method, the invasive catheter provides access to the 

arterial system. A strain gauge contacts the fluid and measures the pressure waves 

generated in the arterial system by cardiac contractions [52]. In addition, several non-

invasive techniques are available for measuring BP (including auscultation [53] and 
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oscillometry [54], [55] used in patient care; and volume clamping [56], [57] and tonometry 

[58], [59] used in research). In this section a brief introduction of each method is presented. 

Auscultation: in this method, the operator puts an air cuff around the arm and pumps 

it up to cut of the blood flow in the artery with the pressure extracted by the cuff. Then 

they start to release the pressure in the cuff. As the pressure decreases, the blood starts 

to flow again, where the operator hears a sound known as Korotkoff sound. The pressure 

at which blood starts flowing, is the measure of the maximum output pressure of the heart 

or systolic BP. Then, the operator continues to release the pressure slowly, and 

consequently the sound in the cuff is gradually decreased. It continues to the point that 

the sound stops. The point at which the sound stops, in which the turbulent flow is turned 

into the laminar flow, is indicator of the diastolic BP [53]. This method requires a great deal 

of training and is subjected to the expertise of the examiner.  

Oscillometric: This method is similar to the auscultation method. In this method small 

fluctuation of the cuff are measured rather than Korotkoff sounds to detect the systolic, 

mean, and diastolic blood pressure [19].   

Volume clamp method: this method is based on transforming the information of the 

volume of blood in the artery to pressure. Increasing of the pressure inside the artery will 

cause increase in the volume of the blood. as illustrated in Fig. 2.4, an external pressure is 

inserted to the artery, to counter balance the internal pressure to maintain the constant 

volume. In such condition, the inserted external pressure is equal to the blood pressure in 

the artery. A PPG sensor on the finger measures the volume of the blood, and an air cuff 

installed on the finger provides the required external pressure [60].   

 

Fig. 2.4- Working principal of the volume clamp method to measure BP [60].  
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Tonometry: in this method, pressure sensor is pressed on an artery which is located 

near the surface to detect blood pressure. In this measurement, the upper part of the 

blood vessel is made flat by pushing it with appropriate strength. As depicted in Fig. 2.5, at 

the flat area of the blood vessel, the tension force of the blood vessel is normal to the 

direction of the force due to blood pressure. So it will not counter act the blood pressure, 

and the sensor can directly measure the pressure [61].  

 

Fig. 2.5- Working principle of the tonometry method [60].  

2.3. Association of BP and PTT 

PTT is defined as the time delay that pulse pressure needs to travel between two 

locations in the body Fig. 2.6(a). Given that the velocity of the pressure pulse is a function 

of the pressure of the fluid, and increases as the pressure goes up, PTT is inversely related 

to the BP. It means that for higher blood pressure we expect shorter PTT, and vice versa. 

Hence, PTT contains information about the BP, and makes it possible to estimate it 

noninvasively and cuff-less. As shown in Fig. 2.6(b) BP is correlated to PTT, however we 

should note that BP is not the only factor that affects PTT [2].  
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Fig. 2.6- PTT as an indicator of the blood pressure level. (a) PTT is defined as the time delay for the pressure 
pulse to travel between two arterial locations. (b) Higher blood pressure pulse needs less time to travel 

between two locations, thus PTT is inversely correlated to BP  [2].  

Reference [62] introduced a simple physical model to describe the relationship between 

PTT and BP. The introduced model simplifies the body structure and defines BP as a 

function of PTT based on the fundamental physics and the conservation of energy. It 

assumes laminar blood flow from the heart chamber to fingertip through a rigid pipe, 

representing the artery. The model estimates the pulse velocity by dividing the distance 

between heart and fingertip by the PTT. Then it uses the approximate pulse transit velocity 

to estimate the blood pressure.  

21
.

2
F d mv mgh   

Eq. 2.3 

where the left side is the work done by heart and the right side is the total energy of the 

blood traveling from the heart to the fingertip. The force is equal to the blood pressure 

multiplied by arterial cross section area, and velocity can be estimated by PTT. The 

following equation can be derived by replacing the corresponding terms and simplification 

as explained in [62]. 

2

2 2

1

1.4 0.7

A d gh
BP B

PTT PTT


     

Eq. 2.4 

where d is the distance between heart and fingertip,  is the density of the blood, h is 

the height difference between the heart and fingertip, g is the gravity constant. Since the 

presented model assumes laminar and non-pulsatile flow, it is more appropriate to 

describe diastolic BP. Since the systolic pressure is highly correlated with mean BP and 

diastolic BP, PTT can be used to infer systolic BP, as well.  
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While the previous model, gives a simple physical interpretation of the BP and PTT 

relationship using the conversion of the energy law, it doesn’t consider any details like the 

effect of the artery compliance. In this regard, more comprehensive models are presented 

to consider mechanical elements affecting the relationship between BP and PTT. A 

comprehensive summary of the available models is reported in [2]. In this regard, two 

model is required to describe BP and PTT relationship: (1) the relationship between BP and 

arterial elasticity, known as arterial wall models, (2) the relationship between arterial 

elasticity with wave propagation speed and consequently PTT, known as wave propagation 

models. Some of the derived models are as below equations: 

 1 2lnBP K PTT K   Eq. 2.5 

1
2

K
BP K

PTT
   

Eq. 2.6 

 
1

32

2

K
BP K

PTT K
 


 

Eq. 2.7 

Among the introduced models, experimental studies have shown that 1/PTT is linearly 

related to BP over a wide range of BP change.  

As mentioned above, PTT is the time delay that BP waveform takes to travel from one 

location to another. So we need to measure timing of BP pulse at two different locations, 

and then calculate PTT using the time difference between them. To get long PTTs, it is 

better to choose one location closer to the heart, also known as proximal location, and 

choose the other one from distant locations like limbs or fingers, which is known as distal 

location. In the following subsections, the signals that can be used to measure distal and 

proximal timings are discussed.  

2.3.1. PPG Distal Timing 

PPG signal can be used as a waveform to indicate the arrival of BP pulse. There are two 

type of PPG measurement modes, reflection and transmission mode. In reflection mode, 

a light emitting diode (LED) is used to illuminate the skin. Variation of the blood volume 

changes the light absorption, and consequently reflected light. A photodetector placed on 

the same side of the emitter, measures the reflected light and monitors the blood volume 

changes. A common problem of PPG sensors is their depth insensitivity. As shown in Fig. 

2.7, there is various composition of blood vessels under the skin, containing capillaries, 

arterioles, and arteries. Each layer of the structure, has different order of getting blood 

waves.  
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Fig. 2.7- Schematic of skin vasculature and multi wavelength reflectance PPT measurement [63].  

As depicted in Fig. 2.8, red PPG light, which has large wavelength, can go through 

deeper layers of the body. On the other hand, green light with shorter wavelength will be 

absorbed quickly and only collects information from upper layers. As a result, green PPG is 

most likely to contain blood volume information only from capillary blood. However, the 

red PPG collects information from all of the mentioned underlying structures, i.e. 

capillaries, arterioles, and arteries. Therefore, as illustrated in Fig. 2.9, the red PPG signal 

will include mixed pulsation information from layers and may led to inaccurate estimation 

results [63]. In small arteries, smooth muscle contraction and relaxation can cause 

variation in arterial stiffness, and thus PTT, that are independent of BP [64]. 

 

Fig. 2.8- Interaction of the PPG signal and tissue, with two different lights. Red light with large wavelength 
has information from deeper layers, compared to the green light with shorter wavelength and only collects 

information from capillary layer [63].  
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Fig. 2.9- Illustration of the PPG signal with large wavelength, which contains pulsation time from different 
layers [63].  

The PTT based method for cuff-less BP monitoring contains three main steps [2]: (1) 

measurement of arterial waveforms in two distinct locations, preferably one proximal and 

one distal; (2) estimation of the PTT as the time delay between two corresponding points 

of the signal, preferably foot location of the signal; (3) calibration of PTT in time unites to 

BP in pressure units (usually from ms to mmHg).   

2.3.2. ECG Proximal Timing 

ECG signal provides the timing of cardiac electrical activity, which happens before the 

mechanical contraction of the heart muscle. The time delay between the ECG waveform 

and distal arterial waveform is called pulse arrival time (PAT). As mentioned before, to 

calculate wave propagation speed, we are interested in PTT, which represents the timing 

between mechanical contraction of the heart and distal arterial waveform. The 

relationship between PAT and PTT is: 

PAT PET PTT   Eq. 2.8 

where PET, the pre-ejection period, is the amount of time delay that the heart takes to do 

mechanical contraction and generate the systolic pulse, after getting electrical excitation 

represented by the BCG R peak. Pre-ejection period (PEP) can be considerable part of the 

PAT, and can range from 10 to 35% of the PTT [65]. This results in the major limitation of 

the PAT method, which is its subjectivity to the time required for electrical excitation of 

the heart. Since the R peak marks the electric excitation of the heart contraction, there is 

a small delay before mechanical contraction, PEP. Since we cannot noninvasively measure 

the PEP, it would be a source of the error in PAT. It is speculated to become more significant 

in subjects with low heart rate [62].  
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2.3.3. BCG Proximal Timing 

BCG signal indicates the acceleration of the body due to the internal force created by 

the heart when ejects blood into aorta. Basically there is two methods to measure this 

signal: (1) measuring the force exerted by the body into its support on the ground, like 

weight scale, bed, chairs. (2) measuring the acceleration of the body by attaching an 

accelerometer. In both methods, we can get information about the proximal waveform, 

from distal locations. A typical whole body BCG waveform in illustrated in Fig. 2.10. 

 

Fig. 2.10. Typical whole body BCG waveform [66].  

In reference [67], a model is presented to describe the mechanism behind the BCG 

waveform. They mathematically modeled the BCG waveform as an instantaneous force in 

the head-to-foot direction by analyzing the equilibrium of forces exerted on the blood in 

the main artery of the body, the aorta. As depicted in Fig. 2.11, the model contains two 

tubes in cascade, representing the ascending and descending part of the aorta. Pressure 

gradient in each of the tubes results in mechanical force that is inserted into the body: 

   12 10BCG D AF A P t A P t    Eq. 2.9 

In which DA and AA  represent the average cross sectional areas of the descending and 

ascending aorta, respectively, and      i j i jP t P t P t    constitute the BP gradients.  
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Fig. 2.11- Simplified model of the aorta to describe the BCG waveform. The left and right tubes represent 
the ascending and descending parts of the aorta [67].   

Fig. 2.12 illustrates how BP waveforms at inlet, apex, and outlet of aorta, denoted by 

0 1 2, ,P P P respectively, build up the BCG waveform. According to the presented model and 

figure we can realize that I-wave initiation corresponds approximately to the foot of the 

0P , denoting the pressure rise up at the inlet of the aorta or beginning of the mechanical 

contraction of the heart. The figure also shows that the J-wave peak corresponds 

approximately to the foot of the 2P  or outlet of the aorta. As a result, the time interval 

between the I-wave’s initiation and J-wave’s peak may represent the aortic pulse transit 

time [67].  
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Fig. 2.12- Measured BP waveforms in different locations of the aorta, and corresponding predicted BCG 
waveform. (A) BP waveforms at inlet, apex, and outlet of aorta; (B) Force gradient in ascending and 

descending part of aorta; (C) Predicted BCG form [67]. 

Calculating PTT using the BCG waveform as the proximal timing, has some advantages 

to PAT using the ECG. BCG signal is more convenient to measure than ECG. It can be easily 

measured from distal locations, and the sensor doesn’t need to be located nearby the 

heart. Furthermore, because the BCG signal is associated with the mechanical contraction 

of the heart, it is not subjected to the error caused by PET. In [64], PTT measurement from 

a weighing scale is compared to the PAT measurements. Their results show that weighing 

scale-based PTT measurements tracks the BP changes in individual subjects significantly 

better than the conventional PAT method. They have accomplished their experiments in 

various interventions, in which BP is changed via different physiologic mechanisms.  

However, the BCG is more convenient for measurement and is not subjected to the PET 

error, it has some shortcomings and technical difficulties to implement. (i) BCG signal has 

low signal to noise ratio, thus needs comprehensive signal processing practices. (ii) It is 
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subjected to delays due to inertia and dynamics of the human body, in response to the 

excitation force created by blood ejection by heart, thus it is subjected to the physical 

properties of the subject. (iii) it is highly susceptible to motion artifacts and small 

movements due to physiological activities like breathing.  

2.4. Association of BP and BCG Waveform 

In section 2.3.3, a typical BCG waveform and the principal mechanism responsible for 

the genesis of it is explained. According to the presented model, the BCG wave is formed 

due to the interaction between two aortic BP waves: (i) the gradient of the BP between 

aortic inlet and arch, generated by the ascending aortic; (ii) the gradient of the BP between 

aortic arch and outlet, generated by the descending aortic. The physical insight obtained 

from the presented physical model makes it possible to extract features in BCG signal that 

are directly correlated to the blood pressure. As a result, we can estimate blood pressure 

only by pulse wave analysis (PWA) of the BCG signal.  

According to the presented model in [66] and Fig. 2.12, the beginning of the aortic inlet 

BP wave approximately corresponds to the initiation of the first major wave (called I-wave). 

In addition, peak of the second major wave, J-wave, corresponds to the beginning of the 

aortic outlet BP wave. So we can consider the time interval between I-peak, or initiation of 

the I-wave (known as H-peak), and J-peak as the aortic PTT. Therefor H-J and I-J interval in 

the BCG signal can be considered as the required time delay for BP foot (corresponding to 

diastolic BP) to travel from aortic inlet to outlet, aortic PTT, which is a well-known surrogate 

of DP [67].  

Another important insight from the BCG model is about the meaning of the difference 

between amplitudes of the J-peak and K-peak, named as J-K amplitude. First, according to 

Fig. 2.12, J-peak corresponds to the beginning of the aortic outlet BP wave (P2), also known 

as diastolic BP. Second, the K-peak corresponds to the maximum aortic outlet BP, also 

known as systolic BP. Given that P0 and P1 are approximately constant during J-peak to K-

peak interval, we can conclude that the J-K amplitude is only due to the change of P2 from 

diastolic to systolic BP, which is known as pulse pressure (PP) [67].  

It is illustrated that I-J interval and J-K amplitude are strong candidates to correlate with 

DP and PP, respectively. The experimental results in [66] confirms validity of the above 

insight derived from physical modeling. The achieved results can leverage BP monitoring 

in two ways. First, it is possible to integrate the J-K amplitude information, which provides 

PP estimation, with the information from estimated DP from PTT measurement. It can 
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result in estimation of DP and SP. The second is to estimate both DP and SP only using BCG 

signal. In this discipline, DP is estimated directly from PPT information measured by I-J 

interval, and we can combine estimated DP and PP from BCG PWA to monitor SP [66].  

2.5. Conclusion 

All of the non-invasive techniques to measure BP employ an inflatable cuff. For this 

reason, oscillometric and other cuff-based devices do not afford ubiquitous BP monitoring 

capabilities. That is, people in low resource settings may not have any access to such 

devices; others must go out of their way (e.g., to a pharmacy) to use these devices; and 

even people who own a device cannot carry it with them wherever they go. In general, the 

cuff based methods are less accessible, reliable, and infrequent for continuous BP 

monitoring [62]. As a result, a reliable cuff-less technology for continuous BP monitoring is 

being widely pursued today.  

Much of the cuff-less blood pressure monitoring efforts are based on the principle of 

PTT [40]. PTT is the time delay for the pressure wave to travel between two arterial sites. 

An increase in BP causes PTT to decline, as artery stiffens with an increase in BP, thereby 

increasing the velocity of travel of the pressure wave. Hence, PTT is often inversely 

correlated with BP. Further, PTT may be simply determined from the time interval between 

proximal and distal arterial waveforms. Therefore, PTT carries the major advantage of 

possibly offering passive BP monitoring without using a cuff. 

Most previous studies of BP measurement via PTT have used the time delay between 

an ECG waveform and an arterial waveform from an arm, especially a finger blood volume 

waveform via a PPG sensor, as a convenient surrogate of PTT [40]. However, these PAT 

measurements have a major shortcoming: PAT includes the pre-ejection period in addition 

to PTT. Since the PEP component depends on the electromechanical functioning of the 

heart, it can change independently of PTT and thus BP. For example, PEP changes in the 

same direction as PTT during exercise [68] but in the opposite direction to PTT during 

vasoconstriction [69]. Note that several studies of PAT have demonstrated good 

correlation with BP by employing only exercise-induced BP change [40].  

Even though PTT based method is a convenient BP monitoring method compared to 

cuff-based methods, there are still several limitations to the PTT method. First, most of PTT 

techniques employ single surrogate of BP, to monitor both DP and SP. Given that the BP 

waveform levels, i.e. DP, SP, PP, and MP can be independent of each other, we need more 

than one surrogate to estimate them independently. Second, this method requires the 
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placement of at least to sensors on the body to measure ECG as proximal, and PPG as distal 

timing. Thus, the convenience of the PTT method can be improved by reducing the number 

of sensors that must be placed on the body. In addition, in conventional PTT measurement 

methods PPG signal is required, which is subjected to several shortcomings. Firstly, PPG is 

sensitive to movement and can be deteriorated at the times of vigorous muscle activity 

[62]. Contact pressure between the PPG emitter and the skin, is another factor that has 

major effect on the amplitude and quality of the signal, especially for shorter range PPGs 

like green. Lower contact pressure, will result in law amplitude signal. On the other hand, 

high pressure can damage tissue and discomfort the user.  

BCG signal can provide more accurate proximal time to improve some of the above 

mentioned shortcomings of the PTT method. To eliminate the adverse impact of PEP on 

PTT-BP correlation, a new approach to PTT measurement that avoids the use of ECG as 

proximal timing reference is required. BCG signal, which represents the acceleration of the 

body due to the mechanical forces produced by blood ejection by heart, can provide a 

proximal timing which is not subject to PEP. In this regard, a physical model is developed 

that explains how BCG signal is generated from aortic BP waveforms. This model provides 

a physical insight to extract proper features from BCG signal as the proximal timing. 

Experimental results show that proximal timing extracted from the BCG signal, and 

consequently calculate PTT is a superior indicator of BP than conventional ECG based PTT 

[64]. In addition to provide more accurate proximal timing than ECG signal, the extracted 

features from BCG signal can be directly used to estimate BP, without any need for 

additional signal. Previous studies show that I-J time interval is inversely correlated to DP 

and J-K amplitude is proportional to PP.  

As mentioned above, the BCG signal is proven to carry useful information of the blood 

pressure waveform. However, more studies are required to develop more accurate 

estimators either based on the only BCG signal, or infusion of the extracted features from 

PPG and BCG signals. In addition, most of the previous studies are focused on the weight 

scale BCG. As mentioned earlier, BCG signal can be measured from any location on the 

body. Limbs are one of the most convenient locations to measure BCG signal. Particularly 

wrist BCG is convenient to measure, by means of a wrist band or smart watch. In this 

regard, more studies are required to discover the BP-related information within the limb 

BCG. This study may contain developing a physical model to describes the relationship 

between the limb BCG signal and blood pressure waveform.   
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3. Mathematical Model for Wearable BCG Analysis 

3.1. Introduction 

In the recent studies, it is elucidated based on a mathematical model-based analysis 

that the force exerted on the body due to the blood ejected by the heart (called the “force 

BCG”) results from the arterial BP gradients in the ascending and descending aorta[70], 

indicating that the morphology of the BCG waveform has a close association with the 

underlying aortic BP waveforms.  Then, in a series of subsequent work, it is illustrated that 

such a physical understanding may provide valuable insights in the disciplined 

interpretation of the BCG in terms of CV parameters and risk predictors as well as in the 

systematic development of the BCG-based techniques for CV health monitoring[32], [33].  

However, the relationship between the force BCG and the BCG actually measured by 

various instruments at the limb locations still remains mysterious.  Elucidating the physical 

mechanisms responsible for the relationship may pave the way toward understanding how 

the force BCG is transmitted to upper and lower limb locations through compliant joints 

and viscoelastic tissues to elicit the limb movement responses as well as interpreting the 

physiological association between the limb BCG versus the arterial BP waves, CV 

parameters, and CV risk predictors.  Motivated by such a promise, the objective of this 

chapter was to conduct a rigorous mathematical model-based analysis of the association 

between the morphology of the arterial BP waves, force BCG, and the limb BCG.  A 

mathematical model to predict the limb BCG responses to the arterial BP waves in the 

aorta was developed and experimentally validated.  Then, the validated mathematical 

model was analyzed to discover the association between the arterial BP waves and the 

corresponding limb BCG waveforms as well as to predict the impact of changes in the CV 

risk predictors on the morphology of the limb BCG waveforms. 

This chapter is organized as follows.  Section 2 describes the experimental data used in 

this chapter, as well as the mathematical model and the details of its calibration and 

analysis.  Section 3 summarizes the results, which are discussed and interpreted to 

elucidate the physiological association between the arterial BP waves and the limb BCG 

waveforms in Section 4.  Section 5 concludes the chapter. 

3.2. Methods 

In an attempt to establish the physiological association between the limb BCG and the 

underlying arterial BP, a mathematical model that relates the arterial BP waves to the limb 

BCG was conceived.  The validity of the mathematical model was assessed in both 
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qualitative and quantitative ways: (i) by investigating its efficacy in predicting 

morphologically correct limb BCG waveforms (qualitative), and (ii) by investigating its 

efficacy in predicting the absolute intervals and amplitudes associated with the 

experimentally observed limb BCG waves with minimal calibration (quantitative).  Then, 

the mathematical model was simulated with the “representative” BP waves obtained from 

the experimental data to yield the limb BCG waveforms, which were analyzed together 

with the arterial BP waveforms to discover the association between the two.  Details 

follow. 

3.2.1. Experimental Data 

Experimental data from our prior work were used to assess the validity of the 

mathematical model.  Given that the mathematical model would serve as the basis to 

establish the association between the limb BCG and the arterial BP waves in this work, the 

efficacy of the mathematical model to predict physiologically plausible limb BCG 

waveforms when the arterial BP waves are inputted was the primary concern.  Data from 

two prior work were leveraged to assess the validity of the mathematical model: (i) arterial 

BP waves measured at the ascending aorta and femoral artery (Data 1; N=20; age:64+/-9 

years; gender: 17 male and 3 female), and (ii) scale displacement BCG and wrist 

acceleration BCG along with non-invasive brachial BP (Data 2; N=10; age: 24+/-2.3 years; 

gender: 4 male and 6 female; weight: 64+/-11 kg; height: 165+/-10 cm).  Data 1 was 

collected from patients undergoing cardiac surgery with cardiopulmonary bypass under 

the approval of the University of Alberta Health Research Ethics Board and written 

informed consent.  Its experimental protocol and setup are described in detail in our prior 

work[71], [72].  Data 2 was collected from young healthy volunteers under the approval of 

the University of Maryland Institutional Review Board and written informed consent[73].  

In each subject, the scale displacement BCG was measured using a custom-built weighing 

scale while the wrist acceleration BCG was measured using a custom-built wrist-worn 

accelerometer.  The non-invasive brachial BP wave was measured using a commercial 

equipment (ccNexfin, Edwards Lifesciences, Irvine, CA, USA).  The measurements were 

simultaneously conducted while the subject stood still on the weighing scale with their 

arms placed at the side and the movement minimized. 

It is acknowledged that the use of arterial BP and limb BCG data collected from separate 

studies to validate the mathematical model is not ideal.  However, considering that the 

intended context of use of the mathematical model in this work is to predict physiologically 

realistic BCG waveforms rather than to precisely reproduce the experimentally observed 

BCG waveforms, the use of such data was regarded as acceptable. 
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Before its application to the mathematical model for analysis, the two data were 

standardized by scaling the arterial BP waves in Data 1 such that its group-average mean 

and diastolic levels were matched to the corresponding levels associated with Data 2. 

3.2.2. Mathematical Model  

A mathematical model to predict the BCG waveforms at the upper and lower limb 

locations in response to the heartbeat was conceived by integrating a mechanistic model 

translating the heartbeat-induced aortic BP waves to the force exerted on the body (called 

hereafter the “force BCG”) with a multi-degree-of-freedom (multi-DOF) mass-damper-

spring model representing the vibrational transmission in the body in the head-to-foot 

direction (Fig. 3.1(a)).  The former was adopted from our prior work[70], which predicts 

the force BCG from three aortic BP waves: aortic inlet BP, aortic arch BP, and aortic outlet 

BP (Fig. 3.1(b)).  In brief, the force BCG is the outcome of the interaction between the three 

aortic BP waves: 

FBCG(t) = AD[P1(t) − P2(t)] − AA[P0(t) − P1(t)] (1) 

where FBCG is the force BCG exerted on the body, P0, P1, and P2 are aortic inlet, arch, 

and outlet BP waves, respectively, and AA and AD are the ascending aortic and descending 

aortic areas.  The latter was developed to fulfill two objectives: (i) to predict the vertical 

limb movements (i.e., the limb BCG) from the force BCG exerted on the upper torso; and 

(ii) to be minimally complex.  An iterative trial and error process yielded a 4-DOF linear 

lumped parameter model consisting of four mass elements representing the upper torso 

(m1), upper limbs (m2), internal organs (m3), and lower limbs (m4), as well as the 

associated coupling elements to connect these masses (six dampers and six springs) (Fig. 

3.1(b)).  In this way, the essential behavior of the body in transmitting the force induced 

by the arterial BP waves to the upper (e.g., arm and wrist) and lower (e.g., leg and foot) 

limb sites may be captured. 

To account for the fact that the measurement of the lower-limb BCG often requires a 

dedicated instrument (e.g., a weighing scale[26], [35]), an additional mass-damper-spring 

dynamics (associated with the mass element m5 in Fig. 3.1(b)) was augmented to the 

above-mentioned mathematical model of the human body, so that the dynamic response 

characteristics of the instrument for the lower-limb BCG may also be accommodated in 

predicting the lower-limb BCG waveform (Fig. 3.1(b)). 
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Fig. 3.1: A mathematical model to predict BCG waveforms at the upper and lower limb locations in 
response to the heartbeat.  (a) Model architecture: A mechanistic model that translates the heartbeat-

induced aortic BP waves to the force exerted on the body (called the force BCG) is integrated with a multi-
degree-of-freedom (multi-DOF) mass-damper-spring model that represents the vibrational transmission in 
the body in the head-to-foot direction.  (b) Detailed structure: The BP waves are inputted to the lumped-
parameter mechanistic model of the aorta (1) to yield the force BCG.  The force BCG subsequently excites 

the upper torso (m_1) in the multi-DOF vibrational transmission model of the body to produce the 
corresponding movement (i.e., the BCG) of the upper limbs (m_2) and lower limbs (m_4).  The lower limb 

BCG is measured as the resulting movement of the instrument (m_5).  Hence, the mathematical model 
predicts the scale displacement BCG as the displacement associated with m_5, and the wrist acceleration 

BCG as the acceleration associated with m_2. 

Using the experimental data described in Section 2.1, the mathematical model was 

simulated as follows.  The BP waves were inputted to the lumped-parameter mechanistic 

model of the aorta (1) to yield the force BCG.  The force BCG subsequently excited the 

upper torso (m1) in the multi-DOF vibrational transmission model of the body to produce 

the corresponding movements (i.e., the BCG) of the upper limbs (m2) and lower limbs 

(m4).  The lower limb BCG was measured as the resulting movement of the instrument 

(m5).  Hence, the mathematical model predicts the scale displacement BCG as the 

displacement associated with m5, and the wrist acceleration BCG as the acceleration 

associated with m2. 
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3.2.3. Parametric Sensitivity Analysis 

To understand the overall variability of the limb BCG waveforms with respect to the 

variability in the bio-mechanical characteristics of the body as well as to determine the list 

of parameters in the mathematical model to calibrate using the experimental data, 

parametric sensitivity analysis was conducted as follows. 

First, nominal parameter values for the mathematical model were determined.  The 

parameters associated with the lumped-parameter mechanistic model of the aorta were 

adopted from the physically relevant values reported in the literature[70].  The parameters 

associated with the multi-DOF vibrational transmission model of the body were derived 

from the parameter values reported in a prior work on a comprehensive 16-DOF 

vibrational transmission model of human body[74] via a standard model reduction 

procedure[75].  Specifically, the 16-DOF vibrational transmission model was reduced to the 

4-DOF vibrational transmission model in Fig. 1 so that (i) m1 corresponds to the mass of 

the head and upper torso; (ii) m2 corresponds to the mass of the upper arms, elbows, 

forearms, and hands; (iii) m3 corresponds to the mass of the internal organs; and (iv) m4 

corresponds to the mass of the thighs, shanks, and feet.  The damping and stiffness 

parameters c12 and k12 associated with m2 as well as c45 and k45 associated with m4 were 

determined in such a way that the resulting fundamental resonance frequencies and 

amplitudes associated with m2 and m4 were matched to those associated with the 

corresponding subsystems in the 16-DOF vibrational transmission model[75].  On the other 

hand, the damping and stiffness parameters c14 and k14 connecting m1 and m4 as well as 

c13, c34, k13, and k34 connecting m3 to m1 and m4 were adopted directly from the 

respective values associated with the 16-DOF vibrational transmission model[74]. 

Nominal parameter values associated with the instrument dynamics were assigned so 

that (i) m5 is the mass of the scale used to measure the lower-limb BCG in our prior 

work[73]; (ii) k5 and c5 yields the critically damped 1-DOF dynamics with the natural 

frequency reported in a prior study[26].  Second, the resulting 5-DOF vibrational 

transmission model was transformed into the transfer functions relating the force BCG to 

the scale displacement BCG and the wrist acceleration BCG: 

BS(s) = HS(s)FBCG(s), BW(s) = HW(s)FBCG(s) (2) 

where BS(s) and BW(s) are the scale displacement and wrist acceleration BCG, and 

HS(s) and HW(s) are the associated transfer functions.  Third, parametric sensitivity 
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functions were analytically computed in the frequency domain as the partial derivatives of 

HS(s) and HW(s) with respect to the parameters therein: 

SS,θ(jω) =
θ0

HS(jω)|θ=θ0

∂HS(jω)

∂θ
|
θ=θ0

, SW,θ(jω) =
θ0

HW(jω)|θ=θ0

∂HW(jω)

∂θ
|
θ=θ0

 (3) 

where SS,θ(jω) and SW,θ(jω) denote the parametric sensitivity functions associated 

with HS(s) and HW(s), respectively, and θ ∈

{{mi}i=1
5 , k12, k13, k14, k34, k45, c12, c13, c14, c34, c45, k5, c5} while θ0 is the nominal value 

of θ.  Fourth, the sensitivity of the BCG morphology to the mass, damping, and stiffness 

parameters was analyzed in the frequency domain by way of the Bode magnitude plots of 

the parametric sensitivity functions.  Finally, the results of this analytical parametric 

sensitivity analysis was confirmed by time-domain numerical simulation of the 

mathematical model, by examining and comparing the changes in the morphology of the 

scale displacement and wrist acceleration BCG waveforms entailed by the perturbations in 

the mass, damping, and stiffness parameters of the same percentage amount (+/-20%). 

3.2.4. Model Calibration 

To evaluate the predictive capability of the mathematical model in Fig. 3.1 with respect 

to the experimental data described in Section 2.1, the mathematical model was calibrated 

to the experimental data.  Considering that the primary role of the mathematical model is 

to provide the basis to elucidate the association between the limb BCG and the arterial BP 

waves, it is required that the mathematical model be able to predict typical limb BCG 

waveforms when typical arterial BP waveforms are inputted.  Considering that a large 

portion of the nominal parameter values obtained for the mathematical model in Section 

2.3 (e.g., the values of the mass parameters {mi}i=1
5  and the stiffness parameters 

k12, k13, k14, k34, k45) may be physically appropriate to represent the body of an average 

subject according to the existing literature, the mathematical model was calibrated by 

optimizing a minimal set of parameters whose values are unknown and at the same time 

exert a large impact on the BCG morphology.  Based on this rationale, all the mass and 

stiffness parameters with physical relevance ({mi}i=1
5  as well as k12, k13, k14, k34, k45) 

were fixed to the nominal values, whereas c5 and k5 (which are unknown) as well as high-

sensitivity damping parameters (determined by the parametric sensitivity analysis) were 

calibrated to minimize the discrepancy between the experimental versus model-predicted 

BCG waveforms.   
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The calibration was performed specifically as follows.  First, representative arterial BP 

waves were derived as the average of the arterial BP waveforms associated with all 

subjects in Data 1.  Second, typical model-predicted BCG waveforms were derived using 

these arterial BP waveforms and the mathematical model in Fig. 3.1.  The typical force BCG 

was computed as the output of the mechanistic model of the aorta (1) when the 

representative arterial BP waveforms were inputted.  Then, the typical scale displacement 

and wrist acceleration BCG waveforms were computed by inputting the typical force BCG 

to the transfer functions HS(s) and HW(s).  Third, the parameters c5 and k5 as well as the 

high-sensitivity damping parameters determined by the parametric sensitivity analysis 

were optimized in such a way that the difference between the experimental versus model-

predicted BCG was minimized in terms of the amplitudes of the primary waves associated 

with the scale displacement (I, J, and K waves[70]) and wrist acceleration (J, K, and L 

waves[30]) BCG.  For this purpose, representative wave amplitudes corresponding to the 

experimental BCG were derived as the average of the wave amplitudes associated with all 

subjects in Data 2.  Then, the above-listed parameters were tuned by formulating and 

solving a numerical optimization problem to minimize the following penalty J using 

MATLAB and its Optimization Toolbox (MathWorks, Natick, MA): 

J = JS + JW = [(
IS
(M) − IS

(E)

IS
(E)

)

2

+ (
JS
(M) − JS

(E)

JS
(E)

)

2

+ (
KS
(M) − KS

(E)

KS
(E)

)

2

]
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(E)
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(E)

)

2

+ (
KW
(M) − KW

(E)

KW
(E)

)

2
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(M) − LW

(E)

LW
(E)

)

2

]
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(4) 

where I, J, K, and L are the amplitudes associated with the I, J, K, and L waves, the 

subscripts S and W denote the scale displacement and wrist acceleration, and the 

superscripts E and M denote experimental and model-predicted, respectively.   

3.2.5. Model Analysis 

The mathematical model was subsequently used to assess the validity with respect to 

the experimental data, as well as to elucidate the physiological association between the 

limb BCG and the underlying arterial BP waves.  Details follow. 

The validity of the mathematical model was assessed with respect to the experimental 

data in two ways: pre-calibration qualitative assessment and post-calibration quantitative 
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assessment.  In the pre-calibration qualitative assessment, the mathematical model was 

evaluated for its ability to predict the presence of the primary waves in the scale 

displacement (I, J, and K waves) and wrist acceleration (J, K, and L waves) BCG.  For the 

sake of this assessment, the un-calibrated mathematical model, equipped with the 

nominal parameter values obtained in Section 2.3, was excited with the arterial BP waves 

associated with all subjects in Data 1 to simulate the corresponding scale displacement and 

wrist acceleration BCG waveforms.  Then, the number of subjects in which the presence of 

each of the primary waves was predicted in the simulated BCG waveforms was counted.  

In the post-calibration quantitative assessment, the mathematical model was evaluated 

for its ability to reproduce quantitatively correct BCG waveforms.  For the sake of this 

assessment, the calibrated mathematical model was excited with the arterial BP waves 

associated with all subjects in Data 1 to simulate the corresponding scale displacement and 

wrist acceleration BCG waveforms.  Then, the distributions of the primary wave-to-wave 

intervals (I-J and J-K intervals in the scale displacement BCG as well as J-K and K-L intervals 

in the wrist acceleration BCG) and wave-to-wave amplitudes (I-J and J-K amplitudes in the 

scale displacement BCG as well as J-K and K-L amplitudes in the wrist acceleration BCG) 

were computed (in terms of mean and standard error (SE)).  These distributions were 

subsequently compared with the corresponding distributions obtained directly from the 

experimental BCG waveforms associated with all subjects in Data 2. 

The physiological association between the limb BCG and the arterial BP waves was 

investigated in two ways.  First, given that the primary constituents of the force BCG are 

the ascending aortic and descending aortic BP gradients[70], the scale displacement and 

wrist acceleration BCG waveforms were decomposed into the components originating 

from the ascending and descending aortic BP gradients, and how each of these BP 

gradients are transformed into the BCG waveforms was investigated.  The mathematical 

model is linear and the superposition principle applies.  Hence, the decomposition reduces 

to simulating the mathematical model with the ascending and descending aortic BP 

gradients one at a time.  This analysis was especially beneficial in scrutinizing the effect of 

individual arterial BP wave (P0, P1, and P2) on the BCG waveforms in that it enables how 

each arterial BP wave evolves into component waveform for the BCG; in contrast, direct 

analysis of the relationship between the combined ascending and descending aortic BP 

gradients and the resulting BCG waveforms may not yield much physiological insights due 

to the complex interaction among the three arterial BP waves.  Second, the mathematical 

model was used to study the impact of the pulse wave velocity and pulse pressure 

amplification (which are well known CV risk predictors) on the morphology of the BCG 

waveforms.  By using the representative arterial BP waves used in the calibration, the 

alterations in the pulse wave velocity and pulse pressure amplification were simulated by 

perturbing the time intervals and relative amplitudes between P0, P1, and P2.  Specifically, 
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an increase (or decrease) in the pulse wave velocity was realized by decreasing (or 

increasing) the time intervals between P0 and P1 as well as between P0 and P2 by the same 

percentage amount, while an increase (or decrease) in the pulse pressure amplification 

was realized by increasing (or decreasing) the pulse amplitude of P2 while maintaining the 

pulse amplitudes of P0 and P1.  The representative arterial BP waves associated with the 

perturbations up to +/-20% in both pulse wave velocity and pulse pressure amplification 

were created.  The nominal and perturbed representative arterial BP waves were inputted 

to the mathematical model to predict the resulting limb BCG waveforms.  Then, the 

changes in the wave-to-wave intervals and amplitudes in the limb BCG in response to the 

alterations in the pulse wave velocity and pulse pressure amplification were investigated. 

3.3. Results 

Fig. 3.2 shows the representative (i.e., group-averaged) arterial BP waves as well as 

typical pre-calibration model-predicted scale displacement and wrist acceleration BCG 

waveforms.  Overall, the mathematical model conceived in this chapter adequately 

predicted the overall morphology of the scale displacement and wrist acceleration BCG 

waveforms even without calibration to the experimental data.  In particular, the presence 

of the primary waves (i.e., the I, J, and K waves in the scale displacement BCG as well as 

the J, K, and L waves in the wrist acceleration BCG) were observed in 95% of the subjects 

simulated with the experimental arterial BP waveforms (the K wave in the scale 

displacement BCG and the K and L waves in the wrist acceleration BCG were not clearly 

predicted in one subject).  In addition, the BCG waveforms predicted by the 4-DOF 

mathematical model was almost identical to those predicted by the 16-DOF vibrational 

model[74].  Hence, it was concluded that the mathematical model used in this chapter is 

able to capture the essential characteristics associated with the transmission of the 

heartbeat-induced body movement throughout the body. 
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Fig. 3.2: Representative arterial BP waves as well as pre-calibration model-predicted scale displacement 
and wrist acceleration BCG waveforms. 

The parametric sensitivity analysis indicated that the most critical mass, damping, and 

stiffness parameters influencing the morphology of the scale displacement BCG turned out 

to be the arm mass (m2), spinal damping (c14), and scale stiffness (k5) parameters, while 

the most critical mass, damping, and stiffness parameters influencing the morphology of 

the wrist acceleration BCG turned out to be the arm mass (m2), spinal damping (c14), and 

arm stiffness (k12) parameters.  Guided by these findings and motivated by the goal of 

predicting “typical” BCG waveforms, the mathematical model was calibrated by tuning c14 

as well as c5 and k5 to minimize the discrepancy between the experimental versus model-

predicted BCG wave amplitudes (see Section 2.4). Table 3.1 summarizes the parameter 

values in the mathematical model thus calibrated using the experimental arterial BP and 

limb BCG waveforms. 
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Table 3.1: Mathematical model parameter values calibrated using experimental arterial BP and limb BCG 
waveforms. 

Mass [kg] Damping [N⸱s/m] Stiffness [kN/m] 

m1 9.0 c12 271 k12 40.7 

m2 8.0 c13 53 k13 3.15 

m3 23 c14 1056 k14 31.3 

m4 25 c34 32 k34 2.28 

m5 2.5 c45 1141 k45 425.3 

  c5 722 k5 833.0 

Table 3.2: Wave-to-wave intervals and amplitudes in experimental and model-predicted BCG (mean+/-SE). 

(a) Scale displacement BCG 

 
Wave-to-Wave Intervals Wave-to-Wave Amplitudes 

I-J [ms] J-K [ms] I-J [µm] J-K [µm] 

Experiment 

(N=10) 
88+/-2 88+/-3 1.72+/-0.18 1.65+/-0.20 

Model (N=20) 70+/-3 92+/-6 1.63+/-0.20 1.97+/-0.15 

 Average 

Difference 
18 4 0.09 0.32 

(b) Wrist acceleration BCG 

 
Wave-to-Wave Intervals Wave-to-Wave Amplitudes 

J-K [ms] K-L [ms] J-K [mm/s2] K-L [mm/s2] 

Experiment 

(N=10) 
62+/-3 80+/-3 73+/-7 52+/-4 

Model (N=20) 62+/-2 70+/-3 75+/-11 64+/-8 

Average 

Difference 
0 10 2 12 

Fig. 3.3 shows the representative force, scale displacement, wrist displacement, and 

wrist acceleration BCG waveforms predicted by the calibrated mathematical model (by 

inputting the representative BP waveforms) in conjunction with the representative (i.e., 

group-averaged) experimental scale displacement and wrist acceleration BCG waveforms, 

while Table 3.2 summarizes the experimental and model-predicted wave-to-wave intervals 

and amplitudes in the scale displacement and wrist acceleration BCG waveforms.  The 

mathematical model predicted the primary waves in the scale displacement (I, J, and K) 

and wrist acceleration (J, K, and L) BCG with small time interval (26% (I-J) and 5% (J-K) for 

scale displacement and 0% (J-K) and 15% (K-L) for wrist acceleration) and amplitude (6% 

(I-J) and 16% (J-K) for scale displacement and 3% (J-K) and 19% (K-L) for wrist acceleration) 

errors.  On the other hand, its limited ability to reproduce the secondary H wave in the 
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scale displacement BCG and the I wave in the wrist acceleration BCG is attributed to the 

fact that these waves are associated with the left ventricular activities[35] while the 

mathematical model can only predict the BCG waves originating from the arterial BP 

gradients[70]. 

 

Fig. 3.3: Force, scale displacement, wrist displacement, and wrist acceleration BCG waveforms predicted by 
calibrated mathematical model in conjunction with representative experimental scale displacement and 

wrist acceleration BCG waveforms. 

Fig. 3.4 shows the decomposition of the scale displacement, wrist displacement, and 

wrist acceleration BCG waveforms into the components associated with the ascending and 

descending aortic BP gradients.  In both the scale and wrist displacement BCG, the falling 

limb of the I wave was primarily formed by the ascending aortic BP gradient, whereas the 
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J-K down-stroke was predominantly formed by the descending aortic BP gradient.  In the 

wrist acceleration BCG, accordingly, the J wave was mostly formed by the ascending aortic 

BP gradient, while the L wave was mostly formed by the descending aortic BP gradient.  

The K wave, on the contrary, was formed by both BP gradients, although the descending 

aortic BP gradient still had larger influence than its ascending counterpart.  Yet all in all, 

the results shown in Fig. 3.4 suggest that all the I, J, and K waves in the displacement BCG 

as well as the J, K, and L waves in the acceleration BCG correspond to the same extrema in 

the underlying aortic BP gradients, illustrating that the pairs of (i) displacement I wave-

acceleration J wave, (ii) displacement J wave-acceleration K wave, and (iii) displacement K 

wave-acceleration L wave are associated with the same physiological origins.  These 

relationships are illustrated in Fig. 3.3 as well as summarized in Table 3.3. 

 

Fig. 3.4: Decomposition of scale displacement, wrist displacement, and wrist acceleration BCG waveforms 
into components associated with ascending and descending aortic BP gradients. 
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Table 3.3: Relationships between arterial BP waves, arterial BP gradients, and scale displacement and wrist 
acceleration BCG waves. 

Arterial BP Arterial BP Gradients Scale Displacement BCG Wrist Acceleration BCG 

P1 onset Peak, P0-P1  I J 

P2 onset Peak, P1-P2 J K 

P2 systole Valley, P1-P2 K L 

P1 Amplitude Positive Amplitude, P1-P2 J Amplitude K Amplitude 

P2 Amplitude 
Peak-Peak Amplitude, P1-

P2 
J-K Amplitude K-L Amplitude 

Fig. 3.5 illustrates the relationship between the aortic pulse wave velocity and pulse 

pressure amplification versus the morphology of the limb BCG waveforms.  Overall, the 

aortic pulse wave velocity was associated with both the wave-to-wave intervals and 

amplitudes in the limb BCG, whereas the aortic pulse pressure amplification was 

predominantly associated with the wave amplitudes in the limb BCG.  In particular, an 

increase in the aortic pulse wave velocity yielded the corresponding decrease in (i) the I-J 

and I-K intervals in the scale displacement BCG, and accordingly, the J-K and J-L intervals in 

the wrist acceleration BCG; and (ii) the amplitudes of the I and J waves in the scale 

displacement BCG as well as the J wave amplitude in the wrist acceleration BCG.  In 

addition, an increase in the aortic pulse pressure amplification yielded the corresponding 

increase in the J-K amplitude in the scale displacement BCG as well as the K-L amplitude in 

the wrist acceleration BCG. 
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Fig. 3.5: Relationship between the aortic pulse wave velocity (PWV) and pulse pressure amplification (PPA) 
versus the morphology of the limb BCG waveforms.  (a) Scale displacement BCG.  (b) Wrist acceleration 

BCG. 
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3.4. Discussion 

3.4.1. Mathematical Model: Validity and Implications 

The calibrated mathematical model could faithfully reproduce the morphology of the 

scale displacement and wrist acceleration BCG waveforms (Fig. 3.3).  In particular, the 

mathematical model predicted the presence of the I, J, and K waves in the scale 

displacement BCG as well as the J, K, and L waves in the wrist acceleration BCG.  In addition, 

the agreement between the experimental and model-predicted wave-to-wave intervals 

and amplitudes were quite remarkable (Table 3.2).  Considering that (i) the parameters in 

the mathematical model were only minimally calibrated (i.e., except for the scale-related 

parameters (c5 and k5), only one parameter (i.e., c14) was calibrated), (ii) they were fixed 

at constant values in predicting these waves associated with all subjects, and that (iii) the 

subjects associated with the BP waveforms used in the model prediction and those 

associated with the experimental BCG waveforms were largely different, the ability of the 

mathematical model to predict primary waves in the scale and wrist BCG with acceptable 

quantitative agreement with independent experimental data appears to strongly support 

the validity of the mathematical model in predicting the limb BCG waveforms.  In fact, we 

speculate that a subset of the errors listed in Table 3.2 may in part be attributed to the 

discrepancy in the subject demographics associated with Data 1 and Data 2, and may be 

improved by reducing the gap associated with the subject demographics due to the 

following reasons.  First, the model-predicted scale displacement BCG showed small I-J 

interval and amplitude as well as large J-K amplitude compared with its experimental 

counterpart, while the model-predicted wrist acceleration BCG showed large K-L 

amplitude compared with its experimental counterpart.  Second, considering that the 

subjects in Data 1 may be associated with large pulse wave velocity and pulse pressure 

amplification compared with those in Data 2 (since the former are old and also subject to 

adverse CV state while the latter are young and healthy), the discrepancy in the CV state 

between these data may be removed by decreasing (i) the pulse wave velocity (e.g., by 

increasing the time interval between P1 and P2) and (ii) the PP amplification (e.g., by 

decreasing the amplitude of P2).  According to Fig. 3.5, such alterations in pulse wave 

velocity and pulse pressure amplification will lead to the following changes in the model 

predictions: (i) an increase in the I-J interval of the scale displacement BCG, thereby 

improving the I-J interval accuracy in Table 3.2(a); (ii) an increase in the J wave amplitude 

and a decrease in the K wave amplitude in the scale displacement BCG, which will increase 

its I-J amplitude while maintain or decrease its J-K amplitude, thereby improving the I-J and 

J-K amplitude accuracy in Table 3.2(a); and (iii) a decrease in the K and L waves in the wrist 
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acceleration BCG, which will largely decrease its K-L amplitude, thereby improving the K-L 

amplitude accuracy in Table 3.2(b). 

The predicted BCG waveforms indicate that, as a first-order approximation, the I, J, K, 

and L waves in the wrist acceleration BCG may correspond to the H, I, J, and K waves in the 

scale and wrist displacement BCG for the following reasons.  First, assuming that the body 

is rigid, all the body parts would undergo the same displacement, which would result in 

the identical scale and wrist displacement BCG waveforms.  Second, considering that 

deriving wrist acceleration from wrist displacement involves two differentiations in time 

and also that differentiating twice in time leads to a phase lead of 180 degrees (along with 

frequency-dependent amplitude modulation), the gross morphology of the wrist 

acceleration BCG waveform may be derived by flipping (i.e., multiplying (-1) to) the wrist 

displacement BCG waveform. 

Yet strictly, the body is not rigid; rather, it exhibits a complex multi-body dynamics 

nature comprising a number of mass, damping, and stiffness characteristics.  In fact, the 

findings from the parametric sensitivity analysis suggest that the morphology of the limb 

BCG may be affected by the musculoskeletal properties of the subject, and the influence 

may not be negligible.  In particular, both the scale displacement and wrist acceleration 

BCG were largely sensitive to the upper-limb properties among others.  These 

musculoskeletal properties exerts a mechanical filtering on the force BCG produced by the 

heartbeat, thereby altering the limb BCG waveforms (Fig. 3.3 and Fig. 3.4).  Therefore, the 

exact interpretation of the BCG to relate it to CV functions may require explicit account for 

the body dynamics. 

3.4.2. Association between Limb BCG and Arterial BP Waveforms 

The mathematical model could now be exploited to elucidate the association between 

the limb BCG waves and arterial BP waves as follows. 

First, the timings associated with the aortic BP waveforms may be indirectly deciphered 

from the limb BCG waveforms.  More specifically, our prior work elucidated that the 

diastolic minima pertaining to the aortic inlet (P0) and outlet (P2) BP waves roughly 

correspond to the initiation of the I wave and the peak of the J wave in the force BCG[70].  

Therefore, at least in an approximate sense, the I wave in the scale displacement BCG, the 

I wave in the wrist displacement BCG, and the J wave in the wrist acceleration BCG may 

indicate the diastolic minimum pertaining to the aortic inlet BP, and likewise,    Indeed, our 

prior experimental work suggests that the I wave in the scale displacement BCG and the J 



36 

 

wave of the wrist acceleration BCG can be used as the timing associated with the aortic 

inlet BP toward cuff-less BP monitoring[73].   

Second, the I wave amplitude in the scale displacement BCG and accordingly the J wave 

amplitude in the wrist acceleration BCG may represent the ascending aortic BP gradient.  

Indeed, Fig. 3.4 illustrates that the falling limb of the I wave in the scale displacement BCG 

as well as the rising limb of the J wave in the wrist acceleration BCG are determined 

primarily by the I wave in the force BCG (or equivalently, the ascending aortic BP gradient).  

Considering that the amplitude of the ascending aortic BP gradient is sensitive to the 

perturbations in the CV risk predictors of aortic pulse wave velocity and pulse pressure 

amplification, these waves may be analyzed to obtain meaningful insights on these CV risk 

predictors (Fig. 3.5). 

Third, the J-K down-stroke in the scale displacement BCG and (accordingly) the K-L up-

stroke in the wrist acceleration BCG may represent the descending aortic BP gradient.  

Indeed, Fig. 3.4 illustrates that the J-K down-stroke in the scale displacement BCG as well 

as the K-L up-stroke in the wrist acceleration BCG are determined primarily by the J-K 

down-stroke in the force BCG (or equivalently, the descending aortic BP gradient, in that 

the ascending aortic BP gradient is close to zero during this phase).  Hence, together with 

the fact that the amplitude of the descending aortic BP gradient is sensitive to the distal 

pulse pressure[70], these down-stroke/up-stroke portions may be analyzed to estimate 

distal pulse pressure. 

Fourth, the J wave amplitude in the scale displacement BCG and accordingly (yet to a 

weaker extent) the K wave amplitude in the wrist acceleration BCG may represent the 

aortic pulse pressure.  This speculation is plausible based on two observations: (i) the 

amplitude of the J wave in the force BCG may represent the aortic pulse pressure[70]; and 

(ii) the J wave in the scale displacement BCG and the K wave in the wrist acceleration BCG 

correspond approximately to the J wave in the force BCG.  Hence, together with the 

surrogates of distal pulse pressure mentioned above (i.e., the J-K amplitude in the scale 

displacement BCG and the K-L amplitude in the wrist acceleration BCG), the limb BCG may 

provide a means to monitor another CV risk predictor of aortic pulse pressure 

amplification. 

Finally, it must be noted that the promising potential of the limb BCG as surrogate 

measure of arterial BP hinges upon the significance of the mechanical filtering effect of the 

body.  Indeed, the mechanical filtering has profound implications on the value of the limb 

BCG waveforms in probing arterial BP and CV functions.  For example, the absolute timings 
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associated with the arterial BP may not be robustly determined from the limb BCG 

compared to the force BCG, due to the non-negligible phase lag and morphological 

distortion imposed by the body’s mechanical filtering on the limb BCG waveforms. 

Despite the confounding impact of body filtering, the mathematical model indicated 

that the time intervals between the primary waves in the limb BCG waveforms remained 

quite consistent.  In particular, the I-J and J-K intervals associated with the force BCG (66+/-

3 ms and 96+/-6 ms) and the scale displacement BCG (70+/-3 ms and 92+/-6 ms; Table 3.2) 

remained comparable.  Further, these I-J and J-K intervals were also comparable to the J-K 

and (to a lesser extent) K-L intervals associated with the wrist acceleration BCG (62+/-2 ms 

and 70+/-3 ms; Table 3.2).  In addition, the primary waves in both the scale (I, J, and K) and 

wrist (J, K, and L) BCG exhibited adequate degree of sensitivity in response to the changes 

in the arterial wave propagation characteristics (Fig. 3.5).  Hence, the limb BCG may still 

possess value as surrogate measure of arterial BP and CV functions. 

3.4.3. Relationship between Aortic Pulse Wave Velocity and Pulse Pressure 

Amplification versus Limb BCG Morphology 

By leveraging and compiling the mathematical model predictions illustrated in Fig. 3.3-

Fig. 3.5, the following insights on the role of the aortic pulse wave velocity and pulse 

pressure amplification in shaping the limb BCG waveforms may be made. 

First, the aortic pulse wave velocity influences the limb BCG morphology by altering the 

time intervals among the aortic BP waves (i.e., P0, P1, and P2 in Fig. 3.3).  Regarding the 

wave-to-wave time intervals, the I-J and I-K intervals in the scale and wrist displacement 

BCG, and accordingly the J-K and J-L intervals in the wrist acceleration BCG as well, are 

inversely proportional to the aortic pulse wave velocity, because a decrease in the aortic 

pulse wave velocity results in the delay in the onset and peak timings of P2 (which delays 

the timings associated with the J and K waves in the scale displacement BCG and 

accordingly the K and L waves in the wrist acceleration BCG).  Noting that the H wave in 

the scale displacement BCG roughly corresponds to the initiation of its I wave (and thus, 

the onset of P0[70]), the I-K and I-L intervals in the wrist acceleration BCG are also inversely 

proportional to the aortic pulse wave velocity.  Regarding the wave amplitudes, the most 

salient influence of the aortic pulse wave velocity originates from the alteration of the 

separation between the ascending and descending aortic BP gradients.  In particular, the 

amplitude of the I wave in the scale displacement BCG, and accordingly the amplitude of 

the J wave in the wrist acceleration BCG, are inversely proportional to the aortic pulse wave 

velocity, because a decrease in the aortic pulse wave velocity results in the greater 
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separation between the two aortic BP gradients, weakening the mutual cancellation 

between them (in other words, the primary peaks associated with the ascending and 

descending aortic BP gradients are better preserved, leading to the scale displacement I 

wave and wrist acceleration J wave with higher amplitudes).  Together with the 

observation that the amplitude sensitivity of all the other BCG waves to perturbation in the 

aortic pulse wave velocity was relatively small, the I-J amplitude in the scale displacement 

BCG, the I-J amplitude in the wrist displacement BCG, and the J-K amplitude in the wrist 

acceleration BCG (which may be proportional to the I-J amplitude in the scale displacement 

BCG) are also inversely proportional to the aortic pulse wave velocity. 

Second, the aortic pulse pressure amplification influences the limb BCG morphology by 

altering the relative pulse amplitudes among the aortic BP waves.  Its influence is primarily 

on the wave amplitudes (Fig. 3.5).  Specifically, an increase in the aortic pulse pressure 

amplification (i.e., an increase in the pulse amplitude associated with P2 relative to P0 and 

P1) is associated with an increase in the J-K amplitude in the scale displacement BCG and 

accordingly the K-L amplitude in the wrist acceleration BCG, since the J-K down-stroke in 

the scale displacement BCG and the K-L up-stroke is the wrist acceleration BCG are 

determined by the level of pulse pressure associated with P2[70]. 

Finally, two remarks are worth making.  First, the absolute amplitude of the limb BCG 

waveform is directly proportional to the level of pulse pressure[70].  Hence, an overall 

increase in the level of pulse pressure (e.g., with aging) may increase the amplitude of the 

limb BCG waveform.  Second, as a first-order approximation, the influence of the aortic 

pulse wave velocity and pulse pressure amplification on the limb BCG waveform 

morphology may appear de-coupled: (i) the wave-to-wave intervals are primarily affected 

by the aortic pulse wave velocity, and (ii) the wave amplitudes primarily altered by the 

aortic pulse wave velocity (scale displacement I-J and wrist acceleration J-K) and pulse 

pressure amplification (scale displacement J-K and wrist acceleration K-L) are distinct.  

However, in reality, both the aortic pulse wave velocity and pulse pressure amplification 

exert impacts on the limb BCG waveform morphology, and these influences can be quite 

convoluted (meaning that it may not be trivial to infer the alteration in the aortic pulse 

wave velocity and pulse pressure amplification from the rudimentary analysis of the 

changes in the limb BCG waveform morphology).  Hence, the physiological insights 

obtained from the mathematical model analysis may need to be integrated with data-

driven techniques (e.g., machine learning) to decipher CV states and functions from the 

limb BCG. 

3.5. Conclusion 
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The physiological association between the limb BCG waveforms and the arterial BP 

waveforms in the aorta was elucidated.  It was demonstrated that arterial BP waves in the 

aorta may exert profound influences on the morphology of the limb BCG waveforms, and 

also that the influences are subject to complex interplay between the arterial BP waves.  

These findings suggest that certain characteristic features in the limb BCG waveforms may 

serve as viable surrogates of CV function, health, and potentially CVD.   
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4. Wearable BCG-Based Pulse Transit Time for Cuff-Less 

BP Monitoring 

4.1. Introduction 

One of the most widely pursued operator-less and cuff-less BP monitoring techniques 

is based on the PTT principle [2].  PTT is the time required for an arterial wave (e.g., BP) to 

travel from one (usually proximal) arterial site to another (usually distal) and is known to 

be inversely associated with BP via nonlinear pressure-area relationship of the arterial wall 

[2].  Due to the inconvenience associated with the instrumentation of proximal arterial 

pulse signals, the vast majority of existing PTT-based BP monitoring studies have resorted 

to pulse arrival time (PAT) in which the R wave of the electrocardiogram (ECG) is used as 

the proximal timing reference [2].  PAT has shown its efficacy for association with systolic 

BP (SP) in many previous investigations [2].  However, PAT is composed of PTT and pre-

ejection period (PEP), which does not vary consistently in response to BP.  In fact, our prior 

work has suggested that the efficacy of PAT may be degraded under BP-perturbing 

interventions in which PTT and PEP vary in the opposite directions, due to the mutual 

cancellation of their respective changes in response to BP [32], [33].  To overcome the 

drawback of PAT, the ability for convenient instrumentation of arterial pulse signals as 

proximal timing reference for PTT is desired. 

Hence, the BCG has the potential to offer convenient options for the instrumentation 

of proximal arterial pulse signals for constructing PTT.   

Prior works suggest that characteristic features extracted from the BCG instrumented 

with a scale-like platform (i.e., a high-performance force plate) have the potential for 

convenient cuff-less BP monitoring [17], [68]. Inspired by this success with the whole-body 

BCG and the ultra-convenience of wearable limb BCG, the goal of this chapter was to 

investigate the potential of wearable limb BCG to enable cuff-less BP monitoring via PTT 

by investigating the association between wearable limb BCG-based PTT and BP in 

comparison with whole-body BCG-based PTT and PAT.  To this aim, a wearable BCG-based 

PTT was constructed using the BCG and PPG signals instrumented by a wristband as 

proximal and distal timing reference (called the wrist PTT).  Its efficacy as surrogate of BP 

was examined in comparison with PTT constructed using the whole-body BCG 

instrumented by a customized weighing scale (scale PTT) as well as pulse arrival time (PAT) 

using the experimental data collected from 23 young healthy participants under multiple 

BP-perturbing interventions. 
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4.2. Human Subject Study 

Under the Institutional Review Board (IRB) approval obtained from the University of 

Maryland and written informed consent, 23 young healthy volunteers were recruited and 

studied in strict accordance with the IRB guidelines. 

4.2.1. Method 

In the study, the following physiological waveforms were collected from each subject: 

(1) an ECG measured using 3 gel electrodes in the Lead II configuration and interfaced to a 

wireless amplifier (BN-EL50, Biopac Systems, Goleta, CA, USA); (2) a reference BP 

waveform measured using a fast servo-controlled finger cuff embedded with a blood 

volume (PPG) waveform sensor on the ring finger of a hand to implement the volume 

clamp method (ccNexfin, Edwards Lifesciences, Irvine, CA, USA); (3) a whole-body BCG 

waveform measured using a customized weighing scale; (4) a wrist BCG and PPG 

waveforms measured using a custom-manufactured wristband; (5) a finger PPG waveform 

measured using a transmission-mode clip (TSD124A, Biopac systems, Goleta, CA, USA) 

placed on a free finger and interfaced to a wired amplifier (OXY100E, Biopac systems, 

Goleta, CA, USA). The devices were interfaced to a laptop computer via a data acquisition 

unit (MP150, Biopac Systems, Goleta, CA, USA) to synchronously record all the waveforms 

at 1 kHz sampling rate (Fig. 4.1).  

The data were collected during four BP-perturbing interventions (Fig. 4.2). Each subject 

stood still for 1.5 min for an initial rest state (R1). Then, the subject underwent the cold 

pressor intervention (CP) for 2 min, in which the subject immersed free hand into ice water. 

Followed by standing still for 1.5 min for a second rest state (R2), the subject underwent 

the mental arithmetic intervention (MA) for 3 min, in which the subject repeatedly added 

the digits of a three-digit number and added the sum to the original number. Followed by 

standing still for 1.5 min for a third rest state (R3), the subject underwent the slow 

breathing intervention (SB) for 3 min, in which the subject took deep and slow breaths. 

Followed by standing still for 1.5 min for a fourth rest state (R4), the subject underwent 

the breath holding intervention (BH), in which the subject held breath after normal 

exhalation (i.e., starting from functional residual capacity (FRC)). Lastly, the subject stood 

still for 1.5 min for a fifth rest state (R5). The recordings were made throughout these 

states. 
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Fig. 4.1- Data collection for investigation of blood pressure trend tracking efficacy of wristband-based blood 
pressure surrogates. (A) Measured physiological waveforms. (B) Interventions to perturb subject’s blood 

pressure. 

Note that the interventions used in this study are known to effectively perturb BP 

through distinct changes in the cardiovascular parameters (including heart rate, stroke 

volume, and total peripheral resistance). In fact, CP is known to increase BP via an increase 

in heart rate and total peripheral resistance, often despite a decrease in stroke volume and 

cardiac output[77]–[83]; MA is known to increase BP via an increase in heart rate and total 

peripheral resistance (often along with a resulting increase in cardiac output)[77], [81]–

[83]; SB is known to modestly decrease BP via a decrease in heart rate[84]–[89]; and BH is 

known to increase BP via an increase in TPR despite a decrease in heart rate, stroke volume, 

and cardiac output[90], [91].  

Fig. 4.2 shows the experimental set-up for the human subject study. 
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Fig. 4.2- Experimental set-up for human subject study. 

4.2.2. Human Subject Statistics 

Table 4.1 shows the subject demographics and ethnicity. Fig. 4.3 shows the 

perturbations in the reference DP and SP achieved with each intervention and all 

interventions.  

Table 4.1: Subject demographics (mean+/-SD) and ethnicity. 

 (A) Demographics 

Age 
[Years] 

Gender 
Weight 

[kg] 
Height 
[cm] 

SP Change 
[mmHg] 

DP Change 
[mmHg] 

23 +/- 5 M: 17 / F: 6 74 +/- 16 174 +/- 9 49.1+/-10.3 32.3+/-5.5 

(B) Ethnicity 

Hispanic 
Latin 

American Indian 
Alaska Native 

Black 
African 

American 
Asian 

Native Hawaiian 
Pacific Islander 

White Unknown 

2 0 1 5 0 12 3 
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Table 4.2: T Maximum changes in reference diastolic (DP) and systolic (SP) pressures (mean+/-SE). 

 
R1CP 
[mmHg] 

CPR2 
[mmHg] 

R2MA 
[mmHg] 

MAR3 
[mmHg] 

R3SB 
[mmHg] 

SBR4 
[mmHg] 

R4BH 
[mmHg] 

BHR5 
[mmHg] 

All 

DP 20+/-2 18+/-2 21+/-2 20+/-1 7+/-1 7+/-1 19+/-2 22+/-2 32+/-1 

SP 26+/-2 25+/-2 30+/-3 30+/-2 10+/-2 8+/-2 31+/-4 31+/-3 49+/-2 

Fig. 4.3 shows the group-average changes in the cardiovascular parameters (including 

DP and SP, heart rate, stroke volume, cardiac output, and total peripheral resistance) 

across the BP-perturbing interventions (here, the heart rate was derived by dividing the 

cardiac output by the stroke volume, both of which were obtained from the ccNexfin 

device). The results suggest that BP was changed as anticipated in the study design: BP 

increased in response to CP, MA, and BH, while it moderately decreased in response to SB. 

The results also indicate that the interventions changed BP through distinct alternations in 

the cardiovascular parameters: (1) CP by increasing heart rate and total peripheral 

resistance; (2) MA by largely increasing heart rate and total peripheral resistance while 

largely decreasing stroke volume; (3) SB by decreasing stroke volume and total peripheral 

resistance; and (4) BH by decreasing heart rate while increasing total peripheral resistance. 

Therefore, the collected data are expected to provide challenging tests for the BP trend 

tracking efficacy of the BP surrogates investigated in this study. 
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Fig. 4.3- Group-average changes in the cardiovascular parameters across BP-perturbing interventions 
(mean+/-SE). 
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4.3. Method 

In this chapter, we investigated the association between PTT based on a wearable limb 

BCG (wrist BCG) and BP by the following steps: (i) requisite signals to construct PTT based 

on both whole-body BCG and wrist BCG as well as PAT, and the corresponding reference 

systolic (SP) and diastolic (DP) BP were acquired from the study participants under an array 

of BP-perturbing interventions; (ii) requisite features to construct PTT and PAT were 

extracted from the acquired signals, and then PTT and PAT were constructed; and (iii) the 

association between the PTT and PAT thus constructed versus reference BP was analyzed.  

Details follow. 

4.3.1. Signal Processing 

To extract the features, we need to process and clean the signal. In this regard, the 

collected data were first down-sampled to 250Hz.  For each participant, the data were 

segmented into nine periods: R1, CP, R2, MA, R3, SB, R4, BH, and R5.  In each period, the 

signals were processed as follows.   

 First, the ECG R waves were detected as the local peaks in the ECG signal.   

 Second, the scale and wrist BCG as well as PPG signals were band-pass filtered 

using a 1st-order Butterworth filter with nominal pass band of 0.5Hz~15Hz (in 

other words, the pass band of individual participants were varied around the 

nominal pass band).   

 Third, the BCG and PPG beats were identified with the ECG gating.   

 Fourth, individual beats were visually inspected and those associated with 

corrupted BCG (e.g., large-amplitude BCG due to non-negligible motion 

artifacts) and PPG (e.g., small signal-to-noise ratio PPG due to low-quality 

sensor-skin contact) signals were excluded from further analysis.   

 Fifth, the scale and wrist BCG signals were smoothed using a causal 8-beat 

exponential moving average filter to suppress residual motion artifacts.   
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4.3.2. Construction of PTT and PAT 

From the measured signals, PTT based on the scale and the wrist BCG as well as PAT 

were constructed based on the characteristic features extracted from the BCG, PPG, and 

ECG signals (Fig. 4.4).  Details follow. 

 

Fig. 4.4Fig. 2: Features extracted from ECG (R wave), BCG (HS, IS, JS, HW, IW, JW waves), and PPG (foot) 
signals, as well as scale PTT (PTTS1, PTTS2), wrist PTT (PTTW1, PTTW2), and PAT.  Only green PPG signal is 

shown for the sake of illustration. 

First, the PPG foot was extracted using the intersecting tangent method [31], [32].  

Then, characteristic features (called the waves;Fig. 4.4) consistently available in the scale 

and wrist BCG signals were identified, which were then extracted from each beat as 

follows: (1) the scale JS and wrist JW waves were identified as the local maximum in the 

initial 15%~40% window of the beat; (2) the scale IS and wrist IW waves were identified as 

the nearest local negative waves before the JS and JW waves, respectively; and (3) the scale 

HS and wrist HW waves were identified as the nearest local positive waves before the IS and 

IW waves, respectively.  The local waves were identified as local extrema, except for the HS 

and IW waves which were identified based on the intersecting tangent method.  

From the consistently available features thus extracted, PTT and PAT were constructed 

as follows (Fig. 4.4).  First, two scale PTTs were constructed as whole-body BCG-based PTT 

using the scale BCG and the wrist PPG as the proximal and distal timing references: PTTS1 
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as the interval between the HS wave and the PPG foot, and PTTS2 as the interval between 

the IS wave and the PPG foot.  Second, two wrist PTTs were likewise constructed as wrist 

BCG-based PTT using the wrist BCG and the wrist PPG as the proximal and distal timing 

references: PTTW1 as the interval between the IW wave and the PPG foot, and PTTW2 as the 

interval between the JW wave and the PPG foot.  Third, PAT was constructed as the interval 

between the ECG R wave and the PPG foot.  To examine the influence of the choice of the 

PPG signal on the efficacy of PTT and PAT, all the above PTTs and PAT were constructed 

using green and IR PPG signals, resulting in eight PTTs and two PATs for analysis.  In addition 

to the above PTT and PAT, pre-ejection period (PEP) was constructed as the interval 

between the ECG R wave and the IW wave similarly to our prior work [32]. 

4.3.3. Analysis of Association between PTT and PAT versus BP 

To analyze the association between PTT and PAT versus BP, the reference DP and SP 

were extracted from each beat as the minimum (DP) and maximum (SP) of the height-

compensated brachial BP signal.  In addition, in each period, beat-to-beat fluctuations in 

the scale PTT, wrist PTT, and PAT were suppressed by removing outliers (defined as the 

PTT and PAT values outside of +/-3×SD from its mean value within each period) and 

smoothing the respective non-uniformly spaced beat-to-beat sequences using a quadratic 

Savitzky-Golay filter [92].  Then, the efficacy of the scale and wrist PTT as well as PAT in 

association with BP was analyzed in the maximum BP change regimes associated with all 

the resting and intervention periods as well as in the individual resting-intervention period 

pairs.  Details follow. 

First, the association between PTT and PAT versus BP in the maximum BP change 

regimes associated with all the resting and intervention periods was analyzed.  The goal of 

the analysis was to comparatively assess the efficacy of scale PTT, wrist PTT, and PAT as 

surrogate of BP.  In each period, the instant at which the reference BP attained extremum 

(minimum for resting and SB periods, and maximum for CP, MA, and BH periods) was 

identified.  Then, the reference BP as well as the scale PTT, wrist PTT, and PAT 

representative of the period were determined as their respective median values within the 

five-beat interval around the extremum.  Subsequently, up to nine pairs of reference BP 

and the corresponding scale PTT, wrist PTT, and PAT were obtained from the data collected 

from each participant.  Considering that the pair of reference BP and the corresponding 

scale PTT, wrist PTT, and PAT could not be obtained in a subset of periods (especially BH 

due to the limited number of beats available from the collected data), only the participants 

equipped with the pair of reference BP and the corresponding PTT and PAT for ≥ 3 resting-
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intervention period pairs (R1-CP, R2-MA, R3-SB, and R4-BH; thus ≥ 6 periods in total) were 

included for the analysis of PTT-BP and PAT-BP association. 

Second, the association between the wrist PTT and PAT versus BP in the individual 

resting-intervention period pairs (R1-CP, R2-MA, R3-SB, and R4-BH) was analyzed.  The goal 

of the analysis was to examine the robustness and consistency of the association between 

the wrist PTT and PAT versus BP across diverse BP-perturbing interventions.  In each 

resting-perturbation period pair, the range of BP was segmented into 1 mmHg bins, and 

the median wrist PTT and PAT values contained in each bin were calculated.  Then, the 

reference BP and the corresponding wrist PTT and PAT were included for analysis of wrist 

PTT-BP and PAT-BP association. 

Table 4.3. Resting BP levels and overall BP changes (mean+/-SE).  DP: diastolic BP.  SP: systolic BP. 

 Resting Level Overall Change 

DP 78+/-1 38+/-2 
SP 119+/-2 56+/-3 

 

Fig. 4.5 Changes in BP, scale PTT based on green PPG, wrist PTT based on green PPG, pulse arrival time 
(PAT) based on green PPG, and pre-ejection period (PEP) in response to BP-perturbing interventions 

(mean+/-SE). 

The efficacy of the scale PTT, wrist PTT, and PAT in their association with BP was 

quantified in terms of three metrics: correlation coefficient, root-mean-squared error 

(RMSE), and mean absolute error (MAE) between reference and calibrated BP.  These 
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metrics were first computed in each participant and then summarized as mean and 

standard error (SE) across all participants.  The Bland-Altman analysis was also conducted 

to assess the limits of agreement between reference and calibrated BP.  In the analysis, 

the calibrated BP was computed as follows.  In case of the analysis for the maximum BP 

change regimes, linear regression models to relate all the eight PTT (PTTS1, PTTS2, PTTW1, 

and PTTW2, all in conjunction with both green and IR PPG signals) and two PAT (in 

conjunction with both green and IR PPG signals) in the available (≥ 6) resting and 

intervention periods to reference DP and SP were obtained, and the calibrated DP and SP 

were computed by inputting each PTT and PAT to the respective regression model.  

Subsequently, the correlation coefficients, RMSEs, and MAEs between reference versus 

calibrated DP and SP were computed as measures of the best-case association.  The 

significance in difference between wrist PTT and PAT was determined using the paired t-

test with the Bonferroni correction for multiple comparisons (i.e., PTTW1 and PTTW2 versus 

PAT).  As part of the analysis, the efficacy of PTT and PAT constructed with green and IR 

PPG signals was investigated in terms of the same quantitative metrics.  In case of the 

analysis for the individual resting-intervention period pairs, linear regression models to 

relate the best-performing wrist PTT in the analysis of maximum BP change regimes and 

PAT to reference DP and SP were obtained, and the calibrated DP and SP were computed 

by inputting the best-performing PTT and PAT to the respective regression model.  Then, 

the correlation coefficients, RMSEs, and MAEs between reference versus calibrated DP and 

SP were computed as measures of the best-case association. 

4.4. Results 

Table 4.3 summarizes the resting BP levels and overall BP changes associated with the 

study participants.  Table 4.4 shows the maximum changes in BP in response to each BP-

perturbing intervention as well as all interventions.  Fig. 4.5 illustrates the changes in BP, 

scale and wrist PTT as well as PAT based on green PPG, and PEP in response to BP-

perturbing interventions.  Table 4.5 summarizes the correlation, RMSE, and MAE between 

reference BP versus BP calibrated from scale PTT, wrist PTT, and PAT based on green and 

IR PPG in all participants.  Fig. 4.6 illustrates the correlation, RMSE, and MAE as well as the 

Bland-Altman plots between reference BP versus BP calibrated from scale PTT PTTS2, wrist 

PTT PTTW2, and PAT based on green PPG in all participants.  Fig. 5 shows the correlation, 

RMSE, and MAE between reference BP versus BP calibrated from wrist PTT PTTW2 and PAT 

based on green PPG in all participants associated with individual resting-intervention pairs. 

Table 4.4. BP changes in response to BP-perturbing interventions (mean+/-SE). 

 R1CP CPR2 R2MA MAR3 R3SB SBR4 R4BH BHR5 Range 

DP [mmHg] +23+/-2 -24+/-2 +27+/-1 -26+/-2 -6+/-1 +6+/-1 +23+/-2 -25+/-2 38+/-2 
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SP [mmHg] +31+/-3 -32+/-3 +37+/-2 -37+/-2 -10+/-2 +7+/-1 +33+/-3 -33+/-2 56+/-3 

Table 4.5: Correlation, root-mean-squared error (RMSE), mean absolute error (MAE), and precision error (PE) 
between reference BP versus BP calibrated from scale PTT, wrist PTT, and pulse arrival time (PAT) (mean+/-
SE).  DP: diastolic BP.  SP: systolic BP.  ǂ: p<0.025 with respect to PAT (paired t-test). 

(a) Correlation 

 
DP SP 

Green PPG IR PPG Green PPG IR PPG 

Scale PTT 
PTTS1 0.70+/-0.04 0.60+/-0.04 0.67+/-0.04 0.55+/-0.07 

PTTS2 0.73+/-0.03 0.59+/-0.05 0.67+/-0.04 0.54+/-0.07 

Wrist PTT 
PTTW1 0.75+/-0.03 0.61+/-0.07ǂ 0.76+/-0.03 0.61+/-0.08 

PTTW2 0.79+/-0.03ǂ 0.65+/-0.07ǂ 0.81+/-0.02ǂ 0.65+/-0.08 

PAT 0.69+/-0.04 0.42+/-0.09 0.72+/-0.04 0.50+/-0.10 
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(b) RMSE 

[mmHg] 
DP SP 

Green PPG IR PPG Green PPG IR PPG 

Scale PTT 
PTTS1 7.2+/-0.5 7.5+/-0.4 10.9+/-0.8 10.8+/-0.5 

PTTS2 7.1+/-0.4 7.4+/-0.4 10.8+/-0.7 10.7+/-0.6 

Wrist PTT 
PTTW1 6.6+/-0.5ǂ 7.0+/-0.4ǂ 9.7+/-0.6 9.9+/-0.6 

PTTW2 6.1+/-0.4ǂ 6.5+/-0.5ǂ 8.9+/-0.6 9.6+/-0.8 

PAT 8.0+/-0.6 9.0+/-0.6 10.6+/-0.7 11.2+/-1.0 

(c) MAE 

[mmHg] 
DP SP 

Green PPG IR PPG Green PPG IR PPG 

Scale PTT 
PTTS1 5.8+/-0.3 6.2+/-0.3 9.1+/-0.7 9.0+/-0.5 

PTTS2 5.7+/-0.4 6.1+/-0.4 9.0+/-0.7 9.2+/-0.6 

Wrist PTT 
PTTW1 5.5+/-0.4 5.8+/-0.3ǂ 8.3+/-0.5 8.4+/-0.5 

PTTW2 5.1+/-0.3ǂ 5.3+/-0.4ǂ 7.6+/-0.5 8.0+/-0.7 

PAT 6.5+/-0.4 7.4+/-0.5 8.6+/-0.6 9.4+/-0.9 

 

Fig. 4.6: Correlation (left) and Bland-Altman (right) plots for reference BP versus BP calibrated from scale 
PTT PTTS2, wrist PTT PTTW2, and pulse arrival time (PAT) based on green PPG in all participants.  (a) 

Diastolic BP (DP).  (b) Systolic BP (SP).  LoA: limits of agreement. 
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Fig. 4.7: Reference BP and BP calibrated from wrist PTT and pulse arrival time (PAT) based on green PPG in 
all participants associated with individual resting-intervention pairs.  (a) Diastolic BP (DP).  (b) Systolic BP 

(SP). 

4.5. Discussion 

Despite its potential for ultra-convenient BP monitoring with wide-ranging wearable 

devices, the limb BCG presents critical hurdles due to its unique yet unestablished 

morphology distinct from the relatively well understood whole-body BCG.  To the best of 

our knowledge, no prior work has rigorously examined opportunities for the wearable limb 

BCG-based PTT and BP monitoring.  In our initial attempt to tackle this challenge, this 

chapter intended to investigate the feasibility of ultra-convenient BP monitoring based on 

the PTT principle implemented using the BCG and PPG signals obtained from a single wrist-

worn device.  Our primary interests were (i) the overall association between the wrist PTT 

and BP with physiological justification and its consistency and robustness against diverse 
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perturbations in BP; (ii) comparative performance between the wrist PTT and PAT in 

association with BP, and (iii) the effect of the choice of PPG on the association between 

wrist PTT and BP. 

4.5.1. BP Changes in Response to Interventions 

Both DP and SP of all the participants could be varied widely with the BP-perturbing 

interventions employed in this chapter.  On the average, 38 mmHg change in DP and 56 

mmHg change in SP were observed (Table 4.3), while all the participants underwent the 

minimum changes of >24 mmHg in DP and >37 mmHg in SP.  Each intervention contributed 

comparably to these overall BP changes with >23 mmHg change in DP and >31 mmHg 

change in SP on the average, except SB which decreased both DP and SP only modestly 

(Table 4.4).  Further, cardiovascular mechanisms responsible for the BP changes due to 

each of the BP-perturbing interventions was distinct: (1) CP increased BP via an increase in 

heart rate and total peripheral resistance; (2) MA increased BP via a large increase in heart 

rate (with the associated decrease in stroke volume) and total peripheral resistance; (3) SB 

decreased BP via a decrease in stroke volume; and (4) BH increased BP via a large increase 

in total peripheral resistance despite a notable decrease in heart rate, stroke volume, and 

cardiac output (not shown).  To a large extent, the cardiovascular mechanisms observed in 

this study accord with the findings from prior work: CP [77]–[83], MA [77], [81]–[83], and 

BH [90], [91].  Existing work suggests that SB decreases heart rate [84]–[89].  But, only a 

small decrease in heart rate was observed in response to SB in this study.  Yet in sum, the 

experimental data used in this study has provided a quite challenging test for investigating 

the association between limb BCG-based PTT and BP under a wide range of changes in BP 

and cardiovascular mechanisms. 

4.5.2. Association between Scale PTT and Wrist PTT versus BP 

Remarkably, PTT constructed with consistent morphological features in the scale and 

wrist BCG exhibited good association with DP and SP (Table 4.5 and Fig. 4.5, Fig. 4.6).  The 

PTT showed the desired inversely proportional behavior in response to changes in BP: it 

decreased when BP increased while it increased when BP decreased (Fig. 4.5).  On the 

average, when green PPG was used as distal signal, correlation between scale PTT (PTTS1 

and PTTS2) versus DP and SP was ≥ 0.70 and 0.67, and as well, correlation between wrist 

PTT (PTTW1 and PTTW2) versus DP and SP was ≥ 0.75 and ≥ 0.76.  In addition to good 

correlation, both scale and wrist PTT achieved promising post-calibration BP error levels 

(Table 4.5).  Specifically, the accuracy may not appear excellent (especially SP) when each 

BP measurement is viewed individually.  However, noting that an important merit 
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associated with cuff-less BP monitoring is its compatibility for frequent measurement, the 

random errors in the individual BP measurements may be averaged out [93].  From this 

standpoint, both scale and wrist PTT achieved post-calibration RMSE levels to attain 

hypertension screening accuracy comparable to auscultation via measurement averaging 

(DP ≤ 8 mmHg and SP ≤ 12 mmHg) [93].  In addition, both achieved ≤ 7 mmHg MAE criterion 

required by the recent IEEE Standard for Wearable, Cuffless Blood Pressure Measuring 

Devices (IEEE Std 1708™-2014) for DP but not for SP.  Comparing all the PTTs examined, 

PTTW2 exhibited the best association with both DP and SP in terms of all the metrics 

considered in this study. 

The arterial path considered in this study (i.e., aorta to wrist) mainly involves large 

compliant vessels (including the aorta, subclavian artery, brachial artery, and radial artery, 

in which the influence of smooth muscle contraction (SMC) is small if not minimal) than 

local arteries whose tone is significantly affected by SMC.  Hence, the imperfect PTT-BP 

association may be due to SMC rather than alterations in the BP dependence of arterial 

compliance (i.e., arterial stiffness).  In particular, CP and MA maneuvers may have elicited 

a large degree of SMC. 

It is also emphasized that the PTTs investigated in this study were not constructed 

randomly via trial and error.  In fact, the notable association between the proposed scale 

and wrist PTT versus BP may be physiologically justified.  In regards to the scale PTT, it has 

been elucidated that the timing associated with the onset of the I wave of the whole-body 

BCG may correspond to the onset of ascending aortic BP wave [70].  Noting that the scale 

BCG instrumented in this study may be regarded as a whole-body BCG, PTTS1 may serve as 

a viable PTT due to the proximity between the peak of the HS wave and the onset of the IS 

wave, while PTTS2 may as well serve as a viable PTT due to the proximity between the onset 

and peak of the IS wave, in addition to the robustness in the detection of the peak of the IS 

wave compared with its onset (in fact, the association between PTTS2 instrumented with a 

high-bandwidth force plate and BP has been demonstrated in our prior work ([31], [32]).  

In regards to the wrist PTT, the wrist BCG in this study was instrumented with an 

accelerometer.  Thus, with a simplifying approximation that the human body is rigid 

(meaning that the whole-body and wrist movement responses to the heartbeat is exactly 

the same), the wrist BCG may be viewed as the second derivative of the whole-body BCG.  

Considering that the whole-body BCG is approximately inverted (i.e., vertically flipped) if 

differentiated twice, the IW and JW waves may approximately correspond to the HS and IS 

waves.  For this reason, PTTW1 and PTTW2 may be viewed as equivalent to PTTS1 and PTTS2 

and thus serve as viable PTT. 
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It is also worth mentioning that the wrist PTT outperformed the scale PTT in all the 

metrics considered in this study (Table 4.5 and Fig. 4.6).  Although additional work must be 

conducted for complete understanding of this observation, this may be attributed to 

several reasons.  First, it may be due to the possible distortion of the whole-body BCG when 

instrumented by the scale due to factors such as (i) dynamic characteristics of the scale 

and quality of the sensors (i.e., strain gauges) embedded in the scale as well as (ii) phase 

delay associated with the transfer of the whole-body BCG to the scale caused by the 

compliance of the human body (indeed, our recent work clearly showed that the scale BCG 

exhibited a non-negligible subject-dependent phase delay relative to the force plate BCG).  

In contrast to the scale BCG, the wrist BCG may have been subject to less instrumentation 

artifact due to the wide passband of the accelerometer used in this study (400 Hz).  Second, 

it may also be due to the motion artifacts caused by breathing.  We speculate that 

breathing may have more salient influence on the whole-body BCG than the wrist BCG 

because it originates from the main trunk.  Hence, it may be of interest to further 

investigate the influence of breathing on the BCG signal quality. 

4.5.3. Comparison of Wrist PTT and PAT 

Both the wrist PTT PTTW1 and PTTW2 outperformed PAT in all the metrics for both DP 

and SP (Table 4.5 and Fig. 4.6).  On the average, when green PPG was used as distal signal, 

correlation associated with PTTW2 was higher than PAT by 15% and 12% for DP and SP, 

respectively, while RMSE and MAE were smaller than PAT by 24% and 16% for DP, 

respectively, and 16% and 12% for SP, respectively.  For DP, all the metrics for PTTW2 were 

significantly superior to those for PAT.  On the other hand, only correlation was significantly 

superior as far as SP was concerned.  Considering that PAT correlates quite well to SP [2], 

the efficacy of PTTW2 (in the sense that it significantly outperformed all the metrics for DP, 

plus a certain metric for SP) may still be viewed as promising if not superb. 

In addition to its overall efficacy described above, PTTW2 exhibited more robust and 

consistent association with BP across diverse BP-perturbing interventions relative to PAT 

(Fig. 4.7).  First, the correlation between PAT and BP varied 0.33 for DP and 0.28 for SP 

across the BP-perturbing interventions employed in this study (CP, MA, SB, and BH), 

whereas the correlation between PTTW2 and BP varied only 0.15 for DP and 0.27 for SP 

across the same interventions.  Second, RMSE and MAE associated with PTTW2 were 

consistently lower than (or at least equal to) the same metrics associated with PAT in all 

the BP-perturbing interventions for DP and SP (except for SP in MA).  On the other hand, 

PAT showed higher correlation than PTT in MA.  It is speculated that the efficacy of PAT in 

MA may be attributed to the response of PEP to a large increase in heart rate invoked by 
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MA: an increase in cardiac output followed by a large increase in heart rate yielded a (albeit 

modest) decrease in PEP (Fig. 4.5), which, when synergistically combined with a decrease 

in PTT in response to MA, makes PAT more sensitive to change in BP than PTTW2.  But all in 

all, PTTW2 was more robust and consistent than PAT in terms of association with BP. 

In addition to its remarkable performance relative to PAT, wrist PTT may also boast 

superior convenience to PAT: the measurement of ECG may require conventional 

electrodes or two-handed user maneuvers (e.g., [94]), whereas wrist BCG may be passively 

measured without requiring any user actions.  Hence, wrist BCG may turn out to be an 

attractive alternative to PAT. 

4.5.4. Effect of Choice of PPG on PTT-BP Association 

All in all, green PPG resulted in superior association with BP (both DP and SP) than IR 

PPG (Table 4.5).  This finding may be attributed to the anatomy of the wrist vasculature 

and the wavelengths of the green and IR PPG.  First, the arterial bed in the back of the wrist 

is primarily composed of arterioles and capillaries while there is no major large artery 

passing through the back of the wrist.  Second, green PPG is good at capturing capillary 

blood flow and perfusion at the level of skin, whereas IR PPG is more suited for capturing 

blood flow and perfusion deep under the skin (where relatively large arteries are often 

located) [95].  Hence, green PPG may possess superior signal quality than its IR counterpart 

at the wrist site and may thus be preferred for constructing PTT equipped with close 

association with BP. 

4.6. Conclusion 

Close and robust association between the wrist BCG-based PTT and BP was 

demonstrated.  The finding may open up new opportunities for ultra-convenient BP 

monitoring based on the BCG instrumented at limb locations, using, e.g., wristband, 

armband, and smartphone.  Future effort must be invested to (i) the translation of the 

findings from this study to innovative BP monitoring systems and algorithms applicable to 

real-world use, as well as (ii) the enhanced physiological understanding of limb BCG and its 

relationship to the whole-body BCG, and its application to independent monitoring of DP 

and SP.   
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5. Wearable BCG-Based Pulse Wave Analysis for Cuff-Less 

BP Monitoring 

5.1. Introduction 

As discussed in previous chapter, currently, the most popular approach to cuff-less BP 

monitoring is based on the principle of PTT[21], which is known to frequently exhibit an 

inversely proportional relationship to BP through the BP dependence of arterial stiffness.  

One main drawback of the PTT approach, especially from convenience standpoint, is that 

it requires the instrumentation of two arterial pulse waveforms to compute PTT.  In the 

past, this requirement has been fulfilled by measuring arterial pulse waveforms from two 

distinct locations in the body (e.g., from carotid and femoral arteries for the well-known 

carotid-femoral PTT[6]), which is quite inconvenient and cumbersome.  Hence, recent 

effort to enable ultra-convenient BP monitoring has focused on the development of 

techniques to infer BP from a single wearable device.  Some of these efforts employ 

multiple pulse waveforms from a single device (e.g., an electrocardiogram and a PPG at an 

extremity site[7], [8], or multiple PPGs within a known short distance[9]) to still leverage 

the PTT principle for BP monitoring, while some other efforts strive to infer BP from the 

analysis of a single pulse waveform[10]–[12].  In both cases, PPG has been the preferred 

choice of modality for arterial pulse measurement due to its amenity to easy placement 

and stable instrumentation. 

Previous studies demonstrated that the whole-body BCG measured with, e.g., a 

weighing scale-like platform, may be leveraged in conjunction with a second pulse 

waveform (e.g., PPG at an extremity location) for PTT-based BP monitoring[15], [68].  It is 

also demonstrated that whole-body BCG alone may suffice for cuff-less BP monitoring, 

where the use of waveform features in the whole-body BCG that (at least qualitatively) 

represent aortic PTT and distal aortic pulse pressure (PP) to achieve independent 

monitoring of diastolic (DP) and systolic (SP) BPs is perused[17]. Despite the potential of 

this whole-body-BCG-based approach to cuff-less BP monitoring explored thus far, there 

is room for improvement both in terms of convenience and accuracy.  In terms of 

convenience, the measurement of whole-body BCG may require bulky devices such as 

scale and bed.  Hence, a viable option to improve convenience may be to explore 

wearables that can be worn on limb locations (e.g., wrist watch and arm band) for 

instrumentation of the BCG.  In terms of accuracy, the whole-body-BCG may be distorted 

by the dynamics of the measurement devices, like weighing scale. However, for the limb-

BCG such problem does not exist due to the small weight of the MEMS acceleration sensor.  
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Motivated by the above rationale, the objective of this chapter was to investigate the 

association between a limb BCG and BP based on data mining.  Like as the previous chapter, 

during four BP-perturbing interventions, the BCG and reference BP were measured from 

23 young healthy volunteers using a custom-manufactured wristband equipped with a 

MEMS accelerometer and a commercial continuous BP measurement device.  Then, both 

timing and amplitude features in the wrist BCG waveform were extracted, and significant 

features predictive of DP and SP were selected using stepwise linear regression analysis.  

The selected features were further compressed using principal component analysis to yield 

a small set of predictors for DP and SP.  The association between the predictors thus 

obtained and BP was investigated by conducting multivariate linear regression analysis. 

5.2. Method 

Using the data from human subject study explained in section 4.2, in this section, we 

investigated the association between a limb BCG and BP by the following steps: (1) a 

number of timing and amplitude features were extracted from the BCG waveform; (2) 

significant features were selected and further compressed to form a small number of BP 

predictors; and (3) the BP predictors were correlated to reference BP.  Details follow. 

5.2.1. BCG Feature Extraction 

From each subject record, the timings and amplitudes associated with an array of waves 

in the wrist BCG, including the Gw, Hw, Iw, Jw, Kw, and Lw waves in Fig. 5.1, were extracted 

based on the following procedure. 

The subject records were segmented into nine periods: R1, CP, R2, MA, R3, SB, R4, BH, 

and R5.  In each period, the waveform signals were processed as follows.  First, the wrist 

BCG signal was band-pass filtered.  For this purpose, a 1st-order Butterworth filter with 

nominal cut-off frequencies of 0.5 Hz and 15 Hz was used (meaning that cut-off 

frequencies for individual subjects were tuned around the nominal frequencies to best 

filter the signals).  Second, the ECG R waves were detected using the popular Pan-Tompkins 

method.  Third, the wrist BCG beats were identified via the ECG gating.  Fourth, the BCG 

beats were visually inspected and those associated with large motion artifacts 

(characterized by unusually large-amplitude beats) were excluded.  Fifth, the BCG signal 

was then smoothed using a causal 8-beat exponential moving average filter to suppress 

the remaining random motion artifacts.  Sixth, the BCG wave features of interest (i.e., the 

Gw, Hw, Iw, Jw, Kw, and Lw waves in Fig. 5.1) were extracted from each beat.  Specifically, the 

Jw wave was identified as the local maximum within 100 ms to 300 ms after the ECG R 
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wave.  The Iw and Kw waves were identified as the local minima before and after the J wave, 

respectively, that are nearest to the Jw wave.  The Hw wave was identified as the local 

maximum before the Iw wave that is nearest to the Iw wave, and similarly, the Gw wave was 

identified as the local minimum before the Hw wave that is nearest to the Hw wave.  

Likewise, the Lw wave was identified as the local maximum after the Kw wave that is nearest 

to the Kw wave.  We used the intersecting tangent method for detecting the Gw and Iw 

waves, because these waves were not often sharp enough.  Seventh, the reference DP and 

SP were extracted from each beat as the minimum (DP) and maximum (SP) of the finger-

cuff BP waveform.  Then, all possible combinations of the timing intervals (16; including 

the heart period computed as the Jw-Jw interval (i.e., the time interval between the Jw 

waves associated with two consecutive beats – current beat and the beat ahead of it)) and 

amplitudes (21) were extracted as candidate features for association to BP. 

Note that the naming of the wrist BCG waves followed that used for the whole-body 

BCG waves[76].  But, this way of naming is just for the sake of convenience; in fact, 

currently there is no commonly accepted naming convention for limb BCGs.  Accordingly, 

it must be understood that the waves in a limb BCG does not have the same physiological 

implications as the corresponding whole-body BCG waves. 

 

 

Fig. 5.1 Features extracted from a wrist BCG, which include the timings and amplitudes of Gw, Hw, Iw, Jw, 
Kw, and Lw waves. 

5.2.2. BCG Feature Selection and Compression 

From the 37 candidate features thus extracted, we selected significant features 

associated with DP and SP based on the stepwise linear regression analysis as follows.  First, 

the range of DP (or SP) in each subject record was segmented into 1 mmHg bins, and the 

set of 37 median BCG feature values corresponding to each 1mmHg DP (or SP) bin was 

computed.  Then, the pair of DP (or SP) and the computed median BCG feature values 
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associated with each subject was merged across all 23 subjects (note that the dimension 

of the DP (or SP) pair is determined by the range of DP (or SP)) and applied to the stepwise 

linear regression analysis to determine significant BCG features predictive of DP (or SP). 

Due to the large number of significant BCG features selected from the stepwise linear 

regression analysis, the BCG features were further compressed using the principal 

component analysis (PCA) for dimensionality reduction.  Specifically, the range of DP (or 

SP) in each subject record was again segmented into 1 mmHg bins, and the set of median 

values of the BCG features selected above with the stepwise linear regression 

corresponding to each bin was computed.  Then, the pair of DP (or SP) and the 

corresponding median BCG feature values associated with each subject was merged across 

all 23 subjects.  The BCG features were normalized with the respective feature’s mean and 

standard deviation, and subsequently applied to the PCA to derive principal components 

(PCs) as predictors of DP (or SP). 

5.2.3. Correlation Analysis 

The association between the wrist BCG and BP was investigated using multivariate 

linear regression analysis.  Specifically, the PCs predictive of DP and SP were correlated 

with the reference DP and SP, respectively, via the following calibration relationship: 

𝑃𝑋 = 𝜂0
𝑋 + 𝜂1

𝑋𝜙1
𝑋 +⋯+ 𝜂𝑁

𝑋𝜙𝑁
𝑋 (1) 

where 𝑃𝑋 is reference BP, 𝜙𝑘
𝑋 (k=1,…,N) the k-th PC, 𝜂𝑘

𝑋 (k=1,…,N) the calibration 

coefficient for the k-th PC, 𝜂0
𝑋 the intercept, and 𝑁 the total number of PCs included in the 

relationship (1) (𝑋 = 𝐷 for DP and 𝑋 = 𝑆 for SP).  Then, the association between the PCs 

derived from the wrist BCG and BP was analyzed in terms of three metrics: (1) correlation 

coefficient (r); (2) root-mean-squared error (RMSE); and (3) mean absolute error (MAE). 

First, the association at the subject level was investigated.  In each subject, the ranges 

of reference DP and SP across all BP-perturbing interventions were segmented into 1 

mmHg bins, and the PCs associated with each DP and SP bins were computed from the set 

of median values of the BCG features recruited in the PCs corresponding to each bin.  Then, 

these PCs were calibrated to the reference DP and SP by determining 𝜂𝑘
𝑋 (k=0,…,N) in the 

relationship (1) with least-squares fitting to yield a subject-specific calibration relationship.  

Then, correlation coefficients, RMSEs, and MAEs between the reference DP and SP versus 

DP and SP calibrated from the PCs were computed as measures of the best-case BCG-BP 

association in each subject. 
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Second, the association at the intervention level was investigated.  In each rest-

intervention pair in a subject (R1-CP, R2-MA, R3-SB, R4-BH), the ranges of reference DP 

and SP were likewise segmented into 1 mmHg bins, and the PCs associated with each DP 

and SP bins were computed from the set of median values of the BCG features recruited 

in the PCs corresponding to each bin.  Then, these PCs were calibrated to the reference DP 

and SP by determining 𝜂𝑘
𝑋 (k=0,…,N) in the relationship (1) with least-squares fitting to yield 

a subject-specific calibration relationship pertaining to the rest-intervention pair under 

investigation.  Then, correlation coefficients, RMSEs, and MAEs between the reference DP 

and SP versus DP and SP calibrated from the PCs were computed as measures of the best-

case BCG-BP association in each intervention. 

To investigate the number of requisite PCs for robust association of wrist BCG to BP, the 

above analysis was repeated for one to four PCs included in the calibration relationship (1), 

i.e., N=1, 2, 3, and 4.  Significance of the difference in the association between reference 

versus calibrated DP and SP with respect to different N (specifically, N=1 versus N=2, N=2 

versus N=3, and N=3 versus N=4) was assessed using the paired t-test with Bonferroni 

correction.  The difference was deemed statistically significant if p<0.016. 

Third, for the analysis with N=3 (the number of requisite PCs to achieve adequate 

association to both DP and SP; see Results), the association was investigated with all the 

calibration coefficients except two 𝜂𝑘
𝑋 (k=0,…,N) were regularized to constant values.  This 

analysis was motivated by the practical consideration on the feasibility of building the 

calibration relationship with the conventional 2-point calibration method[2] (in which 

typically one slope coefficient and the intercept parameter in the calibration relationship 

are determined from the PCs-BP pairs obtained during rest and a BP-perturbing 

intervention).  For this investigation, the PCs were calibrated to the reference DP and SP 

by determining just two 𝜂𝑘
𝑋 (which are associated with the largest coefficient of variations 

under subject-specific calibration) in (1) with least-squares fitting while the rest of the 

coefficients were fixed to respective mean values to yield a regularized (i.e., partially 

subject-specific) calibration relationship.  Then, correlation coefficients, RMSEs, and MAEs 

between the reference DP and SP versus DP and SP calibrated from the regularized subject-

specific calibration relationship were computed as measures of the practical BCG-BP 

association in each subject. 

5.3. Results 

Table 5.1 shows the wrist BCG features chosen by the feature selection.  Fig. 5.2 and 

Fig. 5.3 show an example of subject-level and intervention-level associations between the 
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wrist BCG versus DP and SP in all subjects, in terms of correlation between reference versus 

calibrated DP and SP, when three most significant PCs are recruited for analysis. Fig. 5.4 

shows the dependence of the degree of association between the wrist BCG and BP on the 

number of PCs recruited for analysis. Fig. 5.5 shows the composition of the four most 

significant PCs associated with DP and SP.  

Table 5.1: Wrist BCG features for DP and SP selected by feature selection (stepwise linear regression).  Xw-Yw 
denotes timing between Xw and Yw waves.  |Xw-Yw| denotes the amplitude between Xw and Yw waves. 

 1 2 3 4 5 6 7 8 9 10 11 12 

DP 
Jw-Jw Gw-Hw Hw-Iw 

Iw-Jw 
|Gw-
Iw| 

|Gw-
Jw| 

|Hw-
Jw| 

     

SP Jw-Jw Gw-Hw Hw-Iw Hw-Jw Hw-Kw Iw-Jw Iw-Lw 
|Gw-
Iw| 

|Hw-
Jw| 

|Iw-
Kw| 

|Jw| |Kw| 

 

Fig. 5.2 Subject-level association between the wrist BCG versus diastolic (DP) and systolic (SP) pressures 
in all subjects.  (A) DP.  (b) SP. 
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Fig. 5.3. Intervention-level association between the wrist BCG versus diastolic (DP) and systolic (SP) 
pressures in all subjects.  (A) DP.  (b) SP. 

 

Fig. 5.4. The degree of association between the wrist BCG and BP with respect to the number of principal 
components (PCs) (mean+/-SE).  *: p<0.016. 
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Fig. 5.5 Four most significant principal components (PCs) derived for (A) diastolic (DP) and (B) systolic (SP) 
pressures.  See Table 3 for feature index. 

5.4. Discussion 

The objective of this chapter was to probe the feasibility of ultra-convenient BP 

monitoring based on a limb BCG by investigating the association between the 

morphological features in a limb BCG at the wrist and BP based on data mining.  Of 

particular interests were overall subject-level association between the limb BCG and BP, 

variability in the association under a number of distinct BP-perturbation mechanisms, and 

practical considerations for realization of BP monitoring technologies based on a limb BCG. 

5.4.1. Experimental Data 

The interventions employed in this study widely varied both DP and SP.  On the average, 

the maximum BP changes of >15 mmHg in DP and >25 mmHg in SP were achieved by each 

intervention (except SB which still modestly decreased DP and SP but not as widely as the 

other interventions), which added up to yield the overall maximum DP and SP changes of 

>30 mmHg and >45 mmHg at the subject level.  Considering that the interventions 

employed in this study are known to effectively perturb BP through distinct changes in 

various cardiovascular parameters (including heart rate, stroke volume, and total 

peripheral resistance): (1) CP is known to increase BP via an increase in heart rate and total 

peripheral resistance, often despite a decrease in stroke volume and cardiac output[77]–

[83]; (2) MA is known to increase BP via an increase in heart rate and total peripheral 

resistance (often along with a resulting increase in cardiac output)[77], [81]–[83]; (3) SB is 
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known to modestly decrease BP via a decrease in heart rate[84]–[89]; and (4) BH is known 

to increase BP via an increase in total peripheral resistance despite a decrease in heart 

rate, stroke volume, and cardiac output[90], [91], the experimental data used in this study 

has provided a quite challenging test for associating limb BCG and BP with wide-ranging BP 

ranges and physiological perturbation mechanisms. 

5.4.2. Association between Limb BCG and Blood Pressure 

The wrist BCG-based predictors exhibited meaningful associations with reference DP 

and SP at both subject level and intervention level.  When three most significant predictors 

were used for DP and SP, correlation coefficient of r=0.75+/-0.03 (DP) and r=0.75+/-0.03 

(SP), RMSE of 7.4+/-0.6 mmHg (DP) and 10.3+/-0.8 mmHg (SP), and MAE of 6.0+/-0.5 

mmHg (DP) and 8.3+/-0.7 mmHg (SP) were obtained across all interventions (mean+/-SE).  

In addition, the association was consistent in all the individual interventions regardless of 

diverse physiological mechanisms invoked to perturb BP (on the average, r≥0.68, 

RMSE≤5.7 mmHg, and MAE≤4.5 mmHg for DP as well as r≥0.61, RMSE≤7.9 mmHg, and 

MAE≤6.4 mmHg for SP; note that r≥0.71 except for R2-MA (Fig. 5.3)).  Hence, 

morphological features in the wrist BCG waveform may be equipped with valuable 

information contents for BP monitoring.  In fact, this finding may not be surprising in that 

(1) the whole-body BCG is closely associated with aortic BP[70] and that (2) limb BCGs, 

including the wrist BCG, are elicited by the transmission of the whole-body BCG through 

compliant musculoskeletal elements in the body, although exact physical mechanism of 

this transmission is yet to be elucidated. 

The three most significant PCs were responsible for 32%, 20%, and 16% of the total 

variance observed in the selected features corresponding to DP, and 33%, 21%, and 12% 

of the total variance observed in the selected features corresponding to SP.  The degree of 

association between the wrist BCG versus DP and SP with respect to the number of PCs 

recruited for analysis (i.e., N in the calibration relationship (1); Fig. 5.4) shows that at least 

three most significant PCs may need to be employed for robust association of the wrist 

BCG features to BP.  Overall, increasing N from 1 to 4 yielded statistically significant 

improvement in both correlation coefficient and RMSE.  But, the degree of improvement 

tapered off as N increased.  For DP, increasing N from 1 to 2, 2 to 3, and 3 to 4 resulted in 

30%, 19% and 12% increase in correlation coefficient, while the reduction in RMSE was 

quite linear (11%, 13% and 15%).  For SP, increasing N from 1 to 2, 2 to 3, and 3 to 4 resulted 

in 26%, 13%, and 4% increase in correlation coefficient as well as 13%, 11%, and 5% 

reduction in RMSE.  Hence, it may be concluded that the use of one or two PCs for BP 
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monitoring may suffer from limited performance, while the use of more than four PCs may 

suffer from lack of robustness (e.g., by inducing overfitting). 

The need for multiple requisite PCs to enable accurate and robust association of the 

wrist BCG to BP raises practical issues related to subject-specific calibration (i.e., how can 

the coefficients 𝜂𝑘
𝑋 (k=0,…,N) in (1) be realistically determined with minimal intervention?).  

The results obtained from regularized calibration suggest that the wrist BCG-based PCs 

derived in this study may still serve as viable predictors of BP even in conjunction with 

conventional 2-point calibration procedure.  For example, across all subjects, correlation 

coefficients of r=0.63+/-0.05 and r=0.60+/-0.05, RMSEs of 9.3+/-0.8 mmHg and 14.7+/-1.4 

mmHg, and MAEs of 7.6+/-0.7 mmHg and 11.9+/-1.1 mmHg were obtained between 

reference versus calibrated DP and SP, respectively, when three most significant predictors 

were used.  These results may be regarded as an adequate association considering the 

challenging nature of the experimental data used in this study, although the results were 

relatively (and naturally) worse than the results from fully subject-specific calibration (Fig. 

5.4). 

Lastly, further scrutiny of the derived PCs indicates that monitoring of DP and SP may 

require independent and distinct predictors.  Indeed, the composition of the PCs in Fig. 5.5 

shows that significant PCs associated with DP and SP are largely different from each other.  

Most prior work on cuff-less BP monitoring, including both PTT-based techniques[2], [42]–

[44] and techniques based on a single pulse waveform[45]–[47], tend to rely on the 

identical predictor(s) to infer both DP and SP.  However, it is well known that SP depends 

not only on the arterial pressure-volume relationship (which dictates PWV) but also on 

cardiac functions (e.g., myocardial contractility determining pulse pressure).  Hence, the 

results from this chapter provides us with an important insight: that independent and 

distinct predictors may indeed be needed to achieve superb association with both DP and 

SP, and that data mining may facilitate the selection of such effective predictors. 

5.5. Conclusion 

The morphological features in a limb BCG are associated with BP, offering promise for 

ultra-convenient BP monitoring based on a limb BCG alone.  Future work must focus on (1) 

examining the generalizability of the findings from this chapter, (2) investigating alternative 

data-based approaches to further improve the efficacy of the limb BCG for predicting BP, 

and (3) understanding the physical basis of limb BCG in relation to BP and its fusion with 

data mining. 
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6. Hybrid Model Using BCG-Based PTT and PWA for Cuff-

Less BP Monitoring  

6.1. Introduction 

Given the findings of the previous sections, it is illustrated that both PTT, and PWA 

features contain valuable information that can be used to estimate the blood pressure. 

The developed models in each of the two previous chapters, only utilize one source of the 

information which is either BCG-Based PTT or PWA features. In this section, the idea of 

combining the data from both sources is implemented. In this regard, three different 

analyses are practiced using the data from human subject study explained in section 4.2, 

and their results are reported. The first analysis is purely based on the machine learning 

techniques. In the second and third analyses, some physics based insights are utilized to 

define the predictors in addition to the machine learning methods.  

6.2. Method 

In the first analysis, pure machine learning approach is followed. In this regard, 38 

features are utilized, from which 37 features are extracted from the BCG-based PWA and 

one more feature is the PTT, which is defined as the time interval between wrist J-peak 

and green PPG foot. From the 38 candidate features thus extracted, we selected significant 

features associated with PP, DP and SP based on the stepwise linear regression analysis as 

follows.  First, the range of PP (or DP, SP) in each subject record was segmented into 1 

mmHg bins, and the set of 38 median BCG feature values corresponding to each 1mmHg 

PP (or DP, SP) bin was computed.  Then, the pair of PP (or DP, SP) and the computed median 

BCG feature values associated with each subject was merged across all 23 subjects (note 

that the dimension of the PP (or DP, SP) pair is determined by the range of PP (or DP, SP)) 

and applied to the stepwise linear regression analysis to determine significant features 

predictive of PP (or DP, SP). 

Due to the large number of significant features selected from the stepwise linear 

regression analysis, the features were further compressed using the principal component 

analysis (PCA) for dimensionality reduction.  Specifically, the range of PP (or DP, SP) in each 

subject record was again segmented into 1 mmHg bins, and the set of median values of 

the features selected above with the stepwise linear regression corresponding to each bin 

was computed.  Then, the pair of PP (or DP, SP) and the corresponding median feature 

values associated with each subject was merged across all 23 subjects.  The features were 
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normalized with the respective feature’s mean and standard deviation, and subsequently 

applied to the PCA to derive principal components (PCs) as predictors of PP (or DP, SP). 

The association between the created PCs and BP was investigated using multivariate 

linear regression analysis.  Specifically, the PCs predictive of PP, DP and SP were correlated 

with the reference PP, DP and SP, respectively, via the following calibration relationship: 

𝑃𝑋 = 𝜂0
𝑋 + 𝜂1

𝑋𝜙1
𝑋 +⋯+ 𝜂𝑁

𝑋𝜙𝑁
𝑋 (1) 

where 𝑃𝑋 is reference BP, 𝜙𝑘
𝑋 (k=1,…,N) the k-th PC, 𝜂𝑘

𝑋 (k=1,…,N) the calibration 

coefficient for the k-th PC, 𝜂0
𝑋 the intercept, and 𝑁 the total number of PCs included in the 

relationship (1) (𝑋 = 𝑃 for PP, 𝑋 = 𝐷 for DP and 𝑋 = 𝑆 for SP).  Then, the association 

between the PCs derived from the selected features and BP was analyzed in terms of three 

metrics: (1) correlation coefficient (r); (2) root-mean-squared error (RMSE); and (3) mean 

absolute error (MAE). 

Having the population level predictors as described above, the association at the subject 

level was investigated.  In each subject, the ranges of reference PP, DP and SP across all 

BP-perturbing interventions were segmented into 1 mmHg bins, and the PCs associated 

with each PP, DP and SP bins were computed from the set of median values of the selected 

features recruited in the PCs corresponding to each bin.  Then, these PCs were calibrated 

to the reference PP, DP and SP by determining 𝜂𝑘
𝑋 (k=0,…,N) in the relationship (1) with 

least-squares fitting to yield a subject-specific calibration relationship.  Then, correlation 

coefficients, RMSEs, and MAEs between the reference PP, DP and SP versus PP, DP and SP 

calibrated from the PCs were computed as measures of the best-case BCG-BP association 

in each subject. 

To investigate the number of requisite PCs for robust association of the features to BP, 

the above analysis was repeated for one to four PCs included in the calibration relationship 

(1), i.e., N=1, 2, 3, and 4.   

In the second type of analysis, a similar approach to the analysis #1 is followed, with 

one major difference. In this analysis, for the multivariate regression model, PTT is always 

selected to be one of the predictors, since it is known to be correlated with pulse wave 

velocity, which is directly correlated with the blood pressure, as discussed in previous 

chapters. Then, like as the analysis #1, we utilized the 37 features extracted from BCG-

based PWA to create the second, third, and forth population level predictors. In sum 4 BP 

predictors are created, which are PTT and 3 PCs derived from BCG, and like as the analysis 

#1, these predictors are utilized to create and calibrate the subject level regression models.  
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In the third analysis, we add some more physics-based insights, using the developed 

model in chapter 3, to select and create the population level predictors. Like as the analysis 

#2, we force PTT to be one of the population level predictors. Then, to create the next 

predictors, we only use three BCG-based features, despite to analysis #2 that has used 37 

features. The rational to select the three BCG-based features is as follow. Based on the 

illustrated results in Fig. 3.5, J-K interval is the most sensitive timing feature, and J-K (or J) 

amplitude is the most sensitive amplitude feature in the BCG signal in response to the BP 

perturbations. In addition to that, our analysis show that J-J timing, which could be 

interpreted as the heart period, is another strong predictor of blood pressure. Based on 

these insights, three BCG-based features are selected, and then PCA is applied to create 

the three PCs. Having 4 population level predictors, the rest of the procedure is like as the 

Analysis #2 or #1. The predictors are utilized to create and calibrate the subject level 

regression models and results are reported in the next section.  

6.3. Results  

Table 6.1 shows the utilized features in analysis #1 and #2 and the corresponding index 

number for each feature. Similarly, Table 6.2 illustrate the physics-based selected features 

utilized in analysis #3, and corresponding index numbers.  

Fig. 6.1, Fig. 6.2, and Fig. 6.3  show the set of features chosen by the feature selection 

step, as well as the constructed PCs to predict SP, DP and PP in analysis #1, respectively. 

Fig. 6.4, Fig. 6.5 and Fig. 6.6 show the set of utilized features to predict SP, DP, and PP in 

Analysis #2. In these figures, PTT is the first independent predictor, as well as 3 other 

predictors constructed from BCG features by using of the feature selection and PCA 

analysis. Fig. 6.7 presents the set of utilized features to predict SP, DP, and PP in Analysis 

#3. In this figure, PTT is the first independent variable, and 3 other predictors are derived 

by applying PCA method on the three BCG-based features, selected using physics-based 

insights.  

Table 6.3 summarizes the correlation, RMSE, and MAE between reference BP versus BP 

calibrated from wrist PTT and BCG-based PWA features in all participants.   

Fig. 6.8, Fig. 6.9, Fig. 6.10 illustrate subject-level association between the estimated and 

measured SP, DP and PP in analysis #1, when 1, 2, 3, and 4 independent variables are 

recruited for modeling. In these figures, the data points for each subject are plotted with 

distinct colors. In the same way, Fig. 6.11, Fig. 6.12, Fig. 6.13 illustrate subject-level 
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association between the estimated and measured SP, DP and PP in analysis #2. Similar to 

the previous cases, Fig. 6.14, Fig. 6.15, Fig. 6.16 show the same information for analysis #3.  

Fig. 6.17 summarizes the correlation coefficients for 1, 2, 3, and 4 variable models 

utilized in analyses #1, #2, #3 to predict PP, DP and SP. This figure is provided to facilitate 

the analyze of the data in Table 6.3 (a) by visualizing them.  

Table 6.1. PTT and Wrist BCG features derived by pulse wave analysis, and corresponding index numbers 
used in analysis #1 and #2.  

 

Table 6.2. PTT and selected Wrist BCG features derived by pulse wave analysis and selected using physics-
based insights, and corresponding index number used in analysis #3.  

 
 

 

Fig. 6.1. Four most significant principal components (PCs) derived as independent predictors for systolic 
pressures estimation in Analysis #1.  See Table 6.1 for feature index. 

Index No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Timing Feature PTT J-J G-H G-I G-J G-K G-L H-I H-J H-K H-L I-J I-K I-L J-K J-L K-L

Index No 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Amplitude Feature |G| |G-H| |G-I| |G-J| |G-K| |G-L| |H| |H-I| |H-J| |H-K| |H-L| |I| |I-J| |I-K| |I-L| |J| |J-K|

Index No 35 36 37 38

Amplitude Feature |J-L| |K| |K-L| |L|

Index No 1 2 3 4

Selected Feature PTT J-J |J-K| |J-K|
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Fig. 6.2. Four most significant principal components (PCs) derived as independent predictors for diastolic 
pressures estimation in Analysis #1.  See Table 6.1 for feature index. 

 

Fig. 6.3. Four most significant principal components (PCs) derived as independent predictors for pulse 
pressures estimation in Analysis #1.  See Table 6.1 for feature index. 
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Fig. 6.4. PTT and three most significant principal components (PCs) derived as independent predictors for 
systolic pressures estimation in Analysis #2.  See Table 6.1 for feature index. 

 

Fig. 6.5. PTT and three most significant principal components (PCs) derived as independent predictors for 
diastolic pressures estimation in Analysis #2.  See Table 6.1 for feature index. 
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Fig. 6.6. PTT and three most significant principal components (PCs) derived as independent predictors for 
pulse pressures estimation in Analysis #2.  See Table 6.1 for feature index. 

(a) Systolic Pressure (b) Diastolic Pressure (c) Pulse Pressure 

   

Fig. 6.7. PTT and three principal components (PCs) derived as independent predictors for pulse pressures 
estimation in Analysis #3.  See Table 6.2 for feature index. 
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Table 6.3. Correlation, root-mean-squared error (RMSE), mean absolute error (MAE), and precision error (PE) 
between reference BP versus BP calibrated from constructed predictors. PP: pulse pressure DP: diastolic BP.  
SP: systolic BP.   

(a) Correlation 

 
# of Independent 

Variables 
Analysis #1 Analysis #2 Analysis #3 

SP 

1 0.50+/-0.07 0.72+/-0.06 0.72+/-0.06 

2 0.66+/-0.06 0.8+/-0.04 0.78+/-0.05 

3 0.75+/-0.04 0.83+/-0.04 0.81+/-0.04 

4 0.79+/-0.03 0.84+/-0.04 0.86+/-0.03 

DP 

1 0.44+/-0.06 0.72+/-0.07 0.72+/-0.07 

2 0.71+/-0.05 0.77+/-0.06 0.81+/-0.05 

3 0.8+/-0.04 0.84+/-0.04 0.87+/-0.03 

4 0.87+/-0.03 0.87+/-0.03 0.89+/-0.03 

PP 

1 0.52+/-0.07 0.66+/-0.06 0.66+/-0.06 

2 0.64+/-0.06 0.8+/-0.03 0.76+/-0.05 

3 0.77+/-0.04 0.84+/-0.03 0.82+/-0.04 

4 0.81+/-0.03 0.86+/-0.03 0.88+/-0.03 

(b) RMSE (mmHG) 

 
# of Independent 

Variables 
Analysis #1 Analysis #2 Analysis #3 

SP 

1 12.7+/-1.22 9.82+/-1.37 9.87+/-1.37 

2 11.09+/-1.25 8.65+/-1.23 9.02+/-1.33 

3 9.97+/-1.18 7.99+/-1.22 8.48+/-1.29 

4 9.11+/-1.07 7.72+/-1.2 7.66+/-1.02 

DP 

1 9.53+/-0.65 6.73+/-0.91 6.73+/-0.91 

2 7.12+/-0.85 6.21+/-0.89 5.84+/-0.82 

3 6.11+/-0.75 5.29+/-0.75 4.92+/-0.7 

4 5.14+/-0.62 4.88+/-0.7 4.57+/-0.68 

PP 

1 6.42+/-0.57 5.71+/-0.72 5.62+/-0.72 

2 5.85+/-0.56 4.56+/-0.55 4.9+/-0.71 

3 4.92+/-0.5 4.23+/-0.55 4.17+/-0.66 

4 4.56+/-0.49 3.96+/-0.54 3.58+/-0.6 

(c) MAE (mmHG) 

 
# of Independent 

Variables 
Analysis #1 Analysis #2 Analysis #3 

SP 

1 10.31+/-1.03 7.87+/-1.13 7.89+/-1.14 

2 8.8+/-1.04 6.87+/-1.01 7.2+/-1.12 

3 7.85+/-0.94 6.32+/-0.98 6.71+/-1.07 

4 7.16+/-0.81 6.13+/-0.97 6.02+/-0.83 

DP 

1 7.88+/-0.54 5.44+/-0.76 5.44+/-0.76 

2 5.75+/-0.71 4.98+/-0.74 4.71+/-0.68 

3 4.88+/-0.62 4.13+/-0.59 3.89+/-0.54 

4 4.03+/-0.48 3.82+/-0.55 3.57+/-0.52 

PP 

1 5.25+/-0.5 4.55+/-0.62 4.5+/-0.62 

2 4.64+/-0.5 3.58+/-0.45 3.88+/-0.57 

3 3.85+/-0.43 3.32+/-0.46 3.32+/-0.53 

4 3.61+/-0.41 3.14+/-0.45 2.81+/-0.46 
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Fig. 6.8. Subject-level association between the estimated systolic pressure in analysis #1 (with 3 and 4 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 6.9. Subject-level association between the estimated diastolic pressure in analysis #1 (with 3 and 4 
variable regression models) versus measured diastolic pressures in all subjects. 
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Fig. 6.10. Subject-level association between the estimated pulse pressure in analysis #1 (with 3 and 4 
variable regression models) versus measured pulse pressures in all subjects. 

 

Fig. 6.11. Subject-level association between the estimated systolic pressure in analysis #2 (with 3 and 4 
variable regression models) versus measured systolic pressures in all subjects.  
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Fig. 6.12. Subject-level association between the estimated diastolic pressure in analysis #2 (with 3 and 4 
variable regression models) versus measured diastolic pressures in all subjects. 

 

Fig. 6.13. Subject-level association between the estimated pulse pressure in analysis #2 (with 3 and 4 
variable regression models) versus measured pulse pressures in all subjects. 
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Fig. 6.14. Subject-level association between the estimated systolic pressure in analysis #3 (with 3 and 4 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 6.15. Subject-level association between the estimated diastolic pressure in analysis #3 (with 3 and 4 
variable regression models) versus measured diastolic pressures in all subjects. 
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Fig. 6.16. Subject-level association between the estimated pulse pressure in analysis #3 (with 3 and 4 
variable regression models) versus measured pulse pressures in all subjects. 

(a) Systolic Pressure (b) Diastolic Pressure (c) Pulse Pressure 

   

Fig. 6.17. Correlation coefficients for different types of analysis to estimate (a) systolic, (b) diastolic, (c) 
pulse pressure with respect to the number of the predictors in multivariate regression model. 

6.4. Discussion 

Comparing the results of analysis #1, with analyses #2 and #3 shows that pure machine 

learning is not completely successful in building the best estimation model. Fig. 6.17 clearly 

illustrates that correlation coefficients for all of the models in analysis #1, in which both 

feature selection and compression are done with machine learning techniques, are lower 

than either analysis #2 or #3, in which physics-based insights are mixed with the machine 

learning techniques. One of the important reasons that pure machine learning approach 
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doesn’t work as good as the other two approaches could be the limited number of subjects. 

It is possible that by increasing the number of subjects and data, the results from analysis 

#1 could improve. 

Results of the analysis #3 (or similarly analysis #2), shows that adding BCG specific 

features to the PTT helps to improve the accuracy of the BP estimation. More specifically 

in the analysis #3, when PTT is used as the only predictor (look at first predictor at Fig. 6.4, 

Fig. 6.5, Fig. 6.6) for PP, DP and SP estimation, correlation coefficient of r= 0.66+/-0.06 (PP), 

r= 0.72+/-0.07 (DP) and r= 0.72+/-0.06 (SP), RMSE of 5.71+/-0.72 mmHg (PP), 6.73+/-0.91 

mmHg (DP) and 9.82+/-1.37 mmHg (SP), and MAE of 4.55+/-0.62 mmHg (PP), 5.44+/-0.76 

mmHg (DP) and 7.87+/-1.13 mmHg (SP) were obtained across all interventions (mean+/-

SE) according to Table 6.3. By adding more predictors, obtained from BCG signal, and 

constructing 4 variable regression model for PP, DP and SP estimation, correlation 

coefficient of r= 0.88+/-0.03 (PP), r= 0.89+/-0.03 (DP) and r= 0.86+/-0.03 (SP), RMSE of 

3.58+/-0.6 mmHg (PP), 4.57+/-0.68 mmHg (DP) and 7.66+/-1.02 mmHg (SP), and MAE of 

2.81+/-0.46 mmHg (PP), 3.57+/-0.52 mmHg (DP) and 6.02+/-0.83 mmHg (SP) were 

obtained across all interventions (mean+/-SE). This reads to improvement of correlation 

coefficient by 32%, 24% and 18%, RMSE by 36%, 32% and 22%, and MAE by 38%, 34% and 

24% for PP, DP and SP, respectively.  

By comparing the results from analysis #2 and #3, it is reasonable to assume that the 

analysis #3, which only utilizes 4 features selected by physics-based insights, has similar 

performance to the analysis #2, which uses 38 features. Reducing the number of the 

utilized features, without degrading the performance is favorable in the sense that it can 

facilitate the technological implementation of the algorithm, as the model with less 

features will need less data for calibration. Additionally, such a model is expected to be 

more generalizable, and robust when exposed to a new set of subjects.  

As another interesting observation from analysis #3, from Fig. 6.7 we observe that DP 

and PP models utilizes very similar PCs. This means that with the given set of features using 

the physics-based insights, we can achieve a models that works best for both PP and DP 

prediction. Since SP can be calculated as the sum of the PP and DP, we can finally argue 

that with the illustrated set of features and PCs, we can estimate all BP variables. This 

support the previous argument that by narrowing down the number of the features we 

can develop generalizable models that works for a broad spectrum of the subjects and BP 

features. It worth to mention that, the reason of selecting different PCs for SP, is related 

to the binning of data. Because of the binning process in this analysis, SP data set does not 

exactly match with the sum of the DP and PP, and it results in different PCs.  
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6.5. Conclusion 

In previous chapters we have illustrated that BCG-based PTT is a strong predictor of the 

BP. Additionally, in chapter 5 we demonstrated that BCG-based features derived from 

PWA, carry useful information regarding BP. In this chapter we illustrated that we can 

create more complicated models with higher accuracy by adding BCG-based PWA features 

on top of the PTT. Presented results show that a 4 variable model that uses PTT as one of 

the predictors, and BCG features as the other predictors could enhance the correlation 

coefficient by 32%, 24% and 18%, RMSE by 36%, 32% and 22%, and MAE by 38%, 34% and 

24% for PP, DP and SP estimation, respectively.  

In this chapter, we also discussed that with a limited number of subjects, pure machine 

learning based approaches may not be effective to achieve high performing predictive 

models. However, we can leverage physics-based and combine them with machine 

learning approaches to achieve strong BP predicting models. Moreover, reduced number 

of features seems promising to create a generic and robust model that can be used to 

estimate all of the BP variables, i.e. PP, DP, and SP. It can be highly useful in facilitating 

technological implementation of the cuff-less BP monitoring techniques in future.  
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7. Subject Specific Modeling for Cuff-Less BP Monitoring 

7.1. Introduction 

In the previous sections, we tried to develop population-level models by creating 

common features and PCs for the whole subjects within the population. The advantages 

of such a model is that it is more convenient for technological implementation, as it needs 

less data points to construct and calibrate the model. On the other hand, we need to 

include a large variety of the subjects, maybe thousands if not tens of thousands, in the 

database as one of the key requirements of creating such a model that works on a variety 

of subjects. In this sense, population-level models derived from the data of a limited 

number of subjects, may not show the full potential of the BCG-based approaches, due to 

the lack of enough data to create the best performing model. In this chapter, to get an idea 

about the full BP prediction potential of the wrist BCG and PPG signals, we have developed 

subject specific models. With such a model, the complete process of feature selection, 

feature compression, and regression model development is done on each subject 

separately. So, each subject could have different selected features, PCs, and regression 

model. With this approach, subject variation effects on the performance of the model is 

avoided by creating individual predictors for each subject.  

Motivated by the above rational, three kinds of analysis are accomplished using the 

available data from the human subject study explained in section 4.2. In the first analysis, 

we attempt to show the ultimate association of the limb BCG with BP, by leveraging subject 

specific models. We will only use the features obtained from BCG pulse wave analysis, and 

develop a prediction models solely based on the BCG signal for the subject. With the 

second and third analysis, the idea of combining the data from BCG and BCG-based PTT is 

examined, with two different feature selection approaches. 

7.2. Method 

For each subject, the data is divided into the train and test sets. Out of the nine 

intervention that each subject has went through, the first and last rest interventions (R1 

and R5) are selected as the test data, and the remained seven interventions (CP, R2, MA, 

R3, SB, R4, BH) are selected for training purpose. As mentioned above, three sets of 

analyses are developed in this section. The first analysis only uses BCG features. The second 

and third analyses are utilizing both PTT and BCG-based features. The difference between 

analysis #2 and #3 is on the feature selection process. More details are explained as follow.  
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In the first analysis (analysis #1), we only utilize 37 features BCG-based features. From 

the 37 candidate features thus extracted, we selected significant features associated with 

PP, DP and SP based on the stepwise linear regression analysis for each subject as follows.  

First, the range of PP (or DP, SP) at training interventions (CP, R2, MA, R3, SB, R4, BH) in 

each subject record was segmented into 1 mmHg bins, and the set of 37 median BCG 

feature values corresponding to each 1mmHg PP (or DP, SP) bin was computed.  Then, 

applied the stepwise linear regression analysis to determine significant features predictive 

of PP (or DP, SP) for the subject. 

Due to the large number of significant features selected from the stepwise linear 

regression analysis, the features were further compressed for each subject using the 

principal component analysis (PCA) for dimensionality reduction.  Specifically, the range of 

PP (or DP, SP) at training intervention (CP, R2, MA, R3, SB, R4, BH) in each subject record 

was again segmented into 1 mmHg bins, and the set of median values of the features 

selected above with the stepwise linear regression corresponding to each bin was 

computed.  Then, the features were normalized with the respective feature’s mean and 

standard deviation, and subsequently applied to the PCA to derive principal components 

(PCs) as predictors of PP (or DP, SP). 

The association between the created PCs for each subject and BP was investigated using 

multivariate linear regression analysis.  Specifically, the PCs predictive of PP, DP and SP 

were correlated with the reference PP, DP and SP, respectively, via the following calibration 

relationship: 

𝑃𝑋 = 𝜂0
𝑋 + 𝜂1

𝑋𝜙1
𝑋 +⋯+ 𝜂𝑁

𝑋𝜙𝑁
𝑋 (1) 

where 𝑃𝑋 is reference BP, 𝜙𝑘
𝑋 (k=1,…,N) the k-th PC, 𝜂𝑘

𝑋 (k=1,…,N) the calibration 

coefficient for the k-th PC, 𝜂0
𝑋 the intercept, and 𝑁 the total number of PCs included in the 

relationship (1) (𝑋 = 𝑃 for PP, 𝑋 = 𝐷 for DP and 𝑋 = 𝑆 for SP).  Then, the association 

between the PCs derived from the selected features and BP was analyzed in terms of three 

metrics: (1) correlation coefficient (r); (2) root-mean-squared error (RMSE); and (3) mean 

absolute error (MAE). 

Having the subject specific level predictors constructed using the training data as 

described above, the association at the subject level was investigated.  In each subject, the 

ranges of reference PP, DP and SP across all training interventions (CP, R2, MA, R3, SB, R4, 

BH) were segmented into 1 mmHg bins, and the PCs associated with each PP, DP and SP 

bins were computed from the set of median values of the selected features recruited in 

the PCs corresponding to each bin.  Then, these PCs were calibrated to the reference PP, 
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DP and SP by determining 𝜂𝑘
𝑋 (k=0,…,N) in the relationship (1) with least-squares fitting to 

yield a subject-specific calibration relationship.  Then, correlation coefficients, RMSEs, and 

MAEs between the reference PP, DP and SP versus PP, DP and SP calibrated from the PCs 

were computed as measures of the best-case BCG-BP association for the training data in 

each subject. 

To investigate the number of requisite PCs for robust association of the features to BP, 

the above analysis was repeated for one to four PCs included in the calibration relationship 

(1), i.e., N=1, 2, 3, and 4.   

After creating the predictive model for each individual, using subject specific features, 

PCs, and regression coefficients, the validity of the model is measured on the test data. As 

mentioned before, the test data is derived from the first and last interventions as follow. 

In each subject, the ranges of reference PP, DP and SP across the test interventions (R1, 

R5) were segmented into 1 mmHg bins, and the PCs associated with each PP, DP and SP 

bins were computed from the set of median values of the selected features recruited in 

the PCs corresponding to each bin. Then, correlation coefficients, RMSEs, and MAEs 

between the reference PP, DP and SP versus PP, DP and SP predicted from the model were 

computed as measures of the BCG-BP association for the test data in each subject. 

Next step is to do analysis #2, in which the idea of combining PTT and BCG based 

features to achieve high performance models is implemented. In the analysis #1, we only 

utilized BCG specific features. In analysis #2, in addition to the BCG features, we utilize the 

BCG-based pulse transit time that is defined from the J-peak to PPG foot, which is already 

illustrated as a strong predictor of the BP. In this approach, the multi variate regression 

models with 1, 2, 3, and 4 predictors are constructed as follow. PTT is set to be as one of 

the independent variables. Then we use BCG based PCs calculated in analysis #1, as the 

second, third, and forth predictors. As an example, for the regression model with 3 

variables, PTT is the first variable, PC1 is the second variable, and PC2 is the third variable. 

Note that PC1, PC2, and PC3 in this analysis are purely calculated using BCG based features.  

In analysis #3, again the idea of combining PTT and BCG features to achieve high 

performance BP predictive models is implemented, with a different method. In this 

analysis, first we create a feature pool with 38 features, in which 37 of them are BCG based 

features and the other one is PTT. Then the remaining steps in this method is exactly like 

as the analysis #1. Having 38 features, first BP binning is practiced for the training 

interventions. Then stepwise feature selection is used to decrease the number of features. 

Then PCA is applied to construct 4 most important PCs for each subject. Then the 
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regression models with 1, 2, 3, and 4 predictors are calculated for each subject. Afterward 

the model is used to calculate the correlation coefficients, RMSE, and MAE for the training 

and test data.  

7.3. Results 

Table 7.1  shows the utilized features in analysis #1, as well as the corresponding index 

number. Similarly Table 7.2 illustrates the features utilized in analyses #2 and #3, and 

corresponding index numbers.  

Fig. 7.1, Fig. 7.2, and Fig. 7.3  show the features chosen by the stepwise feature 

selection, as well as the constructed PCs to predict SP, DP and PP for each subject in 

analysis #1, respectively. In these figures, each row corresponds to the constructed PCs for 

one of the subjects. Likely Fig. 7.4, Fig. 7.5, and Fig. 7.6 show the selected features and 

calculated PCs for each subject in analysis #2. As mentioned before, in this analysis PTT is 

chosen as the first independent predictor, as well as 3 other predictors constructed from 

BCG features by using of the feature selection and PCA analysis to predict SP, DP, and PP. 

Similarly, Fig. 7.7, Fig. 7.8, and Fig. 7.9 illustrates the selected features and calculated PCs 

for analysis #3.  

Table 7.3 summarizes the correlation, RMSE, and MAE between reference BP versus BP 

calibrated from the developed models in all analysis #1, #2, and #3.   

Fig. 7.10, Fig. 7.11, and Fig. 7.12 illustrate the subject-level association between the 

estimated and measured SP, DP and PP in analysis #1, for both train and test data using 1, 

2, 3, and 4 variable models in analysis #1. In these figures, the data points for each subject 

are plotted with distinct colors. In the same way, Fig. 7.13, Fig. 7.14, and Fig. 7.15 illustrate 

the estimated vs measured values in analysis #2. Similar to the previous cases, Fig. 7.16, 

Fig. 7.17, and Fig. 7.18 show the same information for analysis #3.  

Fig. 7.19 show the correlation coefficients for 1, 2, 3, and 4 variable models utilized in 

analyses #1 to predict PP, DP and SP. This figure is provided to facilitate the perception of 

the data presented in Table 7.3, to evaluate the performance of the developed models. In 

the same way, Fig. 7.20 and Fig. 7.21 are provided to show the similar information for 

analysis #2 and #3 respectively.  

Table 7.1. Wrist BCG features derived by pulse wave analysis, and corresponding index numbers used in 
analysis #1. 
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Table 7.2. PTT and Wrist BCG features derived by pulse wave analysis, and corresponding index numbers 
used in analysis #2 and #3. 

 

 

Fig. 7.1. Four most significant principal components (PCs) derived as independent predictors for subject 
specific systolic pressures estimation in Analysis #1.  Table 7.1  for feature index. 

Index No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Timing Feature J-J G-H G-I G-J G-K G-L H-I H-J H-K H-L I-J I-K I-L J-K J-L K-L |G|

Index No 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Amplitude Feature |G-H| |G-I| |G-J| |G-K| |G-L| |H| |H-I| |H-J| |H-K| |H-L| |I| |I-J| |I-K| |I-L| |J| |J-K| |J-L|

Index No 35 36 37

Amplitude Feature |K| |K-L| |L|

Index No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Timing Feature PTT J-J G-H G-I G-J G-K G-L H-I H-J H-K H-L I-J I-K I-L J-K J-L K-L

Index No 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Amplitude Feature |G| |G-H| |G-I| |G-J| |G-K| |G-L| |H| |H-I| |H-J| |H-K| |H-L| |I| |I-J| |I-K| |I-L| |J| |J-K|

Index No 35 36 37 38

Amplitude Feature |J-L| |K| |K-L| |L|
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Fig. 7.2. Four most significant principal components (PCs) derived as independent predictors for subject 
specific diastolic pressures estimation in Analysis #1.  See Table 7.1  for feature index. 

 

Fig. 7.3. Four most significant principal components (PCs) derived as independent predictors for subject 
specific pulse pressures estimation in Analysis #1.  Table 7.1  for feature index.  
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Fig. 7.4. PTT and three most significant principal components (PCs) derived as predictors for subject specific 
systolic pressures estimation in Analysis #2.  See Table 7.2  for feature index. 

 

Fig. 7.5. PTT and three most significant principal components (PCs) derived as predictors for subject specific 
diastolic pressures estimation in Analysis #2.  See Table 7.2  for feature index. 
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Fig. 7.6. PTT and three most significant principal components (PCs) derived as predictors for subject specific 
pulse pressures estimation in Analysis #2.  See Table 7.2  for feature index.  

 

Fig. 7.7. Four most significant principal components (PCs) derived as independent predictors for subject 
specific systolic pressures estimation in Analysis #3.  See Table 7.2  for feature index. 
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Fig. 7.8. Four most significant principal components (PCs) derived as independent predictors for subject 
specific diastolic pressures estimation in Analysis #3.  See Table 7.2  for feature index. 

 

Fig. 7.9. Four most significant principal components (PCs) derived as independent predictors for subject 
specific pulse pressures estimation in Analysis #3.  See Table 7.2  for feature index. 

Table 7.3. Correlation, root-mean-squared error (RMSE), mean absolute error (MAE), and precision error (PE) 
between reference BP versus BP calibrated from constructed predictors. PP: pulse pressure DP: diastolic BP.  
SP: systolic BP. The results of all analysis #1, #2, #3 are presented in the table.  
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Fig. 7.10. Subject-level association between the estimated systolic pressure in analysis #1 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3

1-var 0.67+/-0.05 0.74+/-0.05 0.68+/-0.08 0.7+/-0.07 0.75+/-0.06 0.74+/-0.06 0.68+/-0.07 0.68+/-0.06 0.69+/-0.07

2-var 0.78+/-0.04 0.85+/-0.03 0.82+/-0.05 0.84+/-0.04 0.86+/-0.05 0.87+/-0.04 0.85+/-0.02 0.87+/-0.03 0.85+/-0.04

3-var 0.84+/-0.04 0.87+/-0.03 0.88+/-0.03 0.88+/-0.03 0.91+/-0.03 0.91+/-0.03 0.9+/-0.02 0.91+/-0.02 0.93+/-0.02

4-var 0.86+/-0.03 0.89+/-0.02 0.9+/-0.02 0.91+/-0.02 0.92+/-0.02 0.93+/-0.02 0.94+/-0.01 0.93+/-0.01 0.94+/-0.01

1-var 0.31+/-0.11 0.72+/-0.05 0.59+/-0.08 0.66+/-0.06 0.75+/-0.06 0.56+/-0.11 0.54+/-0.09 0.61+/-0.08 0.51+/-0.12

2-var 0.54+/-0.08 0.75+/-0.05 0.74+/-0.06 0.74+/-0.04 0.81+/-0.05 0.78+/-0.06 0.71+/-0.05 0.78+/-0.05 0.72+/-0.07

3-var 0.66+/-0.06 0.78+/-0.05 0.83+/-0.03 0.78+/-0.04 0.85+/-0.03 0.83+/-0.04 0.81+/-0.03 0.82+/-0.04 0.86+/-0.03

4-var 0.69+/-0.06 0.83+/-0.04 0.86+/-0.03 0.85+/-0.02 0.87+/-0.02 0.86+/-0.03 0.88+/-0.03 0.86+/-0.03 0.9+/-0.02

1-var 10.99+/-1.06 9.2+/-1.2 9.86+/-1.32 7.15+/-1.02 6.12+/-0.86 6.61+/-0.94 5.38+/-0.63 5.25+/-0.63 5.01+/-0.69

2-var 9.01+/-1.09 7.42+/-0.97 7.74+/-1.23 5.62+/-0.86 4.72+/-0.78 4.96+/-0.87 4.04+/-0.46 3.61+/-0.49 3.82+/-0.63

3-var 8.05+/-1.02 6.63+/-0.97 6.86+/-1.02 4.96+/-0.78 4.04+/-0.65 4.03+/-0.76 3.26+/-0.4 3.02+/-0.39 2.73+/-0.43

4-var 7.3+/-0.95 6.2+/-0.91 6.11+/-0.83 4.23+/-0.67 3.66+/-0.58 3.69+/-0.74 2.49+/-0.38 2.58+/-0.32 2.32+/-0.43

1-var 11.08+/-1.17 10.33+/-1.49 10.43+/-1.84 7.27+/-1.23 6.82+/-1.12 7.75+/-1.47 4.56+/-0.38 4.85+/-0.45 4.92+/-0.39

2-var 10.73+/-1.58 9.61+/-1.46 9.82+/-1.87 7+/-1.36 6.53+/-1.42 6.86+/-1.53 4.41+/-0.39 4.27+/-0.46 4.4+/-0.38

3-var 10.31+/-1.57 9.92+/-1.77 9.34+/-1.74 6.96+/-1.46 6.52+/-1.51 6.73+/-1.5 4.13+/-0.36 4.24+/-0.51 3.95+/-0.42

4-var 10.67+/-1.83 9.59+/-1.76 9.25+/-1.75 6.64+/-1.5 6.39+/-1.53 6.56+/-1.52 3.9+/-0.45 4.1+/-0.48 3.75+/-0.48

1-var 8.8+/-0.94 7.47+/-1.08 7.98+/-1.15 5.78+/-0.91 5.04+/-0.76 5.37+/-0.82 4.28+/-0.54 4.23+/-0.56 4.07+/-0.58

2-var 7.11+/-0.89 5.86+/-0.76 6.26+/-1.06 4.46+/-0.7 3.74+/-0.67 3.96+/-0.72 3.17+/-0.37 2.87+/-0.39 2.97+/-0.51

3-var 6.4+/-0.84 5.19+/-0.74 5.41+/-0.81 3.93+/-0.63 3.21+/-0.53 3.19+/-0.61 2.6+/-0.32 2.42+/-0.32 2.13+/-0.34

4-var 5.72+/-0.75 4.83+/-0.69 4.81+/-0.62 3.39+/-0.53 2.85+/-0.45 2.92+/-0.58 2.01+/-0.31 2.08+/-0.27 1.84+/-0.34

1-var 9.15+/-0.97 9.1+/-1.44 8.97+/-1.83 6.35+/-1.19 6.07+/-1.09 6.63+/-1.43 3.7+/-0.33 4.03+/-0.43 4+/-0.38

2-var 8.97+/-1.45 8.3+/-1.44 8.6+/-1.88 6.06+/-1.31 5.88+/-1.39 6+/-1.51 3.66+/-0.35 3.62+/-0.44 3.67+/-0.36

3-var 8.83+/-1.45 8.69+/-1.78 8.31+/-1.74 6.08+/-1.47 5.88+/-1.49 6.03+/-1.49 3.53+/-0.36 3.64+/-0.49 3.46+/-0.42

4-var 9.33+/-1.77 8.55+/-1.78 8.3+/-1.78 5.94+/-1.52 5.79+/-1.53 5.92+/-1.51 3.45+/-0.44 3.58+/-0.48 3.36+/-0.48

DP PP

RMSE

Train

Test

MAE

Train
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r-val
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Fig. 7.11. Subject-level association between the estimated diastolic pressure in analysis #1 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 7.12. Subject-level association between the estimated pulse pressure in analysis #1 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects. 
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Fig. 7.13. Subject-level association between the estimated systolic pressure in analysis #2 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 7.14. Subject-level association between the estimated diastolic pressure in analysis #2 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  
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Fig. 7.15. Subject-level association between the estimated pulse pressure in analysis #2 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 7.16. Subject-level association between the estimated systolic pressure in analysis #3 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  
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Fig. 7.17. Subject-level association between the estimated diastolic pressure in analysis #3 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

 

Fig. 7.18. Subject-level association between the estimated pulse pressure in analysis #3 (with 1,2,3, and 
variable regression models) versus measured systolic pressures in all subjects.  

(a) Systolic Pressure (b) Diastolic Pressure (c) Pulse Pressure 
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Fig. 7.19. Correlation coefficients variations to estimate (a) systolic, (b) diastolic, (c) pulse pressure with 
respect to the number of the predictors in the multivariate regression model in analysis #1. 

(a) Systolic Pressure (b) Diastolic Pressure (c) Pulse Pressure 

   

Fig. 7.20. Correlation coefficients variations to estimate (a) systolic, (b) diastolic, (c) pulse pressure with 
respect to the number of the predictors in the multivariate regression models in analysis #2. 

(a) Systolic Pressure (b) Diastolic Pressure (c) Pulse Pressure 

   

Fig. 7.21. Correlation coefficients variations to estimate (a) systolic, (b) diastolic, (c) pulse pressure with 
respect to the number of the predictors in the multivariate regression models in analysis #3. 

7.4. Discussion 

According to the results of analysis #1, BCG based features could be strong predictors 

of the BP. Based on the presented results in Table 7.3 for the 4 variable regression model 

(which has significantly higher accuracy than the other three models for both test and train 

data) using the constructed PCs (Fig. 7.1, Fig. 7.2, Fig. 7.3), when only BCG based features 

are utilized to construct the predictive models for PP, DP and SP estimation, correlation 

coefficient of r= 0.94+/-0.01 (PP), r= 0.91+/-0.02 (DP) and r= 0.86+/-0.03 (SP), RMSE of 

2.49+/-0.38 mmHg (PP), 4.23+/-0.67 mmHg (DP) and 7.3+/-0.95 mmHg (SP), and MAE of 

2.01+/-0.31 mmHg (PP), 3.39+/-0.53 mmHg (DP) and 5.72+/-0.75 mmHg (SP) were 

obtained across the training interventions (mean+/-SE). When the developed model is 

utilized for PP, DP, and SP estimation for the test interventions, correlation coefficient of 

r= 0.88+/-0.03 (PP), r= 0.85+/-0.02 (DP) and r= 0.69+/-0.06 (SP), RMSE of 3.9+/-0.45 mmHg 
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(PP), 6.64+/-1.5 mmHg (DP) and 10.67+/-1.83 mmHg (SP), and MAE of 3.45+/-0.44 mmHg 

(PP), 5.94+/-1.52 mmHg (DP) and 9.33+/-1.77 mmHg (SP) were obtained. More details of 

the subject level association between the estimated and measured BPs are provided in Fig. 

7.10, Fig. 7.11, Fig. 7.12. We see that the performance on test data of SP, decreases 

considerably for SP. It could be due to the more complex nature of SP, compared to DP 

and PP, and it may require more sophisticated models with more predictors.   

In analysis #2, the first variable in the regression model is assumed to be PTT (Fig. 7.4, 

Fig. 7.5, Fig. 7.6). So by looking at the results of the univariate regression model in this 

analysis, we can get the performance of a subject specific PTT based model on both train 

and test data. According to Table 7.3, correlation coefficient of r= 0.68+/-0.06 (PP), r= 

0.75+/-0.06  (DP) and r= 0.74+/-0.05 (SP), RMSE of 5.25+/-0.63 mmHg (PP), 6.12+/-0.86 

mmHg (DP) and 9.2+/-1.2 mmHg (SP), and MAE of 4.23+/-0.56 mmHg (PP), 5.04+/-0.76 

mmHg (DP) and 7.47+/-1.08 mmHg (SP) were obtained across the training interventions. 

For the test intervention data, correlation coefficient of r= 0.61+/-0.08 (PP), r= 0.75+/-0.06 

(DP) and r= 0.72+/-0.05 (SP), RMSE of 4.85+/-0.45 mmHg (PP), 6.82+/-1.12 mmHg (DP) and 

10.33+/-1.49 mmHg (SP), and MAE of 4.03+/-0.43 mmHg (PP), 6.07+/-1.09 mmHg (DP) and 

9.1+/-1.44 mmHg (SP) are obtained.  Performance of the model on the test interventions 

is very close to the train data with slight degradation. This implies the robustness of the 

PTT feature as a BP predictor, specifically for DP which doesn’t degrade on test data across 

all subjects.  

According to the obtained results from both analysis #2 and #3, combining PTT and BCG-

based features can improve the accuracy of subject specific models. In this regard, 4 

variable regression model (Fig. 7.7, Fig. 7.8, Fig. 7.9), constructed in analysis #3, has the 

best performance and achieves significantly higher metrics than all other models in all of 

the other models for the test data. According to Table 7.3, correlation coefficient of r= 

0.94+/-0.01 (PP), r= 0.93+/-0.02  (DP) and r= 0.9+/-0.02 (SP), RMSE of 2.32+/-0.43 mmHg 

(PP), 3.69+/-0.74 mmHg (DP) and 6.11+/-0.83 mmHg (SP), and MAE of 1.84+/-0.34 mmHg 

(PP), 2.92+/-0.58 mmHg (DP) and 4.81+/-0.62 mmHg (SP) is obtained across all training 

interventions. For the test interventions, correlation coefficient of r= 0.9+/-0.02 (PP), r= 

0.86+/-0.03 (DP) and r= 0.86+/-0.03 (SP), RMSE of 3.75+/-0.48 mmHg (PP), 6.56+/-1.52 

mmHg (DP) and 9.25+/-1.75 mmHg (SP), and MAE of 3.36+/-0.48 mmHg (PP), 5.92+/-1.51 

mmHg (DP) and 8.3+/-1.78 mmHg (SP) is obtained using the same model.  

Comparing the performance of the results described above, it is observed that hybrid 

model (which uses both BCG-based features and PTT) outperforms PTT based model by 

19% (SP), 15% (DP), and 48% (PP) improvement in correlation coefficient. By comparison 
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of the hybrid model with purely BCG-based model, we observe that they have similar 

accuracy for DP and PP estimation. However, for SP estimation, the hybrid model 

outperforms the pure BCG-based model by 25% improvement of correlation coefficient in 

test data.  

7.5. Conclusion 

Close and robust association between of the wrist BCG-based PTT and PWA features 

with BP is demonstrated using subject specific models. The results show that for DP and 

PP can be estimated using both pure BCG-based models as well as hybrid models, which 

uses PTT in addition to BCG-based features. However, for SP estimation, hybrid model 

seems to be the only possible option.  
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8. Conclusion 

By virtue of its direct association with the cardiovascular functions and compatibility to 

unobtrusive measurement during daily activities, the limb BCG is receiving an increasing 

interest as a viable means for ultra-convenient CV health and disease monitoring.  

However, limited insights on its physical implications have hampered disciplined 

interpretation of the BCG and systematic development of the BCG-based approaches for 

CV health monitoring. In this study, a mathematical model is developed that can explain 

the limp BCG waveform in response to the force generated by arterial blood pressure. The 

physical insights garnered by the analysis of the mathematical model may open up new 

opportunities toward the next generation of the BCG-based CV healthcare techniques 

embedded with transparency, interpretability, and robustness against the external 

variability. 

Then the potential of wearable limb BCG as a basis to enable cuff-less blood pressure 

monitoring via pulse transit time is investigated. A wearable BCG-based PTT was 

constructed using the BCG and PPG signals instrumented by a wristband as a proximal and 

distal timing reference (wrist PTT).  Its efficacy as a surrogate of BP was examined in 

comparison with PTT based on the whole-body BCG instrumented by a customized 

weighing scale (scale PTT) as well as pulse arrival time (PAT) using the experimental data 

collected from participants under multiple BP-perturbing interventions.  Results illustrate 

that the wrist PTT exhibited a close association with both diastolic and systolic BP. The 

efficacy of the wrist PTT was superior to scale PTT and PAT for both diastolic and systolic 

BP.  The association was consistent and robust against diverse BP-perturbing interventions.  

The wrist PTT showed superior association with BP when constructed with green PPG 

rather than infrared PPG.   

The next step was to investigate the association between a limb BCG and blood pressure 

BP based on data mining. Both timing and amplitude features in the wrist BCG waveform 

were extracted, and significant features predictive of DP and SP blood pressure were 

selected and the association between the predictors thus obtained and BP was 

investigated by multivariate linear regression analysis. The predictors exhibited a 

meaningful association with BP. The minimum number of requisite predictors for robust 

yet practically realistic BP monitoring appeared to be 3.  The requisite predictors for DP 

and SP were distinct from each other.  The obtained results may provide a viable basis for 

ultra-convenient BP monitoring based on a limb BCG alone. 
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Ultimately, the idea of developing prediction models that utilize both wrist PTT and 

BCG-based feature is examined. The results show that adding BCG-based features on top 

of the PTT can improve the accuracy of BP monitoring. Additionally, it is illustrated that 

Physics based insights could be used to decrease the number of utilized features in such a 

complex model. A smaller set of utilized features can facilitate technological 

implementation by decreasing the number of data points required for model construction 

and calibration. 

In the last chapter, subject-specific models were developed to obtain an estimated 

upper bound for the accuracy of BP monitoring models that could be achieved using the 

limb BCG and PPG signals. Based on these results it is possible to achieve correlation 

coefficient of r= 0.94+/-0.01 (PP), r= 0.93+/-0.02 (DP) and r= 0.9+/-0.02 (SP), RMSE of 

2.32+/-0.43 mmHg (PP), 3.69+/-0.74 mmHg (DP) and 6.11+/-0.83 mmHg (SP), and MAE of 

1.84+/-0.34 mmHg (PP), 2.92+/-0.58 mmHg (DP) and 4.81+/-0.62 mmHg (SP) is obtained 

across all training interventions. By applying the same model on the test interventions 

without any adjustment and calibration, correlation coefficient of r= 0.9+/-0.02 (PP), r= 

0.86+/-0.03 (DP) and r= 0.86+/-0.03 (SP), RMSE of 3.75+/-0.48 mmHg (PP), 6.56+/-1.52 

mmHg (DP) and 9.25+/-1.75 mmHg (SP), and MAE of 3.36+/-0.48 mmHg (PP), 5.92+/-1.51 

mmHg (DP) and 8.3+/-1.78 mmHg (SP) is obtained. However, we should emphasize that 

subject-specific models are difficult to implement since they need a considerable number 

of data points for each subject to be created and calibrated. Maybe this problem could be 

addressed in the future by developing more advanced machine learning models for BP 

estimation.   

9. Limitations and Future Work 

Overall, the findings of this research shows that limb based BCG has the potential to 

realize convenient cuff-less BP monitoring. As a result, wearable limb BCG may open up 

new opportunities for convenient cuff-less BP monitoring via PTT and PWA in everyday life. 

However, to generalize the findings of this research for technological implementation, 

there are several limitations that should be addressed in future studies.  

First, the participant pool was not diverse: all were healthy with no explicit indication of 

cardiovascular disease.  Additionally, the sample size used in this study was not large. 

Hence, despite the demonstrated potential and opportunities, the generalizability of the 

findings to a broad range of subjects is yet to be shown.  In the ideal, considering that the 

BCG waveform morphology is closely related to arterial BP waves[70], the variability in 

arterial mechanical properties may manifest itself in the BCG waveform through its impact 
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on the speed and morphology of arterial BP waves, thereby altering the BCG features.  

Hence, changes in arterial mechanical properties may be captured by the corresponding 

changes in the BCG features.  But in reality, the relative significance of the BCG features 

(and thus the composition of the PCs) relevant to BP monitoring may vary with respect to 

age and disease.  In addition, changes in smooth muscle tone and other artifacts may 

further complicate robust high-quality association of BCG with BP.  It is our anticipation 

that the association between a limb BCG and BP may persistently exist in a wide range of 

subjects, but its pattern may vary.  Future work on the rigorous evaluation of the efficacy 

of limb BCGs for BP monitoring, as well as the investigation of ideas to compensate for 

possible age- and disease-dependent variability in the association between a limb BCG and 

BP, must be conducted in a large number of diverse subjects. 

Second, this study used the ECG for the sake of BCG and PPG gating.  Being an initial 

feasibility study, it was deemed acceptable to employ ECG.  However, ECG may need to be 

removed in the ultimate implementation of wearable wrist BCG-based BP monitoring so 

as to minimize the complexity associated with the device and its use.  One reasonable 

option may be to replace ECG by PPG for BCG gating.  We anticipate that PPG-based BCG 

gating will present non-trivial challenges due to the BP-dependent changes in the location 

of the PPG foot relative to the ECG R wave and the proximity between the PPG foot and 

the I-J-K complex in the BCG.  Future work is required to develop PPG-based gating 

methods that can overcome these challenges. 

Third, this study was limited to a specific posture (i.e., standing with the arms placed at 

the side).  The shape of the wrist BCG (and in general any wearable limb BCG potentially) 

varies with respect to posture, since the change in posture alters the orientation of the 

sensors embedded in the wearable device [37].  Compensation of the impact of posture 

on the shape of the wrist BCG may require additional sensors (e.g., inertial sensors) and 

signal processing algorithms to determine the orientation of the wrist.  In addition, 

additional consideration is needed if the wrist is artificially supported (e.g., if it is placed on 

a desk), in which the way the whole-body BCG is transferred to the wrist is altered by the 

reaction force exerted by the support.  Rigorous future work is required to address this 

challenge to truly enable the wearable limb BCG-based PTT and BP monitoring.   

Fourth, despite the notable potential of the wrist BCG in ultra-convenient PTT and BP 

monitoring, convenient PTT-BP calibration still remains an open challenge.  Given that 

artery stiffens with aging and alters PTT-BP relationship, PTT-BP relationship must be 

continually calibrated.  Existing PTT-BP calibration techniques typically involve the 

measurement of reference BP and PTT during BP-perturbing interventions.  However, ideal 
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calibration must not require cumbersome interventions to maximize convenience.  Future 

investigation needs to be conducted for the development of novel convenient PTT-BP 

calibration techniques.   

Findings of this study suggest that certain characteristic features in the limb BCG 

waveforms may serve as viable surrogates of CV function, health, and potentially CVD.  

However, the convoluted and multi-faceted effects of the variability in the arterial BP 

waves on the limb BCG as well as the confounding impact of the bio-mechanical variability 

of the body may present challenges toward the development of novel techniques to 

decipher CV health and CVD from the limb BCG.  Future effort must be invested to establish 

more rigorous physiological understanding of the limb BCG, examine the effect of CV 

pathophysiology on the morphology of the limb BCG waveforms, and investigate the 

opportunities to incorporate physiological insights derived from this study into CV health 

and CVD monitoring based on the limb BCG. 
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