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Abstract 

 
 

 

Cardiac output (CO) defines the blood flow arriving from the heart to the 

different organs in the body and it is thus a primary determinant of global O2 

transport. Cardiac output has traditionally been measured using invasive 

methods, whose risk sometimes exceeds the advantages of a cardiac output 

monitoring. 

In this context, the minimization of risk in new noninvasive technologies 

for CO monitoring could translate into major advantages for clinicians, 

hospitals and patients: ease of usage and availability, reduced recovery time, 

and improved patient outcome. Impedance Cardiography (ICG) is a 

promising noninvasive technology for cardiac output monitoring but available 

information on the ICG signals is more scare than other physiological signals 

such as the electrocardiogram (ECG). 

The present Doctoral Thesis contributes to the development of signal 

treatment techniques for the ICG in order to create an innovative 

hemodynamic monitor. 

First, an extensive literature review is provided regarding the basics of the 

clinical background in which cardiac output monitoring is used and 

concerning the state of the art of cardiac output monitors on the market. This 

Doctoral Thesis has produced a considerable amount of clinical data which is 

also explained in detail. These clinical data are also useful to complement the 

theoretical explanation of patient indices such as heart rate variability, blood 

flow and blood pressure. In addition, a new method to create synthetic 

biomedical signals with known time-frequency characteristics is introduced. 
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One of the first analysis in this Doctoral Thesis studies the time difference 

between peak points of the heart beats in the ECG and the ICG: the RC 

segment. This RC segment is a measure of the time delay between electrical 

and mechanical activity of the heart. The relationship of the RC segment with 

blood pressure and heart interval is analyzed. The concordance of beat 

durations of both the electrocardiogram and the impedance cardiogram is one 

of the key results to develop new artefact detection algorithms and the RC 

could also have an impact in describing the hemodynamics of a patient. 

Time-frequency distributions (TFDs) are also used to characterize how the 

frequency content in impedance cardiography signals change with time. Since 

TFDs are calculated using concrete kernels, a new method to select the best 

kernel by using synthetic signals is presented. Optimized TFDs of ICG signals 

are then calculated to extract several features which are used to discriminate 

between different anesthesia states in patients undergoing surgery. 

TFD-derived features are also used to describe the whole surgical 

operations. Relationships between TFD-derived features are analyzed and 

prediction models for cardiac output are designed. These prediction models 

prove that the TFD-derived features are related to the patients’ cardiac output. 

Finally, a validation study for the qCO monitor is presented. The qCO 

monitor has been designed using some of the techniques which are 

consequence of this Doctoral Thesis. The main outputs of this work have 

been protected with a patent which has already been filed. 

As a conclusion, this Doctoral Thesis has produced a considerable amount 

of clinical data and a variety of analysis and processing techniques of 

impedance cardiography signals which have been included into commercial 

medical devices already available on the market. 

 

 

 

 

 

 

UNESCO codes: 240602 (Bioelectricity), 331110 (Medical Instruments), 

241103 (Cardiovascular Physiology).



 

 

 

 

 

Resum 

 
 

 

La despesa cardíaca defineix el fluix de sang que arriba des del cor als 

distints òrgans del cos i és, per tant, un determinant primari del transport 

global d’oxigen. La despesa cardíaca s’ha mesurat tradicionalment emprant 

mètodes invasius, els riscs dels quals en ocasions excedeixen els avantatges de 

la monitorització de la despesa cardíaca. 

En aquest context, la minimització del risc de la monitorització de la 

despesa cardíaca en noves tecnologies no invasives podria traduir-se en més 

avantatges per a metges, hospitals i pacients: facilitat d’ús i disponibilitat de 

l’equipament, temps de recuperació dels pacients i millors resultats en el 

pacients. La cardiografia d’impedància (ICG per les seues sigles en anglés) és 

una tecnologia prometedora i no invasiva per a la monitorització de la despesa 

cardíaca però la informació disponible sobre els senyals d’ICG és més aviat 

escassa en comparació amb altres senyals fisiològics com l’electrocardiograma 

(ECG). 

La present Tesi Doctoral contribueix al desenvolupament de tècniques de 

tractament del de senyal d’ICG per així crear un monitor hemodinàmic 

innovador. 

En primer lloc, es proporciona una extensa revisió bibliogràfica sobre els 

aspectes bàsics del context clínic en què la monitorització de la despesa 

cardíaca s’utilitza principalment, així com sobre l’estat de l’art dels monitors 

de despesa cardíaca que existeixen al mercat. Aquesta Tesi Doctoral ha produït 

una considerable quantitat de dades clíniques que també s’expliquen en detall. 

Aquestes dades clíniques també són útils per a complementar les explicacions 

teòriques dels índexs de pacient de variabilitat cardíaca i de fluix i pressió 
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sanguínia. A més a més, es presenta un nou mètode de creació de senyals 

sintètics biomèdics amb característiques de temps-freqüència conegudes. 

Una de les primeres anàlisis d’aquesta Tesis Doctoral estudia la diferència 

temporal entre els pics dels batecs cardíacs de l’ECG i de l’ICG: el segment 

RC. Aquest segment RC és una mesura del retard temporal entre l’activitat 

elèctrica i mecànica del cor. S’analitza la relació del segment RC amb la pressió 

arterial i l’interval cardíac. La concordança entre la duració dels batecs de 

l’ECG i de l’ICG és un dels resultats clau per a desenvolupar nous algoritmes 

de detecció d’artefactes i el segment RC també podria ser rellevant per a la 

descripció de l’hemodinàmica dels pacients. 

Les distribucions de temps-freqüència (TFD, per les seues sigles en anglés) 

s’utilitzen per a caracteritzar com el contingut dels senyals de cardiografia 

d’impedància canvia amb el temps. Atès que les TFDs han de calcular-se 

emprant nuclis (kernels, en anglés) concrets, es presenta un nou mètode per a 

seleccionar el millor nucli mitjançant la utilització de senyals sintètiques. Les 

TFDs d’ICG optimitzades es calculen per extraure distintes característiques 

que són emprades per discriminar entre diferents estats d’anestèsia en pacients 

sotmesos a processos quirúrgics. 

Les característiques derivades de les distribucions de temps-freqüència 

també són utilitzades per descriure les operacions quirúrgiques durant tota la 

seua extensió temporal. La relació entre eixes característiques són analitzades 

i es proposen distints models de predicció per a la despesa cardíaca. Aquests 

models de predicció demostren que les característiques derivades de les 

distribucions de temps-freqüència de senyals d’ICG estan relacionades amb la 

despesa cardíaca dels pacients. 

Darrerament, es presenta un estudi de validació del monitor qCO. Aquest 

monitor ha sigut dissenyat utilitzant alguna de les tècniques que són 

conseqüència d’aquesta Tesi Doctoral. Les principals conclusions d’aquest 

treball han sigut protegides amb una patent que ja ha sigut registrada. 

Així doncs, aquesta Tesi Doctoral ha produït una considerable quantitat de 

dades clíniques i una varietat de tècniques de processat i anàlisi de senyals de 

cardiografia d’impedància que han sigut integrades en dispositius biomèdics ja 

disponibles comercialment. 

 

 

Codis UNESCO: 240602 (Bioelectricitat), 331110 (Instruments mèdics), 

241103 (Fisiologia cardiovascular).



 

 

 

 

 

Resumen 

 
 

El gasto cardíaco (GC) define el flujo de sangre que llega desde el corazón 

a los distintos órganos del cuerpo y es, por tanto, un determinante primario 

del transporte global de oxígeno. Se ha medido tradicionalmente usando 

métodos invasivos cuyos riesgos excedían en ocasiones las ventajas de su 

monitorización. 

En este contexto, la minimización del riesgo de la monitorización del gasto 

cardíaco en nuevas tecnologías no invasivas podría traducirse en mayores 

ventajas para médicos, hospitales y pacientes: facilidad de uso, disponibilidad 

del equipamiento y menor tiempo de recuperación y mejores resultados en el 

paciente. La impedancio-cardiografía o cardiografía de impedancia (ICG) es 

una prometedora tecnología no invasiva para la monitorización del gasto 

cardíaco. Sin embargo, la información disponible sobre las señales de ICG es 

más escasa que otras señales fisiológicas como el electrocardiograma (ECG). 

La presente Tesis Doctoral contribuye al desarrollo de técnicas de 

tratamiento de señal de ICG para así crear un monitor hemodinámico 

innovador. 

En primer lugar, se proporciona una extensa revisión bibliográfica sobre 

los aspectos básicos del contexto clínico en el que se utiliza la monitorización 

del gasto cardíaco así como sobre el estado del arte de los monitores de gasto 

cardíaco que existen en el mercado. Esta Tesis Doctoral ha producido una 

considerable cantidad de datos clínicos que también se explican en detalle. 

Dichos datos clínicos también son útiles para complementar las explicaciones 

teóricas de los índices de paciente de variabilidad cardíaca  y el flujo y la 

presión sanguíneos. Además, se presenta un nuevo método de creación de 

señales sintéticas biomédicas con características de tiempo-frecuencia 

conocidas. 
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Uno de los primeros análisis de esta Tesis Doctoral estudia la diferencia 

temporal entre los picos de los latidos cardíacos del ECG y del ICG: el 

segmento RC. Este segmento RC es una medida del retardo temporal entre la 

actividad eléctrica y mecánica del corazón. Se analiza la relación del segmento 

RC con la presión arterial y el intervalo cardíaco. La concordancia entre la 

duración de los latidos del ECG y del ICG es uno de los resultados claves para 

desarrollar nuevos algoritmos de detección de artefactos y el segmento RC 

también podría ser relevante en la descripción de la hemodinámica de los 

pacientes. 

Las distribuciones de tiempo-frecuencia (TFD, por sus siglas en inglés) se 

utilizan para caracterizar cómo el contenido de las señales de impedancia 

cardiográfica cambia con el tiempo. Dado que las TFDs deben calcularse 

usando núcleos (kernels, en inglés) concretos, se presenta un nuevo método 

para seleccionar el mejor núcleo mediante el uso de señales sintéticas. Las 

TFDs de ICG optimizadas se calculan para extraer distintas características que 

son usadas para discriminar entre los diferentes estados de anestesia en 

pacientes sometidos a procesos quirúrgicos. 

Las características derivadas de las distribuciones de tiempo-frecuencia 

también son utilizadas para describir las operaciones quirúrgicas durante toda 

su extensión temporal. La relación entre dichas características son analizadas 

y se proponen distintos modelos de predicción para el gasto cardíaco. Estos 

modelos de predicción demuestran que las características derivadas de las 

distribuciones tiempo-frecuencia de señales de ICG están relacionadas con el 

gasto cardíaco de los pacientes. 

Finalmente, se presenta un estudio de validación del monitor qCO, 

diseñado con alguna de las técnicas que son consecuencia de esta Tesis 

Doctoral. Las principales conclusiones de este trabajo han sido protegidas con 

una patente que ya ha sido registrada. 

Como conclusión, esta Tesis Doctoral ha producido una considerable 

cantidad de datos clínicos y una variedad de técnicas de procesado y análisis 

de señales de cardiografía de impedancia que han sido incluidas en dispositivos 

médicos ya disponibles comercialmente. 

 

 

Códigos UNESCO: 240602 (Bioelectricidad), 331110 (Instrumentos 

médicos), 241103 (Fisiología cardiovascular). 
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Abstract 

This introductory chapter aims to give an initial overview of the topics 

addressed in the present Doctoral Thesis. The basic problem on which this 

research focuses is explained. Furthermore, the specific objectives to 

accomplish with this study are defined. Finally, the framework where this 

thesis was developed is provided as a guide for the reader. 

  

1 
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1.1 Introduction 

This chapter is divided into three main parts. The first part will state the 

problem this work concentrates on. Thanks to the analysis of the initial 

problem, concrete objectives are therefore established as a guideline for the 

Doctoral Thesis. The special framework in which the Doctoral Thesis has 

been developed is explained in detail. Finally, the outline of the present 

document is also provided at the end of this Chapter. 

1.2 Problem Statement 

Cardiac output (CO) is a primary determinant of global O2 transport from 

the heart to the body. It defines the blood flow arriving to the different organs 

in the body. As a consequence, determination of CO is essential in any 

advanced hemodynamic monitoring system in perioperative and intensive 

care medicine. 

Traditionally, CO has been measured using invasive methods such as the 

intracardiac catheterization. The risk involved in such invasive methods posed 

a burden on the standardization of this measurement since clinicians needed 

to evaluate the balance between the risk and the advantages of the CO 

measurement. 

Today, there is a continuous search for methods of CO measurement 

which are less invasive than its predecessors in order to minimize risk. Such 

risk minimization in new noninvasive technologies for CO monitoring could 

translate into major advantages for clinicians, hospitals and patients: ease of 

usage and availability, reduced recovery time, and improved patient outcome. 

New technologies are nowadays available for noninvasive CO 

monitoring but further research is required to improve the different options 

for noninvasive continuous CO with regard to signal acquisition, signal 

processing, and clinical applicability. 

Impedance Cardiography (ICG) is a promising solution for noninvasive 

continuous CO monitoring. The technique to calculate the CO using the ICG 

was first proposed by Kubicek in 1966 but due to the state of the art, it did 

not further devolved [1]. The latest advances in biomedical signal processing 

allow us to further explore this technique, which is the main topic of this 

Doctoral Thesis. There exists a vast bibliography about electrocardiogram 

(ECG) but information on ICG is scarce. In this Doctoral Thesis, the 

impedance cardiography signal has been studied and characterized using time-
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frequency distributions (TFDs) and Recurrence Plots (RPs). The relationship 

between TFD-derived and RP-derived features and the hemodynamic state of 

patients has been studied. Finally, some of the resulting algorithms have also 

been implemented and validated in the new noninvasive CO monitor qCO by 

Quantium Medical. 

1.3 Objectives 

The ideal CO monitor should be reliable, continuous, noninvasive, 

operator-independent and cost-effective and should have a fast response beat-

to-beat time [2]. Impedance cardiography is a technique which can definitely 

fulfill all those requirements but the technology is still under development. 

Main issues arise when trying to find the exact parameters to extract from the 

ICG curve but, mostly, the most important problems are associated with high 

levels of noise and artifacts which appear due to the movement of the patient. 

The main final contribution of this Doctoral Thesis is the development 

of signal treatment techniques for the thoracic bioimpedance signals in 

order to create an innovative hemodynamic monitor. The development 

of this Doctoral Thesis under the framework of the Industrial PhD program 

by the Catalan government has reinforced the availability of resources and the 

practical focus which all the developed signal treatment techniques must fulfill 

in order to be applicable to marketable real-time medical devices. 

Specific objectives of the present Doctoral Thesis are: 

- Research on the available technologies for CO measurement: there is 

a vast amount of literature regarding CO measurement, which has 

historically been an invasive technique. Today, a large number of 

methodologies have appeared promising to be noninvasive and this 

Doctoral Thesis provides a compilation of several research works as 

a background for innovation. 

- Evaluation of the relation between CO and anesthesia: the qCO 

monitor is used to record the CO of patients undergoing anesthesia 

and statistical tests have been conducted in order to quantify the 

effect of anesthesia on CO and other hemodynamic indices. 

- Time-frequency distributions of impedance signals: the complexity 

and variability of ICG signals in both frequency and time domains 

imposed the need to apply time-frequency analysis. Several time-

frequency distributions have been applied to bioimpedance signals: 
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Wigner-Ville, Choi-Williams, Beta Distribution, etc. TFD-derived 

features applied to bioimpedance signals have been extracted with the 

best-performance TFD kernels. 

- Relation between hemodynamic indices and TFD-derived features: 

several studies have been executed in order to investigate whether 

TFD-derived features of impedance signals relate to the 

hemodynamic state of the patient. The relation between 

hemodynamic indices and features derived from Recurrence Plots 

has also been investigated. 

- Statistical comparison between the qCO monitor and other CO 

monitors: in order to check the performance of the algorithms 

developed in this Doctoral Thesis. 

- Publication of a Patent: according to the contractual agreement 

between Universitat Politècnica de Catalunya and Quantium Medical, 

the advancements developed during this Doctoral Thesis must be 

protected. Thus, in order to ensure the rights of the company and to 

foster the society of knowledge, a patent has been submitted with the 

algorithms implemented in the commercial qCO monitor and will be 

owned by Quantium Medical, as agreed with the university. The 

patent will comprise all the processing techniques used to improve 

the calculation of hemodynamic indices. 

1.4 Thesis Framework and Outline 

Quantium Medical specializes in the design and development of 

noninvasive patient monitoring methods and applications in the field of 

anesthesia. Since 2016, Quantium Medical is a Fresenius Kabi company, a 

global healthcare company that specializes in medicines and technologies for 

infusion, transfusion and clinical nutrition. Quantium Medical reinforces 

Fresenius Kabi products by providing monitoring technology for infusion and 

transfusion technology. There has also been a long, fruitful collaboration 

between Quantium Medical and the Automatic Control Department 

(Enginyeria de Sistemes, Automàtica i Informàtica Industrial, ESAII) and 

Biomedical Engineering Research Centre (CREB), both belonging to the 

Universitat Politècnica de Catalunya.  

ESAII and Quantium Medical have led this Doctoral Thesis within the 

framework of the Industrial PhD program of the regional Catalan 

Government (Generalitat de Catalunya, DI-2014). This program aims to 
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contribute to the competitiveness and internationalization of the Catalan 

industrial fabric, retain talent and place doctoral students where they can 

develop research and innovation projects. 

The synergy of both entities under the patronage of the Catalan 

Government has provided a vast amount of resources for this Doctoral Thesis. 

On the one hand, Quantium Medical’s knowledge on the biomedical market 

needs and former experience in anesthesia monitoring have ensured access to 

a large amount of proprietary databases, contacts and know-how. On the 

other hand, the experience of ESAII in biomedical signal processing has been 

a key to success for this project. 

The main techniques developed within this Doctoral Thesis relate to 

template searching, time-frequency characterization for ICG signals, and 

statistical methods for the calculation of CO using the ICG signals. Several of 

these techniques have been implemented and validated onto a new device 

which measures CO in a noninvasive, continuous way. 

1.5 Outline 

After the introduction to the problems analyzed and the main objectives 

of this Doctoral Thesis, Chapter 2 explains all necessary aspects regarding the 

medical and technical background. An introduction to Impedance 

Cardiography and Electrocardiography is also included in the first part of the 

second chapter. It then includes details of the state of the art regarding medical 

devices for CO monitoring. Nowadays, there are several technologies in the 

market which differ in the degree of invasiveness. Nevertheless, more invasive 

technologies imply a higher risk which is not always worth to take and 

therefore, noninvasive technologies are being developed. Impedance 

Cardiography is a promising technology which can combine the 

characteristics required by clinicians for noninvasive CO monitors. Methods 

of validation of CO monitor are also included at the end of this chapter. 

Chapter 3 introduces the databases which have been developed during 

this Doctoral Thesis. The synergies between the private company and the 

public university supervising this Doctoral Thesis have produced numerous 

opportunities for data collection. Finally, this chapter also explains a new 

procedure to create synthetic biomedical signals with known time-frequency 

characteristics. These synthetic database will also be used in subsequent 

chapters. 
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Chapter 4 describes the relationship between heart rate variability, blood 

flow and blood pressure during anesthesia. Anesthesia procedures are one of 

the situations where CO monitors are most useful. Anesthetic drugs exert an 

influence on heart rate variability, blood flow and blood pressure which are 

analyzed in this chapter in order to complement, from a statistical point of 

view, the explanations offered in chapter 2 regarding the medical background. 

Chapter 5 introduces the RC segment as the time difference between 

characteristic points in the electrocardiogram and the impedance cardiogram. 

This RC segment is a measure of the time delay between the electrical and 

mechanical activity of the heart. The RC segment is statistically described in 

different situations and its relationship with blood pressure and heart interval 

is analyzed. The concordance of beat durations of both the electrocardiogram 

and the impedance cardiogram is key to develop new artefact detection 

algorithms and the RC could also have an impact in describing the state of a 

patient. 

Chapter 6 explains time-frequency distributions as a methodology to 

analyze how the frequency content in impedance cardiography signals change 

with time. Since time-frequency distributions are calculated using concrete 

kernels, this chapter focuses on selecting the best kernel by using the synthetic 

signals created in Chapter 3. 

Chapter 7 explores different features derived from the time-frequency 

distributions analyzed in the previous chapter. These features are used to 

discriminate between awakeness and anesthesia states in patients undergoing 

surgery. 

Chapter 8 extends the work in the previous chapter by analyzing the 

behavior of features derived from the time-frequency distributions during the 

whole process of surgical operations. In addition, features from Recurrent 

Plots – a methodology to analyze periodicities in non-stationary signals – are 

also included in the analysis. Relationships between all the presented features 

with hemodynamic parameters and depth of anesthesia are studied. Prediction 

models for CO trained with the before-mentioned features are also created. 

Chapter 9 presents a validation of the CO monitor which has been 

developed during this Doctoral Thesis. The qCO monitor is compared with 

the LiDCOrapid monitor and results on agreement between both methods 

are explained. Finally, the main conclusions of this Doctoral Thesis are 

presented. In addition, guidelines for further work are proposed. 



  

 
 

 

 

 

 

Chapter 2 
2. Medical and Technical 

Background 
 

 

 

 

 

 

Abstract 

This chapter introduces the clinical and technical background for the 

understanding of this Doctoral Thesis. It starts with the physiological aspects 

which justify the analysis of the electrocardiogram (ECG) and impedance 

cardiogram (ICG) signal, which are also explained in detail. Important 

information is also provided regarding blood flow management, monitoring 

during anesthesia, and the variety of cardiac output monitoring technologies. 

Finally, the main validation techniques for cardiac output monitoring are 

explained.  

2 
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2.1 Introduction 

The first part of the present chapter deals with general concepts on 

physiology and hemodynamics: the heart, the circulatory system and its 

nervous connections regulating both blood pressure and blood flow. ECG 

and ICG signals are also detailed. Anesthesia settings are explained with a 

special focus on how important flow monitoring is for patient safety. 

The second major part of this chapter explains the available medical 

device technology. Finally, the design and validation of new medical devices 

is described. 

2.2 Hemodynamics 

Hemodynamics is the study of the blood pumped by the heart across the 

circulatory system. The main components which we need to analyze to 

understand hemodynamics are the heart, as the central part of the circulatory 

system, and the nervous innervation. All these components interact to change 

blood pressure and blood flow, which are central topics in anesthesia 

management. 

2.2.1 The Heart and the Circulatory System 

The heart is a biological pump which supplies the blood flow through the 

blood vessels of the circulatory system. It does so by adjusting the required 

pressure and amount of blood [3]. 

This muscular organ is composed of four chambers (Figure 2.1), two 

superior or atria and two inferior or ventricles. Blood enters the right atrium 

and passes through the right ventricle, which pumps the blood to the lungs 

for oxygenation. The oxygenated blood returns to the heart via the pulmonary 

veins which enter the left atrium. From there, blood flows to the left ventricle. 

The latter is in charge of pumping the blood into the aorta which distributes 

the oxygenated blood through the circulatory system. This pathway is 

described in Figure 2.1. 

The circulatory or cardiovascular system collects the blood pumped by 

the aorta and permits its circulation in order to transport nutrients, oxygen, 

carbon dioxide, etc. Adequate blood circulation is a necessary condition for 

adequate supply of oxygen to all tissues. 

Hemodynamics is concerned with the mechanical and physiological 

properties which control blood pressure and blood flow through the body. 
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Hemodynamic monitoring is the observation of hemodynamic parameters 

over time, such as blood pressure, heart rate or CO. 

 
Figure 2.1 Diagram of the human heart showing the four cardiac chambers, valves, 

arteries and veins (Creative Commons) 

2.2.2 Vagal and Sympathetic Innervation 

The autonomic nervous system is the primary neural mediator of 

physiological responses to internal and external stimuli. It is composed of 2 

branches: the sympathetic nervous system, which ultimately innervates blood 

vessels and the heart, and the parasympathetic (vagal) nervous system, which 

also innervates the heart [4]. 

Sympathetic stimulation of the heart increases the rate of sinoatrial node 

diastolic depolarization, heart rate, atrioventricular conduction velocity 

(positive dromotropy), and heart contractility in the atrial and ventricular 

muscles (increasing the capability of the heart to pump larger volumes of 

blood). Parasympathetic stimulation of the heart has some opposite effects: it 

decreases the rate of diastolic depolarization, heart rate, and the 

atrioventricular conduction velocity.  Sympathetic and parasympathetic 

effects on heart function are mediated by beta-adrenoceptors and muscarinic 

receptors, respectively. One of the most important functions of nervous 

control of the circulation is its capability to cause rapid increases in arterial 

pressure and heart rate, beginning and accomplishing the circulatory 

adaptation within seconds [4]. 
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2.2.3 Blood Flow 

Cardiac output is defined as the volume of blood ejected from the heart 

every minute [5]. At rest the normal adult CO is approximately 5–6 L/min 

and the normal cardiac index (CI) is 2.6–3.2 L/min/m2. CO is the product of 

stroke volume (SV) and heart rate (HR). Stroke volume is the volume of blood 

pumped from the left ventricle of the heart per beat and is determined by the 

volume of blood in the ventricles at the end of the diastole (end diastole 

volume or EDV), the impedance to blood flow in arteries (total peripheral 

resistance or TPR) and the strength of ventricular contraction or contractility. 

The typical value of stroke volume is 70 mL and its normal range varies from 

55 to 100 mL. The three major determinants of stroke volume, and thus CO, 

are preload, afterload, and contractility. Preload and contractility are directly 

correlated to stroke volume while afterload is inversely correlated. 

CO = SV · HR (L/min) (1) 

 

Cardiac index (CI) is a parameter which relates the CO from the left 

ventricle to the body surface area (BSA) and it is calculated using (2). The unit 

of measurement is liters per minute per square meter and the BSA is the 

measured or calculated surface area of a human body. It can be approximated 

by several methods and the most widely used is the Du Bois formula reported 

in Equation (3). 

CI =
CO

BSA
 (L/min/m2) (2) 

 

BSA = 0.007184 · W0.425 · H0.725(m2) (3) 

where W(kg) and H(cm) are the patient’s weight and height, respectively. 

Similar to the cardiac index, the stroke volume index (SVI) relates the 

stroke volume to the size of the person body surface area (BSA): 

SVI =
SV

BSA
=

(CO/HR)

BSA
=

CO

HR · BSA
 (mL/beat/m2) (4) 

Stroke volume variation (SVV) is a natural phenomenon in which the 

stroke volume falls during inspiration and increases during expiration because 

of the changes in intra-thoracic pressure during ventilation. SVV represents 
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the variation (as a percentage) of SV during the ventilation cycle and is 

traditionally calculated according to Equation (5). 

SVV(%) = 100 ·
SVmax − SVmin

SVmean
 (5) 

Currently, there is no consensus on the use of SVV in patients with 

spontaneous ventilation. However, literature supports its usage when patients 

are mechanically ventilated. Normal SVV values are less than 10-15% [6]. 

2.3 ECG Signals 

The electrocardiogram (ECG) is one of the most widely used biomedical 

signals in medical practice since it is a noninvasive measure and can be easily 

acquired. As Figure 2.2, the ECG signal is composed by several waves: a P 

wave, a QRS complex (formed by three waves Q, R, and S), a T wave, and 

occasionally a U wave. The QRS complex is the reference point for ECG 

applications because it is the most prominent wave in the cardiac cycle. 

 
Figure 2.2 A pair of cardiac beats with the P and T waves and the QRS complex. 

The RR segment is the distance between two consecutive R peaks  

The ECG signal may be affected by several sources of noise and 

interferences, which can significantly alter the morphology of the signal, 

producing errors in the measurement systems. The most common noise or 

interferences are: (a). baseline wandering due to for example respiration signal 

or movements of patient; (b). electromyographic (EMG) noise; (c). 50/60 Hz 

power line interference; (d). electrosurgical instruments interferences [7].  

From the QRS detection standpoint, noise might also have physiological 

origins, i.e., tall P or T waves, ectopic beats, etc. These noises or interferences 

cause extreme values in the inter-beat interval time series which are seen in 

form of false positive (FP, non-existent QRS complex is detected as true) or 

false negative (FN, detection of an existing QRS complex is omitted). 

S

R

Q

T

P	

RR
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However, a normal-to-normal (NN) time series, i.e., a clear R-R time series 

(free of artifacts or ectopic beats), is crucial for a proper heart rate variability 

analysis [8] which is an important part of the qCO monitor. 

Furthermore, the detection of characteristic points in the impedance 

cardiogram might also depend on the position of the R peak in the ECG. 

Thus, any algorithm implemented for the QRS complex identification has to 

be able to reject or to at least attenuate the adverse effects of such noise 

sources. 

2.4 ICG Signals 

Impedance cardiography is the study of cardiac function determined 

from measurements of the electrical impedance of the thorax [9]. Typically, 

the impedance is measured at around 50 kHz using currents of around 1 mA 

rms, which ensures no physiological effects. Four electrodes are situated on 

the patient: two on the neck and two on the lower end of the thorax. The 

outer electrodes supply the current and the inner electrodes are used for 

voltage pick-up. 

As shown in Figure 2.3, during systole, the impedance Z decreases which 

fosters the assumption that the blood volume in the region measured has 

increased. On the ICG waveform, the letters represent labels to indicate 

cardiac activity: A. atrial activity, B. synchronous wave with first heart sound, 

C. largest decrease in impedance during systole, X. aortic wave closure, Y. 

pulmonary valve closure and O. largest decrease in impedance during diastole. 

The CC segment is the heart period in the ICG.  

 
Figure 2.3 Typical impedance waveforms from the thorax of a human subject: (A) 

impedance wave Z; (B) ICG signal with all characteristic points; (C) ECG signal 
with R peaks, RR heart period and RC segment (distance between R peaks in the 

ECG and C peaks in the ICG) 
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In Figure 2.3, the ECG is also included to show the RR segment, the 

heart period in the ECG, and the RC segment which is the difference between 

the C peak in the ICG and the R peak in the ECG. The RC segment will be 

further explained in Chapter 5. 

2.5 Anesthesia in the Operating Room 

2.5.1 Introduction 

Anesthesia aims at three objectives: hypnosis, analgesia, and muscle 

relaxation. This is achieved by the use of intravenous or inhalational 

anesthetics. The most common hypnotic, inhaled drugs are nitrous oxide, 

sevoflurane and desflurane while barbiturates, benzodiazepines, ketamine, 

and propofol are some of the main intravenous anesthetic drugs [10]. 

Analgesia refers to the avoidance of pain in the patient. Some of the most 

common analgesics are fentanyl, remifentanil and alfentanil. These drugs 

cancel the sensation of pain, resulting in a sedation state and a respiratory 

depression. As a consequence of decreased alveolar ventilation, the pressure 

of CO2 in blood increases, whereas arterial pH and the pressure of O2 in blood 

decreases. The degree of depression not only depends on the dose but also 

on the route of administration and speed of access to the central nervous 

system [10]. 

During anesthesia, remifentanil is known to cause hypotension and 

bradycardia either by parasympathetic activation or by other negative 

chronotropic effects [11]–[14]. Remifentanil also decreases sympathetic action 

[15]. Propofol during anesthesia reduces parasympathetic tone to a lesser 

degree than sympathetic tone [16]–[24]. The combination of remifentanil and 

propofol could therefore imply a maintained or slightly reduced vagal tone 

and a reduced sympathetic tone. 

Neuromuscular blocking agents (NMBA) are used to facilitate operations 

which require muscular tissues to be relaxed such as endotracheal intubation. 

NMBAs can be depolarizing and non-depolarizing. Non-depolarizing 

muscular relaxants (NMR) such as pancuronium, vecuronium, coruronium, 

atracurium, cisatracurium and mivacurium prevent the depolarization from 

happening so that the muscle action potentials are not propagated  [10]. 

Not a single drug produces all the effects required during a surgery. 

Therefore, combinations of different drugs are used. Over-dosages or under-
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dosages are to be avoided during anesthesia procedures and therefore 

different methods are used to monitor the degree of anesthesia and analgesia. 

Several technologies have been developed during the last years. 

In this Doctoral Thesis, the Conox® monitor (Quantium Medical, 

Barcelona) has been used during the registration of several databases to 

investigate the relationship between ICG characteristics and the patient’s 

depth of anesthesia. The Conox monitor includes a depth-of-anesthesia index, 

qCON, which ranges from 0 to 99. This index can be divided into four 

different patient states: awakeness (qCON > 80), sedation (qCON ∈ [60, 80]), 

general anesthesia (qCON ∈ [40, 60]) and deep anesthesia (qCON < 40). 

2.5.2 Importance of Flow Monitoring in the Operating 

Room 

Oxygen is constantly required to maintain aerobic metabolism in human 

tissues. Low cardiac output and/or inadequate oxygen transportation in the 

blood can impair this oxygen supply. When this impairment is severe, the 

body tissues slowly revert to anaerobic metabolism, producing toxic metabolic 

breakdown products, such as lactic acid. Therefore, maintenance of cardiac 

output above the minimum threshold for aerobic metabolism is necessary for 

the health and survival of body tissues [25]. 

Critical illness or major surgery are two situations when a systemic 

inflammatory response syndrome might occur. This syndrome causes an 

increased demand of oxygen which results in compensation mechanism to 

meet such demand. Failure to increase cardiac output can lead to tissue 

hypoxia and an eventual organ dysfunction. Therefore, monitoring of cardiac 

output is vital in these situations. In fact, researchers have reported that low 

cardiac output in critically ill patients may be related to increased morbidity 

and mortality [25]. 

In patients with insufficient tissue perfusion, fluid resuscitation is often 

the first option. Nevertheless, only 50% of hemodynamically unstable patients 

have been reported to be volume responsive [26]. Volume responsiveness is 

the situation when an increase in patients’ fluids corresponds to an increase in 

stroke volume. Fluid resuscitation aims to increase the stroke volume and 

therefore in unresponsive patients this therapy is not beneficial at all. 

Therefore, fluid challenges also require monitoring blood flow. 
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2.5.3 Fluid Management 

During an operation, the classical approach to fluid management used to 

be based on the prediction of the amount of fluids needed during the surgery 

based on the duration and severity of the particular operation. Fluids were 

therefore empirically replaced based on these calculations. 

Nowadays, fluid management is based on the concept of goal-directed 

therapy (GDT). Fluid management strategies based on stroke volume 

optimization are extremely well-validated approaches that have shown to 

reduce patient morbidity [27]–[30]. 

During surgery, hypovolemia (decreased blood volume) and 

hypervolemia (excessive body fluid) represent a severe risk for patients and 

either situation is related to higher perioperative morbidity risk [31]. 

Hypovolemic situations are related to tissue hypoxia, organ failure, 

tachycardia, hypotension, renal failure, etc. Hypervolemic situations are 

related to volume overload, poor oxygenation, organ failure, peripheral edema, 

respiratory failure, poor wound healing, etc. In Figure 2.4, discontinuous line 

B represents a division between patients who are hypovolemic and 

hipervolemic. Discontinuous line C represents the limits over which the risk 

associated to the hypovolemic and the hypervolemic situations increases 

dramatically. 

 
Figure 2.4 Lines of risk in fluid management during surgery [31]: discontinuous 

line B separates hypovolemic and hypervolemic patients and discontinuous line C 
represents the limit of excessive patient risk. Patients should be loaded with fluids 

so that the morbidity risk is minimized 
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In fluid management strategies, the ideal approach should be able to 

define the nadir of the curve in Figure 2.4 in a tight manner [31] in order to 

maintain the patient in such state. However, this requires individualized 

measurements since the volume required to achieve this may vary dramatically 

between patients even in the same standard of care [32]. However, this nadir 

point can be analyzed by the Frank-Starling law. This law represents the 

relationship of the stroke volume and the end diastolic volume or the venous 

return and the right atrial pressure (RAP). 

 
Figure 2.5 Frank-Starling law of the heart. As preload increases, cardiac output 

increases and venous return decreases and there is an operating point which makes 
cardiac output equal venous return 

The red curves in Figure 2.5 represent the relationship between the CO 

and the end-diastolic volume (EDV) and the different curves depend on the 

contractility of the heart. If contractility of the heart, i.e., the strength of the 

myocardial fibers of the heart, increases, the amount of blood which is 

pumped out by the heart increases. The blue curves in the figure represent the 

relationship of the RAP as a consequence of the venous return. Both venous 

return and RAP increase as the blood volume increases [33]. The optimal 

point is therefore the point in which the venous return (i.e., the input into the 

heart) equals the CO (i.e., the output of the heart). The optimal point can be 

achieved when fluid is infused in a patient until CO stops growing in a linear 

fashion. 
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2.6 Medical Devices Technology for Cardiac 

Output Monitoring 

Over the last years, there has been a great variety of reviews and papers 

on the available methods to measure CO [2], [25], [26], [34], [35]. Generally, 

the most ideal CO monitor should be reliable, continuous, noninvasive, 

operator-independent and cost-effective and should have a fast-response time 

[2]. This subsection includes a review of the main techniques available, which 

are classified as invasive, minimally invasive and noninvasive. 

2.6.1 Invasive Monitoring 

In the late 19th century, Adolph 

Fick described how the changes in the 

concentration of a substance dissolved 

in blood could be used as an indicator 

for determining the blood flow. This 

concept was known as the Fick 

principle but never reached the clinical 

practice. 

Today, the pulmonary artery 

catheter (PAC) or Swan-Ganz catheter 

using the thermodilution technique is 

still considered to be the gold standard. 

As Figure 2.6 shows, the catheter is 

introduced through a large vein, 

threaded though the right atrium of the heart, the right ventricle, and the 

pulmonary artery. An inflatable balloon at the tip inflates and can provide an 

indirect measurement of the pressure in the left atrium of the heart. A small 

thermistor behind the tip detects the passage of a cooler fluid and can then 

calculate the CO in the heart thanks to a thermodilution curve. 

Despite being the gold standard, the use of this method is only 

recommended in patients in extreme situations with whom the benefits of a 

higher accuracy compensate for the higher risks. Abundant complications of 

PACs have been reported: damage to carotid and subclavian artery, 

pneumothorax, dysrhythmias, perforation of heart chambers, tamponade, 

valve damage, etc. Furthermore, issues arising with its usage and related to 

Figure 2.6 Swan-Ganz catheter for 
cardiac output measurements 
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operator, indicator and patient pathologies have to be emphasized [36]. Its use 

in low-risk cardiac surgery, vascular surgery and major abdominal, orthopedic 

or neurosurgical procedures is therefore not justified and minimally invasive 

or noninvasive alternatives are recommended. 

2.6.2 Minimally Invasive Monitoring 

There are several systems to measure CO which are considered semi-

invasive or even minimally invasive. Transesophageal aortic Doppler 

ultrasound in the descending aorta can also be performed [37]–[40]. Special 

Doppler probes have been developed [ODMII (Abbott, Maidenhead, UK); 

CardioQ/Medicina TECO (Deltex Medical Ltd, Chichester, UK); 

HemoSonic100 (Arrow, Reading, Pennsylvania, USA)] although its clinical 

practice is very limited. In these devices, CO is calculated with the velocity 

time integral derived from the Doppler signal and the aortic cross-sectional 

area, which is estimated. 

Other monitoring devices are based on the concept of pulse contour 

analysis or pulse wave analysis (PWA or PCA). This is based on the relation 

between blood pressure, stroke volume, arterial compliance and systemic 

vascular resistance (SVR). Flow indices can be calculated from the arterial 

pressure waveform if the arterial compliance and the SVR are known and 

different monitors use different approaches to obtain these variables in a 

minimally invasive way. 

The PiCCO (Pulsion Medical Systems, Munich, Germany) combines 

pulse contour analysis with the transpulmonary thermodilution via femoral 

access [41]–[45]. It calculates the area under the systolic portion of the arterial 

waveform and it requires both central venous and central arterial 

catheterization. The calibration provided by the thermodilution remains 

accurate for six hours. It offers a broad range of hemodynamic parameters 

(including SVV) and is robust during hemodynamic instability. 

The LiDCO system (LiDCO Ltd, London, UK) combines pulse contour 

analysis with lithium indicator dilution for continuous SV and SVV 

monitoring [38], [46]–[50]. This indicator is used to calibrate the measurement: 

lithium is injected into a peripheral vein and does not have an effect from a 

pharmacological point of view. It requires recalibration after acute 

hemodynamic changes. It obtains multiple cardiac parameters (such as SVV 

and SVR) by calculation of the root-mean-square value of the arterial pressure 

signal. 
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The FloTrac sensor combined with the Vigileo monitor (Edwards 

Lifesciences, Irvine, California, USA) also uses pulse contour analysis but 

requires no calibration. Instead, it needs some patient demographic and 

physical characteristics and a peripheral arterial catheter only to execute an 

automated, internal calibration. It is based on the calculation of a standard 

deviation of 2,000 arterial waveform points. Its main advantage is that it is 

minimally invasive, operator independent and easy to use. Its weak points are 

that it is inaccurate especially in vasoplegic patients and does not accurately 

track changes in SV [40], [50]–[54]. 

2.6.3 Noninvasive Monitoring 

The ClearSight system (Edwards Lifesciences, Irvine, California, USA) 

provides noninvasive continuous blood pressure and CO through the method 

of the volume clamp. It involves clamping the finger artery with a cuff to a 

constant volume by dynamically providing equal pressure on either side of the 

arterial wall [42], [43], [55], [56]. This volume is measured by a photo-

plethysmograph built into the cuff. The ClearSight system inherits from the 

former Nexfin system (BMEye, Amsterdam, The Netherlands). The CNAP 

system (CNSystems Medizintechnik AG, Graz, Austria) also provides 

noninvasive continuous arterial pressure measurements by using the volume 

clamp method [57], [58]. 

The MostCare system (Vytech Health, Padova, Italy) uses pulse contour 

analysis and it calculates the area under the curve of the arterial waveform with 

no external calibration or pre-estimated data. It uses high time resolution 

(1,000 Hz) and it analyzes the entire cardiac cycle [59]. 

Pulse wave transit time (PWTT) is defined as the time between the R-

wave in the ECG and the pulse wave rise-point assessed by pulse oximetry 

[60], [61]. The esCCO technology (Nihon Kohden) uses this technology by 

analyzing the ECG, the pulse oximeter waveform and the arterial pressure and 

it is based on an inverse correlation between the PWTT and the SV. 

The partial CO2 rebreathing technique evaluates respiratory CO2 and 

applies the Fick principle to calculate CO [37], [62], [63]. Pulmonary blood 

flow can be calculated by relating the content of alveolar gas in pulmonary 

capillary blood to the quantity of gas passing to the lung. 
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The transthoracic Doppler (USCOM, Sidney, Australia) determines CO 

via flow measurements at the aortic or pulmonary valve but it requires a 

considerable level of experience for its usage and is not suitable for thoracic 

surgery [40], [63]. 

Electrical Bioimpedance 

Electrical bioimpedance is a promising method which relies on the fact 

that the impedance of the thorax is dependent on the amount of fluid in the 

thoracic compartment. Standard bioimpedance systems apply a high-

frequency electric current of known amplitude and frequency across the 

thorax and measure changes in voltage. The ratio between voltage and current 

amplitudes is a measure of transthoracic direct current resistance and varies in 

proportion to the amount of fluid in the thorax. CO is then computed based 

on mathematical equations under the assumption that thoracic impedance 

changes over time are proportional to the stroke volume. 

Drawbacks of this technique include motion artifact, arrhythmias, 

pulmonary edema, and pleural effusions among others [64]. However, the 

totally noninvasive character of this technology exceeds these limitations. 

There have been other attempts to use this technology in the past. 

Drazner and his colleagues studied patients with cardiomyopathy and found 

modest agreement between bioimpedance and thermodilution cardiac output 

monitoring [65]. Moreover, in Spiess’ work general agreement was found in 

cardiac output from bioimpedance and pulmonary artery thermodilution [66]. 

In 2009 Simon and his colleagues reported a device named ICG Monitor 

862146 (Phillips Medical System) which showed a significant statistical 

relation with the PAC. Unfortunately, the error percentage was 49% and this 

monitor ceased to exist some years ago [67]. SonoSite also discontinued its 

ICG monitor named BioZ in 2013 due to a business decision. 

Electrical velocimetry [68] is a novel algorithm of electrical impedance 

cardiography used by the AESCULON monitor (Osypka Medical, Berlin, 

Germany). This algorithm includes the maximum rate of change of impedance 

of peak aortic blood acceleration. 

Thoracic bioreactance [69] is another evolution of the electrical 

bioimpedance method which seeks to improve the signal-to-noise ratio using 

the bioreactance, which represents the phase shift in voltage across the thorax. 

The only commercially available system at present (NICOM, Cheetah Medical, 

Portland, Oregon, USA) uses 4 electrode patches each consisting of 2 
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electrodes and calculates cardiac output separately for the right and left side 

of the body with the final cardiac output being the average of these two values. 

The qCO monitor (Quantium Medical) 

A large quantity of studies 

evaluating and comparing different 

cardiac output monitors have been 

published [2], [25], [26], [34], [35], 

[39], [61], [63], [64], [67], [68], [70]–

[79]. The new qCO monitor, by 

Quantium Medical, seeks to learn 

from past experiences and introduce 

new, advanced processing 

techniques to improve the cardiac 

output calculations. The new signal 

processing techniques in artifact 

removal and in time-frequency 

characterization are some interesting 

options to obtain a cardiac output monitor which improves the fulfillment of 

current market requirements compared to previous experiences. 

The qCO monitor records the ICG and ECG signals by using 4 

electrodes, with one pair injecting a constant current (at 50 kHz), and a second 

pair of electrodes measuring the resulting voltage (Figure 2.7). The voltage is 

amplified and digitized with a sampling frequency of 1,000 Hz. The qCO 

monitor uses the information from the impedance curve to calculate different 

hemodynamic indices. 

2.7 Validation Techniques for Hemodynamic and 

Anesthesia Monitors 

During the last years, the number of available monitors which claim to 

analyze the patient’s hemodynamic situation in a noninvasive manner has 

considerably increased. Therefore, it is of outmost importance to select a 

range of techniques which permits comparing the different technological 

options which either have been launched into the market or are currently 

being developed. 

 

Figure 2.7 Location of the qCO 
electrodes. There are two exciting and two 
sensing electrodes positioned on the neck 
and on the side of the body under the ribs 
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2.7.1 Time Plot and Regression Plots 

Some authors use simple time plots in which the results from both 

methods are plotted against time (either in seconds or samples). These 

methods permit to compare visually whether the indices calculated by two or 

more methods diverge. 

Regression plots compare the values of one method versus the values of 

the other method. This plot usually includes a regression analysis with the 

Pearson’s correlation coefficient. In the example in Figure 2.8, in plot (A) 

both methods have similar results and thus data points lie along the line of 

identity. However, in plot (B) there is a discrepancy causing the regression line 

not to coincide with the line of identity, which is not detected by Pearson’s 

correlation coefficient. 

 
Figure 2.8 Regression plots for CO trending: cardiac output (CO) data 

demonstrate trending ability by lying along the line of regression, which lies along 
the line of identity (A) or with an offset (B)[80]  

2.7.2 Bland-Altman Plots 

The most popular method to evaluate cardiac output monitors is the 

Bland and Altman method [81]. This method analyzes the agreement between 

two different assays by plotting the mean of the two measurements as the 

abscissa value against the difference of the measurements as the ordinate value. 

Let S1  and S2  be the measurement given by two different methods, the 

Cartesian coordinates of a given sample S is: 
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 S(x, y) = (
S1 + S2

2
, (S1 − S2)) (6) 

The 95% limits of agreement for each comparison are usually computed 

as the average difference ± 1.96 standard deviation of the difference. This 

explains how distant measurements by the two methods are more likely to be 

for most individuals. If the differences within mean ± 1.96 standard deviation 

(SD) are not clinically significant, the two methods may be used 

interchangeably. 

Nevertheless, the Bland and Altman method only describes the 

coincidence of the evaluated method with the reference method but does not 

show whether the new method reliably detects changes in cardiac output or 

trending. Monitors can still be useful if they are capable of showing trends 

despite not providing a reliable measure of the absolute value of the cardiac 

output. 

Critchley and Critchley [79] stated that when bias and precision statistics 

were used, mean cardiac output, bias, limits of agreement, and percentage 

error should be presented. Using current reference methods, acceptance of a 

new technique should rely on limits of agreement of up to ±30%. 

 

Adjustment for Pooled Data 

Bland and Altman plots consider that data points are statistically 

independent which is not true when repeated measures are taken from the 

same patient. This coupling of data results in smaller standard deviations and 

produces limits of agreement that underestimate the true variability of the 

readings. Both Bland and Altman [82] and Myles and Cui [83] have published 

articles that provide guidance on how to correct the analysis and limits of the 

agreement in the repeated-measures model. 

2.7.3 The Four-Quadrant Plots 

The four-quadrant plot was proposed by Perrino and his colleagues in 

1994 [84]. It was presented as an analytical method based on regression 

analysis and concordance to compare a test device and a reference device. The 

figure plots the difference of the test cardiac output ΔCOtest  against the 

difference of the reference cardiac output ΔCORef. The pairs of values in the 
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center of the plot should be scattered around the four quadrants, which bring 

no statistical significance and thus are excluded in many studies. However, the 

pairs of data (ΔCOtest, ΔCORef) outside the exclusion zone tend to fall into only 

one of the quadrants on the line of identity. Concordance in these plots is 

expressed as the percentage of data points falling in only one of the quadrants. 

Figure 2.9 shows an example of the four-quadrant plot. 

These four-quadrant plots offer more information on trending than other 

methods presented before. Exclusion zones are usually taken as 0.5 L/min, 1 

L/min or < 10-15% of percentage change. Concordance rates should be > 

90% to indicate reliable trending ability. Nevertheless, it should not be 

forgotten that the four-quadrant plot obliterates information about the 

magnitude of the underlying CO change and the absolute difference between 

measures. 

 
Figure 2.9 Four-Quadrant Scattergram which illustrates the trending capability of 

the Transesophageal Doppler [84]  

 

2.7.4 The Polar Plot 

To overcome the deficiencies of the four-quadrant plot, Critchley and his 

colleagues [80] suggest to convert the pairs ( ΔCOtest, ΔCORef ) to polar 

coordinates, where agreement is shown by the angle the vector makes with 

the line of identity and the magnitude of change by length of the vector. In 

Figure 2.10, reproduced from the same work, polar plots perfectly show 

trending ability. For instance, polar plot (A) shows how most of the points lie 

within the 0.5 L/min as a sign of good trending ability, while in polar plot (C) 

many points lie outside the limits of agreement of 0.5 L/min. 
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Figure 2.10 Polar plots used to show trending ability. The distance from the center 
of the plot represents the mean change in cardiac output (ΔCO) and the angle with 
the horizontal axis represents agreement. Data with good trending in (A) and (B) 
will lie within 0.5 L/min, or 10%, limits of agreement, compared to (C) and (D) 

[80] 

2.7.5 Prediction Probability 𝐏𝐤 

The prediction probability Pk is a performance measure recommended 

especially when comparing depth-of-anesthesia indicators with a gold 

standard. In such cases, Smith and his colleagues [85] propose to use the 
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prediction probability Pk and several authors have employed this performance 

measure [52]–[56]. 

This statistical measure is able to show the prediction probability with no 

dependence on scale units and it does not require knowing underlying 

distributions, linearizing or transforming scales. The Pk  value must be 

between 0 and 1 and these extreme values are interpreted as an exact 

prediction, negative or positive, respectively. Meanwhile, a result of 0.5 implies 

a random chance of being correct. 
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Abstract 

This chapter contains the description of the databases used throughout 

the entire Doctoral Thesis. The databases have been recorded in a large variety 

of locations in Barcelona and Santiago de Compostela (Spain), Hong Kong 

and Shanghai (People’s Republic of China). A synthetic signal database is also 

explained in this chapter. 

  

3 
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3.1 Introduction to Clinical Trials 

The collaboration between private and public entities has produced a 

large quantity of clinical data. The preparation of clinical trial protocols has 

also been a relevant part of the work completed in this Doctoral Thesis. Some 

important details to be defined in protocols are as follows: 

- Rationale of the study 

- Objectives: main and secondary study parameters 

- Study design 

- Study population: inclusion and exclusion criteria, sample size 

calculation 

- Treatment of subjects 

- Investigational medical devices 

- Non-investigational medical devices 

- Methods: randomization, withdrawal of individuals, etc. 

- Safety reporting 

- Statistical analysis: primary and secondary study parameters, statistical 

tests, interim analysis (if any), etc. 

- Risk analysis 

- Ethical considerations 

- Administrative aspects: data protection, reporting, etc. 

3.2 Shanghai Database 

3.2.1 Aims of the Protocol 

The aim of this protocol was to estimate the cardiovascular and cerebral 

synchronization between cardiovascular and brain oscillators. Brain oscillators 

are the different frequencies contained in the EEG. Example of brain 

cardiovascular oscillators are the heart rate and the respiratory rate. The 

relationship between oscillators was already studied by Musizza [92]. 

Furthermore, Steriade showed that oscillators were desynchronized during the 

patient’s awake state unlike during anesthesia [93]. 

3.2.2 Recorded Data Description 

Fifteen patients undergoing major surgery under general anesthesia at the 

Zhongshan Hospital in Shanghai were assessed in this observational study. 

Details of the patients and operations are reported in Table 3.1. Age ranged 

between 43 and 67 years, with a mean age of 58.9 ± 6.7. 
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The anesthesia was induced with propofol and remifentanil or fentanyl 

and sevoflurane was also used for maintenance. Rocuronium, a non-

depolarizing agent, was administered to block neuromuscular response. In 

some cases lidocaine, morphine, atropine or ephedrine were additionally 

administered. Surface wet-get electrodes (Ambu® BlueSensor for ECG) were 

used for the qCO monitor. The pressure waveform for LiDCOrapid was 

obtained with an arterial line. The recordings were assessed simultaneously 

during the complete procedure, from 3 minutes before induction of anesthesia 

to 3 minutes after the recovery. The ICG and ECG signals were recorded by 

the qCO monitor (Quantium Medical, Spain). 

  SHANGHAI DATABASE PATIENT CHARACTERISTICS 

Gender (male:female) 9:6 

Age (years) 58.9 ± 6.7 

Height (cm) 163.7 ± 6.8 

Weight (kg) 61.1 ± 9.1 

BMI (kg m-2) 22.8 ± 2.6 

  

Operative procedure 

(No. of patients) 

Mastectomy (1) 

Carotid endarterectomy (1) 

Cytoreductive surgery (1) 

Gastrostomy (2) 

Hepatectomy (2) 

 Nephrectomy (1) 

 Ovarian cystectomy (1) 

 Thyroidectomy (1) 

 Uretescope lithotripsy (4) 

 Hysteroscopic Resection (1) 

  

Table 3.1 Patient Characteristics. Qualitative data are given as absolute 
frequencies. Age, Height, Weight and body mass index (BMI) are given as mean ± 

standard deviation 

This observational study adhered to the principles of the Declaration of 

Helsinki and it was conducted in compliance with the requirements of the 

Zhongshan Hospital Ethical Committee. Exclusion criteria were patients 

under eighteen years old and pregnant women. Different types of surgeries 

were included in this database since the objective was the direct comparison 

between cardiac output monitors in a large variety of clinical situations. 
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3.3 CMA Database 

3.3.1 Aims of the Protocol 

The objective of this protocol was to register physiological data in order 

to validate eventual indicators of anesthetic effects. It was conducted at the 

Hospital CLINIC de Barcelona (Spain) under the leadership of D. Pedro Luís 

Gambús, from the Anesthesia department. 

3.3.2 Recorded Data Description 

One hundred and fifty-three patients undergoing major surgery under 

general anesthesia were assessed in this observational study. Details of the 

patients are reported in Table 3.2. Age ranged between 18 and 88 years, with 

a mean age of 50.9 ± 16.4 years and a mean body mass index (BMI) of 25.8 

± 4.6 kg/m². 

  CMA DATABASE PATIENT CHARACTERISTICS 

Gender (male:female) 37:116 

Age (years) 50.9 ± 16.4 

Height (cm) 162.2 ± 8.2 

Weight (kg) 67.8 ± 12.7 

BSA (m2) 1.73 ± 0.21 

BMI (kg/m2) 25.8 ± 4.6  

Table 3.2 Patient Characteristics. Gender is given as an absolute frequency. Age, 
Height, Weight, body surface area (BSA) and body mass index (BMI) are given as 

mean ± standard deviation 

Patients were administered propofol and remifentanil. Anesthesia was 

induced with a target-controlled infusion system (TCI). The infusion rate of 

remifentanil was controlled by Minto’s pharmacokinetic-pharmacodynamic 

model with 3 ng/mL (range 1.5 to 5 ng/mL) as effect-site target concentration 

and the infusion rate of propofol was controlled by Schnider’s 

pharmacokinetic model with 7 μg/mL (range 6 to 10 μg/mL) as effect-site 

target concentration [94], [95]. Rocuronium, a short-to-intermediate-term 

muscle relaxant, was administered only in those cases requiring laryngoscopy 

(54 cases, 35.3%). The single bolus dose of rocuronium was 30 mg 

administered 2 minutes before laryngoscopy. In two cases, the initial dose was 

40 mg. 

After intubation, anesthesia was maintained with propofol and 

remifentanil whose target concentrations were lowered according to the 

clinician’s criteria to an average of 4 μg/mL (range 2 to 7 μg/mL) and 2 
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ng/mL (range 1.5 to 4 ng/mL), respectively. Additional maintenance doses of 

rocuronium were used in the form of 10 mg or 20 mg boluses when needed. 

In some cases, ephedrine and atropine were additionally administered, as 

Table 3.3 shows. Methadone was used at the end of surgery as an analgesic 

in 31% of patients. 

The impedance cardiography and electrocardiogram were recorded by 

the qCO monitor (Quantium Medical, Spain). The Infinity® Gamma monitor 

(Dräger, Germany) for blood pressure was also used. It offered systolic blood 

pressure (SBP: the maximum value of the arterial pressure waveform inside 

the consecutive RR interval), the diastolic blood pressure (DBP: the following 

minimum value of the pressure waveform) and mean blood pressure (MBP: 

the average arterial pressure during a single cardiac cycle). The recordings were 

assessed simultaneously during the complete procedure.  

  CMA DATABASE PATIENT CHARACTERISTICS 

Propofol 153 (100%) 

Remifentanil 153 (100%) 

Rocuronium 54 (35.3%) 

Methadone 47 (30.7%) 

Ephedrine 5 (3.3%) 

Atropine 26 (17.0%) 

Table 3.3 Medications during surgical procedures. Data are presented as absolute 
frequencies and percentages over the total sample 

This observational study was conducted in compliance with the 

requirements of the Hospital CLINIC de Barcelona. All patients gave their 

written informed consent. The protocol adhered to the principles of the 

Declaration of Helsinki and it was approved by the Institutional Review Board 

of Hospital CLINIC de Barcelona. Patients under eighteen years old or 

morbidly obese were excluded from the study. 

3.4 Other Databases 

Some other clinical trials have taken or are taking place thanks to this 

Doctoral Thesis. The institutions where these studies have taken place are as 

follows: 

- Prince of Wales Hospital (Shatin, Hong Kong Special Administrative 

Region, People’s Republic of China): fluid challenge, tilt changes and 
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bleeding challenges were applied to fifteen pigs in order to validate 

the qCO monitor ability to detect those changes. 

- Hospital Clínico Universitario de Santiago (Santiago de Compostela, 

Spain): a comparison between the qCO monitor and FloTrac monitor 

is currently taking place. 

- Universitair Medisch Centrum Groningen (Groningen, the 

Netherland): a clinical trial to study qCO monitor’s ability to track 

fluid challenges is expected to start in January 2018. 

3.5 Synthetic Signals 

Using the Shanghai database, synthetic ICG signals were generated in 

order to use them when known time-frequency characteristics are necessary. 

This synthetic signals are used for the evaluation of TFDs in Chapter 6. 

In order to construct these synthetic signals, the most typical waveform 

of a real ICG recording was recognized. In our case, a randomly chosen 

patient from the Shanghai database was chosen. This pattern was later used 

to create a Fourier-model approximation with several instantaneous 

frequencies (IFs) and synthetic signals were created including concrete 

variable time-frequency characteristics. 

3.5.1 Pattern Recognition 

A pattern recognition algorithm was designed to detect the most typical 

waveforms which are contained in the ICG signals. Each ICG beat was 

isolated and normalized for zero mean and unit standard deviation. Moreover, 

the length of all ICG beats was resampled to a constant number of samples. 

The starting and end points were defined as the QRS peaks in the ECG before 

and after an ICG maximal peak. Moreover, ICG maxima were located using 

the QRS peaks in the ECG as an initial search point. QRS peaks are easy to 

locate with a Pan-Tompkins approach [96] 

The first pattern of the database was the first ICG beat available in the 

recording. The rest of ICG beats were correlated with all the patterns in the 

database. For each ICG beat, the pattern which offered a higher Pearson 

correlation above a threshold th with the beat was then averaged with such 

beat. Two correlation thresholds were independently studies: th > 0.85 and  

th > 0.90. If the correlation threshold was not met, a new pattern was created. 

Moreover, the algorithm ensured that there will not be two patterns with a 

cross-correlation higher than 0.95. All this procedure is explained in Figure 
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3.1. In this concrete implementation, when there are 100 patterns, infrequent 

patterns (<10 repetitions) are canceled. 

 
Figure 3.1 Flowchart of the ICG pattern recognition algorithm. Each new beat is 
normalized and correlated with the rest of the pattern database. The pattern for 
which the best correlation above 0.90 is obtained is updated with the new beat. 

Infrequent patterns are also regularly canceled 

3.5.2 Template Fourier Modelling 

A periodic signal with a frequency 𝜔n = 2𝜋/Np can be represented as a 

Fourier series according to Equation (7). This Fourier series requires an 

infinite number of terms to accurately reproduce the square wave signal. 

Generally, a Fourier model for the pattern ICG signal will have a structure 

with a defined number of terms of a discrete-time Fourier series of frequency 

𝜔n = 2𝜋/Np where Np will be the length of the single pattern. 

x(t) =  ∑[an cos(n𝛺0t) + bn sin(n𝛺0t)]

∞

n=0

=  ∑ cnejn𝛺0t

∞

n=−∞ 

 (7) 

where an y bn are real constants and cn is a complex constant. 
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Equation (7) implies that the Fourier series requires an infinite number 

of terms to exactly reproduce the original signal. If this series is truncated, the 

accuracy of the representation decreases. 

3.5.3 Fourier Modelling with Time-Frequency Variations 

The Fourier model for the template signal allows modifying the time-

frequency characteristics of a longer signal x(n)  in a controlled, 

straightforward fashion, similar to the time-frequency dependency in chirp 

signals. 

Linear and Quadratic Variations 

The frequency sweeps considered were linear, which specifies an 

instantaneous frequency IF sweep given by 

IF(n) = f0 + Bn (8) 

B = (f1 − f0)/2n1 (9) 

In the linear sweep, B ensures that the desired frequency breakpoint f1 at 

the time n = n1 is maintained departing from an initial frequency f0 at the 

time n = 0. For ICG signals, it would be desirable to implement frequency 

variations from f0 = 50 bpm to f1 = 90 bpm in n1 = 10 seconds in order to 

test extremely variable conditions. 

Furthermore, this frequency sweep can also be quadratic by using 

Equations (10) and (11). 

IF(t) = f0 + Bt2 (10) 

B = (f1 − f0)/3n1
2 (11) 

 

3.5.4 Results 

In total, 7,544 beats were analyzed for the first patient. The correlation 

threshold of 0.85 produced 92 different patterns with at least 4 appearances 

but 8 patterns covered more than 60% of beats. Figure 3.2 shows the most 

typical patterns for this correlation threshold. 

A correlation threshold of 0.90 was also studied for comparison. The 

ICG patterns obtained using either threshold were very similar. However, the 

number of patterns with at least 100 repetitions differ between both 

thresholds: it was higher with the th = 0.90 (11 patterns) compared to 10 
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relevant patterns obtained with a th = 0.85. Moreover, the main pattern was 

appeared 699 times in the case of the th = 0.90, while in the case of the th = 

0.85, the same pattern was repeated 1,154 times. 

 
Figure 3.2 Five most frequent patterns in an ICG recording calculated with a 

correlation threshold of 0.85 

The most repetitive pattern with th = 0.85 was selected as the template 

for the Fourier modeling. However, it was necessary to slightly modify the 

endpoints of the signal with a smoothing window so that the beginning and 

the end of the templates happen to meet at the same point without creating 

noticeable transitions when concatenating several templates together to form 

a longer signal. All templates have been normalized to zero mean and adjusted 

to a length Np = 200 samples. 

Two-Term Fourier Model Approximation Results 

An approximation of two tones has been used for the Fourier series with 

a fixed frequency. The results of the model can be observed in Figure 3.3. 

Characteristic points B, C and X are marked on the ICG curve: the point B 

coincides with the opening of the aortic valve; the point C corresponds to the 

peak of the ICG signal and it coincides with the ventricular contraction; and 

the point X corresponds to the closure of the aortic valve [9]. 

The previous modelled Fourier approximation has been modified in 

order to include a linear frequency variation. Figure 3.4A presents a 

synthetized ICG with a constant IF and Figure 3.4B shows a synthetized 
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ICG signal which frequency changes in a linear fashion from f0 = 50 bpm to 

f1 = 90 bpm in 10 seconds. 

 
Figure 3.3 Fourier Model of the ICG Pattern: original ICG template (dashed blue) 
and an approximation of 2 tones of the Fourier model (red). Characteristic points 

B, C and X are marked on the ICG curve 

 
Figure 3.4 ICG signals with a constant instantaneous frequency (A) and a linear 

frequency variation (B) from f0 = 50 bpm to f1 = 90 bpm in 10 seconds 
synthetized with 2 tones 

The frequency response for the Fourier model of the ICG pattern and 

for the linearly variable time-frequency ICG in Figure 3.4B are expected to 

have a similar frequency response with some important differences in the 

shape of the frequency spectrum. The frequency response of the constant-

frequency ICG presents a set of periodically distributed peaks corresponding 

to each of the Fourier terms, as shown in Figure 3.5A. For the case of the 

two-tone synthesized ICG, the linear variation in the signal instantaneous 

frequencies makes both frequency peaks IF1 and IF2 wider (see Figure 3.5B), 

which causes them to interfere with each other as the resulting spectrum 

shows (in black). 
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Figure 3.5 Periodograms of the synthetized ICG signals with no frequency 
variation (A) and with a linear frequency variation (B). Each instantaneous 

frequency is plotted individually (in color) and the total resulting spectra is also 
included (in black) 

3.5.5 Conclusions 

In this chapter, a procedure to create synthetic signals with a concrete 

exemplification of ICG signals is described. The synthetic ICG signals will be 

useful to evaluate the performance of different TFDs in Chapter 6. 

 

 

 

 

 

 

 

 

 



3 Databases 38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank. 
  



 
 

 

 

 

 

Chapter 4 
4. Relationship between 

Heart Rate Variability, 

Blood Flow and Blood 

Pressure during Anesthesia 
 

 

 

 

 

Abstract 

Anesthesia is known to exert an influence on the sympathetic and vagal 

tones of the autonomous central system. This leads to a modification of the 

hemodynamic state in the patient. This chapter analyses these modifications 

and relates them to the patient’s heart rate variability. 

  

4 
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4.1 Introduction 

During surgery, the effects of anesthetics in patients have been vastly 

studied. Propofol-induced hypotension is known to be mediated by an 

inhibition of the sympathetic nervous system and the impairment of 

baroreflex regulatory mechanisms [18], [19], [21]–[24]. Besides, propofol also 

reduces cardiac parasympathetic tone depending on the depth of hypnosis [20] 

although research showed that its suppression is lower than in the case of the 

sympathetic tone [17]. 

Blood pressure (BP) and cardiac output (CO) can be affected by the 

activity of the parasympathetic and sympathetic stimulations. On the one 

hand, parasympathetic stimulation decreases heart rate (HR), which in turn, 

decreases CO and thus BP. On the other hand, sympathetic stimulation 

influences the heart by increasing its heart rate and its contractile strength. 

This increases stroke volume (SV) which in combination with the increased 

HR causes the BP to augment. Besides, the sympathetic stimulation also 

increases the vasoconstriction of arterioles and veins, which can also cause an 

increase in the arterioles total peripheral resistance and venous return, 

respectively. This ultimately also increases BP [97]. Some authors have found 

some correlation between CO and BP [98]. 

CO is also related to age in a negative fashion according to different 

studies [99]–[101]. In a study [99], resting CO was measured in 151 healthy 

patients by the earpiece dye-dilution method. Cardiac index (CI, as defined in 

Equation (2)) had a significantly inverse correlation to age in volunteers older 

than 20 years old. Brandfonbrener reached the same conclusions with a 

smaller cohort [100] and Boss and his colleagues [101] reported that CO 

decreases linearly after the third decade at a rate of about 1 percent per year 

in normal subjects otherwise free of cardiac disease. 

Several authors have already studied heart rate variability (HRV) as a way 

to monitor the activity of the autonomous nervous system (ANS). Deutchman 

and colleagues [16] used the fact that high-frequency HRV reflects 

parasympathetic tone to explain that propofol anesthesia reduces 

parasympathetic tone to a lesser degree than sympathetic tone. This 

autonomic milieu predisposes the patient to developing bradycardia in 

response to parasympathetic stimuli. According to previous studies, CO, SV, 

and HR should decrease after the induction of anesthesia [102] due to the 

changes in sympathetic and parasympathetic activity, which should also be 

reflected in HRV indices. 
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However, the results have sometimes been controversial. Hidaka and 

colleagues [103] stated that after sedation with propofol, HRV high-frequency 

(HF) power (HF: 0.15-0.40 Hz) did not change, whereas low-frequency (LF) 

power (LF: 0.04-0.15 Hz) and LF/HF, an indicator of cardiac autonomic 

nervous system balance, significantly decreased with propofol. Low-frequency 

changes are more difficult to interpret since they reflect both sympathetic and 

parasympathetic activity. Nevertheless, several authors [13] consider LF 

changes to mainly reflect changes in sympathetic activity. Thus, the LF/HF 

ratio would reflect the balance between sympathetic and parasympathetic 

activity. 

Remifentanil is an anesthetic often used in combination with propofol. It 

is known to stimulate the parasympathetic nervous system, and patients with 

increased parasympathetic tone may be at greater risk of bradycardia after its 

administration [12], [13], which is reflected in the HF of the HRV [11]. 

Zaballos and colleagues [14] compared an anesthesia based on propofol with 

and without remifentanil and results showed that remifentanil depresses sinus 

node function and most parameters of atrioventricular nodal function such as 

HRV. This contributes to an explanation for clinical observations of 

remifentanil-related severe bradyarrhythmias. 

In this study, our main objective is to analyze blood flow indices (CO and 

SV), heart rate variability, and blood pressure during a propofol-remifentanil 

anesthesia in order to describe how indices are affected after the patients’ loss 

of consciousness. Moreover, the relations of the studied indices with each 

other and with the patient characteristics such as age are also analyzed. There 

are several hypothesis which are taken into account. Firstly, CO, SV, and HR 

should decrease after the induction of anesthesia due to the changes in 

sympathetic and parasympathetic activity, which should also be reflected in 

HRV indices.  Secondly, CO is to be related to age in a negative fashion 

according to the studies mentioned previously (although other patient 

characteristics will also be studied). Finally, BP should also decrease during 

anesthesia. 

4.2 Data Preparation 

In total, one hundred and fifty-three consecutive patients undergoing 

major surgery under general anesthesia at the Hospital CLINIC de Barcelona 

(Spain) were assessed in this observational study. The details of this database 
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have been explained in the Chapter 3. Data from a blood pressure monitor 

and the qCO monitor were recorded. 

The synchronization between a noninvasive blood pressure monitor and 

the qCO monitor was ensured by annotating the exact start time given by the 

two devices. The BP monitor updates the diastolic, systolic and mean blood 

pressure values (DBP, SBP, and MBP) every 120 seconds. The qCO monitor 

updates its indices (HR, CO and SV) every second. This study aimed to 

compare two anesthesia-related patient states: consciousness and 

unconsciousness. 

During the induction of anesthesia, the moment of loss of consciousness 

(LOC) was assumed to occur when patients lost response to verbal 

stimulation. To characterize each state, after checking normality, the 

registered indices HR, CO, SV and blood pressure corresponding to one-

minute length taken 4 minutes after LOC (i.e., unconscious state) were 

averaged and data corresponding to one-minute length taken 4 minutes before 

LOC (i.e., conscious state) were also averaged for comparison. Signals were 

excluded when patient movement corrupted the recorded signal or when the 

period before the induction had not been registered. For the present analysis, 

in order to avoid confounding factors, patients were discarded when 

ephedrine and atropine had been used between 4 minutes before and 4 

minutes after LOC. 

4.3 Heart Rate Variability 

The electrocardiogram (ECG) is the result of recoding the electrical 

activity of the heart over a period of time using electrodes placed on a patient’s 

body. These electrodes detect the tiny electrical changes on the skin arising 

from the depolarization of the heart muscle during each heartbeat. This is a 

noninvasive medical procedure referred to as electrocardiography. 

Regarding hemodynamics, the ECG is useful to detect the morphology, 

amplitude and duration of the cardiac cycle waves. It can also be used to derive 

other parameters such as the HR and the HRV, which are useful to describe 

the hemodynamic state of a patient. 

4.3.1 Heart Rate 

The HR is the speed of the heartbeat measured by the number of beatings 

of the heart per unit of time – typically beats per minute (bpm). The HR can 

vary according to the body's physical needs, including the need to absorb 

oxygen and excrete carbon dioxide. 
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The normal resting adult human HR ranges from 60–100 bpm. 

Tachycardia is a fast HR, defined as above 100 bpm at rest. Bradycardia is a 

slow HR, defined as below 60 bpm at rest. During sleep a slow heartbeat with 

rates around 40–50 bpm is common and considered normal. When the heart 

is not beating in a regular pattern, this is referred to as an arrhythmia. These 

abnormalities of HR sometimes indicate disease. 

The correct identification of the QRS complexes of the 

electrocardiogram signal is the first and the most important stage for analyzing 

HRV. The RR intervals represent the difference (in time) between consecutive 

QRS complexes and this is directly related to the instant heart rate (HRins) 

according to Equation (12). 

HRins (bpm) =
60

RRins(s)
 (12) 

Heart rate can be calculated in an instantaneous way or averaged over a 

certain period of time (typically, over one minute). In Figure 4.1, the QRS 

complexes can be observed with the different RR intervals. In the lower part 

of the figure, the series of RR intervals is also plotted. 

 

4.3.2 Heart Rate Variability Calculation 

The European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology [8] refers to HRV as: 

“the oscillation in the interval between consecutive heartbeats”. 

Measurements of HRV are the most widely used indirect techniques for 

assessing the autonomous nervous system function in the study of several 

physiological states and diseases. Recent studies [104] have shown that 

immune system is controlled by vagus nerve through the cholinergic anti-

inflammatory pathway. The HRV indices that reflect vagal activity are related 

to inflammatory markers [7, 8]. 

Changes in HRV may be evaluated using a variety of methods. The most 

common are the time-domain and the frequency-domain measures [8]. After 

detecting each QRS complex in an ECG, the so-called normal-to-normal (NN) 

intervals are simple to calculate. NN intervals refer to the intervals between 

normal R peaks. Simple HRV time-domain indices that can be calculated 
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include the mean NN interval, the mean heart rate, the difference between the 

longest and shortest NN interval, etc. 

 
Figure 4.1 ECG waveform and RR interval time series 

Frequency-domain parameters can also be calculated using different 

techniques. Power spectral density analysis provides the basic information of 

how power distributes as a function of the frequency. Methods for its 

calculation may be generally classified as non-parametric and parametric. In 

the real-time algorithm implemented in the qCO monitor, non-parametric 

methods are preferred due to the simplicity of the Fast Fourier Transform 

(FFT) and the high processing speed.  

Three different frequency ranges can be identified: very low frequency 

(VLF: < 0.04 Hz), low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 

0.15-0.4 Hz). However, VLF assessed from short-term recordings (< 5 min) 

is a dubious measure and should be avoided if short-term measurements are 

desired. The main indices to assess the HRV are shown in Table 4.1. Some 

of them have been implemented in the qCO monitor. 

For the calculation of the HRV indices, the beat-to-beat RR intervals 

were linearly-splined and interpolated at 2 Hz to obtain a constant sampling 

frequency. The HRV power spectral density was calculated by means of a Fast 

Fourier Transform with a Hamming window. 

 
 
 
 



45 Chapter 4 

 

 

HEART RATE VARIABILITY INDICES 

Index Description 

RMSSD (ms) Root mean square differences between successive RR intervals 

 

SDSD (ms) Standard deviation of differences between successive NN intervals 

pNN50 (%) Number of interval differences of successive NN intervals greater 

than 50 ms divided by the total number of NN intervals.  

HF (ms2) Power in high frequency range (0.15 – 0.4 Hz) 

HFn (n.u) HF power in normalized units, HFn = HF/(LF + HF) 

LF (ms2) Power in low frequency range (0.05 – 0.15 Hz) 

LFn (n.u) LF power in normalized units, HLn = HF/(LF + HF) 

LF/HF (n.u.) Energy balance between LF and HF. 

TP (ms2) Total Power 

Table 4.1 Heart Rate Variability Indices [8] 

The following indices for HRV were then calculated: VLF (up to 0.05 

Hz), LF, and HF. Derived indices were: normalized LF (LFn = LF/(HF+LF)), 

normalized HF (HFn = HF/(HF+LF)) and the LF/HF ratio. Three time-

derived indices were also calculated: the standard deviation of differences 

between adjacent intervals (SDSD), the square root of the mean of the sum 

of the squares of differences between adjacent intervals (RMSSD) and the rate 

of pairs of adjacent intervals differing by more than 50 ms in the recording 

(pNN50). These indices were calculated once during the pre-induction 

segment and once during the post-induction segment. HR was included as a 

default index in the qCO monitor. 

4.4 Statistical Analysis 

Normality was assessed using the Kolmogorov-Smirnov test. Normally-

distributed, quantitative data are presented as mean ± SD and qualitative data 

as frequency (percentage). Non-parametric quantitative data are presented as 

median (Inter-Quartile Range, IQR [range of maximum and minimum 

values]). 

Since some data were non-normally distributed, a non-parametric test, 

the Wilcoxon signed-rank test, was used to investigate whether the analyzed 

indices changed after induction of anesthesia. Receiver operating 
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characteristic (ROC) analysis was used to assess the ability of the studied 

indices to detect the occurrence of LOC. Another non-parametric test, the 

Mann–Whitney U-test, was applied to investigate the differences in the 

decrease of hemodynamic values between men and women. All p-values 

reported are two-sided and p-value<0.05 was considered to be statistically 

significant. 

The relationship between indices from hemodynamic, time-domain, 

frequency-domain analysis and patient characteristics was assessed using 

Spearman’s coefficient of correlation (𝜌). 

 

4.5 Variations after Loss of Consciousness 

After discarding the cases for which the period prior to the induction of 

anesthesia had not been recorded and the cases in which the recorded signals 

contained artifacts during the periods before and after the loss of 

consciousness, a total of eighty-two patients were finally included in the final 

study. The details of the patients are reported in Table 4.2. The patient 

characteristics which were analyzed during this study included age, height, 

weight, lean body mass (LBM), body surface area (BSA), body mass index 

(BMI) and gender. 

Table 4.3 shows the results comparing all the indices before and after 

patients’ LOC. There is a reduction in CO, SV, and HR and a reduction in 

DBP, SBP, and MBP. All time-derived and frequency-derived HRV indices 

also significantly decrease after LOC except from the normalized high 

frequency index (HFn) which significantly increases. The decrease in BP 

(either DBP, SBP, and MBP) is always higher than 20% (median value), 

slightly higher than the decrease in CO. The SV and HR indices decrease by 

around less than 10% (median value). Absolute frequency-derived HRV 

indices decrease by around 63% (median values for VLF, LF, HF, Total 

Power), while the ratio LF/HF decrease by 34%, HFn increases by 28% and 

LFn decreases by 8%. Time-derived HRV indices decrease by between 20% 

for pNN50 and around 33% for RMSSD and SDSD (median values). 

The Wilcoxon test shows that the variation in all indices is always 

statistically significant with the exception of the LF/HF ratio. Table 4.3 

shows the characteristics of the ROC curve for the detection of LOC. The 

ROC curves for frequency-derived HRV indices have an area under the curve 

(AUC) around 0.56-0.59 while the time-derived HRV AUCs are slightly higher 

(0.62-0.68) and hemodynamic AUCs are the highest, around 0.63-0.85. 
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PATIENT CHARACTERISTICS 

 Age; years 51.9 ± 14.9  

 Height; cm 162.6 ± 8.8  

 Weight; kg 69.3 ± 13.6  

 LBM; n.u. 47.6 ± 7.8  

 BSA; m2 1.75 ± 0.2   

 BMI; kg/m2 26.3 ± 5.0   

 Gender; male/female 21/61  

Table 4.2 Patient characteristics: qualitative data are presented as absolute 
frequencies; quantitative data are presented as mean ± standard deviation. LBM: 

lean body mass; BSA: body surface area; BMI: body mass index. 

4.6 Relationship between Blood Flow, Blood 

Pressure and HRV Indices 

Results showed that CO does not significantly correlate with blood 

pressure (either DBP, MBP or SBP) but SV presents certain negative 

correlation with blood pressure. The percentage variation Δ(%) between 

before and after induction in fluid indices and pressure indices does not 

correlate either. The results in Table 4.3 confirm that all HRV indices 

decrease after the induction of anesthesia except from the HFn which 

increases after loss of consciousness. 

All time-derived HRV indices in Table 4.4 (SDSD, RMSSD, and pNN50) 

are much related to each other although their correlations are higher before 

the loss of consciousness than afterwards. The same time-derived HRV 

indices are also related to the absolute frequency-derived HRV indices (VLF, 

LF, HF, and total power) in a positive fashion both before and after LOC. 

Finally, time-derived HRV indices are weakly correlated to HFn in a 

positive fashion but so are they to LFn and LF/HF in a negative fashion. 

Regarding the variations of the HRV indices, ΔSDSD and ΔTotal power, and 

ΔHF and ΔRMSSD strongly correlate with each other. No statistically-

significant correlations for HRV indices above 0.50 have been found with 

either blood flow indices (CO and SV) or blood pressure indices. 

Regarding the normalized HRV frequency indices (not included in Table 

4.3), both before and after LOC, weak correlations were found for RMSSD 

and pNN50 with LFn (negative) and with HFn (positive). All correlations for 

normalized HRV indices were similar with |𝜌| < 0.36, p-value < 0.05. 



 

RECORDED INDICES BEFORE AND AFTER LOSS OF CONSCIOUSNESS 

 Indices Pre- LOC Post-LOC Δ (%) AUC  

 Hemodynamics  

 CO (L/min) + 4.8 (1.3 [3.1–10.1]) 4.0 (0.9 [2.6–6.5]) -15.7 (12 [-60 – -2]) 0.74  

 SV (mL/beat) + 68 (15 [43–127]) 63 (11 [39–104]) -8.1 (12 [-55 – 7]) 0.63  

 SBP (mmHg) + 135 (39 [93–197]) 101 (33 [51–160]) -24 (15 [-59–9]) 0.85  

 DBP (mmHg) + 78 (16 [45–100]) 59 (23 [34–97]) -24 (21 [-47–23]) 0.84  

 MBP (mmHg) + 102 (23 [63–132]) 77 (27 [41–121]) -23 (21 [-51–17]) 0.84  

 Time-derived HRV   

 HR (bpm) * 69.4 (13 [55–117]) 62 (12 [46–104]) -9.5 (7.7 [-35 – 13.2]) 0.67  

 RMSSD (ms) + 22 (20 [0–346]) 14 (14 [0–300]) -32 (58 [-80 – 580]) 0.66  

 SDSD (ms) + 38 (27 [0–237]) 24 (21 [0–223]) -34 (62 [-87 – 306]) 0.68  

 pNN50 (%) * 1.6 (7.2 [0–45]) 0 (1.9 [0–36]) -20 (161 [-87 – 625]) 0.62  

 Frequency-derived HRV   

 VLF (ms²) * 396 (615 [0–6981]) 114 (371 [0–8441]) -60 (128 [-99 – 3804]) 0.69  

 LF (ms²) + 387 (713 [0–5401]) 98 (196 [0–17663]) -67 (104 [-100 – 2633]) 0.68  

 HF (ms²) * 110 (238 [0–13391]) 35 (112 [0–15367]) -67 (110 [-98 – 6273]) 0.66  

 T.P. (ms²) + 1105 (1529 [0–25884]) 379 (874 [0–45875]) -66 (126 [-98–2165]) 0.56  

 LF/HF (n.u.) 2.8 (5 [0–21]) 1.9 (4 [0–80]) -34 (234 [-99 – 3513]) 0.56  

 HFn (%) * 26 (28 [0–82]) 34 (41 [0–94]) 28 (192 [-90 – 1155]) 0.56  

 LFn (%) * 74 (28 [0–96]) 65 (41 [0–99]) -8 (60 [-94 – 401]) 0.56  

Table 4.3 Average values before and after loss of consciousness (pre-LOC and post-LOC) presented as median (IQR [Range]). The mean 
variation Δ(%) from pre- to post-LOC and the Area Under the Curve (AUC) of the ROC characteristics are also included. n.s. non-significant 

level; T.P. total power; Wilcoxon test p-values < 0.05 *, <0.001
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4.7 Relationship between Indices and Patient 

Characteristics 

Regarding the blood flow indices (CO and SV), no index correlates with 

patients’ height. CO and SV indices weakly correlate with the remaining 

characteristics of the patients, both before (𝜌 ∈ [-0.36, -0.26], p-value < 0.05) 

and after induction of anesthesia (𝜌 ∈ [-0.47, -0.29], p-value < 0.05). Age also 

correlates with CO (before LOC) and SV. In all cases, statistically significant 

correlations are negative and rather weak (𝜌 = ∈ [-0.42, -0.28], p-value < 0.05). 

Regarding the blood pressure indices, all of them follow the same pattern: 

SBP, DBP, and MBP before induction all correlate with age (𝜌 is 0.59, 0.57 

and 0.66, respectively, p-value < 0.05), height (𝜌 is -0.40, -0.42 and -0.42, 

respectively, p-value < 0.05), and BMI (𝜌 is 0.30, 0.52 and 0.42, respectively, 

p-value < 0.05). The percentage decrease in SBP and MBP after LOC also has 

certain correlation with age in a positive way (𝜌 is 0.50 and 0.41, p-value < 

0.05). 

The relationship between patient characteristics and HRV indices has 

been quantified. HR does not correlate with patient characteristics either 

before or after induction, but its variation after induction shows a slight 

correlation with weight (𝜌 = -0.30, p-value < 0.05) and LBM (𝜌 = -0.35,           

p-value < 0.05). Age correlates positively with SDSD, RMSSD, LF, HF, HFn, 

and the LF/HF ratio. In all cases, p-values are below 0.05. No meaningful 

differences have been found for the remaining patient characteristics. 

Finally, in regard to gender, statistically significant differences have been 

found for the percentage decrease in heart rate and cardiac output. The 

ΔHR(%) was -5.4±7.2 for men and -10.7±8.2 for women (p-value = 0.011). 

The ΔCO(%) was -13.8±6.5 for men and -19.2±10.2 for women (p-value = 

0.033). Statistically significant differences have been found for the CO at pre-

LOC according to gender (COpre = 4.47±0.86 for men and COpre = 

5.13±1.16 for women, p-value = 0.016). No statistically significant differences 

have been found for gender and SV, BP, and HRV indices. 

 



 

 

CORRELATION P BETWEEN HRV INDICES. 

SDSD 
Pre-LOC   

                    

Post-LOC 0.54   
                   

Δ(%) -0.24 0.61   
                  

RMSSD 

Pre-LOC 0.92 0.65 -   
                 

Post-LOC 0.65 0.81 0.31 0.79   
                

Δ(%) - 0.24 0.65 - 0.35   
               

pNN50 

Pre-LOC 0.84 0.53  - 0.88 0.67  -   
              

Post-LOC 0.61 0.63 0.22 0.70 0.86 0.36 0.63   
             

Δ(%) - - - - - 0.68 - 0.49    
            

VLF 
Pre-LOC 0.65 0.27 - 0.48 0.32 - 0.42 0.42 -   

           

Post-LOC 0.35 0.88 0.62 0.42 0.55 - 0.36 0.29 - -   
          

Δ(%) - 0.37 0.45 - - - - - - - 0.54   
         

LF 
Pre-LOC 0.85 0.36 -0.24 0.73 0.46 - 0.67 0.42 - 0.53 0.22 -   

        

Post-LOC 0.42 0.74 0.37 0.51 0.75 0.29 0.47 0.43 -  - 0.74 0.39 0.31   
       

Δ(%) - 0.30 0.50 - 0.26 0.54 - - - - 0.33 0.27 - 0.50   
      

HF 
Pre-LOC 0.82 0.65 - 0.96 0.79 - 0.77 0.65 - 0.37 0.43 - 0.62 0.53 -   

     

Post-LOC 0.52 0.75 0.33 0.63 0.83 0.27 0.58 0.58 - - 0.69 0.34 0.39 0.92 0.38 0.61   
    

Δ(%) - - 0.58 - 0.23 0.87 - - - - - - - 0.31 0.47 - 0.28   
   

Total 

Power 

Pre-LOC 0.95 0.57 - 0.93 0.70 - 0.78 0.64 - 0.71 0.37 - 0.84 0.45 - 0.88 0.54 -   
  

Post-LOC 0.48 0.84 0.44 0.59 0.81 0.27 0.53 0.52     0.83 0.43 0.35 0.97 0.43 0.59 0.96 0.28 0.51   
 

Δ(%) 
 

0.56 0.77   0.43 0.62   
 

    0.67 0.56   0.72 0.70   0.63 0.64 
 

0.71 

  

Pre-
LOC 

Post-
LOC Δ(%) 

Pre-
LOC 

Post-
LOC Δ(%) 

Pre-
LOC 

Post-
LOC Δ 

Pre-
LOC 

Post-
LOC Δ(%) 

Pre-
LOC 

Post-
LOC Δ(%) 

Pre-
LOC 

Post-
LOC Δ(%) 

Pre-
LOC 

Post-
LOC 

  SDSD RMSSD pNN50 VLF LF HF Total Power 

Table 4.4 Correlation 𝜌 between HRV indices. The values presented correspond to the Spearman’s coefficient when p-value < 0.05 (*) or p-
value < 0.01 (**). Otherwise, non-significant values are obtained 
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4.8 Discussion of Results 

Results show that after LOC, there was a decrease in blood pressure 

indices, blood flow indices, and HRV indices (p-value < 0.05). The decrease 

in LF band indexes can be directly related with an increase in high-frequency 

HRV (p-value < 0.05). However, no significant differences were observed in 

the LF/HF ratio of the HRV between before and after LOC. 

This work has obtained similar results as former studies with much larger 

cohorts. In previous studies, Gabarrón et al. [102] showed that the decrease 

in CO after induction was 23% and Momota [107] showed that blood 

pressures at loss of response to stimulation and 5 to 15 minutes after 

intubation were significantly lower than those before induction. 

In our study, SV was inversely-correlated with any BP but these indices 

decreased after LOC. These facts are compatible since the decrease in BP was 

much larger than the decrease in SV. No correlation was found between BP 

and CO. Guyton [108] explained that the pumping action of the heart is 

ultimately responsible for BP. Increases or decreases in CO can result in 

increases or decreases respectively in BP. Several studies [98], [109] have 

reported a positive correlation between CO and BP and in our study only SV 

has shown a statistically significant relationship with BP. Theoretically, MBP 

is related to systemic vascular resistance and CO, which in turn is related to 

HR and SV. In our study, the correlations between MBP and the HR and 

between MBP and SV are similar with opposite sign, which makes 

interpretation non-trivial. 

In the HRV spectral decomposition, the HF band (0.15–0.4 Hz) is 

claimed to reflect the parasympathetic autonomic modulations [8], [110], 

while the LF band (0.04–0.15 Hz) has been suggested to primarily represent 

sympathetic cardiac activation [111]. Nevertheless, evidence supporting the 

cardiac sympathetic origin of the LF component is not very strong, and recent 

work suggests that the LF band does not reflect cardiac sympathetic outflow 

per se but simply modulation of cardiac autonomic drive via the baroreflex. 

This is a rapid negative feedback loop in which an elevated BP reflexively 

causes the HR to decrease and the BP to decrease, and which has been 

explained by several research groups [111]–[113]. 

During anesthesia, remifentanil is known to cause hypotension and 

bradycardia either by parasympathetic activation (HF) and/or by other 
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negative chronotropic effects [11]–[14]. Remifentanil also decreases 

sympathetic action [15]. Propofol during anesthesia reduces parasympathetic 

tone to a lesser degree than sympathetic tone [16]–[24]. The combination of 

remifentanil and propofol could therefore imply a maintained or slightly-

reduced vagal tone and a reduced sympathetic tone. 

In our case, the total power decreased after the loss of consciousness, 

which is in line with the previous statements and is an index of sympathetic 

nerve predominance [114]. In fact, the LF/HF ratio had an increased 

tendency and LF remained higher than HF (vagal tone) after the induction of 

anesthesia. This could be in line with the before-mentioned assumptions by 

some authors regarding the sympathetic character or the modulation of 

cardiac autonomic drive via the baroreflexes of the low-frequency HRV. 

Most time-derived HRV indices positively correlate to each other as 

suggested in previous studies [8] since all these measurements of short-term 

variation are estimates of high frequency variations in heart rate. Moreover, 

time-derived HRV indices decrease as frequency-derived HRV indices 

decrease although, as already discussed, the variation in HF is larger than the 

variation in LF and therefore time-frequency indices correlate in a positive 

way with HFn and in a negative way with LFn. 

Confounders like age, gender, height, weight, and BMI that might have 

possible influences on hemodynamics and HRV have been considered. Our 

results show that BP (SBP, DBP, and MBP) both before and after LOC is 

higher when age and BMI also are. The BP before LOC is inversely 

proportional to height. Nonetheless, several articles reported a decrease in 

blood fluid indices with age [99]–[101]. CO and SV indices correlated in a 

negative fashion with age, weight, LBM, BSA, and BMI while HR showed no 

correlation. In a study by Park and colleagues, there was no significant 

decrease in HR with increasing age [115] but some other studies have found 

evidence of such a decrease [116]. Regarding HRV, Fagard [117] and Piccirillo 

[118] found an age-related decrease in nearly all spectral components in 

healthy subjects: SDSD, LF and HF were significantly decreased with age. In 

our case, we have found that almost all spectral components after loss of 

consciousness and the percentage variation of HRV indices correlated in a 

positive way with age. Since most HRV variations were negative, the previous 

statement suggests that HRV indices changed in a lesser degree as their age 

increased.  
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Our study presents some limitations which must be considered. First, the 

qCO monitor is not a gold standard method for cardiac output monitoring. 

All noninvasive methods for the detection of the cardiac output are known to 

exhibit a certain error. Furthermore, the pharmacological effects of the drugs 

infused in the patients may vary depending on the target concentrations. This 

is especially true when analyzing the modifications in the vagal and 

sympathetic tones caused by propofol and remifentanil. Therefore, the 

hemodynamic and HRV measurements might also be affected by the different 

concentrations used in every case. In fact, Kanaya [20] and colleagues showed 

that propofol reduces cardiac parasympathetic tone depending on the depth 

of hypnosis. These facts do not reduce the validity of results but should be 

taken into account especially in future works for which information from 

depth-of-anesthesia monitors should be included. Subsequent studies in this 

Doctoral Thesis have taken into account the depth of anesthesia in the 

analysis. 

4.9 Conclusions 

In conclusion, this work has provided extensive results regarding the 

changes in blood flow, blood pressure, and HRV during surgical operations 

with remifentanil and propofol and has validated previous results found in the 

literature. There was a decrease in CO and all BP indices after LOC. HRV 

indices except HFn have also decreased after LOC indicating a decrease in 

both sympathetic and vagal activity. Finally, gender differences in HR and CO, 

and age differences in HRV measurements have been found after LOC, but 

not before. 
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Chapter 5 
5. Time Distance between 

the ECG and the ICG: the 

RC Segment 
 

 

 

 

 

 

Abstract 

Several studies have concluded that the time difference between the R 

peak in the electrocardiogram and the C point in the impedance cardiogram 

is a measure for the time delay between the electrical and mechanical activity 

of the heart. This chapter investigates the RC segment and compares it with 

other hemodynamic measures.  

5 
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5.1 Introduction 

The organization of this chapter is as follows. The basic calculations for 

the ECG and the ICG signals by the qCO monitor are presented. Then, the 

RC segment which relates ECG and ICG is discussed and analyzed on a large 

set of cases from the CMA database described in Chapter 3. Results are finally 

presented and discussed. 

5.2 ECG Calculations 

The qCO implementation is based on the well-known algorithm of Pan 

and Tompkins [96] for the real-time QRS complexes detection. This algorithm 

takes into account information about slope, amplitude and width of the QRS 

complexes in order to detect a large number of QRS morphologies. The set 

of filters and methods enhances QRS complexes while suppressing noise and 

artifacts (Figure 5.1). We have partially modified some of its stages to adapt 

it to our sampling rate (250 Hz). 

 

Figure 5.1 Block diagram of the implemented QRS-detection algorithm. The 
output is the position within the QRS complex where the R peak is situated 

The main goal of the band-pass filter is to improve signal-to-noise ratio 

to achieve good detection performance. The filter is a band-pass 4th-order IIR 

Butterworth filter with unitary gain between 10 and 30 Hz.  It therefore 

attenuates influence of noise due to EMG, 50/60Hz interference, baseline 

wander, and P and T waves interferences whilst preserving the spectral 

contents of the QRS complex. 

The differentiation is based on a high-pass filter. The general aim is to 

find the slope information in the QRS complexes, which is essentially 

different from the other waves in the ECG.  With this procedure, higher 

frequencies that are characteristic for the QRS complex are emphasized and 

lower frequencies that are characteristic for P and T waves and baseline 

wander are attenuated. However, differentiation also amplifies higher 

frequencies due to noise, thus a low-pass 2nd-order Butterworth filter with 

 fc = 15 Hz  is used for smoothing the output. 
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Squaring is a nonlinear operation which turns all samples positive. This 

is better suited for the threshold detection and it is also important since: 

- it enhances QRS complex attenuating the remaining background 

noise, and 

- it emphasizes the QRS complex (emphasizing large differences 

arising from QRS complex whereas small differences from P and T 

waves are suppressed). 

The final processing stage is a moving window integrator whose main 

goal is to obtain a signal which includes information about both the slope and 

the width of the QRS complex. The result is a smoothing version of the 

output from the preceding operations. It is very important to choose a proper 

width of the window. If it is excessively wide, the resulting integration 

waveform will contain the QRS complexes and T waves together; if it is 

excessively narrow, the resulting waveform will contain several peaks caused 

by the same QRS complex. The transfer function of this block is given by 

Equation (13). 

H(z) =
1 + z−1 + z−2 + ⋯ + z−(N−1)

N
 (13) 

where N is the window length. In the qCO monitor, N = 38. 

After the processing stage, the decision block locates the QRS complexes 

in an adaptive manner taking into account refractory periods of the QRS 

complex, eventual high T waves and abnormally high QRS complexes which 

might distort thresholds. In the qCO monitor, R peaks will be necessary for 

the calculation of the heart rate, the heart rate variability and the search of 

characteristic points in the impedance cardiogram. 

5.3 ICG Calculations 

The impedance cardiograph signal (ICG) represents the changes of the 

thoracic impedance due to variations in the blood flow. In practice, the raw 

impedance signal Z (in Ω) is transformed into the ICG waveform (in Ω/s) by 

using the first derivative to remark inflection points of the raw Z signal. The 

most important characteristics points of the ICG waveform are points B, C 

and X (Figure 2.3). All these points are associated to distinct physiological 

events within the systolic part of the cardiac cycle. In that sense, R wave from 

ECG signal can be an important reference for detecting such events. 
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ICG signal is extremely sensitive to artifacts due to movements and 

respiration. Baseline variations can considerably alter hemodynamic 

parameters obtained with the ICG characteristic points. High frequency 

interferences can also affect accuracy in estimating some characteristics points, 

essentially the B point. Therefore, a combination of low pass filters is applied 

after the derivative as it can be seen in Figure 5.2. 

 

Figure 5.2 Blocks diagram of the algorithm for calculation of ICG signal from the 
impedance signal (Z) 

The goal of the first derivative procedure is to remark inflection points 

on Z signal. These inflection points are indeed the characteristic points of 

interest. Derivative procedure also amplifies the high frequency noise so a 

block to attenuate this adverse effect is crucial. The derivative operation is 

indeed a high-pass filtering which attenuates the baseline drifts (due to 

movement or respiration) and low-pass filtering stage attenuates the high-

frequency noise improving accuracy when detecting the characteristic points. 

Finally, the middle block in Figure 5.2 provides the negated version of the 

ICG signal, according to a typical medical representation. 

The last step in the initial ICG process is to find the C and B points of 

each ICG beat taking the R peak in the ECG as a reference. These points are 

located by searching the minimum and maximum points within a window 

before and after the R peak as shown in Figure 2.3. 

5.3.1 Basic Artifact Rejection and Correction Criteria 

There are several criteria which have been implemented in order to 

improve the quality of the detection of characteristic points of ECG and ICG. 

Some of them are as follows: 

- Out of range of the raw ECG and ICG signals: segments are 

discarded if any sample is out of range according to some amplitude 

thresholds. 

- Adjustment of RR in the ECG and C and B in the ICG according to 

moving exponential averages (MAEs). MAEs are stored for the RR 

segment and the amplitude values of C and B points. Thresholds 

based on such MAEs are used in order to detect and correct aberrant 

detections. 

Derivative 
Z 

LP filtering 
ICG 

 -1 
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In addition, in this chapter, the relationship between ECG and ICG 

periods (i.e., RR and CC segments) is investigated in order to set a new artifact 

rejection criterion. 

5.3.2 Indices extracted from ICG signals 

In addition to the heart rate variability indices described in the Chapter 4, 

the qCO monitor also displays the patient’s cardiac output and stroke volume, 

which are calculated by using the ICG signal. 

When determining stroke volume from thoracic impedance changes, 

Kubicek and his colleagues [119]  made some assumptions concerning the 

relationship between stroke volume and the net change in the thorax blood 

volume. In a very simple model, the impedance of the thorax can be 

considered to be divided into two parts: the impedance of tissues and the 

impedance of fluids. When the patient does not breath, the impedance is 

constant, except the amount and distribution of blood. 

The amount of blood in a patient’s thorax changes as a function of the 

heart cycle [120]. During systole, the right ventricle ejects an amount of blood 

into the lungs which equals the stroke volume. This can be determined by 

means of the impedance cardiography. Several formulation has been 

employed during the past years but Kubicek’s original equation was as in (14): 

SV = 𝜌b

l2

Z2 |
dZ

dt
|

min
· te (14) 

where 𝜌b is the resistivity of the blood (Ω·cm), l is the mean distance between 

the inner electrodes (cm), Z is the mean impedance of the thorax (Ω), te is 

the ejection time and |dZ/dt|min is the absolute maximum deviation of the 

first derivative signal during systole (Ω/s), which is written as ICG in the rest 

of this text. 

 

5.4 The RC Segment 

Electrical impedance on the thorax varies in a synchronous manner with 

the heart activity. Several applications have been found using the derivative of 

this variation, which is called Impedance Cardiogram (ICG). A major 

application is the work developed by Kubicek [121] on the cardiac output 

characterization of patients through ICG signals. 
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According to the work developed by Meijer [122], the comparison of the 

time relationships between ICG and the ECG can be of special interest to 

evaluate the hemodynamic behavior of a patient. Regardless of the multiple 

sources of the signal, the ICG reflects the mechanical and hydrodynamical 

aspects of the cardiac cycle, while the ECG reflects the electrical aspect of the 

cardiac activity. Therefore, the time difference between ECG and ICG can be 

regarded as the time difference between the electrical and the mechanical 

aspects of the heart. 

The advantage of this perspective is that both ECG and ICG signals are 

easily recorded: ECG and ICG systems are noninvasive, simple to apply and 

do not require sophisticated hospital environment. ECG and ICG signals 

have proven to be useful even in complicated setting such as during functional 

magnetic resonance [123]. The time difference between the ECG and ICG 

can be estimated using the cardiac pre-ejection period (PEP). Several authors 

[124], [125] have studied the PEP, which has been found to relate to the 

sympathetic autonomous nervous activation, but not to the parasympathetic 

activity. 

The autonomic nervous system controls mainly automatic body 

functions that are engaged in homeostasis, such as heart rate, respiratory rate 

and renal function. The sympathetic nervous system prepares the human body 

when danger and stress occur while the parasympathetic nervous system 

regulates resting states. This activity can be measured using ICG and ECG 

signals through the PEP [126]. A large variety of applications of the PEP has 

been developed during the last years. For instance, since an increased pre-

ejection period is an indication of decreased contractility [127], Ashouri 

proposed to measure PEP and stroke volume changes outside the clinic to 

provide insight into the severity of their condition [128]. Other recent works 

relate PEP to stress assessment [129] or hypotension [130], [131]. 

PEP is measured between the Q wave onset of the ECG signal and the 

C point or upstroke in the ICG signal. Nevertheless, these points are not easy 

to locate and can be greatly distorted in some cases. In fact, from a 

mathematical point of view, it would be more efficient to calculate the 

difference between the R peak in the ECG and the C point in the ICG, the 

RC interval, since these are local maxima. Meijer and colleagues [122], [132] 

have already worked on this RC interval, which they called the initial systolic 

time interval. In their study, the PEP and the initial systolic time interval were 

analyzed under different conditions and behaved largely similarly in all cases 

and maintained a significant correlation. Besides that, this interval has also 
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been studied against other intervals such as the RR [133] and under different 

perturbations such as a Valsalva maneuver [134]. During exercise, the RC 

interval decreased with increasing heart rate (amount of heart beats per minute, 

HR) and the relative proportion of RC, RC/RR, was found to also decrease 

with increasing HR [133]. During a Valsalva maneuver, the influence of the 

Frank-Starling mechanism (explained in Chapter 2) was definitely observed, 

which is to some extent consistent with reports on the time course of 

sympathetic activation [134]. 

Theoretically, the initial systolic time interval or RC interval depends on 

three factors: the preload of the heart by way of the Frank-Starling mechanism, 

the afterload of the heart caused by the peripheral resistance, and the 

autonomic nervous control. Smorenberg et al. [135], [136] studied the RC 

interval and PEP in patients during fluid infusion. Preliminary results showed 

significant relationships between the initial systolic time interval and cardiac 

output (CO) and between changes in both of these indices before and after 

fluid administration. This indicated that the initial systolic time interval is 

dependent upon preload via the Frank-Starling mechanism, and that the initial 

systolic time interval has the potential to be used as a clinical parameter 

assessing preload. 

Nevertheless, the conclusions of one of the last works published about 

this interval highlighted the need to further analyze these parameters in 

different settings [134]. Several studies have compared the RC interval with 

several time markers of the heart cycle but databases are always comparatively 

small. For instance, van Eijnatten [137] and colleagues used a database of 16 

healthy patients to show that the shortening of the RC interval with increasing 

heart rate in response to an exercise stimulus was caused by a shortening of 

the PEP. To the best of our knowledge, all studies have been conducted in 

laboratory settings. 

The present study uses a large database to characterize the RC interval 

and its relationship with the RR and CC intervals during surgery in operating 

rooms. Furthermore, the RC interval has also been compared with the 

patients’ blood pressure during the whole surgical procedures. The 

relationship between these intervals and patient characteristics is also studied. 
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5.5 Data Preparation 

The synchronization between both the qCO monitor and the 

noninvasive blood flow monitor (Dräger Infinity® Gamma monitor) was 

ensured by annotating the exact start time given by the two devices. The blood 

pressure monitor updates its blood pressure values (diastolic, systolic and 

mean) every 120 seconds. The ECG and ICG signals registered by the qCO 

monitor were processed to detect the R peaks in the ECG and the C peaks 

and B points in the ICG. Figure 2.3 shows the position of these characteristic 

points. 

Once R and C peaks were found, for each consecutive heart beat the 

intervals RR, RC and CC were calculated. Since RR, RC and CC intervals 

occurred in every heart beat but the blood pressure was measured less often, 

there were more RR, RC and CC intervals detected than blood pressure points. 

Thus, the nearest RR, RC and CC intervals were chosen for each blood 

pressure measurement point in order to create pairs of data points to compare. 

This study also aims to compare two anesthesia-related patient states: 

consciousness and unconsciousness. During the induction of anesthesia, the 

moment of loss of consciousness was considered to occur when patients lost 

response to verbal stimulus. To characterize each state, data corresponding to 

one-minute length taken 4 minutes before LOC (i.e., conscious state) were 

averaged and data corresponding to one-minute length taken 4 minutes after 

LOC (i.e., unconscious state) were also averaged for comparison. Signals were 

excluded when patient movement corrupted the recorded signal. 

 

5.6 Statistical Analysis 

Normality of distributions was assessed using a Kolmogorov-Smirnov 

test. Relationships between time intervals, blood pressure indices, and patient 

characteristics were assessed using Spearman’s coefficient of correlation (). 

A non-parametric test, the Mann–Whitney U-test, was applied with the 

significance level set at p-value < 0.05 to investigate the differences in gender. 

Since some indices were normally distributed, the t-Student test was used to 

investigate whether those hemodynamic indices changed after LOC. 

Quantitative data are presented as mean ± standard deviation (SD) and 

qualitative data are presented as frequency (percentage). 
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The RR, RC, CC and RC/RR intervals were statistically described and so 

were SBP, DBP and MBP. The relation between all those indices was analyzed 

using correlation and regression techniques. Moreover, the correlation 

between time-shifted versions of RR and RC was studied and the 

decorrelation velocity, the negative slope of the linear regression of the 

Spearman’s coefficients once the decrease in the correlation is linear, was 

calculated. Finally, the relationship between the mean of all indices before and 

after LOC was investigated. 

5.7 Description of the Time Segments and Pressure 

Indices 

A total of 502,343 RR, RC and CC intervals have been extracted and a 

total of 4,456 sets of RR, RC, CC and blood pressure values have been formed 

from 149 patients (from 8 to 108 points per patient). The mean and standard 

deviation values (mean ± SD) of the time segments RR, RC, and CC and the 

ratio RC/RR are reported in Table 5.1, where the blood pressure indices as 

systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg) 

and mean blood pressure (MBP, mmHg) are also presented. It can be 

observed that the value of the ratio between RC and RR intervals is of 21.6 ± 

3.8 % and the mean value of RR and CC intervals is coincident. 

MEASURED HEMODYNAMIC INDICES 

 Indices Mean ± SD  

 RR 959.8 ± 155.2 ms  

 RC 202.0 ± 20.4 ms  

 CC 959.8 ± 155.2 ms  

 RC/RR 21.6 ± 3.8 %  

 SBP 110.1 ± 23.5 mmHg  

 DBP 63.9 ± 15.7 mmHg  

 MBP 83.2 ± 18.5 mmHg  

Table 5.1 Mean and standard deviation of measured hemodynamic indices in 
the sample of patients undergoing surgery. SBP: systolic blood pressure; DBP: 

diastolic blood pressure; MBP: mean blood pressure 

The relationship between pressure indices (systolic, diastolic and mean 

blood pressure) and time segments (RR, CC and RC intervals) was studied. 

The ratio RC/RR was also included. Table 5.2 reports the values of this 

relationship. The highest correlation was observed between RR intervals (or 

CC intervals) and the DBP index with  = -0.341 (p-value < 0.01) and RR 
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intervals with the MBP index,  = -0.317 (p-value < 0.01). A lower correlation 

was obtained between CC and SBP,  = -0.259 (p-value < 0.01). However, all 

of these are considered as weak correlations. 

Figure 5.3 includes a graphical representation of the relationships between 

the time segments (RR, CC and RC) with their correlations. Figure 5.3A 

shows that there exists a very strong, positive correlation between RR and CC 

with  = 0.998 (p-value < 0.0005). In order to study the relation between the 

electrical and mechanical activity of the heart provided by the RR and RC 

intervals taking into account that the RC interval is in fact a portion of the RR 

interval the dispersion plot between RR and the ratio RC/RR has been 

evaluated in Figure 5.3B. It proved to be inversely proportional according to 

Equation (15). 

RC/RR(%)  =  a + b/RR (15) 

where a = 3.94 (no units); b = 16.47 s, with  = 0.662 (p-value < 0.01). RR 

intervals between 700 and 1000 ms correspond with RC/RR ratios lower than 

30%. 

 
Figure 5.3 Regression plots between RR, RC and CC of patients undergoing 

surgery. (A) CC (ms) = 0.999·RR (ms) + 0.704,  = 0.998, with a 

significance of p-value < 0.0005; (B) RC/RR (%) = 3.94+16.47/RR, being 

RR in seconds,  = 0.662, with a significance of p-value < 0.01 
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MEASURED HEMODYNAMIC INDICES 

 Indices SBP DBP MBP 

 RR -0.260 -0.341 -0.317 
 CC -0.259 -0.341 -0.316 
 RC -0.218 -0.127 -0.179 
 RC/RR +0.116 +0.249 +0.195 

Table 5.2 Spearman’s coefficients between time segments and blood pressure 
indices. All correlations are statistically significant with p-value < 0.01. 

 

Furthermore, the linear relationships between the current RC with the 

previous RR or RC intervals, and also between the current RR with the 

previous RR or RC have also been analyzed. A maximum time lag of 40 beats 

was considered for this study. 

In order to describe these relationships, the decorrelation velocity (Dv) 

for each pair of measurements was calculated as the negative slope of the 

linear regression of the Spearman’s coefficients once the decrease in  is linear 

and it is measured in percentage decrease per time lag difference. The variation 

of  between RC[n] and RC[n-1] was -17.1%, much higher than the variation 

presented between RR[n] and RR[n-1] ( = -4.5%) as can be seen inTable 

5.3. The variation of  between RC[n] and RR[n-1] was +0.9% while it was 

 = +0.6% in the case of RR[n] vs RC[n-1]. In all cases, Dv was very low. 

RR AND CC CORRELATION AND DECORRELATION VELOCITY 

    Dv 

 RR[n] vs RR[n-1] -4.5% 0.14% 
 RC[n] vs RC[n-1] -17.1% 0.12% 
 RR[n] vs RC[n-1] +0.6% 0.04% 
 RC[n] vs RR[n-1] +0.9% 0.02% 

Table 5.3 Variation of Spearman’s coefficient () and decorrelation velocity 
(Dv), considering n = 502,343 samples 

 

5.8 Effect of Induction of Anesthesia on Time 

Segments and Blood Pressure Indices 

Taking into consideration both the time segments (RR and RC) and the 

blood pressure values, the t-Student test has shown that the variation in these 

values before and after LOC is statistically significant (p-value < 0.0005) as 
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reported in Table 5.4. An increase in the value of the RR intervals and in the 

value of RC intervals (p-value < 0.0005) can be observed. However, the values 

of the blood pressure indices significantly decreased from after LOC during 

surgery (p-value < 0.0005). Figure 5.4 shows the evolution of the relationship 

between instant RR and RC intervals in a patient undergoing anesthesia. The 

reduction of RC/RR between before and after LOC can be clearly noted. 

CHANGES IN HEMODYNAMIC INDICES WITH ANESTHESIA 

   Pre-LOC Post-LOC p-value 

 RR (ms) 872.1 ± 121.7 959.7 ± 142.7 < 0.0005 

 RC (ms) 186.4 ± 13.6 205.0 ± 15.8 < 0.0005 

 SBP (mmHg) 135.2 ± 24.4 102.3 ± 21.1 < 0.0005 

 DBP (mmHg) 78.5 ± 11.3 61.3 ± 11.3 < 0.0005 

 MBP (mmHg) 102.2 ± 15.8 79.1 ± 16.9 < 0.0005 

Table 5.4 Mean ± SD for several measurements before (Pre) and after (Post) loss of 
consciousness (LOC) 

 

 
Figure 5.4 RC/RR ratio in a patient undergoing anesthesia. The vertical line marks 

the instant of LOC 

The relationships between the mean of the time segments RR, RC and 

CC before and after LOC have also been analyzed using 83 available 

comparisons. The RR intervals presented a higher correlation between before 

and after LOC ( = 0.764, p-value < 0.01) than the correlation RC intervals 

before and after LOC ( = 0.601, p-value < 0.01), as it can be seen in Table 

5.6. Before LOC, RC intervals were correlated with RR intervals ( = 0.427, 

p-value < 0.0005), also RC and RR intervals were correlated after LOC, ( = 

0.488, p-value < 0.0005) as seen in Table 5.5. However, the RC intervals both 

before and after LOC are more dependent on the RR values before LOC than 

those after LOC. Non-significant differences were observed when the 

influence of age and gender in all analyzed indices was measured. 
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CORRELATION COEFFICIENTS FOR HEMODYNAMIC INDICES 
BEFORE AND AFTER LOSS OF CONSCIOUSNESS 

Variable A Variable B  p-value 

RC 

Pre-LOC 

RR 
Pre-LOC 0.427  < 0.0005 

Post-LOC 0.252 0.029 

SBP 
Pre-LOC -0.290 0.039 

Post-LOC -0.181 n.s. 

DBP 
Pre-LOC -0.093 n.s. 

Post-LOC -0.181 n.s. 

Post-LOC 

RR 
Pre-LOC 0.488  < 0.0005 

Post-LOC 0.252 0.021 

SBP 
Pre-LOC -0.206 n.s. 

Post-LOC -0.452 0.001 

DBP 
Pre-LOC -0.103 n.s. 

Post-LOC -0.369 0.008 

RR 

Pre-LOC 

SBP 
Pre-LOC -0.290 0.039 

Post-LOC -0.240 n.s. 

DBP 
Pre-LOC -0.173 n.s. 

Post-LOC -0.283 0.044 

Post-LOC 

SBP 
Pre-LOC -0.229 n.s. 

Post-LOC -0.270 n.s. 

DBP 
Pre-LOC -0.258 n.s. 

Post-LOC -0.361 0.009 

Table 5.5 Spearman’s correlation coefficients between variables A and B before 
(Pre) and after LOC (Post). n.s.: statistically non-significant 

AUTOCORRELATION COEFFICIENTS FOR HEMODYNAMIC INDICES 

  Pre vs. Post-LOC  p-value 

 RR (ms) 0.764  < 0.0005 

 RC (ms) 0.601  < 0.0005 

 SBP (mmHg) 0.463  < 0.001 
 DBP (mmHg) 0.478  < 0.0005 

Table 5.6 Spearman’s auto-correlation coefficients for RR and RC before (Pre) 
and after LOC (Post) 

Table 5.7 contains the results according to variation responsiveness of 

the studied indices between pre and post-LOC. If VAR is any of the studied 

indices in this chapter, the variation responsiveness was defined as ΔVAR = 
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(VARpost-VARpre)/VARpost. It is observed that an increase of RC intervals 

with anesthetic drug infusion negatively correlated with a decrease in SBP ( 

= -0.445, p-value = 0.001). In addition, RC and SBP correlate after LOC ( 

= -0.452, p-value = 0.001) as seen in Table 5.5. No correlation was found 

between the increase in RR and the increase in RC ( = 0.113, p-value = 

0.310). 

CORRELATION COEFFICIENTS BETWEEN HEMODYNAMIC INDICES 

  Variable A Variable B  p-value  

 
ΔRR 

ΔSBP -0.200 n.s.  

 ΔDBP -0.051 n.s.  

 
ΔRC 

ΔSBP -0.445 0.001  

 ΔDBP -0.277 0.01  

Table 5.7 Spearman’s correlation coefficients between variables A and B. n.s.: 
statistically non-significant 

5.9 Discussion of Results 

In the present study, the use of a noninvasive method based on an 

approximation of the pre-ejection period to study the response of induced 

anesthesia was investigated. In this way, RR, RC, CC cardiac intervals obtained 

from ECG and ICG signals, and systolic, diastolic and mean blood pressures 

responses were compared. The use of these signals for any pharmacologic 

effect related to anesthetic depth detection is attractive: recordings can be 

obtained entirely noninvasively, rapidly, and easily. 

Both RR and CC intervals have been found to be almost identical with a 

Spearman’s coefficient of 0.998 (p-value < 0.01). This coincidence can be used 

in order to detect artifacts in the ICG and ECG signals. The RC interval 

correlates in a positive way with both RR and CC, as several studies also 

showed [133], [137].  

Regarding the RC/RR rate, the relationship with the RR interval is 

relevant. In fact, the RC/RR clearly decreases with the increase of the RR 

interval. The inversely proportional Equation (15) has a regression coefficient 

of 0.66 and the behavior shown in Figure 5.3 is very similar to the relation 

between the RR interval and the RC/RR ratio found by Hoekstra [133] where 

exercise stimulus effects were studied. In those studies, highly trained subjects 

had an RC interval and a RC/RR interval higher than the control group, 

indicating that the time delay between electrical and mechanical activity was 

longer in such group. This could eventually lead to sports applications. 
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The positive linear relationship between the RC and RR intervals 

demonstrates that with a decrease in the RR interval, the RC is also shortened. 

The inversely proportional relationship between the RC/RR and RR interval 

shows that when RR decreases, the RC interval phase decreases less than the 

total cardiac cycle. This goes in line with the conclusions by Eijnatten [137] 

when he states that the shortening of the initial systolic time interval with 

increasing HR in response to an exercise stimulus can be attributed to a 

shortening of the pre-ejection period in every individual: when the HR 

increases, the time interval between the R peak and the opening of the aortic 

valves decreases while the time between the opening of the aortic valves and 

the C point remains constant. It is important to note that van Lien [138] 

already concluded that despite the RC interval being an important tool, it 

should not be used to estimate PEP with only a single regression equation. 

The present study also analyzed how the RC interval depends on its 

previous values, obtaining correlations varying from 0.641 (consecutive beats) 

to 0.333 (between two beats delayed 8 beats). The dependence between the 

RC interval and RR also decreased in time but was always lower than such of 

the RC with itself, as it can be seen in Table 5.3. 

Our study has also found a negative relationship between the RC interval 

and blood pressure (systolic, diastolic and mean) but a positive relationship 

between the RC/RR proportion and blood pressure. Biesheuvel [139] also 

found a negative relationship between the RC interval and the systolic blood 

pressure and so did Muehlsteff [140] and Wong [141]. The latter also claimed 

that PEP had some potential to predict systolic blood pressure. However, it 

is necessary to highlight the complicated nature of the relationships between 

HR, BP and PEP. Whitsett [142] conducted a study comparing these 

measurements in patients with Parkinson’s disease using different drugs 

looking for the mechanisms responsible of varying and control these 

parameters. 

Both RR and RC have shown to decrease after LOC, which is consistent 

with previous studies [102], [136]. This response was similarly observed in 

predicting fluid responsiveness after cardiac surgery [136]. In addition, systolic 

and diastolic pressures presented a statistically decreasing difference. This 

decrease is compensated by an increase in RR, and as well RC, that is 

secondary to vagal withdrawal and increased cardiac sympathetic activity [143], 

[144]. However, it is know that SBP is affected by the pulse pressure and 
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vascular dimensions [145], whereas the RC is a more direct measure of 

electromechanical coupling of the heart. The RC interval has shown no 

relationship to most variables such as age and gender. An increase of RC 

intervals with anesthetic drug infusion negatively correlated with a decrease in 

SBP ( = -0.445, p-value = 0.001, as can be seen in Table 5.7). Also, RC and 

SBP correlate after induction ( = -0.452, p-value = 0.001) as seen in Table 

5.5. 

Some limitations may arise when comparing the results against previous 

studies found in the literature. Each ICG monitor has different properties 

concerning the positioning of electrodes and number of electrodes. For 

instance, in the method used in [133], [139], [146], the four electrodes are 

completely separated while qCO has two groups of two electrodes which are 

close to each other. Furthermore, the applied AC currents are different. Also 

the monitor device in [133], [137], [146] uses 0.3 mA at 64 kHz while the qCO 

monitor applied an AC current of 0.4 mA at 50 kHz. Finally, the 

pharmacological effects of the drugs infused in the patients may vary 

depending on the target concentrations. Therefore, the hemodynamic 

measurements might also be affected by the different concentrations used in 

every case. These facts do not reduce the validity of results but should be 

taken into account when analyzing the values of RC intervals. 

5.10 Conclusions 

This study has further characterized the relationship between ICG and 

ECG. Some previous results found in the literature have been validated using 

a new database and some new results have been reached. The relationship 

between the different time intervals in ICG and ECG and the blood pressure 

has been described. According to our analysis, the RC interval could have an 

important impact in describing the state of a patient and further studies are 

required to identify further possible applications. Finally, the coincidence of 

the CC and RR segments are key to develop new artefact detection algorithms 

and this has been included in a patent developed in this Doctoral Thesis. 
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Chapter 6 
6. Performance of Time-

Frequency Distributions 

for ICG Signals 
 

 

 

 

Abstract 

Time-frequency distributions show how the spectral content in a signal 

changes with time. It is a powerful tool which, however, requires the selection 

of an appropriate kernel for each type of signal. In order to describe ICG 

signals, this chapter analyses the performance of several kernels which have 

been applied to ICG signals. Finally, the proposed kernels are tested for noise 

resistance and on a clinical database of real ICG signals. The results of this 

chapter have been accepted for publication in the journal “Medical & 

Biological Engineering & Computing”.  

6 
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6.1 Introduction 

Advanced techniques for the analysis of biomedical signals such as the 

ICG signals and process automatization techniques are increasingly important 

for diagnosis. The visual inspection of biomedical signals may be a tedious 

task and subjective judgements and errors can occur even when skilled 

interpreters are involved. 

In order to improve the calculation of the indices derived from the 

analysis of impedance cardiography, several authors have exploited the 

periodic or quasi-periodic behavior of the ICG signals for denoising or for 

locating their characteristic points [147], [148]. The study of these signals in 

the frequency domain can shed light on the quasi-periodical behavior of ICG 

signals and also on ICG features which cannot be directly observed in the 

time domain. Some features could be related to HRV, for which ECG analysis 

would be more effective, but other features could be related to the patient’s 

hemodynamic state. However, the ICG behavior in the frequency domain 

varies with time and, therefore, it is convenient to analyze how the frequency 

distribution of a biomedical signal changes with time [149]. 

Time-frequency distributions is a technique which is often used in the 

case of analyzing electroencephalogram (EEG) [150]–[156], heart rate 

variability [157]–[162], respiration signals for apnea detection [163], and 

pathological speech signals [164]–[166], amongst others. There are several 

different ways to formulate valid TFDs [167] but any application would ideally 

require high definition in spectral components, no interferences between the 

spectral components which can cause cross-terms to appear (in order to avoid 

confusing real components from artifacts or noise), a low computational 

complexity and some mathematical properties [168]. However, these 

properties do not normally occur together and the selection of an appropriate 

TFD depends on the characteristics of the signal to analyze. 

When it comes to selecting the best TFD for synthetic signals, several 

quantitative measurements can be used based on geometrical properties [169], 

[170], error and entropy properties [156], [171]–[175] of the TFDs. These 

measurements can be applied when the time-frequency characteristics of real 

signals are known. Nevertheless, these characteristics are usually unknown in 

the case of real physiological signals. 

In this chapter, in order to test the goodness of TFDs for real biological 

signals such as the ICG, we propose the usage of synthetic signals modeling 

the real ICG signals. The TFDs can then be optimized for its usage with real 
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ICG signals by means of using ICG synthetic signals fulfilling the following 

requirements: synthetic signals should resemble very much to the original 

signals from a time and frequency perspectives, and time-frequency 

parameters should be easily modifiable. To the best of our knowledge, the 

application of TFDs to ICG signals has not been extensively published. 

In order to accomplish these requirements, the synthetic signals explained 

in Chapter 3 were used to evaluate different TFDs based on geometric criteria. 

An exemplary signal can be found in Figure 3.4. The most common TF 

distributions available were tested: the Wigner-Ville Distribution (WVD), the 

Born-Jordan distribution (BJD), the spectrogram, the S-method (SM), the 

Choi-Williams distribution (CWD), the Zhao-Atlas-Marks distribution 

(ZAM), the Modified B-Distribution (MBD) and the Extended Modified B-

Distribution (EMBD) [167]. 

The instantaneous frequency of the different spectral components on the 

TFDs was determined and its errors with the theoretical IFs were measured. 

The robustness against low signal-to-noise ratios has also been tested. In 

addition, optimized TFDs were used on synthetic ICG signals derived from 

patterns of the rest of patients in the ICG database obtained from the 

Shanghai Study and described in Chapter 3. 

6.2 Time-Frequency Distributions 

This subsection explains the basic theory of the time-frequency 

distributions. Concepts such as the analytic associate, the variety of available 

kernels and the detection of the instantaneous frequency are described. 

6.2.1 Analytic Associate 

In TFDs, the usage of the analytic associate of a given real signal, rather 

than the signal itself, is useful for reducing the required sampling rate, and 

essential for obtaining an unambiguous instantaneous frequency. The analytic 

associate is obtained via the Hilbert transform: 

ℋ{s(t)} = ℱt←f 
−1 {(−j sgn(f))ℱt←f {s(t)}} (16) 

where ℱt←f {… } is the Fourier transform. 

The detail process to obtain the Hilbert transform of s(t) is as follows: 
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1. Take the Fourier transform S(f) of s(t). 

2. Multiply S(f) by –j for positive, by +j for negative, and by zero for 

f=0. 

3. Take the inverse Fourier transform. 

This procedure creates an analytic signal containing no negative 

frequencies. This does not produce any loss of information in the case of real 

signals and it introduces two beneficial effects: it halves the total bandwidth 

and avoid the appearance of interference terms generated by the interaction 

of positive and negative components in quadratic TFDs which are a 

consequence of the bilinear nature of the TFD formulation. 

6.2.2 TFD Formulation 

High-resolution time-frequency analysis is useful for signals which are 

nonstationary and/or multicomponent. Quadratic TFDs are based on 

estimating the instantaneous power spectrum of the signal by using a bilinear 

operator [167]. The Wigner-Ville distribution is the basic quadratic TFD and 

is defined by taking the Fourier transform of an instantaneous auto-

correlation function Kz(t, 𝜏). 

Wz(t, f) =  ∫ Kz(t, 𝜏)e−2j𝜋f𝜏d𝜏
+∞

−∞

 (17) 

where Kz(t, 𝜏) is defined as 

Kz(t, 𝜏) = z(t + 𝜏/2)z∗(t − 𝜏/2) (18) 

and where z(t) is the analytic associate of a real signal s(t) obtained with the 

Hilbert transform z(t) = s(t) + jℋ{s(t)} as explained before. 

6.2.3 Kernels for TFDs 

The WVD provides a high-resolution representation of the signal x(t) in 

time and frequency but the presence of cross-terms in multicomponent 

signals is deleterious for biomedical signal processing. Cross-terms can be 

reduced by convolving the WVD with a two-dimensional kernel 𝛾(t, f) to 

obtain the general formulation of quadratic TFDs in Equation (19). 

𝜌z(t, f) = 𝛾(t, f) ∗∗
(t,f)

Wz(t, f) (19) 
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The two-dimensional kernel 𝛾(t, f)  reduces cross-terms – the terms 

created by the interaction of different time-frequency components in a signal 

– but it also blurs auto-terms – the terms in the TFD which really represent 

the different time-frequency components in a signal. Therefore, kernels need 

to be designed to obtain the best tradeoff between minimizing cross-terms 

and maintaining the auto-terms’ resolution. 

The general formulation in Equation (21) of the kernels 𝛾(t, f) (19) in the 

time-frequency domain is usually formulated in a so-called ambiguity domain 

such as g(𝜈, 𝜏), where 𝜈 and 𝜏 are Doppler and lag, respectively, as indicated 

in Equation (20). This is because the convolution operation in the time-

frequency domain becomes a multiplication in this ambiguity domain, which 

reduces its complexity. 

𝜌z(t, f) = ∫ ∫ g(𝜈, 𝜏) Az(𝜈, 𝜏) ej2𝜋(𝜈t−f𝜏)d𝜈
∞

−∞

d𝜏
∞

−∞

 (20) 

where Az(𝜈, 𝜏) is the ambiguity function of the analytic associate z(t) of the 

real signal s(t). Separable kernels are a special case when g(𝜈, 𝜏) = G1(𝜈)g2(𝜏). 

If G1(𝜈) = 1, the kernel is Doppler independent. If g2(𝜏) = 1, the kernel is lag 

independent. Table 6.1 shows the TFDs tested along with the corresponding 

kernels. The spectrogram is calculated using four different windows: 

rectangular, Hamming, Hanning and Bartlett. 

The S-Method is based on the relation of the Short-Time Fourier 

Transform (STFT) and the WVD: the STFT is a linear operation and does not 

suffer from any cross-terms [176]. Cross-terms in TFDs appear due to the 

interaction of the STFTs of different signal components, which can be 

avoided using a window frequency function P(𝜈) = 0, |𝜈| > LP. By changing 

LP, a gradual transition can be obtained ranging from the spectrogram (LP →

0, P(𝜈) = δ(𝜈)/2)  to the WVD (LP → signal length, P(𝜈) = 1) . The best 

choice of LP would be the value when P(𝜈) is wide enough to enable complete 

integration over the auto-terms, but narrower than the distance between the 

auto-terms, in order to avoid the cross-terms. Equation (21) describes how 

the SM is based on the STFT and the window frequency function P(𝜈). 

SMZ(t, f) = 2 ∫ P(𝜈) STFTz(t, f + 𝜈) STFTz
∗(t, f − 𝜈)d𝜈

∞

−∞

 (21) 
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KERNELS FOR TIME-FREQUENCY DISTRIBUTION 

TFD Kernel Type Kernel g(𝜈, 𝜏) 

WVD  1 
BJD Non-separable sinc(2𝛼𝜈𝜏) 
S-Method Non-separable Aw(𝜈, 𝜏) ∗

𝜈
P(−𝜈/2) 

Spectrogram Non-separable w(𝜈 + 𝜏/2) w(𝜈 − 𝜏/2) 
CWD Non-separable e−𝜈2𝜏2/𝜎 
ZAM Non-separable 

w(𝜏)
𝑎

2|𝜏|
sinc (

2𝜈𝜏

a
) 

MBD Lag-independent |𝛤(𝛽 + j𝜋𝜈)|2

𝛤2(𝛽)
 

EMBD Separable |𝛤(𝛽 + j𝜋𝜏)|2

𝛤2(𝛽)

|𝛤(𝛼 + j𝜋𝜈)|2

𝛤2(𝛼)
 

Table 6.1 Kernels for the TFDs [167] used in this work. The parameters a, 𝛼, β 
and σ and the window w define the kernel shape and are estimated taking into 

account the characteristics of the signal, where ν and τ are Doppler and lag, 
respectively 

6.2.4 Identification of Instantaneous Frequency 

The evaluation of different kernels by using synthetized ICG signals with 

known time-frequency properties can lead to the most adequate TFD for real 

ICG signals. To validate this extent, the IF can be calculated in the TFDs with 

the optimized kernels. 

There are several techniques to spot the different IF. One of the 

approaches used an iterative estimate of the first moment of the spectrogram 

as the IF in order to also construct a matched spectrogram estimate. This 

approach is stopped when convergence between two consecutive 

spectrograms was reached and produces a match spectrogram concentrated 

along the IF of monocomponent signals [177]. IF estimation from the maxima 

of the TFDs has a variance and bias highly influenced by the lag window 

length. Therefore, Stanković and Katkovnik [178], [179] proposed an adaptive 

algorithm for determining the optimal lag width based on the intersection of 

upper and lower confidence intervals of the IF estimates for each time instant.  

The IF estimation methods of multicomponent signals are highly 

dependent on the selected TFR and presence of cross-terms which could be 

mistaken for the IF estimate. A simple approach is to use time-frequency 

filtering methods to retrieve individual IFs [167]. Other approaches require 
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extending algorithms for estimation of monocomponent IF to the case of 

signals with various IF [180]. 

In general, concrete properties are required for the TFDs when detecting 

the IF of multicomponent signals: high time-frequency resolution and 

efficient suppression of cross-terms; direct amplitude estimation for the 

individual components, and minimum bias of the IF from the true IF laws. 

TFDs such as the MBD satisfy these requirements and the work by Stanković 

and Katkovnik in [178], [179] can also be extended for the case of 

multicomponent signals. 

This work proposes an algorithm to search the IF without setting the 

total number of existing IFs and their approximate frequencies. The steps are 

as follows: 

1. Find the local maximum peaks for every time instant in the TFD 

higher. 

2. Group these peaks so that they form a continuum along time. This is 

the expected behavior of IF laws since the synthetic TFDs are created 

as a Fourier series of tones whose frequency varies in a determined 

manner along time. 

It is important to note that the first and last 10% of time of the TFD is 

not to be taken into consideration in order to detect the IF, since the starting 

and final instants of the TFD are blurry and can introduce errors in 

calculations. 

6.3 Performance Calculation 

Choosing the best kernel for a signal requires a concrete strategy. In some 

studies, the kernel is selected in a visual way. However, this method is highly 

unpredictable and biased and therefore quantification methods have been 

proposed. Since the characteristics of the synthetic ICG signal to analyze are 

well known, it is possible to quantify which kernel produces the quadratic 

TFD with characteristics most similar to those of the ICG signal. Boashash 

and Sucic [169] proposed to measure the difference between the 

instantaneous frequency IF̂(n)  that a TFD produced and the theoretical 

instantaneous frequency IF(n). For this purpose, two statistical measures are 

used in order to quantify these differences: the mean square error (MSE) in 
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Equation (22) and the percentile root mean square difference (PRD) in 

Equation (23).  

MSE =
∑ [IF(n) − IF̂(n)]

2
 N

n=1

(n − 1)
 (22) 

PRD =
√∑ [IF(n) − IF̂(n)]

2
 N

n=1

√∑ [IF(n)]2 N
n=1  

 (23) 

where n is the time instant. 

Furthermore, Boashash and Sucic [169], [170], [181] also proposed a 

method to measure the performance of a TFD with an objective quantitative 

criterion expressed in Equation (24). 

P = 1 −
1

3N
∑ [

AS(n)

AM(n)
+

1

2

Ax(n)

AM(n)
+

E(n)

Δf(n)
 ]

N

n=1

 (24) 

where for a pair of signal components at time n (in the total interval of N time 

instants), AM is the average of the components main lobes amplitudes, As is 

the average of the components sidelobes, AX is the in-between components 

cross-terms amplitude, E is the average of the components mainlobes 

bandwidths, and Δf is the frequency separation between the IF components. 

A low P indicates poor performance while values close to one indicate good 

performance. Both performance P and the different statistical measures are 

used to select the best TFD and its parameters. 

A new performance P calculation is proposed. It is based on a 

modification to Equation (24) to take into account that the tones in a 

synthetized ICG signal will not have the same amplitude. Equation (25) shows 

the adaptation of the performance for a two-tone synthetized ICG signal. 

P = 1 −
1

3N
∑ [

1

2
|
As1(n)

A1(n)
| +

1

2
|
As2(n)

A2(n)
| + |

Ax(n)

A1(n) + A2(n)
| − D(n) + 1]

N

n=1

 (25) 

where, As1(n)  and As2(n) are the sidelobe amplitudes of tones 1 and 2, 

A1(n) and A2(n)  are the tone amplitudes of tones 1 and 2, Ax(n) is the 

amplitude of the cross-term between both tones, and D(n)  is defined in 

Equation (26). 

D(n) = (V1(n)/2 + V2(n)/2)/(f2(n) − f1(n)) (26) 
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where V1(n) and V2(n) are the bandwidths, and the instantaneous frequencies 

of the first and second tones are f1(n) and f2(n), respectively. 

A new approach has also been used in order to validate the performance 

of the studied distributions. Taking into account that the WVD of a linear 

frequency-modulated signal gives an unbiased estimate of the IF of such 

frequency, the performance of a TFD can also be studied as the likelihood 

between such TFD and the addition of the WVDs of every single tone in a 

test signal such as the synthetic ICG signal. This likelihood can be quantified 

by means of the cross-correlation (CC) between the studied TFD of the 

synthetized ICG signal, and the addition of the WVDs of every single tone in 

the synthetized ICG signal. 

Finally, the previously mentioned measurements (P, MSE, PRD and CC) 

have been applied to synthetic ICG signals with and without noise. To test 

the behavior of the different TFDs, noise tests have been conducted by 

corrupting the synthetic ICG signals with white noise in signal-to-noise ratios 

(SNR) decreasing from 20 dB to -5 dB in steps of 1 dB. 

According to the literature [167], [182]–[184], the sources of error in the 

estimation when detecting the IFs by using the TFD maximal positions are 

the estimate bias, the random deviation of the maxima in the auto-term due 

to small noise and the large random deviations due to false detection of 

maximal points outside the auto-terms. In [184], an adaptive IF estimator with 

a time-varying and data-driven window length is presented and the results are 

similar to the quality obtained if the IF information was known in advance. 

The work in [183] shows that the estimator of the polynomial WVD for 

signals with additive white Gaussian noise can be improved by the adequate 

selection of the kernel coefficients in the distribution. These works are 

expanded in [185] and it explains that the crucial parameter is the ratio of auto-

term magnitude and the standard deviation of the distribution. 

Once the initial synthetic signals have been designed and the optimized 

TFDs have been selected, these results have been applied to the complete 

database of 15 patients. Synthetic ICG signals have been designed using ICG 

patterns extracted from the real ICG signals in every patient. The synthetic 

ICG signals have been used to test the performance P, cross-correlation, and 

IF errors for the optimized TFDs. 
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6.4 Results of TFD Performance for Synthetic ICG 

Signals 

To test the performance of different TFDs, the previous synthetized two-

tone ICG signal with a linear frequency variation has been used. The 

performance has been calculated for each type of TFD kernel with the 

different characteristic parameters for each type of kernel. For each TFD, the 

values of the parameters for the best performance have been obtained 

through an optimization procedure to find the combination of parameters for 

which the performance P is maximal according to Equation (25). 

The results of the optimization process are plotted in Figure 6.1 and the 

specifications are included in Table 6.2. Figure 6.1 shows how the 

performance changes for each type of TFD depending on the values of several 

parameters such as window length 𝑤 for the spectrogram (Figure 6.1A), σ for 

the CWD (Figure 6.1B), a for the ZAM distribution (Figure 6.1C), β for the 

MBD (Figure 6.1D), LP and window length 𝑤 for the SM for all window 

types (Figure 6.1E), and α and β for the EMBD (Figure 6.1F). As the figure 

shows, the highest P performances are obtained for the spectrograms (except 

when the rectangular window is used) and the EMBD, and the lowest P 

performances are for the CWD. The S-Method provides results very similar 

to those offered by the spectrogram for all cases although slightly inferior. 

The blank spaces in Figure 6.1E represent the combination of values for 

which the performance calculation algorithm has not been able to identify the 

IF tones. Table 6.2 presents the values for these parameters for the best-

performance distributions, where the maximum performances are for the 

spectrogram when the Hamming (P = 0.781), Hanning and Bartlett (P = 0.780 

for both windows) windows are used, and for the EMBD (P = 0.778). 

In addition, the CC correlation between the studied TFDs of the 

synthetized ICG real-based signal, and the addition of the WVDs of the two 

single tone in the synthetized ICG signal is included in the same table. The 

CC correlation is best for the MBD and worst for some of the spectrograms 

and S-Method reaching even less than 0.5. Finally, a comparison between the 

expected and the resulting instantaneous frequencies has been performed 

using Equations (22)  and (23), whose results are also included in Table 6.2. 
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Figure 6.1 TFD Performance optimization results: the resulting performance P of 

the spectrograms (A), ZAM distribution (B), CWD (C), MBD (D), SM (E) and 
EMBD (F) for varying parameters is plotted. The SM is optimized for a rectangular 

(E1), Hamming (E2), Hanning (E3) and Bartlett (E4) windows 

Table 6.3 includes all the numerical values of the characteristic points 

for the central slice, corresponding to the instant 5s: the sidelobe amplitudes 

of tones 1 and 2 (As1 and As2), the tone amplitudes of tones 1 and 2 (A1 and 

A2), the amplitude of the cross-term between both tones Ax, the bandwidths, 

V1 and V2 and the instantaneous frequencies of the first and second tones 

are f1(n) and f2(n), respectively. Figure 6.2A contains the plot of the time 

slice at t = 5s with the characteristic points used to calculate the performance 

P according to Equation (25) for the spectrogram with a Barlett window 
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(column 1), CWD (column 2), and EMBD (column 3). Figure 6.2B shows 

the resulting TFDs for the kernels spectrogram with Hanning window, CWD 

and EMBD, and Figure 6.2C shows the theoretical IFs and the resulting IFs 

located on the TFDs. Some features of these kernels can be easily seen in 

Figure 6.2. The non-negativity characteristic of the spectrogram provides 

zero-valued cross-term and secondary term amplitudes easy to locate. 

  TFD OPTIMIZATION RESULTS 

  

Parameters 

 MSE (%) PRD (%) 

  P CC IF1 IF2 IF1 IF2 

WVD  0.698 - 0.013 0.029 0.952 0.727 

BJD  0.698 0.557 0.117 0.286 2.907 2.274 

SM Rect. w=929, LP=1 0.769 0.588 0.000 0.000 1.092 0.902 

 Ham. w=999, LP=2 0.764 0.492 0.000 0.000 0.763 0.409 

 Han. w=999, LP=1 0.757 0.471 0.000 0.000 0.775 0.424 

 Bart. w=999, LP=2 0.765 0.498 0.000 0.000 0.804 0.461 

Spect. Rect. w=919 0.764 0.506 0.019 0.060 1.176 1.043 

  Ham. w=1569 0.781 0.495 0.048 0.139 1.870 1.584 

  Han. w=1779 0.780 0.501 0.020 0.066 1.194 1.092 

  Bart. w=999 0.780 0.448 0.009 0.021 0.795 0.617 

CWD 𝜎=4.12 0.715 0.600 0.077 0.149 2.359 1.638 

ZAM a=2.3 0.618 0.603 0.023 0.086 1.290 1.248 

MBD 𝛽=0.0026 0.765 0.686 0.072 0.107 2.272 1.392 

EMBD 𝛼=0.002, 𝛽=0.988 0.778 0.577 0.077 0.114 2.362 1.432 

Table 6.2 Best-performance P and correlation CC of TFDs with their parameter 

values; MSE and PRD for the resulting and theoretical IFs for the first (IF1) and 

second (IF2) tones. 

In Figure 6.2, the frequency width of the IFs is larger for the 

spectrogram than for other kernels such as the EMBD and the CWD. It is 

also noticeable how the spectrogram and the EMBD kernels provide a softer 

TFD with fewer cross-terms between the two frequencies, which are 

prominent in the case of the CWD. A large number of undulations appear in 

addition to the two main ridges which represent the sum of the two frequency-

modulated signals. In the theoretical WVD, the cross-terms are located 

midway between the interacting components, oscillate proportionally to the 

distance between the auto-terms and in a direction orthogonal to the line 

connecting these auto-terms. 

Quadratic TFDs in which cross-terms are attenuated relative to the auto-

terms in often named a reduced-interference distribution and it is a well-
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studied topic in the literature [167], [186]. In general, since auto-terms in the 

(t,f) plane are usually smooth, their corresponding version in the (𝜈, 𝜏) plane 

tends to be concentrated in the origin. On the contrary, Figure 6.2B shows 

that cross-terms tend to be oscillatory in the (t,f) plane which lead to terms 

far away from the origin in the (𝜈, 𝜏) plane. Choosing the right kernel in the 

(𝜈, 𝜏)  plane can filter out information far from the center and can thus 

attenuate cross-terms. In addition, the starting and final seconds of the TFD 

seem fuzzier than the rest of the TFD. This fact is to be taken into account 

when calculating the IFs of the distributions. 

SLICE OPTIMIZATION RESULTS 

   Characteristic Points in TF Slice 

  Pt=5s As1 IF1 V1 Ax V2 IF2 A2 As2 

WVD 0.668 -0.229 1.19 39.4 0.358 46.4 2.35 0.420 -0.076 

BJD 0.522 -0.172 1.22 198.4 0.074 247.8 2.29 0.374 -0.103 

SM Rect. 0.770 0.028 1.19 56.1 -0.003 59.7 2.35 0.384 0.022 

SM Ham. 0.763 0.000 1.19 75.8 0.000 82.7 2.35 0.395 0.000 

SM Han. 0.754 0.000 1.19 85.6 0.000 87.5 2.35 0.420 0.000 

SM Bart. 0.767 0.000 1.19 74.5 0.000 80.0 2.35 0.408 0.000 

Spect.Rect. 0.757 0.022 1.19 166.0 0.030 178.8 2.38 0.346 0.059 

Spect. Ham. 0.776 0.000 1.19 159.3 0.000 286.9 2.35 0.263 0.000 

Spect. Han. 0.781 0.000 1.19 174.6 0.000 217.3 2.35 0.333 0.000 

Spect. Bart. 0.768 0.000 1.19 228.0 0.000 246.9 2.35 0.402 0.000 

CWD 0.716 -0.072 1.19 176.1 0.094 243.8 2.35 0.338 -0.051 

ZAM 0.605 -0.456 1.19 86.1 -0.109 109.3 2.35 0.285 -0.167 

MBD 0.753 -0.014 1.19 65.00 0.173 83.0 2.35 0.244 0.016 

EMBD 0.782 0.004 1.19 119.6 0.037 177.0 2.35 0.267 -0.003 

Table 6.3 Slice optimization results: amplitudes As1
, Ax, A2, As2, frequency bands 

V1 and V2 (in mHz) of the IF1 and IF2 (in Hz) for the calculation of the instant 

performance Pt=5s. Amplitudes A1 are always the unit 

Finally, the analysis of the robustness of the different kernels in relation to the 

signal-to-noise ratio (SNR) is summarized in Figure 6.3. Noise in TFDs has 

been previous analyzed in depth and the bias and variance for different types 

of additive and multiplicative noise have been determined [187]. The study of 

the additive Gaussian noise influence on TFDs has led to the design of robust 

TF distribution using the robust minimax Huber M-estimates [186], [188]. 
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Figure 6.2 Optimized TFD Results: (1) A time slice at t = 5s of the TFD with 

the characteristics points As1
, Ax, A2, As2, and frequency bands V1 and V2 in red of 

the two tones and the cross tones for the calculation of the performance P. (2) The 
resulting optimized TFD. (3) Location of the resulting first (in blue) and second (in 

red) IFs, IF1 and IF2 against the theoretical results (in black), for each type of 
analyzed TFD: Spectrogram with a Bartlett window (A), CWD (B), and EMBD (C) 
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In this study, all kernels except ZAM, CWD and BJD present similar 

performance P between 0.76 and 0.78 when SNR = 20 dB and such 

performance decreases at a similar speed for all cases until reaching a 

performance P between 0.73 and 0.76 when SNR = -5 dB although the case 

at which the P decreases is slightly higher for EMBD and MBD Figure 6.3A 

and B. Regarding Figure 6.3C, the MSE values are not similar for all kernels 

and vary from 0.01 to 0.12 for SNR = 20 dB and from 0.02 to 0.22 for SNR 

= -5 dB. However, the evolution of the decrease in MSE with decreasing SNR 

is similar for all kernels and the MSE values remain constant after 10 dB. 

 

 

Figure 6.3 TFD results to noise tests. (A) and (B) show the performance P of 
several TFDs to different SNR rates; (C) shows the root mean square error (MSE) 

in the detection of the first instantaneous frequency 
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6.5 Results of TFD Performance for Real ICG 

Signals 

According to the procedure of creation of the synthetic ICG signals 

explained in Chapter 3, the most frequent pattern has been extracted from 

every patient with a correlation coefficient of th = 0.85 between ICG beats, 

as in the case for the synthetized ICG signal described in Chapter 3. All 

patterns are included in Figure 6.4. These patterns have been used to create 

synthetic ICG signals with known linear time-frequency variations in order to 

calculate their TFDs with different kernels and test their performances. Table 

6.4 includes the performance P, cross-correlation performance CC, MSE of 

IF, and PRD of IF. The performance at a single slice in the central time Pt=5s 

has also been included. The performance P is maximum for the spectrogram 

when either Hanning or Hamming windows are used, and for the EMBD, 

while the WVD and the ZAM offer the worst results. However, the WVD 

also offers some of the best results for the location of the instantaneous 

frequency since MSE and PRD are minimum. 

 
Figure 6.4 Main ICG pattern for all patients in the data base. X-axis is 

normalized time and y-axis is normalized ICG. Patterns have been normalized to 
the same time duration in the x axes 
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TFD RESULTS FOR THE COMPLETE DATABASE 

  Performance MSE (%) PRD (%) 

  P Pt=5s CC IF1 IF2 IF1 IF2 

WVD 0.601 ± 0.011 0.610 ± 0.010 - 0.016 ± 0.003 0.017 ± 0.006 1.081 ± 0.099 0.542 ± 0.087 

BJD 0.686 ± 0.003 0.684 ± 0.004 0.603 ± 0.027 0.095 ± 0.005 0.196 ± 0.041 2.617 ± 0.074 1.871 ± 0.181 

SM Rect. 0.762 ± 0.002 0.762 ± 0.002 0.577 ± 0.004 0.027 ± 0.009 0.030 ± 0.017 1.380 ± 0.230 0.715 ± 0.168 

SM Ham. 0.780 ± 0.000 0.780 ± 0.000 0.465 ± 0.002 0.008 ± 0.000 0.009 ± 0.001 0.781 ± 0.013 0.396 ± 0.016 

SM Han. 0.780 ± 0.000 0.780 ± 0.001 0.483 ± 0.003 0.008 ± 0.000 0.009 ± 0.000 0.785 ± 0.014 0.415 ± 0.006 

SM Bart. 0.765 ± 0.000 0.765 ± 0.000 0.490 ± 0.003 0.009 ± 0.001 0.011 ± 0.001 0.824 ± 0.033 0.446 ± 0.012 

Spec. Rect. 0.710 ± 0.003 0.714 ± 0.004 0.657 ± 0.005 0.022 ± 0.009 0.046 ± 0.018 1.244 ± 0.236 0.896 ± 0.153 

Spec. Ham. 0.614 ± 0.003 0.620 ± 0.001 0.634 ± 0.014 0.038 ± 0.003 0.145 ± 0.006 1.655 ± 0.067 1.616 ± 0.035 

Spec. Han. 0.764 ± 0.002 0.767 ± 0.002 0.621 ± 0.028 0.013 ± 0.001 0.068 ± 0.003 0.964 ± 0.043 1.103 ± 0.028 

Spec. Bart. 0.776 ± 0.001 0.782 ± 0.001 0.587 ± 0.003 0.010 ± 0.001 0.020 ± 0.001 0.832 ± 0.037 0.596 ± 0.023 

CWD 0.766 ± 0.001 0.767 ± 0.001 0.640 ± 0.027 0.064 ± 0.003 0.121 ± 0.017 2.145 ± 0.052 1.476 ± 0.097 

ZAM 0.764 ± 0.000 0.765 ± 0.000 0.692 ± 0.030 0.018 ± 0.001 0.073 ± 0.014 1.154 ± 0.039 1.143 ± 0.102 

MBD 0.757 ± 0.000 0.758 ± 0.000 0.798 ± 0.031 0.048 ± 0.003 0.107 ± 0.006 1.863 ± 0.065 1.387 ± 0.042 

EMBD 0.765 ± 0.000 0.766 ± 0.000 0.699 ± 0.026 0.054 ± 0.005 0.116 ± 0.005 1.978 ± 0.099 1.445 ± 0.031 

Table 6.4 Average of performance measures: performance P, performance 

Pt=5sof the time slice at t = 5s, and cross-correlation performance CC, and 
instantaneous frequency in MSE and PRD errors for all cases using several TFDs 

6.6 Discussion of Results 

In this work, the primary key finding is the proposal of an innovative 

methodology for choosing a suitable TFD for a real biomedical signal. On the 

one hand, several authors have previously addressed the complexity of 

selecting kernels for TFDs by using visual methods or characteristics of the 

signals to analyze [167]. Nevertheless, this work takes into account that such 

characteristics are often partially unknown and the proposed methodology has 

been applied to ICG signals. On the other hand, some authors have used 

wavelet transforms for denoising ICG signals and for locating the 

characteristics points of the ICG curve [147], [148], [189], [190]. The main 

difference is that wavelet analysis uses some given analyzing wavelets (such as 

the so-called Mexican hat or Morlet wavelets) while the objective of this work 

was to investigate the overall time-frequency content of the ICG signals.  

Taking the most characteristic pattern of a patient’s ICG signal, a signal 

with a pre-defined linearly-variant time-frequency characteristics has been 

constructed and used to calculate the goodness of several TFDs. The 
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goodness has been calculated using the geometrical characteristics of the TFD 

according to formulation adapted from prior publications [169], [170], [181], 

and the MSE and the PRD between the expected and the theoretical IFs of 

the TFDs. Furthermore, a new performance measure has been introduced 

taking into account the fact that the IF detected in a WVD for a frequency 

linearly-variant signal is the best approximation of the instantaneous 

frequency of the signal.  

The second key finding relates to the different TFDs analyzed. In our 

results, neither the spectrogram nor the newer MBD and EMBD are clearly 

superior to each other. According to the results in Table 6.2, the kernels with 

largest P performances are the EMBD and the spectrogram when used with 

Hamming, Hanning or Bartlett windows (P ∈[0.768,0.782]). The S-Method 

provides results similar to the spectrogram although slightly inferior. The 

MBD and the spectrogram with the rectangular windows also present high P 

performance but it should be noted that the spectrogram is more sensitive to 

the length of the rectangular window than to the length of the rest of windows, 

as it can be seen in Figure 6.1A. Figure 6.1F also shows that the EMBD 

provides a stable performance P for a large variety of values for the parameters 

α and β. 

The correlation CC is best for MBD and worst for the spectrogram and 

the S-Method. However, this seems not to define the ability to detect the IF 

as predicted since the best MSE for both IF1 and IF2 is for the spectrogram 

with the Bartlett window. The MSE and PRD for the WVD is also very low, 

which is in line with the theoretical description of the WVD having a perfect 

IF when the signal tone changes in a linear fashion. 

Regarding the performance P in the central time slice of the TFDs, the 

best performance P is such of EMBD followed by the Hanning spectrogram. 

It is important to note that there are almost no secondary and cross lobes. 

Nevertheless, the thinnest tone is detected by MBD (after the WVD for the 

reasons explained above). In fact, the spectrogram provides the widest tones 

irrespective of the window in use. This is detrimental for the location of 

instant tones such as the ones used in this work. Moreover, the cross-

correlation performance CC has offered poor results for the spectrograms 

while the resulting CC is best for MBD. 

In general, the robustness of the spectrogram is related to the lack of 

undesirable artifacts present in other TFDs since the non-linearity is 

introduced in the final step of the spectrogram computation (when taking the 

squared magnitude). Nonetheless, the spectrogram does not satisfy the 
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instantaneous frequency criterion of the quadratic class of TFDs and hence it 

does not allow the exact extraction of the signal IFs from its dominant peaks 

[167]. 

Regarding the noise test, the results have shown that no TFD stands out 

for its resistance to noise. The performance of the spectrogram seems to 

decrease at a slower speed than the performance of other TFDs with similar 

performance such as MBD and EMBD. The root mean square errors between 

the expected IF and the calculated IF follow the same pattern for all TFDs 

and start to rise for SNR less than 2 dB. Finally, the tests on the whole 

database of patients confirm the above-mentioned discussion, since the 

results have been very similar, according to Table 6.4. 

6.7 Conclusions 

The technique explained in this chapter sheds light on the methodological 

aspects of the selection of the best kernel to analyze ICG signals and the 

robustness of these kernels to noise has been analyzed. In the case of the ICG 

signals, some traditional kernels such as BJD could be discarded due to the 

results of this work. As a result, the final choice of the kernel to use must 

follow a thorough evaluation of the measurements described in this chapter 

and the user’s experience on the type of signals to analyze. 
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Chapter 7 
7. TFD-Derived 

Features for ICG Signals 

during Anesthesia 
 

 

 

 

Abstract 

This chapter explores different TFD-derived features in order to 

characterize the time-frequency content of ICG signals with a reduced 

number of information. The features derived by using several kernels are also 

compared and discriminant analyses were conducted to differentiate between 

the TFD features from the ICG signals registered before and after the 

patient’s loss of consciousness during anesthesia procedures. The results of 

this chapter have been accepted for publication in the journal “Methods of 

Information in Medicine”.  

7 
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7.1 Introduction 

TFDs offer a useful insight in the time-frequency content of signals but 

they contain considerably large amounts of data. Therefore, features are to be 

extracted from the TFDs in order to improve its characterization. Several 

authors have proposed different features applied to TFD in order to describe 

non-stationary signals or to locate events based on the signal entropy, energy 

concentration measures or singular values decomposition [191]–[194]. This 

chapter compiles some of those features in order to apply them to the ICG 

signals from the CMA database explained in Chapter 3. Several kernels are 

also compared and discriminant analyses were conducted to differentiate 

between the TFD features from the ICG signals registered before and after 

the patient’s loss of consciousness during anesthesia procedures, as it has been 

also presented in Chapter 4 and 5. 

7.2 TFD-Derived Features 

The time variation in the spectrum of a signal can be characterized with 

several features extracted from its TFDs. This paper analyses a collection of 

TFD measures based on singular value decomposition (SVD), entropy 

characteristics, energy concentration and time and frequency characteristics of 

the ICG signal. 

7.2.1 SVD-Based TFD-Derived Features 

A TFD of NxM (time samples x frequency samples) can be decomposed 

using its singular values in the form 𝜌 = USVH, where U is an NxN matrix, S 

is an NxM diagonal matrix with positive real singular values 𝜎i, and VH is an 

MxM real unitary matrix. Following previous works [191]–[193], in this 

investigation several features are extracted from the singular values  𝜎i of the 

TFD, such as: FSVD1, the maximum  𝜎i ; FSVD2, standard deviation of  𝜎i ; and 

FSVD3, the number of non-zero 𝜎i . 

7.2.2 Entropy-Based TFD-Derived Features 

The concept of Shannon Entropy [195] has been applied to both the 

design of new TFDs with minimum entropy [194] and the quantification of 

TFD complexity in TFDs. If the TFD is interpreted as a quasi-probability 

distribution, a highly-concentrated TFD with a small number of components 

has a lower entropy than a signal with a large number of components. The 

TFD complexity (TFCM) in Equation (27) uses both SVD and Shannon 

entropy concepts and it represents the magnitude and the number of the non-
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zero singular values of the TFD [191], [192]. It is a useful feature as their 

magnitudes have a strong relationship with the information content in the 

TFD. 

TFCM =  − ∑ 𝜎i̅ log 𝜎i̅

N

i=1

, 𝜎i̅ > 0 (27) 

where 𝜎i̅ are the N normalized singular values, i.e.: 𝜎i̅ = 𝜎i/ ∑ 𝜎i
N
i=1 . 

If the entropy of a TFD is to be calculated without using its singular 

values, the Time-Frequency Rényi entropy (TFRE)  in Equation (28) is used 

in substitution of the Shannon entropy [196]. The latter cannot be used for 

the majority of TFDs as these are not non-negative. TFRE is a statistical tool 

sensitive to the number of signal components, their time duration and 

bandwidth, and their amplitude ratios. 

TFREq =
1

1 − q
log2 ∑ ∑ 𝜌q[n, m]

M

m=1

N

n=1
, q > 2 (28) 

 

The TFRE for odd values of q causes zero-mean cross-terms to diminish 

due to the summation operation. Thus, the TFRE cannot discriminate a high-

resolution TFD with significantly reduced cross-terms from a high-resolution 

TFD without any suppression of cross-terms. The TFD normalized Rényi 

entropy (TFNRE) in Equation (29) solves this issue so that cross-terms have 

an overall effect of reducing the TFNRE. 

TFNREq =  −
1

2
log2 ∑ ∑ [

𝜌[n, m]

∑ ∑ |𝜌[n, m]|M
m=1

N
n=1

]

qM

m=1

N

n=1
+ log2 δtδf (29) 

where δt  and δf  are the time and frequency sampling steps, respectively. 

Baranjiuk et al. [197], [198] analyzed the influence of the parameter q when 

calculating both TFRE and TFNRE and concluded that non-integer orders 

are yield complex values and so appeared of limited utility. In this study, a 

large range of q values (q = {3, 4, …, 14, 15, 18, 21, 24, 27, 30, 35, 40, 45, 50}) 

have been selected for TFRE and TFNRE in order to analyze its influence. 

7.2.3 Extended Time-Domain TFD Features 

In order to use statistical time-domain features, such as mean and 

variance, the one-dimensional time-domain moments have been replaced with 
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the corresponding two-dimensional TF characteristics according to [199]. 

Table 7.1 includes all extended time-domain features. 

 
TIME-FREQUENCY EXTENSION OF TIME-DOMAIN FEATURES 

Feature TF Formulation 

TFD Mean 
mTF =

1

NM
∑ ∑ 𝜌[n, m]

M

m=1

N

n=1
 (30) 

 

TFD Variance 
𝜎TF

2 =
1

NM
∑ ∑ (𝜌[n, m] − mTF)2

M

m=1

N

n=1
 (31) 

 

TFD Skewness 
𝛾TF =

1

(NM − 1)𝜎TF
3 ∑ ∑ (𝜌[n, m] − mTF)3

M

m=1

N

n=1
 (32) 

 

TFD Kurtosis 
kTF =

1

(NM − 1)𝜎TF
4 ∑ ∑ (𝜌[n, m] − mTF)4

M

m=1

N

n=1
 (33) 

 

TFD Coef. of variation 
cTF = 𝜎TF/mTF (34) 

 

Table 7.1 Time-frequency extension of time-domain features 

7.2.4 Extended Frequency-Domain TFD Features 

The energy concentration measure (ECOME) determines the 

concentration of the dominant component at each location in the TF domain. 

Signals with TFD distributed in the TF plane will have a larger ECOME, while 

concentrated TFDs will have a smaller ECOME. 

ECOME = (∑ ∑ |𝜌[n, m]|
1
r  

M

m=1

N

n=1
)

r

, r > 1  (35) 

 

Sub-band energy-based features represent the energy of the ICG signal 

in different frequency sub-bands. To the best of the authors’ knowledge, no 

previous studies have been published regarding the spectral content of the 

ICG signals. Therefore, the frequency plane of the TFDs has been divided by 

visual inspection and by using pairs of logarithmically spaced values. In total, 

138 frequency bands have been analyzed and their corresponding features 

have been calculated using Equation (36). 

FBandi
= ∑ ∑ 𝜌[n, m]

Mi1

m=Mi0

N

n=1
, i = 1 … 138 (36) 

where Mi0 and Mi1 delimit the starting and end frequencies of the i-th band. 
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7.3 Selected Features and Statistical Analysis 

For the work in this chapter, several TFD kernels have been used: the 

spectrogram with Hanning window, the Choi-Williams Distribution (CWD), 

the Zhao-Atlas-Marks distribution (ZAM), the Modified B-Distribution 

(MBD) and the Extended Modified B-Distribution (EMBD). Their 

parameters have been selected by using the synthetic signals explained in 

Chapter 3 and using the methodology presented in Chapter 6. The details of 

the kernels are included in Table 6.2. 

In order to characterize signals corresponding to the segment previous 

to LOC and that after LOC, a range of features were selected in our study. 

These features are listed in Table 7.2. 

SELECTED TIME-FREQUENCY FEATURES 

Class Feature Name Formulation 

SVD-based Maximum SV FSVD1 

 SV Standard Deviation FSVD2 

 SV Range FSVD3 

Entropy-based TF Complexity TFCM 

 TF Rényi Entropy TFREq 

 TF Normalized Rényi Entropy TFNREq 

Extended time-domain Mean mTF 

 Variance 𝜎TF
2  

 Kurtosis kTF 

 Skewness 𝛾TF 

 Coefficient of variation cTF 

Concentration-based Energy Concentration ECOME 

Sub-bands energy-based Energy in i-th band FBandi
, i = 1 … 138 

Table 7.2 Selected features to distinguish between pre-LOC and post-LOC ICG 
segments. All features are n.u. 

Quantitative data are presented as mean ± standard deviation and 

qualitative data as frequency (percentage). A non-parametric test, the 

Wilcoxon signed-rank test, was used to investigate whether the analyzed 

features changed after induction of anesthesia. 

Features that satisfy this condition were considered for building a linear 

discriminant function. The leave-one-out method was used for validation. 

Sensitivity (Sen), specificity (Spe) and the area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve were calculated to assess the 
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ability of the studied features to predict the occurrence of LOC. Sen 

represents the proportion of pre-LOC ICG segments correctly classified as 

pre-LOC and Spe represents the proportion of post-LOC ICG segments 

correctly classified as post-LOC. 

Grouped sensitivities and specificities are presented as mean [95% 

confidence interval (CI)]. In the classification, the cut-off values are always 

the main of the centroids of the groups. Predicted membership is calculated 

by first producing a discriminant score for each case using a linear 

discriminant function. Then cases are classified in a concrete group depending 

on whether their discriminant score is smaller or larger than the cut-off value. 

Relationship between time-frequency derived indices and patient 

characteristics was assessed using Pearson’s coefficient of correlation (𝜌). 

Significance level was always set at p-value<0.05. 

 

7.4 Results of TFD-Derived Features 

After isolating ten-second segments from before and after LOC, TFDs 

were calculated with different kernels and, then, the features were extracted 

and analyzed. Figure 7.1 displays an example of a case analyzed using an 

EMBD. Figure 7.1A shows the pre-LOC TFD and Figure 7.1B shows the 

post-LOC TFD. The main differences between the two states are the content 

below 1Hz and the instantaneous frequencies, which seem to be lower in 

Figure 7.1B. The subsequent results aim to show tables and figures how the 

several TFD-derived features reported in Table 7.2 are related to the patient’s 

state. 

  
Figure 7.1 EMBD of an ICG segment before LOC (A) and after LOC (B) 
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7.4.1 SVD-based TFD-derived Features 

SVD-based TFD features change from before to after LOC in a 

statistically significant manner in the case of FSVD1, FSVD2 and FSVD3 values. 

Table 7.3 shows the average values for these features for all the TFD kernels.  

It can be seen that the defined SVD features are higher before LOC than after 

LOC. These results have been obtained with values of Sen, Spe and AUC very 

similar for all kernels and all SVD-based TFD features. In this way, over the 

different kernels used, Sen(%) is 76.4 [1.1] for FSVD1, 78.0 [0.6] for FSVD2 and 

65.0 [3.2] for FSVD3. In addition, Spe(%) is 49.2 [0.4] for FSVD1, 51.0 [0.4] for 

FSVD2 and 57.0 [2.5] for FSVD3; AUC is 0.69 [0.01] for FSVD1, 0.70 [0.00] for 

FSVD2 and 0.65 [0.01] for FSVD3. The best SVD-based TFD feature is FSVD3 

calculated with an EMBD kernel, which presents an AUC = 0.63, Sen = 67.7% 

and Spe = 60.3%. 

  SVD-BASED TFD FEATURES 

  FSVD1 FSVD2 FSVD3 

  pre-LOC post-LOC pre-LOC post-LOC pre-LOC post-LOC 

CWD (4.0 ± 3.0)·104 (2.4 ± 1.6)·104 (9.8 ± 7.1)·102 (5.6 ± 3.7)·102 (8.1 ± 1.4)·101 (7.4 ± 1.3)·101 

MBD (1.5 ± 1.1)·105 (9.2 ± 6.4)·104 (3.6 ± 2.6)·103 (2.0 ± 1.4)·103 (1.3 ± 0.1)·102  (1.2 ± 0.2)·102 

EMBD (1.4 ± 1.1)·107 (8.4 ± 5.8)·106 (3.2 ± 2.3)·105 (1.8 ± 1.2)·105 (2.4 ± 0.6)·102 * (2.1 ± 0.5)·102 

Spec. (Han.) (1.5 ± 1.1)·107 (8.3 ± 5.6)·106 (3.1 ± 2.3)·105 (1.7 ± 1.1)·105 (1.0 ± 0.1)·102 (9.7 ± 1.2)·101 

ZAM (6.3 ± 4.7)·106 (3.8 ± 2.7)·106 (1.6 ± 1.2)·105 (9.1 ± 6.0)·104 (5.4 ± 1.9)·102 (4.6 ± 1.4)·102 

Table 7.3 Mean and standard deviation of the SVD-based TFD features. All changes 
between pre-LOC and post-LOC are statistically significant. * indicates that Sen > 60%, Spe 

> 60% and AUC > 60%. 
 

7.4.2 Entropy-based TFD-derived Features 

Regarding the entropy-based TF features, several results have been 

obtained. The TFCM presents statistically significant differences between pre-

LOC and post-LOC for all kernels (see Figure 7.2). In average for all kernels, 

Sen(%) is 65.4 [4.5], Spe(%) is 51.6 [1.6] and AUC is 0.62 [0.03]. The 

complexity of the TFD responses is greater during pre-LOC than during post-

LOC. 

TFREq  always shows statistically significant differences between pre-

LOC and post-LOC for all kernels and for all q values. Furthermore, Sen, Spe 

and AUC are similar for all q values as seen in Figure 7.3 and also for all 
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kernels as Table 7.4 shows. Figure 7.3A shows the TFREq for an exemplary 

kernel such as the EMBD for all the different q values. TFREq emphasizes 

high probabilities when q > 1. This figures shows how the values converge as 

the q increases and the values are always higher for the pre-LOC signals than 

for the post-LOC signals. 

 

 
Figure 7.2 TFCM values for different kernels before (blue) and after (red) LOC. 

All changes are statistically significant 

 

AREA UNDER THE CURVE FOR TIME-FREQUENCY RÉNYI ENTROPY 

 
Sen(%) Spe(%) AUC 

pre-LOC  
TFRE50 

post-LOC  
TFRE50 

CWD 61.52 [0.16] 68.90 [0.24] 0.69 [0.00] -9.26 ± 1.18 -8.51 ± 1.13 

MBD 61.07 [0.19] 67.19 [0.48] 0.69 [0.00] -11.38 ± 1.25 -10.59 ± 1.21 

EMBD 63.01 [0.09] 69.33 [0.27] 0.71 [0.00] -17.64 ± 1.24 -16.77 ± 1.20 

Spec. (Han) 62.29 [0.36] 69.92 [0.21] 0.72 [0.00] -17.15 ± 1.23 -16.22 ± 1.13 

ZAM 62.44 [0.27] 69.41 [0.46] 0.70 [0.01] -16.73 ± 1.22 -15.91 ± 1.15 

Table 7.4 Values for Time-Frequency Rényi Entropy: Mean [95% CI] of area under the 
curve (AUC) of the receiving operating curve (ROC), sensitivity (Sen) and specificity (Spe) 

of the TFREq feature for all the studied distributions and all q values. TFRE50 values for 

before and after LOC have also been included 

TFNRE also shows statistically significant differences between pre and 

post-LOC for all q values in the case of the spectrogram and in the case of 

the EMBD for q ≥ 6. Compared to the TFRE values, the normalization has 

decreased the AUC below 0.6 in all cases and Sen and Spe are below 60%. 

Figure 7.3B also shows the TFNRE for an exemplary kernel such as the 

EMBD for all the different q values. 
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Figure 7.3 Pre (blue) and post-LOC (red) median values for TFRE (A) and 

TFNRE (B) for the EMBD. Changes between pre-LOC and post-LOC values are 
always statistically significant (p-value<0.05) 

7.4.3 Extended Time-Domain TFD-derived Features 

The time-extended TF features show statistically significant differences 

between the pre-LOC and post-LOC values of mTF  and  𝜎TF
2 , for all TFD 

kernels. In addition, there are also statistically significant differences in the 

case of kTF for all TFD kernels except for the CWD and in the case of the 

𝛾TF for all TFD kernels except for CWD and ZAM. The difference between 

the pre-LOC and post-LOC values of cTF is only statistically significant for 

the spectrogram. For all TFD kernels, the AUC for these features is 0.70 

for  mTF  and  𝜎TF
2 , and between 0.51 and 0.63 for kTF, 𝛾TF  and cTF . Spe is 

always lower than 60% (between 38.2 and 54.2) for all time-extended TF 

features and for all kernels but Sen(%) is in average 75.5 [0.3] for mTF and 

85.8 [0.3] for 𝜎TF
2 . Table 7.5 shows that all the time-extended TF features 

decrease after LOC for the spectrogram. This also occurs for the rest of 

kernels. 

EXTENDED TIME-DOMAIN TFD-DERIVED FEATURES 

 pre-LOC post-LOC 

mTF 486.5 ± 340.5 275.0 ± 168.4 

𝜎TF
2  (3.6 ± 5.3)·107 (1.0 ± 1.5)·107 

kTF 16.1 ± 2.8 15.0 ± 2.4 

𝛾TF 319.0 ± 100.9 278.0 ± 87.1 

cTF 9.8 ± 1.5 9.5 ± 1.3 

Table 7.5 Time-extended TF features of the ICG signals before and after 
LOC using the spectrogram kernel with a Hanning window. All changes are 

statistically significant. Features have arbitrary units. 
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7.4.5 Energy Concentration 

ECOME values for all TFD kernels before and after LOC are plotted in 

Figure 7.4 and these are higher after LOC than before it. All changes have 

proven to be statistically significant. In average, Sen(%) is 75.3 [2.1], Spe(%) 

is 51.6 [1.7] and AUC is 0.72 for all kernels. 

 

 
Figure 7.4 Pre and post-LOC ECOME values for the CWD (A), the EMBD (B), 

the MBD (C), the spectrogram with a Hamming window (D) and the ZAM 
distribution (E). Changes between pre and post LOC values are always statistically 

significant (p-value<0.05) 

7.4.6 Sub-Bands Energy-based Features 

The spectrum of the TFDs has been divided into 138 different frequency 

bands. The MBD and the ZAM distribution are the ones with the largest 

number of statistically significant frequency bands, with 114 and 116, 

respectively. The rest of kernels provide less significant bands: EMBD with 

106 bands, CWD with 100 band and the spectrogram with a Hanning window 

with 91 bands. The spectral content of the TFD bands is always greater before 

LOC than after LOC. AUC is in almost all cases above 0.6 but both Sen and 

Spe are not larger than 60% at the same time. Figure 7.5 shows how the 

energy in some of the frequency bands changes between before and after LOC. 

Moreover, this figure also shows how most energy is concentrated between 1 

and 4 Hz. The very low frequency from 0 to 0.05 Hz is also prominent, due 

to the non-zero signal mean. 
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Figure 7.5 Mean and standard deviation of the energy of some bands for the pre-
LOC (blue) and post-LOC (red) periods. The kernel used for this figure is the 

MBD. * indicates that the change is statistically significant (p-value<0.05) 

7.5 Discussion of Results 

TFDs have been analyzed using five different kernels and information 

has been extracted using several features based on SVD decomposition, 

entropy, extended time-domain, concentration and sub-bands energy. All 

features decreased after LOC. The EMBD kernel offered the largest quantity 

of features with statistically significant differences with 156 features. There 

were found 129 features for CWD, 129 for MBD, 147 for the spectrogram 

and 146 for ZAM distribution. As it can be seen in Table 7.3, Table 7.4, and 

Table 7.5, after EMBD kernels such as the spectrogram and the ZAM 

distribution also offer a large amount of significant features but ZAM usually 

introduces more cross-terms than other distributions. 

The robustness of the spectrogram is generally related to the lack of 

undesirable artifacts present in other TFDs since the non-linearity is 

introduced in the final step of the spectrogram computation. Nonetheless, the 

spectrogram does not satisfy the instantaneous frequency criterion of the 

quadratic class of TFDs and hence it does not allow the exact extraction of 

the signal IFs from its dominant peaks. 

Among all the features which have been analyzed, TFRE is the most 

successful. For all kernel types and for any q value, TFRE values decrease 

after the loss of consciousness and both their sensitivity and specificity are 

always above 60%. Moreover, the AUC is always above 0.6. The increase in 

the TFRE is theoretically related to the decrease of predictability or the 

increase of disorder. From a biological point of view, this would imply that 
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the ICG signals are more deterministic after LOC, which could be related to 

the mechanical ventilation of the patient during anesthesia. Regarding the sub-

bands energy-based features, these show that most of the ICG energy is 

concentrated between 1 and 4 Hz, since their values are higher than in the rest 

of frequency band. Nevertheless, sensitivity and specificity of the features 

should be improved in the future for such features to be adequate for clinical 

applications. 

Our study presents some limitations which must be considered. The 

pharmacological effects of the drugs infused in the patients may induce 

different depth of anesthesia states depending on the target concentrations. 

This is especially true when analyzing signals after LOC. This fact does not 

reduce the validity of results but should be taken into account especially in 

future works for which information from depth-of-anesthesia monitors 

should be included. 

7.6 Conclusions 

In conclusion, this chapter presents a collection of various features which 

can be obtained from TFDs. Different kernel TFDs have been calculated and 

their results have been compared. When analyzing signals representing 

different anesthetic states, the TF Rényi entropy is the most prominent feature. 

Regarding the various kernels which have been analyzed, the EMBD is the 

most successful for the extraction of features showing statistically significant 

differences in different anesthesia points. 

 

 



 

 

 

 

 

 

 

Chapter 8 
8. TFDs and 

Recurrence Plots for 

ICG Signals during 

Anesthesia 
 

 

Abstract 

This chapter extends the work in the previous chapter by analyzing the 

behavior of features derived from the TFDs during anesthesia. In addition, 

features from Recurrent Plots – a methodology to analyze periodicities in non-

stationary signals – are also included in the analysis. Relationships between all 

the presented features with hemodynamic parameters and depth of anesthesia 

are calculated. Finally, several prediction models for CO and depth-of-

anesthesia state are discussed. 

  

8 
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8.1 Introduction 

In the previous chapters, an analysis of TFDs for ICG signals has been 

presented and some results regarding TFD-derived features have also been 

analyzed. Nevertheless, the study in Chapter 7 has only considered two 

different patient states: consciousness and unconsciousness. Therefore, the 

study presented in the present chapter completes the previous analyses by 

including complete surgery procedures. 

The main objective is to analyze the changes in TFD-derived features in 

ICG signals during the whole surgeries. This chapter first describes the 

relationship between TFD-derived features and the depth of anesthesia. It 

also describes the relationships between TFD-derived features and the 

hemodynamic state of the patient, defined by the HR, CO, SV, and blood 

pressure. Finally, the relationship between TFD-derived features and heart 

rate variability indices described in Chapter 4 is also analyzed. Furthermore, 

features extracted from recurrence plots of ICG signals are also studied along 

with TFD-derived features. As a secondary objective, several system such as 

classification trees and adaptive neuro-fuzzy inference systems (ANFIS) are 

designed to predict cardiac output and depth of anesthesia by using TFD-

derived features. 

8.2 Recurrence Plots Features 

The Recurrence Plot (RP) graphically displays distance correlations and 

non-stationarity in time series. No mathematical assumptions regarding the 

system generating the time series are required and thus this tool is suitable for 

the analysis of physiological signals such as the ICG [200]. 

RPs are calculated using an embedding dimension m, a time delay t and 

a threshold value 𝜀. First, the time series to analyze is embedded to a high-

dimensional space with the time-delay embedding technique and a trajectory 

matrix is obtained [201], [202]. The trajectory matrix X for a time series si  of 

length N will be as Equation (37). 

X = [

x1

x2

⋮
xM

] = [

s1 s1+t
… s1−(m−1)t

s2 s2+t
… s2−(m−1)t

⋮
sN−(m−1)t

⋮
sN−(m−2)t

⋱
…

⋮
sN

] (37) 

Each of the M = N − t(m − 1) row vectors xj in the matrix represents 

an m-dimensional trajectory point in the reconstructed state-space. The RP of 
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a signal can be obtained with the state-space reconstruction. The RP is an 

MxM matrix whose elements can be calculated using Equation (38). 

Ri,j = Θ(𝜀 − ‖xi − xj‖)     i, j = 1,2, … , M (38) 

where Θ is the Heaviside function and the ‖·‖ is the Euclidean norm, defined 

in Equation (39) and Equation (40), respectively. This means that if the 

distance between xi and xj is less than a threshold 𝜀, then Ri,j = 1. 

Θ(z) =  {
0, z ≤ 0
1, z > 0

    (39) 

∀z = {z1, … , zM}, ‖z‖ = √|z1
2| + ⋯ + |zM

2 | (40) 

 

The RPs are quantified with the recurrence rate RRrec  (percentage of 

recurrence points in a RP, which corresponds to the correlation sum), the 

determinism DET (the percentage of recurrence points which form diagonal 

lines), the entropy ENTR (the Shannon entropy of the probability distribution 

of the line lengths) and the average diagonal line length L. The more periodic 

a signal is, the higher RRrec  is. It reflects the longest duration of a stable 

interaction and the average duration of these interactions. DET offers 

information about the duration of a stable interaction. In our study, ℓmin is 2 

samples. Finally, the more different the length of the diagonals are, the more 

complex the deterministic structure of the RP is and the larger the ENTR 

value is.  

In Table 8.1, these measures are explained. In addition, P(ℓ) is the 

number of diagonal structures whose length is ℓ and p(ℓ) is the probability 

density of the diagonal structure whose length is ℓ  and it is defined as 

P(ℓ)/sum(P(ℓ)). Finally, ℓmin is a threshold for the minimum length of a line.  

 

 

 

 

 



8 TFDs and Recurrence Plots for ICG in Anesthesia 106 

 
RECURRENCE PLOT FEATURES 

RRrec 
1

M2
∑ Ri,j

M

i,j
 (41) 

 

DET 
∑ ℓP(ℓ)M

ℓ=ℓmin

∑ Ri,j
M
i,j

 (42) 

 

ENTR − ∑ p(ℓ) ln p(ℓ)
M

ℓ=ℓmin

 (43) 

 

L 
∑ ℓP(ℓ)M

ℓ=ℓmin

∑ P(ℓ)M
ℓ=ℓmin

 (44) 

 

Table 8.1 Features derived from Recurrence Plots 

 

8.3 TFD-Derived Features 

For this study of the time-frequency characteristics of the ICG signals, a 

spectrogram with a rectangular window was constructed for every second of 

signal. In Chapter 7, spectrograms showed a considerable performance and 

its Fourier Transform implementation is simple. This was accomplished by 

using the last 10 seconds of available signal. ICG signal segments for which 

the associated Signal Quality Index (SQI) was decreasing were discarded. SQI 

is given by the qCO monitor and it reflects the quality of the signal. All signal 

segments with an increasing SQI were accepted. TFD-Derived features from 

Chapter 7 were calculated for those spectrograms: extended time-domain 

TFD features (mean mTF, variance 𝜎TF
2 , skewness 𝛾TF, kurtosis kTF, coefficient 

of variation cTF), extended frequency-domain TFD features (ECOME), and 

entropy-based TFD-derived features (Rényi Entropy TFREq and normalized 

Rényi Entropy TFNREq). Rényi entropies were calculated with q = 3 since the 

literature research [196]–[198]and results in Chapter 7 showed that this 

parameter provides efficient results. Furthermore, three additional extended 

frequency-domain TFD features are calculated [203]: 

- TF flux: provides an assessment of the rate of signal energy in the TF 

domain. 

ℱℒ(ℓ,m) = ∑ ∑ |𝜌z[n + 1, k + q] − 𝜌z[n, k]|

M−q

k=1

N−ℓ

n=1

 (45) 
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where 𝜌z[n, k] is the discretization of the NxM TFD, and ℓ and q 

determine the direction along which the rate of change of the signal 

energy is estimated. Three TF flux directions are calculated: the time 

axis using (ℓ = 0, q = 1), the frequency axis using (ℓ = 1, q = 0), 

and the diagonal axis (ℓ = 1, q = 1). 

- TF flatness: is defined as the ratio of the geometric mean of a TFD 

divided by its arithmetic mean. It is a useful tool to classify signals 

whose energy is concentrated in the time-frequency plane from 

signals whose energy is spread in this same domain. 

𝒮ℱ = MN
∏ ∏ |𝜌z[n, k]|

1
MNM

k=1
N
n=1

∑ ∑ 𝜌z[n, k]M
k=1

N
n=1

 (46) 

- Minkowski distance: is a distance measure, which is not sensitive to 

small values in the TFD. Signals with power distributed over the 

whole time-frequency plane will have a larger M2. 

M2 = (∑ ∑|𝜌z[n, k]|
1
2 

M

k=1

N

n=1

)

2

 (47) 

 

The TFD total energy Etot , the five first Instantaneous Frequencies 

IFi, i = 1 … 5, its energies Ei, i = 1 … 5, and the decay of such energies were also 

calculated. 

8.4 Statistical Analysis 

Recurrence Plots are calculated varying the embedding dimension m={2, 

3, 4, 5, 6}, the time delay t={1, 33, 62} and a threshold value 𝜀={0.3, 0.5, 0.7}. 

The first objective of this Chapter was to choose the best combination of 

parameters t, m and 𝜀 to enhance the difference between RPs of ICG signals 

taken from before and after LOC. Therefore, mean and average of the RP-

derived features from before and after LOC were calculated and a 

discriminant analysis was conducted. The final selection was made based on 

the best specificity Spe(%), sensitivity Sen(%), and area under the ROC (AUC). 

A total of 131 patients from the CMA database explained in Chapter 3 were 

analyzed for selecting the best combination of RP parameters. 
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As explained in Chapter 2, the index of depth of anesthesia qCON was 

divided into four different patient states: awakeness (qCON > 80), sedation 

(qCON ∈  [60, 80]), general anesthesia (qCON ∈  [40, 60]) and deep 

anesthesia (qCON < 40). The probability of prediction of the patient states 

Pk has been calculated for all TFD-derived and RP-derived features. In this 

case, both TFD-derived and RP-derived features have been calculated for 

every second of signal using the last 10 seconds of available signal. The 

prediction probability Pk  has been explained in Chapter 2. Correlations 

between all TFD-derived and RP-derived features with HRV indices, blood 

pressure, CO, SV and depth-of-anesthesia index qCON have also been 

calculated. 

In addition, decision trees have been trained to predict the patient state 

(awakeness, sedation, general anesthesia, and deep anesthesia) by using several 

TFD-derived features and RP-derived features. Finally, adaptive neuro-fuzzy 

inference systems (ANFIS) were also trained to predict cardiac output. 

Decision trees are a type of training systems useful to predict categorical 

variables (such as the patient’s anesthetic state). ANFIS are useful to model a 

continuous output variable when one or more continuous input variables are 

available. 

8.5 Selection of RP Parameters 

An initial RP was calculated as t = 1 sample, m = 3, 𝜀 = 0.5. Figure 8.1A 

and Figure 8.1B show the trajectory matrix of a pre-LOC ICG signal and a 

post-LOC ICG signal, respectively. Using the m-dimensional trajectory matrix 

and Equations (37) and (38), the RPs can be constructed. Figure 8.2A shows 

the RP before the LOC and Figure 8.2B shows the RP after LOC. Figure 

8.2C and Figure 8.2D show the recurrence plot with no threshold 𝜀. 

Table 8.2 and Figure 8.3 show the results of the four features extracted 

from the previous RPs. All RP-derived features show statistically significant 

difference in the two cases studied (before and after LOC). Sen and AUC are 

especially high for DET while Spe is higher for L than the rest of features. 

Both the plots and the table show how all RP-derived features increase after 

LOC. In general, ENTR is the best parameter in AUC, Spe and Sen. 
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Figure 8.1 Three-dimensional trajectory matrix of a pre-LOC (A) and post-LOC 
(B) ICG signals. ICG(n-t), ICG(n-2t) and ICG(n-3t) are delayed versions of the 

ICG signal with m=3 and t=1 

 
Figure 8.2 Recurrence plots with m=3 and t=1 samples above a threshold 𝜀 = 0.5 

before (A) and after LOC (B) and recurrence plots with no threshold before (C) 
and after LOC (D) 
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DESCRIPTION OF RP-DERIVED FEATURES 

 Both Pre-LOC Post-LOC AUC Sen Spe 

RRrec 0.206 ± 0.036 0.201 ± 0.034 0.212 ± 0.037 0.605 50% 66% 

DET 0.997 ± 0.003 0.996 ± 0.004 0.998 ± 0.002 0.718 84% 53% 

ENTR 3.120 ± 0.293 3.010 ± 0.289 3.230 ± 0.255 0.716 70% 63% 

L 11.6 ± 2.9 10.7 ± 2.5 12.6 ± 2.9 0.700 59% 69% 

Table 8.2 Mean, standard deviation and discriminant analysis of the RP-derived 

features with t = 1 samples, m = 3, and 𝜀 = 0.5. All differences have p-value < 
0.05, rejecting the hypothesis that the distribution of the difference of the paired 

values of before and after LOC of a feature comes from a zero-median distribution 

 

Figure 8.3 Boxplots of the quantification features of the recurrence plots for t = 1 

samples, m = 3, and 𝜀 = 0.5. On each box, the central mark indicates the median, 
and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually using the '+' symbol 

Other combinations of parameters were tested: 𝜀 was set to {0.3, 0.5,  

0.7}; t was set to {1, 3, 33, 62} samples; m was set to {1, 2, 3, 4, 5, 6}. The 

delays t = {1, 3} samples were proposed as an initial exercise and t = {33, 62} 

samples were proposed since they are a multiple of the dominant period 

(which here is supposed to be a heart rate of 60 bpm). This ensures an accurate 

reconstruction of a system’s underlying attractor [204]. Other studies [205] 

also propose to use the minimum lag which minimizes the autocorrelation 

function of the signals since this value maximizes the linear independence of 

the coordinates of the embedding vector. 

Figure 8.4 shows the evolution of the AUC of DET, ENTR, L and RR 

with t, m and 𝜀 . As it can be seen in Figure 8.4A, AUC of RP-features 

decrease with m. Figure 8.4B shows that AUC is maximum for t = 33 and 



111 Chapter 8 

 

 

Figure 8.4C shows that AUC is approximately constant with 𝜀 for DET and 

RRRec. The AUC of L increases with 𝜀 while AUC of ENTR decreases. RPs 

calculated with t = 33 samples, m = 2 and 𝜀 = 0.5 were used for the rest of 

this chapter due to its high AUC, Sen and Spe. Table 8.3 shows the results 

for this combination. Other combinations which provided similar results were 

t = 33, m = 3 and 𝜀 = 0.5, and t = 1, m = 4 and 𝜀 = 0.5. 

 
Figure 8.4 Evolution of AUC of the RP-derived features with the RP parameters: 

dimension m (A), lag t (B) and error 𝜀 (C) 

DESCRIPTION OF RP-DERIVED FEATURES 

 Both Pre-LOC Post-LOC AUC Sen Spe 

𝑅𝑅𝑟𝑒𝑐 0.114 ± 0.036 0.108 ± 0.033 0.120 ± 0.038 0.623 46% 68% 

DET 0.998 ± 0.002 0.997 ± 0.002 0.998 ± 0.001 0.760 81% 53% 

ENTR 3.211 ± 0.347 3.074 ± 0.330 3.348 ± 0.309 0.724 67% 65% 

L 13.2 ± 4.0 11.8 ± 3.3 14.7 ± 4.1 0.719 63% 70% 

Table 8.3 Mean, standard deviation and discriminant analysis of the RP-derived 

features with t =33, m = 2, ε = 0.5. All differences have p-value < 0.05, rejecting 
the hypothesis that the distribution of the difference of the pairs of before and 

after LOC of a feature comes from a zero-median distribution 
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8.6 Changes in Features with Depth of 

Consciousness 

For this analysis, a total of 83 cases from the CMA database explained in 

Chapter 3 were analyzed and both TFD-derived and RP-derived features were 

extracted. The rest of cases were discarded since the SQI was decreasing 

excessively often (>33% of the case) so that features could not be extracted. 

The index for depth of consciousness, qCON, was grouped into two different 

ways. First, the prediction probability Pk for awake/asleep was analyzed. Then, 

the prediction probability Pk  was calculated for the four different states: 

awakeness, sedation, anesthesia, deep anesthesia. During surgical operations, 

patients are usually longer in the anesthesia or deep anesthesia states. 

Therefore, the largest equal amount of data points were selected for every 

state before calculating Pk values. Table 8.4 compiles these Pk values. The Pk 

values have been reassigned according to Equation (48) to avoid directional 

information. Both TFD-derived and RP-derived features are included. 

Pk′ = |Pk − 0.5| + 0.5 (48) 

PREDICTION PROBABILITY PK OF FEATURES 
 

 4 states 2 states    4 states 2 states 

IFs 

IF1mean
 0.538 0.594  

TF 
Extended 

Freq. 
Features 

Etot 0.582 0.715 

IF2mean
 0.538 0.604  TFREq 0.541 0.683 

IF3mean
 0.531 0.637  TFNREq 0.658 0.798 

IF4mean
 0.533 0.650  ℱℒ(0,1) 0.549 0.704 

IF5mean
 0.560 0.570  ℱℒ(1,0) 0.625 0.806 

IF1STD
 0.615 0.688  ℱℒ(1,1) 0.609 0.791 

IF2STD
 0.647 0.741  𝒮ℱ 0.549 0.628 

IF3STD
 0.678 0.751  M2 0.568 0.719 

IF4STD
 0.646 0.753  

TF 
Extended 

Time 
Features 

mTF 0.578 0.759 

IF5STD
 0.593 0.650  𝜎TF

2  0.539 0.678 

Energy 
of IFs 

E1 0.594 0.676  𝛾TF 0.585 0.701 

E2 0.511 0.723  kTF 0.566 0.701 

E3 0.584 0.722  cTF 0.658 0.798 

E4 0.594 0.699  
RP 

Extended 
Features 

RRrec 0.534 0.579 

E5 0.578 0.759  DET 0.623 0.687 

Decay 0.570 0.532  ENTR 0.616 0.650 

    L 0.628 0.676 

Table 8.4 Prediction Probability Pk of calculated TFD-derived and RP-derived features 
for 2 and 4 patient states. Values above 0.65 are in bold and all values have p-

value<0.005 
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8.7 Studied Correlations 

Table 8.5 reports the correlations between CO, SV and HR and several 

TFD-derived features. All values included are statistically significant (p-

value<0.05) and those which are not have been omitted. On the one side, no 

statistically significant correlations have been found between TFD-derived 

with blood pressure, HRV or depth of anesthesia. On the other side, no 

statistically significant correlations have been found between RP-derived with 

blood pressure, HRV or depth of anesthesia. It can be observed that HR is 

correlated with the mean of the IFs but CO is correlated with the rest of TFD-

derived features. The SV is correlated with both groups of TFD-derived 

features. 

CORRELATION BETWEEN FEATURES AND BLOOD FLOW INDICES 

  CO SV HR  

IFs 

IF1mean
 -- -0.42 0.60  

IF2mean
 -- -0.40 0.55  

IF3mean
 -- -0.41 0.59  

IF4mean
 -- -0.43 0.64  

IF5mean
 -- -0.43 0.77  

TF Ext. 
Time Feat. 

mTF 0.85 0.66 --  

𝜎TF
2  0.89 0.62 --  

TF 
Extended 
Freq. 
Features 

Etot 0.82 0.64 --  

TFREq -0.87 -0.67 --  

ℱℒ(0,1) 0.90 0.70 --  

ℱℒ(1,0) 0.72 0.54 --  

ℱℒ(1,1) 0.80 0.61 --  

M2 0.77 0.58 --  

Energy of 
IFs 

E1 0.80 0.51 --  

E2 0.49 0.48 --  

E3 0.50 0.35 --  

E4 0.35 -- --  

E5 0.85 0.66 --  

Table 8.5 Pearson’s Correlation values for CO, SV and HR with the studied TFD-
derived. Only features with correlations above 0.30 which are statistically significant 

values have been included. In all cases, p-value<0.05 
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8.8 Prediction of Depth of Anesthesia using TFD-

Derived and RP-derived Features 

A fitted binary classification tree has been trained to predict patient 

depth-of-anesthesia states. Fitted binary classification trees develops 

predictive models based on both input and output data. First, data has been 

randomly divided into two sets of training and testing and the same amount 

of data points from every state were selected for the training and testing sets 

of data. A decision tree consists of branching conditions where the value of 

an input variable (also known as predictors, features, or attributes) is 

compared to a trained weight. The number of branches and the values of 

weights are determined in the training process. 

In this case, the predictors for the patient state have been chosen from 

among the TFD-derived and RP-derived features with a higher prediction 

probability Pk. Two classifications for the patient depth-of-anesthesia states 

have been employed: two states (awake and asleep states) and four states 

(awakeness, sedation, general anesthesia and deep anesthesia). Performance 

of the classification trees is calculated as the percentage of correctly predicted 

data divided the total amount of data in the testing set. Results are included in 

Table 8.6. In such table, if more features are used to train the classification 

tree, the performance continues decreasing. 

For two states, several decision trees provide prediction performance 

higher to 80%. In this case, the decision tree including IF3STD
,TFNREq ,cTF , 

ℱℒ(0,1), ℱℒ(1,1), E5, and the Minkowski distance M2 provides a performance 

of 82% for the two-state case. In the case of decision trees with four states, 

performances are much inferior. 

8.9 Prediction of Cardiac Output using TFD-

Derived and RP-derived Features 

Several ANFIS have been trained to predict cardiac output during the 

whole anesthesia procedures. Neuro-fuzzy systems combine two intelligent 

technologies [206], [207]. Neural networks are low-level computational 

structures which perform well with raw data but are opaque to the user. Fuzzy 

logic deals with reasoning at a higher level, using linguistic information 

acquired from domain experts but it lacks the ability to learn and cannot adjust 

itself to new environments. The integration of both technologies can combine 

the parallel computation and learning abilities of neural networks with the 
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human-like knowledge representation and explanation abilities of fuzzy 

systems. These systems can thus be trained to develop if-then fuzzy rules and 

determine membership functions for input and output variables of the system. 

PERFORMANCE OF DECISION TREES 

  4 states 2 states  

 IF3STD
 39% 63%  

 TFNREq 33% 67%  

 cTF 33% 67%  

 ℱℒ(0,1) 37% 74%  

 ℱℒ(1,1) 38% 76%  

 E5 39% 76%  

 M2 38% 82%  

 IF4STD
 35% 81%  

 IF2STD
 38% 80%  

 E2 37% 75%  

 E3 37% 72%  

Table 8.6 Prediction performance calculated for each of the decision trees for two 
and four patient states. Note: each new decision trees includes the previous features 

The trained system for the prediction of cardiac output consists of six 

layers (represented in Figure 8.5) and it employs a hybrid learning algorithm 

combining the least-squares estimator and the gradient descent method: 

neural connection weights are modified in order to progressively reduce an 

error measure. Rule consequent parameters are identified on the layer 5 by the 

least-square estimator and error is back-propagated to update the antecedent 

parameters which describe the membership function in layer 2 by gradient 

descent. Both antecedent and consequent parameters are optimized using a 

combination of the least-squares and backpropagation gradient descent 

methods. No prior knowledge of rule consequent parameters is required. In 

the example of Figure 8.5, x1 and x2 are any two input indices which enter 

the model in layer 1. Layer 2 is the fuzzification layer which is followed by 

layer 3 which is composed by Sugeno-type rules. In a Takagi and Sugeno’s 

fuzzy if-then rule, the output of the rule is a linear combination of input 

variables plus a constant term, and the final output is the weighted average of 

each rule’s outputs [208]. 
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Figure 8.5 ANFIS with four rules: layer 1 is the input layer; layer 2 is the 
fuzzification layer; in layer 3, the rule layer, each neuron receives an fuzzy input and 
calculates the firing strength of the single Sugeno-type fuzzy rule it represents; layer 
4 normalizes the received firing strength to the sum of firing strengths of all rules; 

layer 5 also receives the inputs x1 and x2 to calculate the weighted consequent value 
of a rule; layer 6 sums the outputs of all defuzzification neurons and produces the 

overall ANFIS output. 

In total, one to five features (ℱℒ(0,1), 𝜎TF
2 , TFREq, E5, Etot) are used to 

train an ANFIS system which tries to imitate Cardiac Output through the 

whole surgery. These features have been chosen according to their correlation 

with CO and no more features were chosen because the ANFIS error started 

to increase as the number of features increased. Data were equally divided into 

the training and testing sets of data (132,200 data points for each set). The 

error was calculated as the mean RMS difference between the real output and 

the predicted output of the training and testing sets of data and is included in 

Table 8.7. 

ANFIS RESULTS 

 

Trained RMS 
(L/min) 

Predicted RMS 
(L/min) 

ℱℒ(0,1) 0.310 0.392 

ℱℒ(0,1), 𝜎TF
2  0.297 0.376 

ℱℒ(0,1), 𝜎TF
2 , TFREq 0.288 0.387 

ℱℒ(0,1), 𝜎TF
2 , TFREq, E5 0.283 0.390 

ℱℒ(0,1), 𝜎TF
2 , TFREq, E5, Etot 0.280 0.401 

Table 8.7 Trained and predicted RMS for different ANFIS models trained to 
predict CO with TFD-derived features 

As the predicted RMS error shows in Table 8.7, a prediction error of 

around 0.4 L/min in CO represents an error of around 10% of average CO. 
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Finally, taking into account that CO = SV·HR, the HR index has been also 

introduced in some of the previous ANFIS to test whether results could be 

improved. Results are included in Table 8.8. The Bland-Altman error has 

been calculated according to indications in Chapter 2. The ANFIS model with 

three TFD-derived features (ℱℒ(0,1), 𝜎TF
2 , and TFREq) and HR shows a Bland-

Altman error of 14% and predicted RMS error of 0.44 L/min. 

ANFIS RESULTS WITH HR INCLUDED 

 

Trained RMS 
(L/min) 

Predicted RMS 
(L/min) 

Bland-Altman 
Error 

ℱℒ(0,1), 𝜎TF
2 , HR 0.248 0.392 15% 

ℱℒ(0,1), 𝜎TF
2 , TFREq, HR 0.233 0.438 14% 

Table 8.8 Trained and predicted RMS for different ANFIS models trained to 
predict CO with TFD-derived features and HR 

 

The Bland-Altman analysis has been included along with the regression 

analysis in Figure 8.6. The regression analysis includes de regression line of 

determination coefficient R2=0.86 calculated with n=132,200 data points (the 

testing set). The Bland-Altman analysis shows the limits of agreement (LOA) 

of the comparison between the predicted CO (COPred) and the reference CO 

(CORef) in absolute and percentual value. 

 

 

Figure 8.6 Regression analysis (A) and Bland-Altman analysis (B) for the ANFIS 

model with ℱℒ(0,1), 𝜎TF
2 , TFREq, and  HR as predictors. 
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In Figure 8.7, a complete surgery is plotted as a reference. The figure 

shows how the predicted CO and the reference CO are very similar. 

Calculations for this concrete case show a total RMS error of 0.191 L/min 

and a Bland-Altman error of 7.30%. In this concrete case, it is noticeable how 

the error seems proportional to the magnitude of cardiac output and thus is 

inferior at the end of the surgery. 

 
Figure 8.7 Reference and Predicted Cardiac Output for a full surgery 

8.10 Discussion and Conclusion 

In this analysis, all four RP-derived features decrease after LOC with a 

statistically significant difference. Moreover, both ENTR and L have an AUC, 

Sen and Spe above 60% when distinguishing between ICG pre-LOC and 

post-LOC signals for different combinations of RP parameters, such as 

referred in Table 8.2 and Table 8.3. Nevertheless, the analysis of the 

prediction probability shows a low Pk for the RP-derived features, especially 

when 4 different states are considered, and the correlation of such features 

with HRV, BP, CO, HR and SV is not statistically significant. Nevertheless, 

previous studies had used RPs to analyze HRV [209]. 

Regarding the correlation of the blood flow indices and features, IF 

energy and TF extended frequency features are related to CO and SV. The 

highest correlations are with CO for ℱℒ(1,0) (𝜌 = 0.90), 𝜎TF
2  (𝜌 = 0.89), TFREq 

(𝜌 = -0.87). The mean of the IFs are directly correlated to SV (𝜌 ∈ [-0.43, -

0.40]) and inversely correlated to HR (𝜌 ∈ [0.55, 0.77]). No other correlations 

have been found. 

When two patient states are considered (awake and asleep states), some 

of the TFD-derived features provide a good Pk above or around 0.75 (below 

or around 0.25). This is the case of the TFNREq, ℱℒ(1,0), ℱℒ(1,0), cTF, STD of 

IF2, IF3, IF4, and E5. Nevertheless, when considering four different states, the 

features with the best prediction probability Pk are only IF3STD
 (Pk = 0.678),  

TFNREq  ( Pk = 0.658), cTF  ( Pk  = 0.342). These are promising results but 
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further analysis is required to improve them. Some of the options for this 

would be to use more complex TFD kernels such as the ones described in the 

previous chapters despite requiring a higher computational complexity, to 

consider 3 patient states instead of four (awakeness, sedation, anesthesia – 

both general and deep), to use a TFD with a higher time resolution. Currently, 

the time resolution is 1 Hz but it increase to 250 Hz. These suggestions will 

be taken into consideration in a future work. 

Regarding the prediction models, TFD-derived and RP-derived features 

do not seem to be good predictors for the patient depth-of-anesthesia state. 

In the best case, a total of seven features (IF3STD
, TFNREq, cTF, ℱℒ(0,1), ℱℒ(1,1), 

E5, M2, IF4STD
, IF2STD

, E2, and E3) can be used to train a classification tree to 

predict patient state with a resulting performance of 82% calculated as the 

ratio of correctly predicted data when only two states are considered and of 

38% when four states are considered. 

Furthermore, ANFIS models trained to predict CO seem to provide 

promising results. The ANFIS model trained with three TFD-derived features 

(ℱℒ(0,1), 𝜎TF
2 , TFREq) and the patient’s heart rate provides LOA = 14%, which 

is far below the 30% acceptable for the interchangeability of indices, according 

to explanations in Chapter 2 [79] . 

As explained before, no statistically significant correlations have been 

found between TFD-derived or RP-derived features with blood pressure, 

HRV. Nevertheless, as Table 8.5 shows, TFD-derived features of the ICG 

seem to be related to the HR and to CO (which is also ultimately related to 

HR). In addition, ANFIS models with TFD-derived features have proved to 

predict CO with good results. TFD-derived features of the ICG could provide 

further information for the calculation of cardiac output. This hypothesis 

would need to be further investigated. 
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Chapter 9 
9. Validation 

Study of a Cardiac 

Output Monitor 
 

 

 

 

 

 

Abstract 

This chapter is based on an excerpt of an article published during the 

present Doctoral Thesis [210]. A comparison between the LiDCOrapid 

monitor and the qCO monitor is presented. The Bland-Altman method is 

used for such comparison.  

9 
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9.1 Introduction 

The aim of this last chapter is to report a performance test of the qCO 

using the LiDCOrapid as a reference. The two devices can monitor the CO 

continuously, but with different methods. The qCO detects variations in the 

impedance, while LiDCOrapid processes the pressure waveform to estimate 

the CO [47]. 

Several studies report an improved outcome with the usage of 

LiDCOrapid to guide goal-directed fluid therapy after emergency laparotomy 

[211], a reduced length of hospital stay in colorectal surgery [212], and in high-

risk abdominal and bariatric surgery [213]. Therefore, the aim of this study 

was to compare the behaviors of LiDCOrapid and the new qCO device during 

anesthesia procedures in the operatory room. 

9.2 Methods 

Fifteen patients undergoing major surgery under general anesthesia at the 

Zhongshan Hospital in Shanghai were assessed in this observational study. 

Details of the patients and operations were reported in Table 3.1. 

The synchronization between both devices was ensured by annotating 

the exact start time given by the two devices. Data values of cardiac output 

were not taken into consideration when there was an instantaneous variation 

of either HR, CO or SV greater than 25% which was not justified from a 

clinical point of view. This led to a total rejection rate of < 2% for 

LiDCOrapid and < 1% for qCO. Two patients (one for gastrostomy and 

another one for cytoreductive surgery) were excluded due to excessive noise, 

and thus a total of thirteen patients remained to be considered for this study. 

To create the pairs of cardiac output values, each CO point from qCO was 

paired with the closest CO point by LiDCOrapid within a time difference of 

one second between both points. 

9.2.1 Statistical Analysis  

The qCO agreement with the LiDCOrapid’s signal was assessed using 

different statistical techniques: regression and Bland-Altman analysis. The 

Bland-Altman analysis is explained in Chapter 2. 

A regression analysis was conducted to estimate the relationship between 

the cardiac outputs calculated by the LiDCOrapid and qCO monitors. 

Regression can show whether pairs of indices are related but a high correlation 

does not imply a good agreement between two methods. Bland-Altman 
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analysis for repeated measurements per patient were used for the pool of 

patients to assess the agreement between qCO and LiDCOrapid. The Bland-

Altman plot, also known as difference plot, is a method to compare two 

techniques (usually one of them as a reference) for the measurement of the 

same parameter. The correlation is shown by plotting the differences between 

the measurements produced by both methods against the mean value of such 

measurements. 

A linear mixed model with random effects was used to adjust for the 

interaction between the two methods and the time replicates of patients, 

resulting in a common standard deviation (SD) to calculate the limits of 

agreement (LOA) with its upper and lower limits determined by the mean 

difference between data from the reference and studied method ± 1.96 SD 

[82], [214], [215]. The percentage error was calculated as the ratio of 2 SD of 

the bias to the mean CO and was considered clinically acceptable when it was 

30% or less, as proposed by Critchley and Critchley [79], [80]. Before 

computing the Bland-Altman plot, according to Squara et al. [216], each 

recording should be divided into unchanging, increasing and decreasing 

periods and the description of a device can only be estimated on unchanging, 

stable periods. 

9.3 Results 

Data from 13 patients, 8 males and 5 females were included into final 

analysis. Not a single patient suffered from any complication in the context of 

the present study. Blood loss, fluid administration and hypotension periods 

after induction were not included into our analysis. Figure 9.1 displays one of 

the cases. In this figure, it is visible that qCO and LiDCOrapid share a 

common overall trend. However, LiDCOrapid shows several sudden drops 

in cardiac output for which there is no reported clinical evidence and which 

are not followed by the qCO monitor. 

Patient hemodynamic data are reported in Table 3.1. According to qCO, 

cardiac output ranged 4.5 ± 0.5 L/min, stroke volume 69.6 ± 8.8 mL/beat. 

According to LiDCOrapid, these values were 4.5 ± 0.7 L/min and 69.8 ± 10.9 

mL/beat, respectively. Heart rate was the same for both devices: 64.8 ± 7.5 

bpm. Non-significant differences were observed between qCO and 

LiDCOrapid regarding those values.  
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Figure 9.1 The cardiac output assessed by the qCO and the LiDCOrapid. The 
figure shows an example of a recording obtained with qCO and LiDCOrapid 

HEMODYNAMIC CHARACTERISTICS 

Surgery duration (min) 135.1 ± 59.63 

Cardiac Output (L/min) 4.5 ± 0.5 (qCO); 4.5 ± 0.7 (LiDCOrapid) 

Stroke Volume (mL/beat) 69.6 ± 8.8 (qCO); 69.8 ± 10.9 (LiDCOrapid) 

Heart Rate (bpm) 64.8 ± 7.5 (qCO and LiDCOrapid) 

Table 9.1 Hemodynamic characteristics. All values are presented as mean ± 
standard deviation 

The operative procedures, whose type is also reported in Table 9.1, lasted 

113 [88 200] minutes (median and 25, 75-percentiles). A median of 3,557 

[2,407 6,996] points (median and 25, 75-percentiles) were paired from qCO 

and LiDCO cardiac output. 

Regression analysis showed no good indication of proportional bias 

(r²=0.3987, p-value<0.05). This analysis and the Bland-Altman plot are 

included in Figure 9.2 and Figure 9.3, respectively. The Bland-Altman plot 

compares the differences in CO values against the mean of the total measures 

of both methods, qCO and LiDCOrapid. In Figure 9.3, the black solid line 

represents the mean difference and the dotted lines represent the accepted 

limits of agreement (mean difference ± 2 SD). The standard deviation has 

been corrected for the pooled data using two variances: that for repeated 

differences between the two methods on the same subject and that for the 

differences between the averages of the two methods across subjects. 
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Figure 9.2 Regression analysis of the pool data 

In this case, the Bland-Altman analysis shows a mean bias of -0.03 ± 0.71 

L/min. Upper and lower limits of agreement are 1.4 and -1.4, respectively. 

Percentage error was 29%, which is just below the recommended 30% [79], 

[80]. The color bar ranges from a 0 to 1043 in logarithmic units, so the areas 

outside the limits of agreement are not relevant compared to the rest of the 

figure. 

9.4 Discussion 

There is a reasonable amount of studies on the LiDCOrapid technology. 

In a study by Phan and colleagues [217], LiDCOrapid showed an increase of 

41% after a fluid bolus measurement. When comparing the test device to 

thermodilution, the Kappa statistic (a statistic which measures inter-rater 

agreement for categorical data) showed fair agreement of 0.28. After 

vasopressor administration, there was also significant variation in the change 

in cardiac output. Using Bland-Altman analysis, the precision of LiDCOrapid 

in comparison to thermodilution showed minimal bias, but wide limits of 

agreement with percentage errors of 54.2%. In this study, other instruments 

were also tested against thermodilution with similar results. These findings 

indicated that LiDCOrapid, VigileoFlotrac and Oesophageal Doppler 
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Monitor (ODM) differ in their responses, do not always provide the same 

information as thermodilution and should not be used interchangeably to 

track cardiac output changes. 

 
Figure 9.3 Bland-Altman plot of comparing the differences in CO values against 

the mean of the total measures of qCO and LiDCOrapid. The color column 
indicates the number of points in each square 

Nordström and colleagues [38] compared ODM and LiDCOrapid for 

stroke volume (SV) optimization during colorectal surgery using fluid 

challenges. For 172 paired SV values, the overall correlation was 𝜌 = 0.39, and 

bias (limits of agreement) -28 [-91 35] mL, percentage error 70%. The ability 

of LiDCOrapid to track changes in SV compared to ODM was weak with a 

concordance rate of 80%, and a sensitivity and specificity of 48% and 81%, 

respectively, to detect a positive fluid challenge. 

Davies and colleagues [54] conducted a study where simultaneous reading 

of SV, stroke volume variation (SVV) and pulse pressure variation (PPV) from 

LiDCOrapid and FloTrac were taken in 20 patients and compared with ODM. 

The main conclusion was that SV measured by the FloTrac and LiDCOrapid 

systems does not correlate with the ODM, has poor concordance and a 

clinically unacceptable percentage error. However, SVV measured by the 

LiDCOrapid has clinical utility. 
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Costa and colleagues [49] studied the level of agreement between cardiac 

output obtained by LiDCOrapid and continuous cardiac output (CCO) and 

intermittent cardiac output (ICC) obtained by the pulmonary artery catheter 

(PAC) in patients after liver transplantation. The performance of LiDCOrapid 

was moderate in detecting changes in ICO. 

The current study statistically describes the new qCO monitor. It 

therefore constitutes an initial validation of this new monitor. Today, 

clinicians can choose amongst a wide variety of less-invasive or noninvasive 

devices to calculate cardiac output. Each device consists on a proprietary 

software algorithm which processes different types of signals. However, 

several studies have demonstrated a lack of accuracy in these monitors [38], 

[49], [54], [79], [217]–[219]. Quantium Medical qCO monitors is born from 

the intention of applying advanced signal processing techniques to 

bioimpedance signals in order to offer a totally noninvasive device to measure 

cardiac output. 

Our main finding is the acceptable percentage error of the qCO monitor 

compared to the LiDCOrapid system. It should be mentioned that several 

studies have previously demonstrated the validity of monitors using a 

technology similar to qCO in comparison to gold standards. The NICOM 

monitor (Cheetah Medical) [220] compared to thermodilution showed a mean 

bias of -0.81 with 95% limits of agreement of [-3.54, +1.92]. Cardiac output 

by NICOM was also more precise than by thermodilution (precision of 

3.5±0.3% for NICOM versus 9.6±6.1% for thermodilution, p-value<0.001). 

In our study, the Bland-Altman plot between qCO and LiDCO shows 

that the majority of values adjusted to the agreement limits and the hot spots 

are distributed near zero (represented with the hottest colors in Figure 9.3). 

The mean bias is -0.03 and the limits of agreement are +1.4 and -1.4. Given 

the large sample size (56,456 total samples), this distribution of the points 

demonstrates a very low bias.  

In a similar study performed for the validation of electrical velocimetry 

(EV) with cardiac magnetic resonance imaging (CMR) as referenced in [68], 

the authors admitted an insufficient agreement and referred to a Bland-

Altman plot with a mean bias of 1.2 ± 1.4 L/min. This represents a higher 

mean bias and wider limits of agreement compared to the data published in 

the present article. Consequently, it is possible to affirm that nearly identical 

results can be provided from qCO and LiDCOrapid. 
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Our study presents a number of limitations which must be considered. 

First, the observational protocol included a variety of surgical operations and 

did not include exact measuring points. It is especially important to note that 

this variety of surgical operations can imply different requirements in fluid 

management. Although this introduces a higher variability in our findings, it 

was useful to characterize the general behavior of the qCO monitor. 

Nonetheless, one should recognize that this methodology might not provide 

sufficiently clean data to make perfect comparisons between technologies. 

This is also linked with the fact that segmentation into unchanged, 

increasing and decreasing periods was not possible. Some authors [216] have 

stated that the comparison and analysis of medical devices must be conducted 

during stable periods. However, the analysis of the trends in our recordings 

showed a lack of many unchanged periods and, therefore, the analysis of the 

bias was performed on all data and not only on the data with unchanging trend. 

At the same time, this implies an important limitation although it should also 

be noted that the purpose of this work was to compare the behavior of both 

instruments under the same varying conditions. 

As previously mentioned, LiDCOrapid is not a gold standard. Further 

studies against gold standards, such as the pulmonary artery catheter, will be 

required in order to complete the validation of the new qCO monitor. 

Moreover, in future studies, more protocol-based procedures would be highly 

recommended. Outcome studies are also a powerful tool to take into account 

in order to validate the benefits of the usage of the qCO monitor. 

Furthermore, the implementation of more detailed protocols will also allow 

determination of the trending ability of changes between qCO and other gold 

standard technologies.  

Finally, future studies will need to include the analysis of the precision of 

the qCO device as reported in [73]. Precision is a major issue in clinical 

monitoring which has also been cited for other devices during the discussion 

but not analyzed for the case of the qCO. 

9.5 Conclusions 

In conclusion, the results indicate that cardiac output calculated with the 

qCO monitor is comparable to the values calculated by the LiDCOrapid 

monitor. In line with this and previous studies [102], [221],  the qCO has 

demonstrated a very low bias with the LiDCOrapid monitor in a variety of 

different situations. 
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Future studies need to be performed to compare the qCO with a gold 

standard in order to ensure a complete validation. Certainly, the availability 

and reliability of noninvasive cardiac output devices make cardiac output 

monitoring an attractive option for all clinical situations.  
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10.  

Conclusions and 

Future Work 
 

 

 

 

 

Abstract 

In this final chapter the most important findings and contributions of the 

present dissertation are summarized, from the concept of the devices used in 

this research to the application and possible uses of the fast impedance 

measurements performed. In addition, several guidelines for further work in 

the topic are proposed. 

  

10 
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10.1 Conclusions 

As it was stated in the Introduction, the main objective of this Doctoral 

Thesis was «the development of signal treatment techniques for the thoracic 

bioimpedance signals in order to create an innovative hemodynamic monitor». 

This main objective was also divided into several minor objectives. 

The present Doctoral Thesis incorporates a presentation on the available 

cardiac output monitoring technologies. Regarding the different options, 

patient risk is related to invasiveness, which is, in turn, inversely related to 

accuracy. Thus, the invasive Swan-Ganz catheter continues to be the gold 

standard of the technique but its invasiveness – and associated risk for the 

patient – implies that this measurement device is only used in critically ill 

patients in which the improved accuracy compensates for the increased risk. 

In the rest of cases, minimally invasive and noninvasive monitors are preferred 

and the competition lies on the accuracy of such techniques. 

This Doctoral Thesis has produced a considerable amount of clinical data 

grouped in different databases. The clinical trials conducted in Barcelona, 

Hong Kong, Santiago and Shanghai are valuable resources which have been 

used to validate the methodologies discussed in this text. In Barcelona, 

Santiago and Shanghai, the anesthesia were induced with propofol and 

remifentanil or fentanyl. Sevoflurane was also used for maintenance in some 

cases.  

The previous databases have also permitted to test different relationships 

between blood flow, blood pressure and heart rate variability in this concrete 

anesthetic context. During anesthesia, there was a decrease in cardiac output 

and blood pressure after loss of consciousness. Except from the index 

reflecting the normalized high-frequency spectral power of the HRV, the rest 

of HRV indices also decreased after LOC indicating a decrease in both 

sympathetic and vagal activity. Such exception indicates that although both 

high-frequency and low-frequency components of the HRV decrease after the 

onset of anesthesia, the high-frequency power decreases less than the low-

frequency power does. Gender differences in HR and CO, and age differences 

in HRV measurements were also found after LOC. In addition to these results, 

a new method to create synthetic signals with known time-frequency 

characteristics has been designed and implemented using the ICG signals. 

Concerning the relationship between ICG and ECG signals, RR and CC 

segments are very much comparable ( = 0.998, p-value < 0.0005). In fact, 

this can be used in cardiac output monitors in order to check that the R and 
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C points are properly located on the ECG and ICG signals. The time delay 

between the electrical activity of the heart (represented by the ECG) and its 

mechanical activity (represented by the ICG) can be measured with the RC 

segment or the ratio RC/RR. The ratio RC/RR is inversely proportional to 

RR and is lower than 30% for RR intervals between 700 and 1000 ms, which 

would correspond to a heart rate of 86 and 60 bpm, respectively. 

Time-Frequency Distributions (TFD) have been widely studied in this 

Doctoral Thesis. The basic knowledge of TFD has been reviewed and a new 

method to test TFD kernels with multi-tone synthetic signals based on real 

biomedical signals has been designed and implemented. It consists on using 

well-known, synthetic signals to check how different kernels can locate the 

instantaneous frequencies of the synthetic signals. In the case of the ICG 

signals, some traditional kernels such as Born-Jordan Distribution (BJD) 

could be discarded due to the results of this work. A new performance 

parameter has also been designed as the correlation between the studied TFDs 

of the synthetized ICG real-based signal and the addition of the Wigner-Ville 

Distributions (WVD) of the two single tone in the synthetized ICG signal. 

Nevertheless, the final choice of the kernel to use must follow a thorough 

evaluation of the performance measurements described in chapter 6 and it 

also depends on the available knowledge of the type of signals to analyze. 

A wide range of TFD features has been presented and calculated on ICG 

signals. These features were based on different characteristics of the signals: 

single-value decomposition, entropy, concentration, time or frequency 

characteristics. Feature values from before and after the loss of consciousness 

during anesthesia have been compared and several TFD features have proven 

to be significantly different in these two situations. These features have also 

been calculated on TFDs with different kernels.  When analyzing different 

anesthetic states, the TF Rényi entropy was the most prominent feature. 

Regarding the various kernels which were analyzed, the Extended Modified 

Beta Distribution (EMBD) was the most successful for the extraction of 

features showing statistically significant differences in different anesthesia 

points. 

Many of the different TFD features used in this Doctoral Thesis also 

correlate with the patients’ cardiac output, stroke volume and heart rate. 

Furthermore, the prediction probability Pk  of many of the TFD-derived 

features to detect two anesthesia states (awake/asleep) is also acceptable, 
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reaching up to 0.798 for the normalized Rényi Entropy. Nevertheless, results 

are less promising for the ability of those TFD-derived features to 

differentiate between four patient states (awakeness, sedation, general 

anesthesia and deep anesthesia) and the prediction probability was always less 

than 0.68.  

Decision trees have been trained to differentiate between two and four 

states. For two states, several decision trees provided prediction performance 

(ratio of correctly predicted results over the total of decisions) higher to 80%, 

although for four states, results were much inferior. Finally, several ANFIS 

systems have also been trained to predict cardiac output by using TFD-

derived features and Heart Rate with excellent results. The best results have 

been obtained with an ANFIS system which combines three TFD-derived 

features (Rényi Entropy, Flux, and TF signal variance) and heart rate. This 

provided a Bland-Altman error of 14% and predicted RMS error of 0.44 

L/min, which is considered satisfactory. 

The qCO monitor includes several algorithms developed in this Doctoral 

Thesis and a comparison against one of its main competitors, the LiDCO 

monitor, has been included at the end of this work. This work has in 

conclusion enabled the qCO monitor to improve its resistance to noise and 

its calculation methods of cardiac output. 

From a business perspective, the success of this Doctoral Thesis relies on 

three main points: 

- the filing of a patent containing the algorithms discussed in this 

Doctoral Thesis; 

- the CE mark of the qCO monitor; 

- and the business decision to engage in new clinical trials to continue 

developing this monitor based on the results of this Doctoral Thesis. 

 

10.2 Ongoing and Future Work 

As explained in the previous section, Quantium Medical continues to 

develop and improve the qCO monitor for noninvasive cardiac output 

monitoring. The TFD-derived and RP-derived features explained in Chapter 

8 continue to be developed and tested over the CMA database explained in 

Chapter 3. Several approaches have already been mentioned in Chapter 8. 
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Future steps will also be based on the consecution of a new database 

comparing the qCO with a gold standard monitor (or similar). Further 

techniques explained in this Doctoral Thesis will be then added to new 

impedance cardiography signals recorded by the qCO monitor and the cardiac 

output calculated will be compared to a gold standard. 
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