5 research outputs found

    Experimental evaluation of machine learning methods for robust received signal strength-based visible light positioning

    Get PDF
    In this work, the use of Machine Learning methods for robust Received Signal Strength (RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative RSS input features. The experimental set-up for the RSS-based VLP technology uses light-emitting diodes (LEDs) transmitting intensity modulated light and a single photodiode (PD) as a receiver. The experiments focus on achieving robustness to cope with unknown received signal strength modifications over time. Therefore, several datasets were collected, where per dataset either the LEDs transmitting power is modified or the PD aperture is partly obfuscated by dust particles. Two relative RSS schemes are investigated. The first scheme uses the maximum received light intensity to normalize the received RSS vector, while the second approach obtains RSS ratios by combining all possible unique pairs of received intensities. The Machine Learning (ML) methods are compared to a relative multilateration implementation. It is demonstrated that the adopted MLP and GP models exhibit superior performance and higher robustness when compared to the multilateration strategies. Furthermore, when comparing the investigated ML models, the GP model is proven to be more robust than the MLP for the considered scenarios

    A comprehensive study on light signals of opportunity for subdecimetre unmodulated visible light positioning

    Get PDF
    Currently, visible light positioning (VLP) enabling an illumination infrastructure requires a costly retrofit. Intensity modulation systems not only necessitate changes to the internal LED driving module, but decrease the LEDs' radiant flux as well. This hinders the infrastructure's ability to meet the maintained illuminance standards. Ideally, the LEDs could be left unmodulated, i.e., unmodulated VLP (uVLP). uVLP systems, inherently low-cost, exploit the characteristics of the light signals of opportunity (LSOOP) to infer a position. In this paper, it is shown that proper signal processing allows using the LED's characteristic frequency (CF) as a discriminative feature in photodiode (PD)-based received signal strength (RSS) uVLP. This manuscript investigates and compares the aptitude of (future) RSS-based uVLP and VLP systems in terms of their feasibility, cost and accuracy. It demonstrates that CF-based uVLP exhibits an acceptable loss of accuracy compared to (regular) VLP. For point source-like LEDs, uVLP only worsens the trilateration-based median p50 and 90th percentile root-mean-square error p90 from 5.3cm to 7.9cm (+50%) and from 9.6cm to 15.6cm (+62%), in the 4m x 4m room under consideration. A large experimental validation shows that employing a robust model-based fingerprinting localisation procedure, instead of trilateration, further boosts uVLP's p50 and p90 accuracy to 5.0cm and 10.6cm. When collating with VLP's p50=3.5cm and p90=6.8cm, uVLP exhibits a comparable positioning performance at a significantly lower cost and at a higher maintained illuminance, all of which underline uVLP's high adoption potential. With this work, a significant step is taken towards the development of an accurate and low-cost tracking system

    In-Depth Analysis of Unmodulated Visible Light Positioning Using the Iterated Extended Kalman Filter

    No full text
    Indoor positioning with visible light has become increasingly important in recent years. Usually, light sources are modulated at high speeds in order to wirelessly transmit data from the fixtures to a receiver. The accuracy of such systems can range from a few decimeters to a few centimeters. However, additional modulation hardware is required for every light source, thereby increasing cost and system complexity. This paper investigates the use of unmodulated light for indoor positioning. Contrary to previous work, a Kalman filter is used instead of a particle filter to decrease the computational load. As a result, the update rate of position estimation can be higher. Additionally, more resources could be made available for other tasks (e.g., path planning for autonomous robots). We evaluated the performance of our proposed approach through simulations and experiments. The accuracy depends on a number of parameters, but is generally lower than 0.5 m. Moreover, temporary occlusion of the receiver can be compensated in most cases.status: Published onlin

    In-Depth Analysis of Unmodulated Visible Light Positioning Using the Iterated Extended Kalman Filter

    No full text
    Indoor positioning with visible light has become increasingly important in recent years. Usually, light sources are modulated at high speeds in order to wirelessly transmit data from the fixtures to a receiver. The accuracy of such systems can range from a few decimeters to a few centimeters. However, additional modulation hardware is required for every light source, thereby increasing cost and system complexity. This paper investigates the use of unmodulated light for indoor positioning. Contrary to previous work, a Kalman filter is used instead of a particle filter to decrease the computational load. As a result, the update rate of position estimation can be higher. Additionally, more resources could be made available for other tasks (e.g., path planning for autonomous robots). We evaluated the performance of our proposed approach through simulations and experiments. The accuracy depends on a number of parameters, but is generally lower than 0.5 m. Moreover, temporary occlusion of the receiver can be compensated in most cases
    corecore