198 research outputs found

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    Formal Computational Unlinkability Proofs of RFID Protocols

    Full text link
    We set up a framework for the formal proofs of RFID protocols in the computational model. We rely on the so-called computationally complete symbolic attacker model. Our contributions are: i) To design (and prove sound) axioms reflecting the properties of hash functions (Collision-Resistance, PRF); ii) To formalize computational unlinkability in the model; iii) To illustrate the method, providing the first formal proofs of unlinkability of RFID protocols, in the computational model

    Verifying Privacy-Type Properties in a Modular Way

    Get PDF
    Formal methods have proved their usefulness for analysing the security of protocols. In this setting, privacy-type security properties (e.g. vote-privacy, anonymity, unlink ability) that play an important role in many modern applications are formalised using a notion of equivalence. In this paper, we study the notion of trace equivalence and we show how to establish such an equivalence relation in a modular way. It is well-known that composition works well when the processes do not share secrets. However, there is no result allowing us to compose processes that rely on some shared secrets such as long term keys. We show that composition works even when the processes share secrets provided that they satisfy some reasonable conditions. Our composition result allows us to prove various equivalence-based properties in a modular way, and works in a quite general setting. In particular, we consider arbitrary cryptographic primitives and processes that use non-trivial else branches. As an example, we consider the ICAO e-passport standard, and we show how the privacy guarantees of the whole application can be derived from the privacy guarantees of its sub-protocols

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Verification of Stateful Cryptographic Protocols with Exclusive OR

    Get PDF
    International audienceIn cryptographic protocols, in particular RFID protocols, exclusive-or (XOR) operations are common. Due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. In this paper, we improve the TAMARIN prover and its underlying theory to deal with an equational theory modeling XOR operations. The XOR theory can be combined with all equational theories previously supported, including user-defined equational theories. This makes TAMARIN the first verification tool for cryptographic protocols in the symbolic model to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs

    Dissecting unlinkability

    Get PDF
    • 

    corecore