

University of Dundee

Verification of Stateful Cryptographic Protocols with Exclusive OR

Dreier, Jannik ; Hirschi, Lucca ; Radomirovi, Saša; Sasse, Ralf

DOI:
10.3233/JCS-191358

Publication date:
2019

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Dreier, J., Hirschi, L., Radomirovi, S., & Sasse, R. (2019). Verification of Stateful Cryptographic Protocols with
Exclusive OR. Journal of Computer Security. https://doi.org/10.3233/JCS-191358

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/237454111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3233/JCS-191358
https://discovery.dundee.ac.uk/en/publications/8f6e779b-5295-4fe8-b40a-3f071c8170ed
https://doi.org/10.3233/JCS-191358

Journal of Computer Security 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Verification of Stateful Cryptographic
Protocols with Exclusive OR

Jannik Dreier a,∗, Lucca Hirschi a, Saša Radomirović b and Ralf Sasse c

a Université de Lorraine, CNRS, Inria, LORIA, France
E-mails: jannik.dreier@loria.fr, lucca.hirschi@inria.fr
b School of Science and Engineering, University of Dundee, UK
E-mail: s.radomirovic@dundee.ac.uk
c Department of Computer Science, ETH Zurich, Switzerland
E-mail: ralf.sasse@inf.ethz.ch

Abstract. In cryptographic protocols, in particular RFID protocols, exclusive-or (XOR) operations are common. Due to the
inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols
using XOR. In this paper, we improve the TAMARIN prover and its underlying theory to deal with an equational theory modeling
XOR operations. The XOR theory can be combined with all equational theories previously supported, including user-defined
equational theories. This makes TAMARIN the first verification tool for cryptographic protocols in the symbolic model to support
simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions,
and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by
analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as
provide proofs.

Keywords: formal verification, cryptographic protocols, exclusive or

1. Introduction

Security protocols aim to protect communication in the presence of malicious parties, for example
against an attacker on the internet or an attacker on the local wireless network. They are vital for ap-
plications including e-commerce, online voting, e-government, and online banking to ensure security
properties, such as confidentiality, entity and message authentication, anonymity, and untraceability. To
this end, security protocols employ cryptographic primitives, most commonly symmetric and asymmet-
ric encryption, digital signatures, and cryptographic hash functions. Many protocols, in particular those
designed for applications where the participants have limited power or computational resources, employ
exclusive-or (XOR) operations. Typical examples are RFID protocols [1–3] and mobile communication
protocols (3G [4], 4G/LTE [5], 5G [6]).

As illustrated by many attacks, e.g., [7–9], security protocols are notoriously difficult to get right. Con-
sequently, many tools for the automated analysis of security protocols have been developed, e.g., [10–
15]. Historically, the main focus of these tools has been the analysis of authentication and confidentiality
properties of protocols that employ standard cryptographic primitives in a Dolev-Yao adversary model.

*Corresponding author. E-mail: jannik.dreier@loria.fr.

0926-227X/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

The final publication is available at IOS Press through http://dx.doi.org/10.3233/JCS-191358

mailto:jannik.dreier@loria.fr
mailto:lucca.hirschi@inria.fr
mailto:s.radomirovic@dundee.ac.uk
mailto:ralf.sasse@inf.ethz.ch
mailto:jannik.dreier@loria.fr

2 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

More recently there has been active research on widening the scope of automated protocol verification,
for example by extending the class of properties that can be verified to include equivalence proper-
ties [16–20], extending the adversary model with complex forms of compromise [21], and extending the
expressiveness of protocols by allowing different sessions to update a global, mutable state [22, 23].

Perhaps the most significant development is tool support for user-specified equational theories allow-
ing for the modeling of particular cryptographic primitives [11, 12, 15, 17, 24]. However, these tools do
not allow a faithful modeling of XOR or have other strong limitations such as bounded verification or
no support for state. We refer to the related work, in Section 5, for a detailed discussion. The difficulty
in faithfully modeling XOR is due to the unique combination of algebraic properties that XOR satisfies,
specifically (i) the associativity (x⊕ (y⊕ z) = (x⊕ y)⊕ z) and commutativity (x⊕ y = y⊕ x) properties
and (ii) the cancellation properties (e.g., x ⊕ x = 0). Modeling XOR without one of the two classes of
properties provides only weak security guarantees since whole classes of attacks are missed.

The TAMARIN prover [15, 25] is a state-of-the-art cryptographic protocol verifier which allows the
user to combine all of the following: specifying complex security properties (both trace and equiva-
lence properties [20]), modeling cryptographic primitives by means of equational theories, and allowing
protocols to maintain state information. The class of user-specified equational theories supported by
the tool is the class of convergent equational theories that have the finite variant property [26] in addi-
tion to built-in theories for Diffie-Hellman exponentiations, bilinear pairings, and multisets. Although
TAMARIN supports such a large class of user-defined equational theories, one cannot simply model XOR
using a user-defined theory due to its associativity and commutativity (AC) properties. While TAMARIN
supports AC symbols in some built-in theories such as Diffie-Hellman exponentiation, the cancellation
properties of XOR (see (ii) above) require a special treatment, as a naive implementation often results in
non-termination.

Our contributions. In this paper, we significantly extend TAMARIN to support a precise modeling of
XOR operations taking into account its AC and cancellation properties. More technically, we model
XOR in TAMARIN’s term algebra by introducing a symbol for XOR, treated modulo AC, that satisfies
the expected cancellation properties. To avoid systematic non-termination issues in TAMARIN’s back-
ward search, the exploration needs to be constrained without affecting completeness (i.e., preserving
all attacks). We show that the previously implemented constraints are not adequate for XOR since they
yield systematic non-termination in the presence of XOR. We carefully devise new dedicated constraints
for XOR and prove that completeness is still ensured under the combination of all constraints. Finally,
we show that the previous attacker model of TAMARIN is not suitable for XOR when analyzing equiva-
lence properties as it yields spurious attacks (i.e., attacks that are solely artifacts of this internal model).
We improve the attacker model to considerably enhance the precision of the analysis in the presence
of XOR. We have implemented these extensions in the TAMARIN prover and demonstrate that the tool
succeeds to effectively analyze diverse protocols including some that were previously out of scope of
automated verification.

We model and analyze the RFID protocol LAK’06 [2], which consists of two roles exchanging five
messages. This protocol is stateful, heavily relies on XOR, and features an else branch. We analyze
secrecy, non-injective agreement (in both directions) as well as three unlinkability notions. Considering
an unbounded number of sessions, we obtain semi-automatic proofs and attacks (i.e, limited number of
interactions to guide state exploration, all steps machine-checked) for the reachability properties (i.e.,
secrecy and agreement). We obtain fully automatic proofs for and attacks on the different unlinkability
notions for a bounded number of sessions. Considering such a faithful modeling, all these analyses
were out of the scope of existing tools. We also analyze the stateful RFID protocols OTYT’06 [27] and

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

LD’07 [28] against similar properties. These protocols feature key updates, and rely on XOR. Again, we
obtain proofs and attacks. For these two protocols we analyze unlinkability for their full stateful version,
unlike LAK’06 for which only the stateless version is considered for unlinkability.

We fully automatically analyze two further XOR-based RFID protocols, CH’07 [1] and KCL’07 [3], a
version of Needham-Schroeder-Lowe (NSL) with XOR, and a challenge response protocol using XOR.
Finally, we analyze the off-line variant of Chaum’s digital cash protocol [29] which uses XOR and blind
signatures and thus provides a case study in which the equational theory for XOR is combined with an-
other non-subterm-convergent, user-defined equational theory. In this protocol we prove that a customer
remains anonymous when not double-spending coins, and find an attack on anonymity when double-
spending. Previous analyses [24, 30] could not model XOR precisely and therefore provide weaker
guarantees.

This paper is an extended version of [31]. In comparison to the conference paper, this paper includes
the detailed proofs, and two additional case studies (OTYT’06 and LD’07). TAMARIN’s extension de-
scribed in this paper has also been used to formally verify 5G AKA [32] and to find a privacy attack on
different AKA versions [33], all used for mobile communication.

Outline. We present necessary preliminaries in Section 2. Our extensions of the theory and the TAMARIN
tool are described in Section 3. We evaluate the latter with the case studies shown in Section 4, and we
also argue why one needs both associativity-commutativity (AC) and cancellation properties for faith-
fully modeling XOR. We review related work in Section 5, and give concluding remarks in Section 6.

2. Preliminaries

In TAMARIN, messages are represented as terms. Protocols and adversaries are modeled using multiset
rewriting rules. We also show how security properties are specified.

2.1. Messages represented as terms

As usual in symbolic security protocol verification we represent messages and operations on them as
terms in an order-sorted term algebra, using an equational theory. We assume a set of operators with
their arities as signature ΣOp. We define three sorts, a top sort msg including all terms together with two
incomparable subsorts fr and pub, where terms of the former model random (“fresh”) values in general,
and nonces and keys in particular, while terms of the latter represent publicly known (“public”) values.
We also assume countably infinite sets of variables Vs, for each sort s, and call the union of all such
sets V . We similarly treat names, with a countable set Ns for each sort s, and their union N . The set of
terms given by the closure of using operators from the signature containing variables in V and names
in N is denoted TΣOp(V ,N). A term t is ground if it contains no variables and we write TΣOp(N) for
the set of all ground terms, or simply TΣOp . A substitution σ is a function from variables to terms. We
homomorphically lift substitutions to terms and use postfix notation, so σ(t) is written tσ.

Given a signature ΣOp, an equation is an unordered pair of terms s and t, written s = t, for s, t ∈
TΣOp(V). An equational presentation over ΣOp for a given set of equations E is E = (ΣOp,E). The
associated equational theory is the smallest congruence closure containing all instances of E, for which
we write =E . Whenever it is clear from the context we drop the signature and simply write =E . Two terms
s and t are equal modulo E if and only if s =E t. We consider sets, sequences, and multisets modulo E
by using the subscript E.

4 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

x⊕ x = 0 (1)

x⊕ 0 = x (2)

x⊕ x⊕ y = y (3)

x⊕ (y⊕ z) = (x⊕ y)⊕ z (4)

x⊕ y = y⊕ x (5)

Fig. 1. Equational theory EXOR for XOR

In TAMARIN, user-defined equational theories are given using their rewrite rules oriented left to right.
They have to be confluent and terminating, i.e., convergent. In this case there are unique normal forms
for all terms, written t↓E . Thus we reason about terms in normal form in the following.

Example 1. To model asymmetric signatures, let ΣOp be the signature consisting of the functions
sign(⋅, ⋅), checksign(⋅, ⋅), and pk(⋅) together with the equation checksign(sign(x, k), pk(k)) = x.

TAMARIN also requires that equational theories have the finite variant property (FVP) [26]. For a
theory with the FVP, for any term t, we can compute a finite set of terms t1, . . . , tn (all of which are
normalized instances of t) with the following property: For any substitution σ, there is an i ∈ {1, . . . ,n}
and substitution φ such that tσ↓E= tiφ. This enables efficient symbolic protocol analysis by using a pre-
computation to replace the equational theory. More precisely, the complete set of variants modulo E for
a term t is denoted ⌈t⌉E . This set can be computed via folding variant narrowing [34].

XOR operations are usually (see, e.g., [26]) modeled using the equations given in Figure 1. Equation
(1) models the main cancellation property of XOR, (2) models the fact that 0 is the neutral element, and
(3) is required for technical reasons (to achieve AC-coherence, shown in [34]). Equations (1) to (3) can
be ordered from left to right and result in a convergent rewriting system with the finite variant property,
and could thus even be used in a user-specified equational theory in TAMARIN. However, equations (4)
and (5) cannot be handled in the same way as the resulting equational theory would not be terminating.

2.2. Modeling protocols and adversaries using multiset rewriting rules

Security protocols are modeled by multiset rewriting rules. These rules work on sets of facts. Formally,
we assume an unsorted fact signature ΣFact, partitioned into linear and persistent facts. The set of facts is
defined as F = {F(t1, . . . , tn) ∣ ti ∈ TΣOp(V ,N),F ∈ ΣFact of arity n}. Linear facts can only be consumed
as often as they have been created, while persistent facts can be consumed an unbounded number of
times. We denote the set of multisets of facts as F ♯ and the set of ground facts as G♯. The function set(⋅)
converts multisets to sets by dropping the multiplicity. We use the superscript ♯ to denote operations on
multisets, e.g., ∪♯ denotes the union on multisets.

Labeled multiset rewriting rules give the system’s state transitions. Such rules are given as (id, l,a, r)
with id a unique identifier, and l, a, and r multisets of facts. The resulting rule is ri = id ∶ l−−[a]→r.
We say its name is name(ri) = id, its premises are prems(ri) = l, its conclusions concs(ri) = r, and its
actions acts(ri) = a.

We denote the ground instances ginsts(R) for a set of multiset rewriting rules R. We denote by lfacts(l)
the multiset of linear facts and by pfacts(l) the set of persistent facts in l. The semantics of a set of
multiset rewriting rules R are given by a labeled transition relation →R ⊆ G♯ × G♯ × G♯, defined by the

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

following step rule, where S is the current state (a multiset of facts):

ri = id ∶ l−−[a]→r ∈E ginsts(R) lfacts(l) ⊆♯ S pfacts(l) ⊆ S

S
set(a)ÐÐÐ→R ((S ∖♯ lfacts(l)) ∪♯ r)

Note that the initial state of a labeled transition system derived from multiset rewriting rules is the empty
multiset of facts ∅. The transition according to the step rule transforms a multiset of facts into another
multiset of facts. The actions of the rule are the label attached to the transition. We define our security
properties over these labels. We rewrite modulo equations E, so we use ∈E for the rule instance modulo.
Linear facts are consumed and need to be available sufficiently often, while persistent facts just need to
be present. The next state is derived by removing consumed linear facts and adding all generated linear
(with correct multiplicity) and persistent facts.

There is a single distinguished fresh rule: Fresh ∶ −−[]→Fr(n). This rule has no premise and is the only
rule allowed to create the linear Fr facts. To ensure that the generated n is unique, there is an additional
condition enforcing that within an execution the variables n from two instances are different. A detailed
explanation is available in [35].

We define an execution e of a protocol P as the alternating sequence of states and rule instances:
S 0, (l1−−[a1]→r1),S 1, . . . ,S n−1, (ln−−[an]→rn),S n such that S 0 = ∅, and that for all i ∈ {1, . . . ,n}
we have all (S i−1, (li−−[ai]→ri),S i) are valid steps according to the step rule. We associate the trace
trace(e) = [set(a1), . . . , set(an)] with such an execution e. We write exec(P) for the set of executions
of P.

We consider a standard Dolev-Yao style adversary with full control over the network and the ability
to apply all operators. The message deduction rules are given by MD below. The adversary learns all
messages sent by participants as they are put into the linear Out facts and are subsequently stored in the
persistent adversary knowledge K. The adversary can send messages to protocol participants by putting
them into linear In facts. Moreover, the adversary can generate his own random values and knows all
public values. He can also apply functions from the signature using the rules in the third line of MD.

MD = { Out(x)−−[]→K(x), K(x)−−[K(x)]→In(x),Fr(x∶fr)−−[]→K(x∶fr), []−−[]→K(x∶pub) }
∪ { K(x1), . . . ,K(xn)−−[]→K(f (x1, . . . , xn)) ∣ f ∈ ΣOp with arity n }

We consider all terms modulo the given equational theory, so these rules do not deal explicitly with
the equations modeling the cryptographic theory. As a more efficient form, TAMARIN uses dependency
graphs to represent the protocol and adversary deduction rules which are applied.

Definition 1 (Dependency Graph). We say that the pair dg = (I,D) is a dependency graph modulo E
for R if I is a sequence of E-ground instances of rules from R ∪ Fresh, D ∈ N2 ×N2, and dg satisfies the
conditions:

DG1 For every edge (i,u)↣ (j, v) ∈ D it holds that i ≤ j and the conclusion fact of (i,u) is syntactically
equal to the premise fact of (j, v).

DG2 Every premise of dg has exactly one incoming edge.
DG3 Every linear conclusion of dg has at most one outgoing edge.
DG4 The Fresh instances are unique.

6 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Rule instances

Fr(m)
ri.1:

Fr(m)
St(A,m) Out(m)ri.2: [Start(m)]

Out(m)
K(m)ri.3:

K(m)
In(m)ri.4: [K(m)]

St(A,m) In(m)
ri.5: [End(m)]

Trace States

S 0 = ∅

S 1 = {Fr(m)}

S 2 = {St(A,m),
Out(m)}

S 3 = {St(A,m),
K(m)}

S 4 = {St(A,m),
In(m),K(m)}

S 5 = {K(m)}

Fig. 2. Example execution of (Pbasic ∪MD).

We denote the set of all dependency graphs modulo E for R by dgraphsE(R).

Example 2. Consider a protocol Pbasic where agent A sends a nonce m on the network and then receives
it, specified using the following rules:

Pbasic = { Fr(m)
St(A,m) Out(m)[Start(m)], St(A,m) In(m)[End(m)]}

Figure 2 gives a sample execution of this protocol as a dependency graph. It also illustrates how the
dependency graph represents the trace and intermediate states.

We write dgraphs(R) to denote all possible dependency graphs for the multiset rules R, and
traces(dg) for the traces of a dependency graph dg. It is easy to see that the dependency graphs have
the same traces as the labeled transition system executions.

Lemma 1 ([35], Lemma 4). Let E be an equational theory. Then for all protocols P:

{trace(e)∣e ∈ exec(P ∪MD)} =E {t∣t ∈ traces(dg),dg ∈ dgraphsE(P ∪MD)}

2.3. Security property specification

We consider both trace properties and indistinguishability properties. Examples of trace properties are
secrecy and mutual agreement. These properties are expressed as first-order logic formulas. Formulas

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

use variables of a new sort, temp, for reasoning about the order of events, and are evaluated on traces.
The informal semantics of our atomic formulas are

● �: false;
● t1 ≈ t2: t1 and t2 are equal in the equational theory;
● F@i: fact F ∈E tr[i] where i is of sort temp and tr[i] is the i-th element of the trace tr on which

we evaluate the formula;
● i ≐ j: timepoints i and j are equal;
● i ⋖ j: timepoint i occurs before timepoint j.

See [35] for all the details on the semantics and fragment of first order logic accepted by TAMARIN.
We write tr ⊧ ϕ when ϕ holds on trace tr and lift the semantics to sets of traces: given a set of traces Tr
we write Tr ⊧∀ ϕ if tr ⊧ ϕ for any tr ∈ Tr and Tr ⊧∃ ϕ if tr ⊧ ϕ for some tr ∈ Tr.

We specify unlinkability, anonymity, and more generally equivalence properties by use of diff -terms
(defining bi-systems, i.e., two systems differing only in some terms) and check their observational equiv-
alence, see [20].

Example 3 ([20], Ex. 10). An equational theory representing probabilistic encryption is

pdec(penc(m, pk(k), r), k) = m

This equation gives rise to the decryption rule for probabilistic encryption for the adversary automati-
cally generated by TAMARIN:

Dpenc ∶ K(penc(m, pk(k), r)),K(k)−−[]→K(m) .

Consider now the following bi-system:

S = { GEN ∶ Fr(k)−−[]→Key(k),Out(pk(k)),
ENC ∶ Key(k),Fr(r1),Fr(r2), In(x)−−[]→Out(diff[r1, penc(x, pk(k), r2)]) } .

Here TAMARIN will compare the system where diff[r1, penc(x, pk(k), r2)] is replaced by r1 to the sys-
tem where it is replaced by penc(x, pk(k), r2). If the adversary cannot distinguish the two systems,
they are said to be observationally equivalent. In this example, this means that he cannot distinguish a
probabilistic encryption from random.

For both types of properties, TAMARIN analyzes the reachability of attack states, which are defined
by a given security property. It does so by exploring symbolic traces in a backward fashion.

3. Handling XOR

In the following, we explain how we deal with the AC properties of the XOR theory, and how we
integrate it with the existing built-in and user-defined equational theories. Moreover, we show that the
existing normal form conditions are insufficient. To address this, we propose a new normal form con-
dition that eliminates redundant steps, and show its soundness. Finally we explain why we also had to
adapt the adversary model for equivalence properties.

8 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

As explained above, one cannot handle the equational theory for exclusive-or, EXOR, within the user-
defined theories of TAMARIN due to the combination of its associativity and commutativity (AC) prop-
erties with its cancellation properties. To deal with this equational theory, we split it into two parts: (i)
the convergent equations modeling the cancellation properties, and (ii) the axioms for associativity and
commutativity, and then reason modulo the AC axioms. So, we define (i) XOR to be the equational theory
consisting of equations (1)-(3) oriented left to right, and (ii) AC to be the equational theory consisting of
equations (4) and (5). As XOR has the required properties (AC-convergence and AC-coherence, see [34]
for details and how XOR has these properties), we can define t↓XOR as the normal form of term t with
respect to XOR,AC-rewriting and have s =EXOR t iff s↓XOR =AC t↓XOR. We say that t is ↓XOR-normal iff
t =AC t↓XOR.

TAMARIN already supports user-defined equational theories (without AC operators) and some built-in
equational theories (with AC operators) such as the multiplication operation in the Diffie-Hellman equa-
tional theory [35], as well as bilinear pairing and multisets. To integrate the existing theories with XOR,
we refer by DHBPM to the rewriting part of equational theory EDHBPM for Diffie-Hellman exponentia-
tion, bilinear pairing, and multisets as well as the user-defined convergent theory with the finite variant
property as used in TAMARIN, and let ACC denote the underlying equational axioms of associativity
and commutativity for multiplication, bilinear pairing, and multisets. Note that EDHBPM, in particular the
user-defined part, is not allowed to use the function symbols from EXOR, so that the equational theories
are disjoint. We now consider ALL = XOR∪DHBPM, AC’ = AC∪ACC and EALL = EXOR ∪ EDHBPM, i.e.,
the union of EXOR and the existing built-in equational theories in TAMARIN.

Note that this is compatible with any user-defined equational theory as well. In a first step to enable
automated analysis, we now switch from dependency graphs to dependency graphs modulo AC using
the finite variant property. For a protocol P, we denote the variants of all protocol rules induced by the
equational theory ⌈P⌉E . The following lemma establishes a strong connection between both types of
dependency graphs.

Lemma 2. For all protocols P,

dgraphsEALL(P ∪MD)×ÖALL =AC’ {dg ∣ dg ∈ dgraphsAC’(⌈P ∪ MD⌉EALL) ∧ dg ↓ALL − normal}

Proof. By extension of Lemma 5 in [35]. The proof is analogous as the equational theory has the same
properties. 2

In a second step, we switch from dependency graphs modulo AC to normal dependency graphs next.

3.1. Normal dependency graphs

Even for simple convergent theories containing only the pairing function ⟨⋅, ⋅⟩ and the fst and snd
operators, non-normalized dependency graphs are not sufficient to automate the analysis of traces. For
example, consider the case where the adversary deduces the first element a of a pair ⟨a,b⟩ by applying
the function fst(⋅), then pairs it with an element c, and then again deduces a, this time from the new pair,
to next build the pair ⟨a,d⟩. This is visualized in the left-most graph of Figure 3. (Note that the topmost
rule is actually an instance of the function application rule for fst(⋅) where the conclusion fst(⟨a,b⟩)
is presented in the reduced form a, according to the equational theory.) This is a correct dependency

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

K(⟨a,b⟩)
K(a)1:

K(a) K(c)
K(⟨a, c⟩)2:

K(⟨a, c⟩)
K(a)3:

K(a) K(d)
K(⟨a,d⟩)4:

K↑(a) K↑(c)
K↑(⟨a, c⟩)1:

K↓(⟨a, c⟩)
K↓(a)2:

K↓(⟨a,b⟩)
K↓(a)1:

K↓(a)
K↑(a)2:

K↑(a) K↑(d)
K↑(⟨a,d⟩)3:

Fig. 3. Message deduction graphs for pairing: the left represents a redundant dependency graph, the middle an impossible
deduction with ordered K-facts, and the right shows a shorter deduction with final conclusion equivalent to the left.

graph, but redundant, as the steps containing c could have been skipped. As this can be resolved in just
one step TAMARIN uses normal dependency graphs that exclude such useless steps. This is necessary as
otherwise automated analysis will easily loop.

Construction and Deconstruction Rules. To improve efficiency and avoid the aforementioned redun-
dancy, TAMARIN makes the equational theory explicit by dividing the adversary rules into two cate-
gories: construction rules and deconstruction rules. Deconstruction rules correspond to equations and
are used by the adversary just after protocol rules to deduce messages from what has been sent on the
network. Construction rules are, conversely, used to build messages from the adversary’s knowledge that
are then sent on the network. To achieve this, adversary knowledge K facts are equipped with an orien-
tation, up and down, denoted K↑ and K↓. Deconstruction rules have premises with both K↓ and K↑ facts
(as, e.g., decrypting a ciphertext that was received requires knowing the key) and a conclusion with a K↓

fact. Construction rules, conversely, have premises with only K↑ facts and their conclusion is a K↑ fact
as well. To match the purpose of construction and deconstruction rules, the new Out rule has a K↓ fact
as conclusion, while the In rule has K↑ facts as premise. The transition from K↓ to K↑ is achieved by a
special rule with label “Coerce”, see below, but no direct conversion from K↑ to K↓ is possible to prevent
loops. This enforces deconstruction rules to be used before construction rules.

In the case of XOR, we have two deconstruction rules and one construction rule, which directly result
from the variants of x1 ⊕ x2. This results in normal deduction rules depicted in Figure 4, including the
usual pairing and unpairing operators.

With such rules, the adversary avoids cases of redundancy as shown in Figure 3. In the following
we consider the normal deduction rules ND, which include NDXOR, as well as the construction and
deconstruction rules for Diffie-Hellman exponentiation, bilinear pairing, multisets, as well as the user-
defined equational theory (see [24, 35] for details on these rules).

Normal Form Conditions. We integrate the concept of normal message deduction with construction and
deconstruction rules and dependency graphs, yielding (pre-)normal dependency graphs. (Pre-)normal
dependency graphs enforce additional normal form conditions, called N1-N12 [24].

We also use an additional layer of ordering on K facts, and give the ↓ a subscript d, respectively e, to
annotate whether it was already used in a bilinear pairing, which is only allowed once.

10 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Out(x)
K↓(x)

K↑(x)
In(x) [K(x)] Coerce ∶ K↓(x)

K↑(x)
Fr(x ∶ f r)
K↑(x ∶ f r) K↑(x ∶ pub)

Construction rules: Deconstruction rules:
K↑(x1) K↑(x2)

K↑(⟨x1, x2⟩)
K↓(⟨x, y⟩)

K↓(x)
K↓(x1 ⊕ x2) K↑(x2)

K↓(x1)

K↑(0)
K↑(x1) K↑(x2)

K↑(x1 ⊕ x2)
K↓(⟨x, y⟩)

K↓(y)
K↓(x1 ⊕ x2) K↑(x2 ⊕ x3)

K↓(x1 ⊕ x3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 4. Set of normal deduction rules NDXOR

Definition 2 (Adapted from [24]). A pre-normal dependency graph for a set of protocol rules P is a
dependency graph dg such that dg ∈ dgraphsAC’(⌈P⌉ALL

insts∪ND) and the following conditions are satisfied:

N1. The dependency graph dg is ↓ALL-normal.
N2. There is no multiplication rule that has a premise fact of the form K↑(s ∗ t) and all conclusion

facts of the form Kx(s ∗ t) are conclusions of a multiplication rule.
N3. If there are two conclusions c and c′ with conclusion facts Kx(m) and Kx′(m′) such that m =AC’ m′

and either x= x′=↑, or x=↓y and x′=↓y′ for y, y′ ∈ {d, e}, then c = c′.
N4. All conclusion facts K↑(f (t1, . . . , tn)) where f is an invertible function symbol are conclusions of

the construction rule for f .
N5. If a node i has a conclusion K↓y(m) for y ∈ {d, e} and a node j has a conclusion K↑(m′) with

m =AC’ m′, then i < j and either root(m) is invertible or the node j is an instance of coerce.
N6. There is no node [K↓d(a), K↑(b)] −[]→ K↓e(ĉ r) where c does not contain any fresh names and

ni f actors(r) ⊆AC’ ni f actors(b).
N7. There is no construction rule for ♯ that has a premise of the form K↑(s ♯ t) and all conclusion facts

of the form K↑(s ♯ t) are conclusions of a construction rule for ♯.
N8. The conclusion of a deconstruction rule for ♯ is never of the form K↓d(s ♯ t).
N9. There is no node [K↓d(a),K↑(b)] −[]→ K↓e([d]c) such that c does not contain any fresh names

and ni f actors(d) ⊆AC’ ni f actors(b).
N10. There is no node i labeled with [K↓d([t1]p),K↓d([t2]q)] −[]→ K↓d(ê(p,q)̂ c) such that there

is a node j labeled with [K↓d(ê(p,q)̂ c),K↑(r)] −[]→ K↓d(ê(p,q)̂ s), an edge (i,1) ↣ (j,1),
ni f actors(ti) ⊆AC’ ni f actors(r) for i = 1 or i = 2, and ê(p,q) does not contain any fresh names.

N11. There is no node [K↓d([a]p),K↓d([b]q)] −[]→ K↓d(ê(p,q)̂ (a ∗ b)) such that the send-nodes of
the first and second premises are labeled with ru1 and ru2 and f syms(ru2) < f s f syms(ru1) where
< f s is a total order on sequences of fact symbols.

N12. There is no chain of nodes repeatedly instantiating a rule of the form
K↓(l∣p),K↑(t1), . . . ,K↑(ti)−−[]→K↓(r) of length at least equal to the number of subterms of l∣p, if
l∣p and r are unifiable.

Most of the conditions avoid redundancy and enforce that all terms are in normal form (N1). N2 and
N6 are for the bilinear pairing theory DH, N7 to N11 are for BP . N3 avoids multiple deduction of

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

the same term. N4 forbids deduction by coerce rule on invertible function symbols that instead must
be created by construction. N5 enforces the ordering of K↓ before K↑ facts. N12 limits the length of
derivation chains for certain rules to the maximum required number. We do not detail these conditions
and their notations here as they are orthogonal to our work. For detailed explanations of these normal
form conditions and the notations, see [24, 35, 36].

The existing normal form conditions are however insufficient to handle XOR, as illustrated by the
following example.

Example 4. TAMARIN uses backwards constraint-solving to find normal dependency graphs represent-
ing the protocol executions. Suppose that during the constraint solving the adversary needs to compute
a term a ⊕ b, or more precisely TAMARIN encounters an unsolved K↓(a ⊕ b) premise. Then TAMARIN
will check all possible ways for the adversary to compute this term: The premise can either be the result
of a protocol output, or the result of a deconstruction rule for XOR. In the latter case, K↓(a⊕ b) can, for
example, be the conclusion of a rule instance with premises K↓(a⊕c) and K↑(c⊕b). TAMARIN will then
try to resolve the new premises, and again K↓(a⊕ c) can be the conclusion of a deconstruction rule with
premises K↓(a⊕d) and K↑(d⊕c), and so on, resulting in non-termination. This is illustrated in Figure 5.
Note that this is not prevented by any of the previous normal form conditions, as they are focused on
handling the previous equational theories.

Such loops would occur in many cases when analyzing even simple protocols containing XOR. To
prevent them, we introduce a new normal form condition, N13, which enforces that there is no chain of
applications of XOR deconstruction rules.

Definition 3 (N13). There is no chain of repeated instantiations of the deconstruction rules for XOR.

Intuitively, this does not limit the deducible terms for the adversary, as one can always cancel out all
terms in a single step (i.e., using one deconstruction rule). This is formally stated and proven below.

Definition 4. A normal dependency graph for a set of protocol rules P is a dependency graph dg such that
dg ∈ dgraphs(⌈P⌉ALL∪ND) and the conditions N1-N13 are satisfied. We denote the set of all pre-normal
dependency graphs (resp. normal dependency graphs) for P by pdgraphs(P) (resp. ndgraphs(P)).

Let tr denote the subsequence, called observable trace, of all actions in a trace tr that are not equal
to ∅. We can now prove the main correctness theorem which states that the observable traces of the

⋮
K↓(a⊕ e) K↑(e⊕ d)

K↓(a⊕ d)3:

K↓(a⊕ d) K↑(d ⊕ c)
K↓(a⊕ c)2:

K↓(a⊕ c) K↑(c⊕ b)
K↓(a⊕ b)1:

Fig. 5. Example 4: Infinite chain of deconstruction rules.

12 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

protocol are identical with the observable traces of the normal dependency graphs. This is sufficient to
show soundness and completeness, as TAMARIN generates all possible normal dependency graphs using
constraint solving.

Theorem 1. For all sets P of protocol rules,

trace(execs(P ∪MD)) ↓ALL =AC’ trace(ndgraphs(P)).

Note that by relying on the observable trace we hide the adversary’s deduction steps on both sides
(which differ slightly due to the normalized deduction), but ensure that security properties (defined on
actions) are carried over correctly. This theorem shows that by ordering the K-facts the adversary does
not lose any power, and that we can simplify the deduction using the finite variant property. The proof,
given below, is an extension of the proof of Theorem 1 in [24], where we need to add additional cases
for the XOR rules. Normal form condition N13 can be ensured because of the boundedness property of
XOR, which allows reaching any term’s normal form in at most two steps, one to cancel all duplicate
terms, and another to cancel a possibly remaining single 0 if needed (in our deconstruction rules the
latter case also corresponds to a single rule application).

3.1.1. Proof of Theorem 1 for XOR
To formally express the proof, we define some sets of messages, denoting notions of adversary knowl-

edge over a dependency graph.

Definition 5. We define the known messages of a dependency graph dg as well as the construction-,
deconstruction- and combined-known messages for (pre-)normal dependency graphs ndg:

known(dg) = {m∣ exists conclusion K(m) ∈ dg}
known↑(ndg) = {m∣ exists conclusion K↑(m) ∈ ndg}
known↓(ndg) = {m∣ exists conclusion K↓(m) ∈ ndg}
known↕(ndg) = known↑(ndg) ∪ known↓(ndg)

We define as stfacts(dg) all state conclusion facts of a (pre-)normal dependency graph except
for adversary knowledge facts K,K↑,K↓. We define as the created messages created(dg) all the fresh
values that appear under Fr facts in a (pre-)normal dependency graph.

Finally, we say that a (pre-)normal dependency graph ndg′ = (I′,D′) is a deduction extension of ndg =
(I,D) if I is a prefix of I′, D ⊆ D′, trace(ndg) = trace(ndg′), stfacts(ndg) = stfacts(ndg′), and
created(ndg) = created(ndg′).

Note that if t ∈ known↕(ndg), then there exists a deduction extension ndg′ of ndg such that t ∈
known↑(ndg′) using an instance of the COERCE rule if necessary.

Definition 6 (Factors). We define the factors of a term t as follows:

f actors(t) = {{t1, . . . , tn} if t =AC’ t1 ⊕ . . .⊕ tn
∅ otherwise

Note that, ⊕ is a binary function symbol and AC’ only modifies the order of the arguments of XOR,
but never removes an argument. Therefore, f actors(t) is never a singleton set.

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We can now show an intermediate lemma required for the proof of the correctness theorem, Theo-
rem 1. The lemma simply states that if two terms are known by the adversary, he can also compute
XOR of both terms while complying with all normal form conditions except N13 which will be treated
directly in the proof of Theorem 1.

Lemma 3. For all pre-normal dependency graphs ndg with t1 ∈AC’ known↕(ndg) and t2 ∈AC’

known↕(ndg) there exists a deduction extension ndg′ of ndg such that (t1 ⊕ t2 ↓ALL) ∈AC’ known
↕(ndg′).

Proof. If (t1⊕ t2 ↓ALL) ∈AC’ known
↕(ndg) then we trivially conclude with ndg′ = ndg. In the following,

we thus assume that (t1 ⊕ t2 ↓ALL) ∉AC’ known
↕(ndg′).

If t1 =AC’ t2, then t1 ⊕ t2 ↓ALL 0, and we extend ndg with an instance of the constructor rule for 0. We
now assume that t1 /=AC’ t2.

Let fi = f actors(ti) and ni = ∣ fi∣ for 1 ≤ i ≤ 2. We proceed by induction on k = n1 + n2.

Base Case. If k = 0, then we have n1 = n2 = 0, i.e., f1 = f2 = ∅. Therefore, the facts Kx(t1) and Ky(t2)
given by hypothesis were not conclusions of some variant of a XOR rule instance. We also have that
t1⊕ t2 ↓ALL =AC’ t1⊕ t2. Indeed, t1 and t2 are different values in normal forms, have no ⊕ at top level and
other symbols do not interact with XOR (⊕ neither appears in DHBPM nor in ACC). Potentially using
some Coerce rules (depending on x and y), we can extend ndg to produce facts K↑(t1) and K↑(t2). We
extend again the graph with an instance of the constructor rule for ⊕ with K↑(t1) and K↑(t2) as premises
and K↑(t1⊕t2) as conclusion. All normal form conditions are satisfied. Note that N3 holds by assumption
(i.e., (t1 ⊕ t2 ↓ALL) ∉AC’ known

↕(ndg′)) and N5 holds because ndg does not violate it.

Inductive Case. Otherwise, k > 0. There must be some i such that ni ≥ 2. We suppose w.l.o.g. n1 ≥ n2,
hence n1 ≥ 2 and f1 ≠ ∅.

● If f1 ∩ f2 = ∅ then t1 ⊕ t2 ↓ALL =AC’ t1 ⊕ t2 (since t1 and t2 are normal forms). We extend ndg
with an instance of the constructor rule for ⊕ with K↑(t1) and K↑(t2) as premises and K↑(t1 ⊕ t2)
as conclusion. We assume in the following that f1 ∩ f2 ≠ ∅. Note that f1 /⊆ f2 since f1 ≠ f2 and
n1 ≥ n2.

● If f2 /⊆ f1.

* If t1 ∈AC’ known
↓(ndg), we can use an instance of the second deconstruction rule with K↓(t1)

and K↑(t2) as premises and K↓(t1⊕ t2 ↓ALL) as conclusion. In case t2 ∉AC’ known
↑(ndg), then

t2 ∈AC’ known
↓(ndg) and one can use a Coerce rule to add K↑(t2) to the graph.

* If t2 ∈AC’ known
↓(ndg), we can use an instance of the second deconstruction rule with K↓(t2)

and K↑(t1) as premises and K↓(t1⊕ t2 ↓ALL) as conclusion. In case t1 ∉AC’ known
↑(ndg), then

t1 ∈AC’ known
↓(ndg) and one can use a Coerce rule to add K↑(t1) to the graph.

* Otherwise, it holds that t1 ∉AC’ known
↓(ndg) and t2 ∉AC’ known

↓(ndg). Therefore, we have
t1 ∈AC’ known

↑(ndg) and t2 ∈AC’ known
↑(ndg), and both t1 and t2 must be the conclusion

of a constructor rule instance. Let r1 and r2 be the premises of the constructor rule instance
for t1, and s1 and s2 be the premises of the constructor rule instance for t2, then we have that
f actors(r1) ∩ f actors(r2) = ∅ and f actors(s1) ∩ f actors(s2) = ∅. Indeed, otherwise, the
application of the constructor on r1 and r2 (or s1 and s2, respectively) would not be a valid
normal form instantiation of the constructor rule (i.e., r1 ⊕ r2 or s1 ⊕ s2, respectively, would
not be ↓ALL-normal). As f1∩ f2 ≠ ∅, there exists i and j such that f actors(ri)∩ f actors(s j) ≠
∅. By the induction hypothesis there exists a deduction extension ndg′ such that ri ⊕ s j ∈AC’

14 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

K↓(t1) K↑(t2)
K↓(t3)

1:

K↓(t3) K↑(t4)
K↓(t5)

2:

(by Lemma 3)

K↑(t2 ⊕ t4 ↓ALL)
1:

K↓(t1) K↑(t2 ⊕ t4 ↓ALL)
K↓(t5)

2:

Fig. 6. Merging multiple deconstruction rule instances.

known↕(ndg′). We have that ∣ f actors(ri ⊕ s j)∣ ≤ ∣ f actors(ri)∣ + ∣ f actors(s j)∣ − 1, hence
by applying the inductive hypothesis with r3−i and then with s3− j, we obtain a deduction
extension ndg′′ of ndg′ such that r1 ⊕ r2 ⊕ s1 ⊕ s2 =EALL t1 ⊕ t2 ∈AC’ known

↕(ndg′′).
● If f2 ⊆ f1.

* If t1 ∈AC’ known
↓(ndg), we can use an instance of the first deconstruction rule with K↓(t1)

and K↑(t2) as premises and K↓(t1⊕ t2 ↓ALL) as conclusion. In case t2 ∉AC’ known
↑(ndg), then

t2 ∈AC’ known
↓(ndg) and one can use a Coerce rule to add K↑(t2) to the graph.

* If t1 ∉AC’ known
↓(ndg), then t1 must be the result of a constructor rule. Let s1 and s2 be

the premises of this constructor rule. It holds that f actors(s1) ∩ f actors(s2) = ∅. Indeed,
otherwise, the application of the constructor would not be a valid normal form instantiation
of the constructor rule (i.e., s1 ⊕ s2 would not be ↓ALL-normal). Since f1 ∩ f2 ≠ ∅, there
exists i such that f actors(si) ∩ f actors(t2) ≠ ∅. By induction hypothesis, there exists a
deduction extension ndg′ such that si ⊕ t2 ∈EALL known

↕(ndg′). We have that ∣ f actors(si ⊕
t2)∣ ≤ n2 + ∣ f actors(si)∣ − 1, hence there exists a deduction extension ndg′′ of ndg′ such that
s3−i ⊕ si ⊕ t2 =EALL t1 ⊕ t2 ∈AC’ known

↕(ndg′′).

2

We can now prove Theorem 1 by adapting the proof we find in [24]. The proof considers a dependency
graph on which we add a rule instance and see if it is convertible into a possible rule instance from
ginst(⌈P ∪ND⌉ALL

insts ∪ {Fresh}) to complete an equivalent normal dependency graph.

Proof of Theorem 1. Relying on Lemmas 1, 2, 3 we shall prove that

trace({dg ∣dg ∈ dgraphsAC’(⌈P ∪ MD⌉EALL)∧dg↓ALL−normal}) =AC’ trace(ndgraphs(P))

We prove both inclusions of the above by structural induction on (pre-) normal dependency graphs. Most
cases can be treated as in [24].
⊆AC’: We prove that, for all dg ∈ dgraphsAC’(⌈P ∪ MD⌉ALL

insts) with dg ↓ALL -normal, there is ndg ∈
ndgraphs(P) such that:

known(dg) ⊆AC’ known
↕(ndg) (1)

stfacts(dg) ⊆AC’ stfacts(ndg) (2)

created(dg) =AC’ created(ndg) (3)

trace(dg) =AC’ trace(ndg) (4)

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Notice that the inclusion of (2) applies to multisets.
The four properties hold for dg = ([],∅). Let dg = (I,D) ∈ dgraphsAC’(⌈P ∪ MD⌉ALL

insts) with dg ↓ALL

-normal, and ndg = (Ĩ, D̃) ∈ ndgraphs(P) such that (1)-(4) hold. Let ri ∈ ginstAC’(⌈P ∪ MD⌉ALL
insts ∪

{Fresh}) such that dg′ = (I ⋅ ri,D⊎D′) ∈ dgraphsAC’(⌈P ∪ MD⌉ALL
insts). We must show that there is a

deduction extension ndg′ of ndg that satisfies (1)-(4) with respect to dg′.
We perform a case distinction on ri:

● for ri ∈ ginstAC’(⌈P⌉ALL
insts ∪ {Fresh}), we can extend ndg to ndg′ = (Ĩ ⋅ ri, D̃⊎ D̃′) in accordance

with conditions (2) and (3),
● for ri ∈ {Out(m) −[]→ K(m),K(m) −[K(m)]→ In(m),Fr(n) −[]→ K(n),−[]→ K(c)} ⊂

ginstACC(⌈MD⌉RCST ′insts , there are corresponding rules in ND that can complete Ĩ,
● for all variants of the XOR rule we can apply Lemma 3. In case the dependency graph violates

N13, we have two consecutive instances of XOR deconstruction rules, which we can replace with
one instance, as illustrated in Figure 6. By Lemma 3, there exists a deduction extension to obtain
K↑(t2⊕ t4 ↓ALL). Note that although the application of Lemma 3 can again introduce new instances
that violate N13, we can apply the same technique again, which will terminate as there is only a
finite number of known terms, and the application of the lemma does not duplicate terms.

● Other rules only deal with the bilinear-pairing, Diffie-Hellman or user-defined theory, and the
addition of XOR does not interfere with the original proof.

⊇AC’: For the other inclusion, we show, by an analogous way, that for all ndg ∈ ndgraphs(P), there is
a dg ∈ dgraphsAC’(⌈P ∪MD⌉ALL

insts) with dg ↓ALL -normal, such that:

known(ndg) ⊆AC’ known
↕(dg) (1)

stfacts(ndg) ⊆AC’ stfacts(dg) (2)

created(ndg) =AC’ created(dg) (3)

trace(ndg) =AC’ trace(dg) (4)

It holds for ndg = ([],∅). Let ndg = (I,D) ∈ ndgraphs(P), and dg = (Ĩ, D̃) ∈ dgraphsAC’(⌈P∪MD⌉ALL
insts)

with dg ↓ALL -normal such that (1)-(4) hold. Let ri ∈ ginstAC’(⌈P⌉ALL
insts ∪ ND ∪ {Fresh}) such that ndg′ =

(I ⋅ ri,D⊎D′) ∈ ndgraphsAC’(P). We must show that there is a deduction extension dg′ of dg that
satisfies (1)-(4) with respect to ndg′. Note that there is no normal dependency graph violating N13 by
definition, so no special care needs to be taken for that restriction in this direction. We still perform a
case distinction on ri

● for ri ∈ ginstAC’(⌈P⌉ALL
insts ∪ {Fresh}): analogous to the other inclusion,

● for ri ∈ ginstAC’(ND): there is a corresponding rule in ⌈MD⌉ALL
insts for all variants of XOR rule

instances ri. For the others rules, we proceed as in the original proof.

2

We also show that that our new constraint solving rule to ensure N13 is correct, and that N13 is sound
and complete in equivalence mode using a similar argument.

16 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

N13 ∶ Γ ↝P �
if i ∶ ri, j ∶ ri′, (i,1)⇢(j,1), ri and ri′ are instances of XOR deconstruction rules

Fig. 7. New constraint-reduction rule. Γ↝P � denotes that the constraint system Γ can be reduced to � (bottom); i and j define
two rule instances ri and ri′ in the dependency graph; and (i,1)⇢(j,1) denotes an edge in the graph between rule instances i
and j.

3.1.2. Modified Constraint-Solving Rules
We only added one constraint-solving rule that implements N13, as shown in Figure 7. The proof of

soundness and completeness of the constraint solving is then a straightforward extension of the proofs of
[20, Lemma 6] and [15, Theorem 2]: It is easy to see that this rule does not create any new solutions, and
it only removes solutions violating N13 as we only remove systems containing two chained instances of
deconstruction rules for XOR.

3.2. Adversary Model for Equivalence Properties

TAMARIN verifies dependency graph equivalence, that is similar to diff-equivalence in PROVERIF [16].
This notion requires that for any dependency graph in one protocol there is a corresponding (“mirrored”)
dependency graph in the other protocol [20].

In doing so, TAMARIN enforces a strict one-to-one mapping of rules: an instance of a rule can only
be simulated using an instance of the same rule, modulo the equational theory. For protocol rules, this
means that TAMARIN allows one variant of a rule (modulo the equational theory) to be mirrored using a
different variant of the same rule. For adversary rules, TAMARIN is more conservative: a deconstruction
rule instance can only be simulated by another deconstruction rule instance, and not by construction rule
instances, although they are technically variants of the same function application rule. This is usually
desired: e.g., in the case of signatures, an instance of the deconstruction rule for the signature verification
function corresponds to a successfully verified signature. If a signature can be successfully verified in
one protocol, then this must also be the case in the other protocol, otherwise there is no observational
equivalence.

However, in the case of XOR, this mapping is too strict, as an adversary cannot know whether an
application of XOR actually canceled out some terms or not. Consider the following toy protocol with
only one rule that illustrates the problem:

Pr ∶ Fr(r)−−[]→Out(diff[r ⊕ c, r ⊕ d])

where c and d are constant functions in the signature. The left and right instances of the bi-system
should obviously be equivalent, as the adversary does not know the fresh value r (similar to a one-time
pad encryption).

Consider now the dependency graphs given in Figure 8. The dependency graph on the left hand side
corresponds to a protocol execution of the left bi-system. If we use TAMARIN’s usual mirroring, this
graph has no mirror, since in the right execution the rule at the bottom is not a valid instance of any
deconstruction rule for XOR (cf. definition of NDXOR), and TAMARIN would thus claim an attack.
However, the last rule still corresponds to an application of XOR, so the adversary should not see any
difference, as long as he cannot distinguish the resulting terms.

To prevent these spurious attacks, we modified TAMARIN to treat the XOR rules just like normal
protocol rules, i.e., when mirroring an instance of an XOR construction or deconstruction rule, any

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fr(r)
1:

Fr(r)
Out(r ⊕ c)2:

Out(r ⊕ c)
K↓(r ⊕ c)3: K↑(c)

4:

K↓(r ⊕ c) K↑(c)
K↓(r)5:

Fr(r)
1:

Fr(r)
Out(r ⊕ d)2:

Out(r ⊕ d)
K↓(r ⊕ d)3: K↑(c)

4:

K↓(r ⊕ d) K↑(c)
K↓(r ⊕ d ⊕ c)6:

Fig. 8. Dependency graph for an instance of the example protocol and its mirror.

instance corresponding to an application of the XOR operator is accepted (even if this does not strictly
correspond to a standard construction or deconstruction rule as the ↑ and ↓ might be different), so long
as it uses the same input and all other constraints still hold. Hence the dependency graph on the right of
Figure 8 is considered a valid mirror.

Note that TAMARIN still verifies that all equalities from one side carry over to the other side, and vice
versa. In particular, if we modify the protocol to also output the random value r, TAMARIN reports an
attack: the adversary can cancel out r, and compare the result with the public constants c or d.

3.2.1. Proof of Soundness of Equivalence Mode for XOR.
In [20] it is shown that dependency graph equivalence (TAMARIN’s version of diff-equivalence) is

a sound, but incomplete approximation of observational equivalence for multiset rewriting rules [20,
Theorem 1]. This proof holds for any set of protocol and adversary rules, and thus also applies in our
case. Then, in a second step, in the appendix of [20] it is shown that it is sufficient to consider only
normalized graphs when checking for dependency graph equivalence [20, Theorem 3]. This result carries
over to our case, there is only a syntactic change from AC to AC’ as we need to include XOR in the set
of AC symbols, but this does not change the rest of the proof.

We then only need to show soundness and completeness of our new normal form condition N13, i.e.,
to show that a bi-system is dependency graph equivalent if, and only if, it is dependency graph equivalent
when only considering graphs respecting N13.

Theorem 2 (Soundness and Completeness of N13 w.r.t. Dependency Graph Equivalence). Let S be a
∗-restricted protocol bi-system. S is dependency graph equivalent if, and only if, it is dependency graph
equivalent when only considering graphs respecting N13.

Proof. One direction (⇒) is trivial: each graph ensuring N13 is a valid graph, hence by assumption there
is a valid mirror that also ensures N13 as this property is preserved by mirroring.

For the other direction (⇐), we need to show that even graphs that violate N13 have valid mirrors,
assuming that all graphs ensuring N13 have a valid mirror.

Assume that there is a dependency graph dg that does violate N13. Using the same approach as in
the proof of Theorem 1 illustrated in Figure 6, based on Lemma 3, we can turn dg into a graph dg′ that
ensures N13.

18 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

By assumption there are the necessary valid mirrors for dg′. We then need to show that there are
also the necessary valid mirrors for dg. The only difference between dg and dg′ is part of the adversary
deduction, where the adversary applied XOR deconstruction or construction rules. One can see the
modifications as computing the same result, but applying the XOR operations on the terms in a different
order. Because XOR is associative and commutative, the result remains the same. We can thus “undo”
the modifications on the mirrors of dg′, i.e., compute the result as in dg and not as in dg′, and obtain
valid mirrors for dg. This is possible in particular as we relaxed the mirroring to allow deconstruction
rules to be mirrored using construction rules, and vice versa. 2

4. Case Studies

We first present a simple challenge-response protocol for illustration purposes (Section 4.1). We then
present our first big case study LAK’06 [2], introduce security properties, and summarize our analysis
results (Section 4.2). We present additional stateful RFID protocols in Sections 4.4, 4.5. We furthermore
present our results on other non-stateful RFID protocols (Sections 4.3, 4.6), an eCash protocol (Sec-
tion 4.7), and a version of the Needham-Schroeder-Lowe public key protocol with XOR (Section 4.8)
after that. All RFID protocol case studies are taken from [37]. All our TAMARIN models are freely avail-
able at [38]. TAMARIN versions v1.4.0 and later contain the presented XOR extension. We present an
overview of the results in Figures 16 and 17 in Section 4.9.

4.1. Introductory CR⊕ Example

We start with a toy example protocol to illustrate that a faithful model of XOR with support for AC
and cancellation is necessary, as otherwise attacks can be missed. (Note that the attack we find on this
example with TAMARIN is the basis of an attack on the real LAK’06 case study that follows.) Consider
the following basic challenge response protocol called CR:

A∶ knows(k)
B∶ knows(k)
A∶ fresh(na)

CR1. A→ B∶ na
CR2. B→ A∶ ⟨h(na, k,nb),nb⟩

TAMARIN automatically proves both aliveness and recent-aliveness of the responder B, which is the
protocol’s goal.

Consider now an extension of CR that uses ⊕, called CR⊕:

A∶ knows(k)
B∶ knows(k)
A∶ fresh(na)

CRx1. A→ B∶ na
CRx2. B→ A∶ ⟨h(na⊕ k ⊕ nb),nb⟩

Our model for this protocol is bounded to two agents, and TAMARIN automatically proves aliveness
of the responder B, but finds an attack on recent-aliveness, also automatically. Note that this attack is
expected as an attacker can craft a correct response after having observed one real response. This attack

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

uses the same hash value as the legitimate previous run, h(na⊕k⊕nb), but the attacker chooses the nonce
nb′ ∶= na⊕ nb⊕ na′ where na and nb are the values from the original run, and na′ is the new challenge.
This works because na′ ⊕ k ⊕ nb′ = na′ ⊕ k ⊕ na ⊕ nb ⊕ na′ = k ⊕ na ⊕ nb = na ⊕ k ⊕ nb and thus A
accepts the old hash, as it expects h(na′⊕k⊕nb′). This attack heavily relies on the cancellation property
of XOR as seen in the above equality, where the duplicate na′ is removed. Additionally, it also requires
proper support for the AC property of the ⊕-operator. Without AC, one would have to define specific
cancellation equations, e.g., X⊕(Y⊕(X⊕Z)) = Y⊕Z, pick nb′ more carefully as nb′ ∶= na′⊕(na⊕nb)
and as result would then have na′ ⊕ (k ⊕ nb′) = na′ ⊕ (k ⊕ (na′ ⊕ (na⊕ nb)) = k ⊕ (na⊕ nb) which at
least contains the same values, but still not in the same order.

4.2. LAK’06

Protocol Description. LAK’06 [2] is an RFID protocol that aims at mutual authentication of a tag and
reader while providing untraceability for the tag. In order to achieve untraceability, the protocol relies
on a challenge-response mechanism based on a shared secret that is modified at the end of each session.
We suppose that initially each tag has its own key k and the reader maintains a database containing
those keys. To prevent desynchronization of the state k, the reader also stores the last successful key
k0 associated with each tag. Initially, kinit = h(kinit

0) where h(⋅) is some hash function. An Alice&Bob
description of the protocol is depicted in Figure 9a.

The reader starts by challenging the tag (1.) with a fresh random r0, and the tag’s expected reply (2.)
both (i) proves the knowledge of the secret k bound to the fresh value r0 and (ii) challenges back the
reader. Upon receiving that message, the reader is assured that the current key stored in the tag is k and
thus updates its secrets: k0 becomes the current key and k becomes the next key to be used: h(k). It then
replies to the tag’s challenge proving it also knows the secret key k. When receiving that reply, the tag
updates its key to h(k).

When all messages reach their recipients, tag and reader stay synchronized, storing the same key
k = hi(kinit) where i is the number of successful sessions (the reader additionally stores k0 = hi−1(kinit)).
However, if message 3. is lost or intercepted, the tag does not update while the reader has already done
so. In that situation, the tag stores k and the reader stores h(k) (as well as k0 = k). In order to recover
from such desynchronized states, LAK’06 allows the reader to accept the tag’s replies based on the old
key k0. This mechanism is depicted in Figure 9b (reader accepts incoming message of the form 2’.).
Note that the reader does not update keys in order to re-synchronize with the tag.

Modeling in Tamarin. LAK’06 is a stateful protocol whose states are non-monotonic (i.e., if some tag
stores k at some point, k will be replaced by another value later on). Additionally, we aim at modeling
an unbounded number of sessions of the protocol in order to establish strong security guarantees. No
tool other than TAMARIN can handle both features, and we leverage its new capability of dealing with
XOR theories to provide the first faithful modeling of the protocol1 and first formal analysis of both
reachability and equivalence properties.

Security properties. We are interested in analyzing secrecy, authentication, and untraceability proper-
ties.

Reachability properties. First, we would like to prove that, whenever a tag or a reader stores a key, then
the attacker never learns the key (in the past or in the future). Formally, such a property is formalized in

1[39] considers a stateless abstraction, [40] only considers a small number of sessions.

20 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

R∶ knows(k, k0)
T ∶ knows(k)
R∶ fresh(r0)

1. R→ T ∶ r0

T ∶ fresh(r1)
2. T → R∶ r1,h(r0 ⊕ r1 ⊕ k)

R∶ updates k0 ∶= k
R∶ updates k ∶= h(k)

3. R→ T ∶ h(h(r0 ⊕ r1 ⊕ k)⊕ k ⊕ r0)
T ∶ updates k ∶= h(k)

(a) Core protocol

R∶ knows(k, k0)
T ∶ knows(k0)
R∶ fresh(r0)

1. R→ T ∶ r0

T ∶ fresh(r1)
2’. T → R∶ r1,h(r0 ⊕ r1 ⊕ k0)
3’. R→ T ∶ h(h(r0 ⊕ r1 ⊕ k0)⊕ k0 ⊕ r0)

T ∶ updates k ∶= h(k)

(b) Re-synchronization mechanism

Fig. 9. Alice&Bob description of LAK’06 [2]

TAMARIN using the formula defined below, where facts Claim_Secret(a, k) are produced for each rule
of agent a (some tag or reader) which accesses or stores a key k.

Definition 7. Secrecy is modeled via the following formula:

∀a t i. Claim_secret(a, t)@i⇒ ¬(∃ j. K(t)@ j)

Next, we define the non-injective agreement [41] property. We assume that the TAMARIN model is
equipped with facts Claim_commit(a,b, ⟨A,B, t⟩) (i.e., an agent a of role A claims it has established
agreement on data t with b whose role is B) and Claim_running(b,a, ⟨A,B, t⟩) (i.e., an agent b of role B
claims it tries to establish agreement on data t with a whose role is A).

Definition 8. Non-injective agreement on data t of a role A towards a role B is modeled via the following
formula:

∀a b t i. Claim_commit(a,b, ⟨A,B, t⟩)@i⇒ (∃ j. Claim_running(b,a, ⟨A,B, t⟩)@ j)

Behavioral equivalence properties. We are interested in analyzing untraceability which is one of the
key requirements of LAK’06. There are various notions of untraceability which have been defined in
the symbolic model in various frameworks (see comparisons in [42, 43]). We have chosen to analyze
three notions of untraceability following three generic constructions: (symbolic) game-based unlinka-
bility [42] (no relation to game-based computational proofs), which we call UK1 in the rest of the pa-
per, unlinkability as being checked in [40] (UK2), and strong unlinkability (UK3) following [39] (itself
strengthening [9]). We informally define below those unlinkability properties as behavioral equivalences
between two different systems involving tags and readers of different identities. Note that a tag and
readers of same identity initially share the same key k, while agents of different identities initially have
distinct keys k. We give identities to readers because we consider reader sessions that expect to interact
with a tag of a specific identity.

Those constructions are unrelated in general [42], it seems that UK3 is strictly stronger than the oth-
ers [44] for realistic classes of protocols. Comparing the three notions is out the scope of this paper but
being able to analyze all of them enables us to provide more fine-grained security guarantees.

Definition 9 (UK1, informal). UK1 compares two systems organized in two phases:

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

● during the learning phase, the attacker can run one session for two tags and readers of identity id1

and id2 (the identity refers to the key a tag and a reader initially share). This phase is identical for
the two systems being compared.

● during the guessing phase, the attacker can run a tag of identity id1 (resp. id2) in the first (resp.
second) system.

The property holds when the two systems are behaviorally equivalent.

The two phases shall be understood as weak phases [45] (also called stages [46]): no action from the
learning phase can be executed once an action from the guessing phase has been executed. Intuitively, if
the attacker can distinguish the two systems then he must have a criterion to guess which is the unknown
tag in the guessing phase (i.e., id1 in the first system, id2 in the second system). Here, the attacker can
take advantage of having interacted with tags and readers of identity id1 and id2 during the learning
phase.

Definition 10 (UK2, informal). UK2 holds when the two following systems are behaviorally equivalent:

(1) the first system is made of a tag of identity id1 and a reader of identity either id1 or id2 (non-
deterministic choice).

(2) the second system is made of a tag of identity id2 and a reader of identity either id1 or id2 (non-
deterministic choice).

Additionally, for both systems, we assume that the attacker initially knows one full transcript of a past
honest interaction between the tag and the reader of identity id1.

Intuitively, if the attacker can distinguish the two systems then he is able to observe a link in the first
system between the past transcript (whose identity is id1) with data he can obtain from the tag id1 while
he doesn’t observe such a link in the second system (which has no tag of identity id1).

Definition 11 (UK3, informal). UK3 holds when the two following systems are behaviorally equivalent:

(1) the first system is made of a tag and a reader sharing the same identity that can perform two
sessions each;

(2) the second system is made of two different pairs of tag and reader that can only perform one
session each.

The second system corresponds to an ideal scenario where there is nothing to link: no agent can be
tracked because each agent plays at most one session. This is not the case for the first scenario where
two sessions are considered for one single tag and one single reader. Intuitively, if the attacker cannot
distinguish both systems then he has no way to track an agent over two sessions.

Note that for all unlinkability notions, we are considering finitely many agents and sessions only. For
the case of strong unlinkability (UK3), this is due to a known lack of precision of diff-equivalence when
it comes to verifying such strong properties [39, 44]. Fortunately, for a bounded number of sessions
only, one can overcome this limitation in TAMARIN using a simplified swapping approach [47]. On the
contrary, this is not a theoretical limitation for UK1 and UK2 (which is the case for other existing tools
that could handle XOR) but rather a pragmatic approach: as proofs are getting highly complex when
combining behavioral equivalence, XOR reasoning, and stateful protocols, verification requires either

22 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

an excessive amount of resources or some manual work. We thus prefer to analyze more case studies but
for slightly weaker notions of unlinkability.

Analysis.
Analysis of reachability properties. We model secrecy of stored keys (Definition 7) as well as the two
non-injective agreement properties for both sides (Definition 8), for one pair of tag and reader that can
play an unbounded number of sessions each.

We devise a dedicated oracle for the LAK’06 protocol to encode superior proof-search choices com-
pared to the default heuristics. Oracles offer a light-weight tactics language to guide the proof search in
TAMARIN. This was necessary, as the proofs involve inductive reasoning to cope with the stateful nature
of the LAK’06 protocol, unbounded number of sessions, and intricate and long message deductions for
the equational theory including XOR. The oracle allows us to automatically complete very long and
highly technical sub-proofs in order to focus the manual exploration on the high-level proof structure.
We can thus semi-automatically prove secrecy of stored keys and non-injective agreement of the tag role
towards the reader role and TAMARIN automatically finds an attack on non-injective agreement of the
reader towards the tag. The attack corresponds to the one described in [37] and works just like the one
presented for CR⊕ in Section 4.1.

Analysis of behavioral equivalence properties. We analyze UK1,UK2, and UK3 using diff-equivalence
verification in TAMARIN [20]. However, since we consider those properties for a bounded number of
sessions only (1 or 2 sessions), we have not modeled the key update mechanism and used an abstraction
where keys are chosen fresh for each session (e.g., as done in [39]). Thanks to those simplifications, we
were able to obtain fully automatic proofs as described next.

For UK2 (see Definition 10) we obtain a fully automatic proof.
We analyze UK3 for four sessions in total, 2 sessions of tag and 2 sessions of reader (see Defini-

tion 11). TAMARIN automatically finds an attack. While it was known that the property fails to hold [39],
TAMARIN finds a slightly different attack. Note that the protocol is claimed to be untraceable in [37] for a
weaker notion of unlinkability. Strong unlinkability as being checked here may be considered too strong
but [39, 44] discuss how a variant of the attack found here constitutes a practical privacy breach.

We are not able to directly analyze UK1 when taking readers into account during the learning phase.
Indeed, for such a model, one needs a restriction2 for modeling weak phase, that states that no action
from the learning phase can be executed after an action from the guessing phase. Such a restriction
is crucial for avoiding obvious false attacks. However, when dealing with both restrictions and diff-
equivalence, TAMARIN’s analysis frequently does not terminate, which is a known limitation. Therefore,
in order to get rid of that restriction, we limit our analysis of weak unlinkability to tags only. For that
weak model, TAMARIN automatically proves that UK1 holds, without oracle.

4.3. CH’07

Protocol Description. CH’07 [1] was designed to be a challenge-response RFID authentication protocol
that provides tag untraceability. We base our model on [37]. Figure 10 shows the protocol description.

The reader R and tag T share secrets k and ID. The reader challenges the tag with a random bit string
r1, modeled as a nonce. T generates a nonce r2 and replies with a term derived from h(r1⊕r2⊕k), where
h is a hash function, and the tag’s identifier ID. The hash and ID are used as input for a function rot in

2Restrictions can be used in a TAMARIN model to restrict considered executions to the ones that satisfy a specific property.

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

R∶ knows(k, ID)
T ∶ knows(k, ID)
R∶ fresh(r1)

CH-1. R→ T ∶ r1
T ∶ fresh(r2)

CH-2. T → R∶ r2, lh(rot(ID,h(r1⊕ r2⊕ k))⊕
h(r1⊕ r2⊕ k))

CH-3. R→ T ∶ rh(rot(ID,h(r1⊕ r2⊕ k))⊕
h(r1⊕ r2⊕ k))

Fig. 10. The CH’07 RFID authentication protocol.

which the bit string ID is rotated by a value depending on the hash. We model rot as a hash function, but
note that a better approximation would be provided by the identity function. The term sent from the tag
to the reader is the output of the lh function which consists of the first half of its argument bitstring. We
model lh as a hash function.

The reader performs the same computation as the tag to identify the tag. If the tag can be identified,
the reader replies with the output of the rh function, which is the second half of the bitstring the reader
computed. We model rh as a hash function, too.

Analysis of reachability properties. We consider several authentication properties: recent aliveness of tag
and reader as in [37, 48], and non-injective agreement (Definition 8) of tag and reader, on different data
items, namely on ⟨k, r1, r2⟩ and on k ⊕ r1 ⊕ r2.

The protocol does not satisfy recent aliveness of tags, due to an impersonation attack [37, 48]. The
adversary can impersonate a tag to a reader after one interaction with a tag. We find this attack automat-
ically using our TAMARIN model. Recent aliveness of the reader R is satisfied and we find an automatic
proof.

Agreement on ⟨k, r1, r2⟩ is not satisfied for either role. In both cases, this is because the adversary
can modify both the challenge and the response by an xor with a term x. The adversary’s modifications
cancel out and both parties complete their protocol runs, but agreement is not satisfied on the nonces r1

and r2. We again find the attacks automatically using TAMARIN.
If we require agreement on the data k ⊕ r1 ⊕ r2 instead, then both agreement claims are satisfied and

TAMARIN finds the proof automatically.

Analysis of behavioral equivalence. The protocol satisfies UK1 and UK2 (Definitions 9 and 10) and
TAMARIN finds a proof automatically. The protocol does not satisfy the property UK3 (Definition 11)
because the same reader responds to a replayed query with the same answer when the second time
the attacker picks r′2 = r′1 ⊕ r1 ⊕ r2, similarly to the attack in Section 4.1. This allows the attacker to
distinguish the two systems defining the UK3 property: in the first system, the attacker will receive the
same response from the RFID reader in both sessions while in the second system the attacker will receive
different responses. TAMARIN finds the attack automatically.

The interpretation of the attack is that it allows the adversary to test whether a reader is still accepting
a given tag. If tags can expire or be removed from a system, then this attack allows the adversary to learn
whether a previously observed tag has expired or whether it is still valid.

24 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

R∶ knows(k)
T ∶ knows(k)
R∶ fresh(r1)

OTYT1. R→ T ∶ r1
OTYT2. T → R∶ h(k⊕r1)

R∶ fresh(k1)
OTYT3. R→ T ∶ k⊕k1

R∶ updates k ∶= k1
T ∶ updates k ∶= k1

Fig. 11. The OTYT’06 RFID authentication protocol.

4.4. OTYT06

Protocol Description. Similarly to CH’07, the OTYT’06 [27] RFID protocol aims at authenticating tags,
which should remain untraceable for an adversary. We base our model on [37], see Figure 11 for a
protocol description.

The reader R and tag T share a secret key k that is supposed to be updated at the end of each session.
The reader challenges the tag with r1. The tag is then supposed to prove a recent knowledge of k by
computing and sending h(k ⊕ r1). The reader correctly authenticates the tag upon reception of this
message and then updates the key to a fresh key k1. In order to let the tag updates its key accordingly,
the reader sends k⊕ k1 to the tag, who can then compute (k⊕ k1)⊕ k = k1 and update her key. The hash
function h is modeled as a random oracle, as is standard.

Analysis of reachability properties. We consider several authentication properties: aliveness and recent
aliveness of tag, aliveness of reader, non-injective agreement from the reader’s point of view on k and
r1, and desynchronization resistance.

The protocol does satisfy aliveness and recent aliveness of tags [37]. However, the protocol is not
desynchronization resistant [49] as tag proceeds with key update without authenticating the request.
The tag never checks messages allegedly coming from the reader, hence reader aliveness does not hold
either. Furthermore, the reader does not obtain non-injective agreement with the tag on r1. Indeed, based
on a reader’s challenge r1, the adversary can make the tag update its key to k ⊕ r1 by sending r1 as a
third message (OTYT3 in Figure 11) and then, in a new sessions, challenge the tag with 0, to which
the tag will respond with h((k ⊕ r1) ⊕ 0) = h(k ⊕ r1). This message can be forwarded to the reader,
who will authenticate the tag with r1 as a challenge, while the tag saw 0 as a challenge. To the best of
our knowledge, this attack was not previously reported. Using our TAMARIN model, we automatically
found this attack on non-injective agreement with the tag as well as the attacks on desynchronization
resistance, and on aliveness of the reader. We had to limit the depth of the proof search for finding the
desynchronization attack to prevent loops.

Aliveness of the tag was automatically established, as well as recent aliveness of the tag, but only
for two sessions. This bound was necessary due to the complexity of such proofs for stateful protocols
that fail to provide basic properties such as desynchronization resistance and mutual authentication, thus
allowing all sorts of key updates.

Analysis of behavioral equivalence. Mainly due to a lack of reader authentication, tags are traceable.
Essentially, the adversary can keep the tags’ (supposedly changing) key static by just sending a 0, leading
to a static key and resulting in the same response to the same challenge (which can be adversary chosen

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Ri∶ knows(k0, ki, ki+1)
T ∶ knows(α ∶= k0 ⊕ ki)
Ri∶ fresh(r)

LD1. Ri → T ∶ r
T ∶ checks r ≠ 0

LD2. T → Ri∶ h(r ⊕ α)
LD3a. Ri → ∶ ki ⊕ ki+1,h(ki+1 ⊕ k0)
LD3b. → T ∶ a,b

T ∶ checks b = h(a⊕ α)
T ∶ updates α′ ∶= a⊕ α

Fig. 12. The LD’07 RFID supply chain protocol.

as well). For this reason, OTYT’06 fails to satisfy either UK1, UK2, or UK3 and TAMARIN automatically
found an attack for each property. Those attacks were found with respect to a simplified model with two
sessions of the tag only, except for UK3 for which we were able to model an unbounded number of tag
sessions. The found attacks are also valid with respect to the full model.

4.5. LD07

Protocol Description. LD’07 [28] is a protocol proposed for RFID systems in a supply chain setting. The
protocol aims at mutual authentication between a tag and an authorized reader. Tags moving through the
supply chain should remain untraceable for an adversary that is trying to link a tag before it has reached
a supply chain partner’s facility to a tag that has left the supply chain partner’s facility.

A careful inspection shows that this protocol design is similar to and an improvement on the OTYT’06
protocol discussed in Section 4.4, although the protocols have been proposed independently. The LD’07
design improves over OTYT’06 in that tags do not accept a reader challenge equal to 0 in the first
message and that the third protocol message contains an authenticator.

We base our model on [37], the protocol is shown in Figure 12. Each tag is assigned a secret key
k0 that serves as its identifier and is known to every authorized reader in the supply chain. Tags move
through the supply chain partners’ facilities in a given order. Every authorized RFID reader in the supply
chain has its own secret access key ki for i > 0 and knows the access key ki+1 of the subsequent RFID
reader in the supply chain.

The tag stores the term α ∶= k0 ⊕ ki while the reader with access key ki is authorized to query and
write to the tag. After authenticating a tag with a challenge-response protocol (messages LD1 and LD2
in Figure 12) the reader rewrites the tag for the subsequent reader by sending ki ⊕ ki+1 and a hash value
intended as an authenticator for the key update in message LD3a. When the tag receives a key-update
message (LD3b), it verifies the key update value by comparing the hash value b to the hash of its stored
term α xored with the received key update value a. If the values pass the check, the term α is updated to
the value a⊕ α = k0 ⊕ ki+1 authorizing the subsequent reader.

Analysis of reachability properties. We consider several authentication properties: aliveness and recent
aliveness of the tag, recent aliveness of the reader, and non-injective agreement from the reader’s point
of view on the tag’s key k0, the reader’s key ki, and the challenge r.

The protocol satisfies aliveness and recent aliveness of tags, but it does not satisfy recent aliveness
of the reader [37]. In our model of LD’07, aliveness is automatically proven while the proof of recent
aliveness is manually constructed and valid for two protocol sessions.

26 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

R∶ knows(k, ID)
T ∶ knows(k, ID)
R∶ fresh(r1)

KCL-1. R→ T ∶ r1
T ∶ fresh(r2)

KCL-2. T → R∶ ⟨ID⊕ r2,h(r1, k)⊕ r2⟩
Fig. 13. The KCL’07 RFID authentication protocol.

Moreover, we can show that the reader does not obtain non-injective agreement with the tag on r
due to the following attack. The adversary challenges the tag with a nonce r and receives the answer
h(r ⊕ α). The adversary can then get the tag to update its key to α ⊕ r by sending r,h(α ⊕ r) as the
third message LD3a. This desynchronizes the tag from its authorized reader. These attack steps have
been first described in [50] as part of an extortion attack on supply chain partners. Next, when the reader
challenges the tag with a fresh nonce r′, the adversary replaces this challenge with r ⊕ r′ and forwards
it to the tag to which the tag responds with h(r ⊕ r′ ⊕ α) = h(r′ ⊕ α). This message will be accepted
by the reader which will authenticate the tag with r′ as a challenge, while the tag received r ⊕ r′ as the
challenge. Thus non-injective agreement does not hold.

Analysis of behavioral equivalence. LD’07 does not satisfy UK1 because the tag’s response to a chal-
lenge is a function of the tag’s key and the challenge only. This allows the adversary to distinguish
between different tags by challenging tags multiple times prior to their key update. We note that the
LD’07 protocol was not intended to foil this type of traceability. The designers’ aim for this protocol
was that an adversary cannot link the observation of a tag prior to an update to the observation of the
same tag after it has been updated. This property is, however, not satisfied either as shown by the attack
on the UK2.

For our UK2 model of this protocol we reconstruct the attack described in [50]. The attacker observes
one honest run of the tag and reader which ends with a tag update. The information the adversary learns
is the challenge nonce r, the hash value h(r ⊕ α) and the update message a ∶= ki ⊕ ki+1. The adversary
then challenges a tag with the message r ⊕ a. If the tag answers with h(r ⊕ α), the adversary knows to
be communicating with the same tag that was observed prior to the update.

While the attack in the UK2 model also demonstrates a violation of the UK3 property, we construct a
different attack in our UK3 model where the adversary is allowed to actively interact with the tag. Instead
of only observing the first session, the adversary now updates the tag in the same manner as described in
the attack on non-injective agreement above. In the second session the adversary updates the tag again
with the same key thus cancelling the previously made update. The adversary then challenges the tag as
in the UK2 attack and compares the tag’s answer to the output of the first session.

The UK1 and UK2 attacks were found with respect to a simplified model with two sessions of the tag
only. The UK3 attack was found with respect to a simplified model with no limit on the number of tag
sessions. All attacks are also valid with respect to the full model.

4.6. KCL’07

KCL’07 [3] is an RFID protocol attempting to both authenticate the tag and to provide untraceability
for the tag. It succeeds in providing the recent aliveness property for authentication, but untraceability
does not hold. Figure 13 shows the protocol description.

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Informally, the aliveness property is guaranteed due to the response including the hash of the challenge
nonce r1 together with the key k that is only used inside the hash and thus can never be learned by an
attacker. Note that the reader cannot learn the value r2 actually chosen by the tag, as a man-in-the-middle
attacker can simply pick a random r3 and XOR it to both elements of the pair the tag sends back to the
reader. Then, the reader believes r2⊕ r3 to be the chosen random value. The reader can only check that
the application of XOR to both values results in ID ⊕ h(r1, k). Therefore, the random value r2 is not
relevant.

We thus apply a simplification in our model for the reader, which is that it receives just one term (the
XOR of the elements of the pair output by the tag), while the tag sends the pair using r2. To be precise,
the sent term is ⟨id ⊕ r2,h(r1, k)⊕ r2⟩ received as ⟨idr2,hashr2⟩ while in our model the reader simply
receives X, interpreted as idr2⊕ hashr2.

The first property expected from this protocol is recent aliveness, which we prove automatically with
TAMARIN. As explained in Deursen and Radomirović [37] in this protocol the tag is not actually un-
traceable which can be seen by sending the same nonce twice to a tag, and applying ⊕ to the elements
of the response pair, and comparing the results. For the same challenge r1, the results of applying XOR
to the response for a given tag is always ID⊕ h(r1, k). No reader is necessary for this attack.

TAMARIN automatically finds attacks on UK1 and UK2. For UK3, we construct the attack manually
using TAMARIN.

4.7. Chaum’s Offline eCash Protocol

Protocol Description. Chaum’s offline eCash [51] is a suite of three protocols that allows for anonymous,
untraceable, electronic currencies to be spent offline, i.e., without the need to contact a bank during the
payment. The protocols involve three parties, the customer C, the seller S , and the bank B and consist of
the withdrawal protocol, where C withdraws eCash from the bank, the payment protocol, where C pays
S , and the deposit protocol, where S deposits the received currency with B.

The protocol uses XOR as well as blind signatures, to ensure anonymity. The blind signatures re-
quire a non subterm-convergent equational theory, which illustrates that TAMARIN is able to handle the
combination of these two complex equational theories.

We model a simplified version of these protocols by combining them into one protocol consisting of
three (weak) phases comprising withdrawal, payment, and deposit. We focus solely on the mechanism
that provides anonymity as long as the customer does not double-spend a coin. We do not model the cut
and choose procedure during withdrawal and instead assume that the customer generates well-formed
coins.

The simplified protocol aims to provide anonymity to the customer as long as he does not double-spend
a coin and is shown in Figure 14. Messages eCash-1 and eCash-2 model the withdrawal phase, the next
two messages model the payment phase, and the remaining messages model the deposit (redemption)
phase of the protocol.

Analysis. In our TAMARIN model, we consider seller and bank to be corrupted. This leads to a model
where the customer interacts with the environment E that is controlled by the adversary and represents
both S and B. The model is shown in Figure 15. We model customer anonymity as secrecy of the
customer’s identity C. TAMARIN automatically verifies that an honest customer is anonymous and finds
an attack on anonymity when the customer double spends.

28 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

eCash-1. C → B∶ blind(x⊕C, r),blind(x, r)
eCash-2. B→ C∶ sign(blind(x⊕C, r), skB),

sign(blind(x, r), skB)
eCash-3. S → C∶ z
eCash-4. C → S ∶ ⟨x′, sign(x′, skB)⟩ where x′= x if z=0

and x′ = x⊕C otherwise
eCash-5. S → B∶ ⟨x′, sign(x′, skB)⟩
eCash-6. B→ S ∶ x′

eCash-7. S → B∶ ok/not ok

Fig. 14. A simplified model of Chaum’s offline eCash protocol.

eC-1. C → E∶ blind(x⊕C, r),blind(x, r)
eC-2. E → C∶ sign(blind(x′, r), skB)

where x′ = x or x′ = x⊕C
eC-3. C → E∶ ⟨x′, sign(x′, skB)⟩

Fig. 15. The simplified model of Chaum’s offline eCash protocol with dishonest seller and bank represented by the adversary–
controlled environment E.

4.8. NSLPK3xor

This is an insecure variant of the Needham-Schroeder-Lowe [52] (NSL) 3-message public-key proto-
col. The difference to the classical NSL protocol is the presence of an exclusive-or ⊕ instead of concate-
nation in message NSLx2. This idea is due to Chevalier et al. [53], and this protocol has previously been
analyzed by Sasse et al. [54] using MAUDE-NPA.

A∶ knows(sk(A), pk(B))
B∶ knows(sk(B), pk(A))
A∶ fresh(na)

NSLx1. A→ B∶ enc(⟨na,A⟩, pk(B))
B∶ fresh(nb)

NSLx2. B→ A∶ enc(⟨na,nb⊕ B⟩, pk(A))
NSLx3. A→ B∶ enc(nb, pk(B))

Our TAMARIN theory models the case where there is only one key per agent and TAMARIN automat-
ically finds attacks on the secrecy of the two nonces as well as on the injective agreement property, as
described in detail in [54].

4.9. Summary of Experimental Results

We present in Figure 16 (trace properties) and in Figure 17 (equivalence properties) a summary of
the protocols we analyzed, the result obtained, the runtime required, as well as the level of automation
achieved. All experiments are conducted on a server with 2 CPUs of type Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20GHz (with 12 cores each), 256GB of RAM, running Ubuntu 16.04.3, and we use 10
threads per experiment, running TAMARIN v1.4.0.

All our theories are available at [38]. Note that all theories also contain a lemma showing that the
protocol is actually executable, avoiding modeling mistakes, all of which are verified, but not listed in

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Protocol Name Property Modifications Result Automation Runtime
CR-xor aliveness tag A 0.7s

recent aliveness tag A 1.3s
LAK06 *helpingSecrecy A 0.4s

non-injective agreement tag A 22.0s
non-injective agreement reader A 1.3s

LAK06-state *helpingUpdateKey O 21.1s
*helpingStackHash A 19.6s
*helpingSecrecy SM †31.6s
non-injective agreement tag SM †55.7s
non-injective agreement reader A (BFS) 1m 38.7s

CH07 recent aliveness tag A 2.2s
recent aliveness reader A 1.1s
non-inj. agree. tag (k ⊕ r1⊕ r2) A 1.1s
non-inj. agree. tag (k, r1, r2) A 1.3s
non-inj. agree. reader (k ⊕ r1⊕ r2) A 1.0s
non-inj. agree. reader (k, r1, r2) A 1.1s

OTYT06 *helping* O 2m39.4s
aliveness tag A 0.7s
recent aliveness tag BS A 70m25.6s
non-injective agreement tag A (BFS) 16m39s
aliveness reader O 1.1s
desynch resistance O (BFS)-depth 12 1m20.1s

LD07 *helping* O 19.5s
aliveness tag A 1.5s
recent aliveness tag BS M †5m52.4s
non-injective agreement tag M † 2.2s
recent aliveness reader O 3m22.1s

KCL07 recent aliveness tag XORed pair A 1.7s
Chaum Offline *coins No phases O 10.4s

anonymity No phases A 2.8s
anonymity of double spender No phases A 12.7s

NSL-xor nonce secrecy A 5.1s
injective agreement initiator A 1.4s
injective agreement responder A 4.0s

Fig. 16. Summary Table of Results – Trace Properties. Automation: A = automatic, A (BFS) = automatic with breadth–
first search for attacks, O=oracle, O(BFS)-depth 12 = oracle with breadth-first search for attacks and depth bounded to 12,
SM=semi-manual, M=manual. “BS” stands for “bounded sessions”. † means the time is for verifying the resulting stored proof.
More details in Section 4.9. Properties starting with * are intermediate helping lemmas in the modular proofs.

the table. We list what modifications we made on each case study, or other modeling limitations, in the
Modifications column. Then we give the result, either (the property is verified) or (the property does
not hold - there is an attack).

For the automation level we show A for automated proofs or attacks, meaning using the standard
heuristic and proof tree exploration. We show A (BFS) if the standard heuristic was used to find attacks,
but using a breadth-first search of the proof tree (this is a common technique in TAMARIN, as BFS is
often quicker at finding attacks, but not for proofs). We write O when an oracle was used to automatically

30 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Protocol Name Property Modifications Result Automation Runtime
LAK06 UK1 (tags only) BS, stateless A 4m25.4s

UK2 BS, stateless A 15m10.4s
UK3 BS, stateless A 85m46.1s

CH07 UK1 A 51.5s
UK2 A 12m16.6s
UK3 A 3m07.1s

OTYT06 UK1 BS, TO A-EQlhs 46.2s
UK2 BS, TO A 8.1s
UK3 TO A 27.7s

LD07 UK1 BS, TO A 47.2s
UK2 BS, TO A 16.2s
UK3 BS, TO M †5s

KCL07 UK1 XORed pair A (BFS) 126m27.6s
UK2 XORed pair A 1m02.6s
UK3 XORed pair M †2.1s

Fig. 17. Summary Table of Results – Equivalence Properties. Automation: A = automatic, A (BFS) = automatic with breadth–
first search for attacks, M=manual. “BS” stands for “bounded sessions”. “TO” stands for “tag only”, i.e., no reader was modeled
since an attack is already found. “A-EQlhs” means that the automatic proof was started in the subcase Rule-equality, then LHS.
† means the time is for verifying the resulting stored proof. More details in Section 4.9.

find the results, as described before, which can be combined with BFS. We use SM for a semi-manually
achieved proof, which means a short human exploration of the state-space was conducted, and then the
remainder of the proof is automatic using the oracle. There are cases where we manually constructed
an attack or a proof, denoted M. Still, such manually constructed proofs and attacks are all machine-
checked.

Note that we considered all RFID protocols from [37] which are in scope (i.e., that do not re-
quire further equational properties, such as, e.g., addition and its interaction with XOR), except for
YPLRK05 [55]. YPLRK05 turned out to be surprisingly difficult to analyze for various reasons, notably
the key update with XOR that is not desynchronization resistant and that leads to a plethora of cases and
rule variants. More generally, we observed that analyzing simple but broken protocols such as OTYT06,
LD07, CH07, YPLRK05 can be more involved than analyzing more complex protocols that provide
strong, mutual authentication and desynchronization resistance properties [32, 33], as the different at-
tacks created more possibilities for the intruder to interact with the protocol in complex, unintended
ways, which complicates the reasoning for the tool.

Another limit we encountered concerns equivalence properties for stateful protocols. In our exam-
ples we only encountered attacks for these protocols, but we conjecture that achieving proofs would be
difficult due to the limitations of TAMARIN’s equivalence mode.

5. Related work

Computational tools. In the computational model, XOR operations are common and supported by many
tools, e.g., EasyCrypt [56] or CryptoVerif [57]. However, computational tools typically have a lesser
degree of automation (e.g., EasyCrypt is mainly interactive), or are tailored to specific applications (e.g.,
[58, 59]).

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Symbolic tools. In the symbolic model, there are numerous verification tools for cryptographic proto-
cols, some of which support XOR operations, for a bounded or an unbounded number of sessions.
Bounded number of sessions: In the case of a bounded number of sessions, AKISS [40] and two solvers
from the AVISPA [10] suite, CL-ATSE [60] and OFMC [61], support XOR operations. AKISS is de-
signed to verify observational equivalence properties, while OFMC and CL-ATSE are both limited to
trace properties. These tools provide weaker guarantees than TAMARIN, as they only consider a bounded
number of sessions.
Unbounded number of sessions: SCYTHER [13] is restricted to a fixed set of cryptographic primitives
and does not allow XOR operations. Moreover, it neither supports global mutable state nor verification
of equivalence properties. The CPSA [14] tool is particularly amenable to the analysis of authentication
and secrecy properties. It was used, in combination with the theorem prover PVS, to analyze state-
ful protocols [62]. However, like Scyther, it neither supports XOR nor the verification of equivalence
properties.

PROVERIF [11] supports user-defined equational theories, and allows for the verification of a rich
variety of security properties. Moreover, the abstractions (based on a translation of applied pi calculus
processes into Horn clauses) underlying the theory of PROVERIF make it very efficient. However, these
abstractions may also cause false attacks, which make the tool unsuitable to analyze stateful protocols.
STATVERIF [22], an extension of PROVERIF, tries to overcome this shortcoming. However, the sup-
port for stateful protocols that can be effectively analyzed by STATVERIF remains partial. For instance,
only a fixed number of state cells may be declared and non-termination arises frequently. Moreover,
only secrecy properties can be verified with STATVERIF. The recent extension GSVERIF [63] improves
PROVERIF’s handling of stateful protocols. However, the user-defined equational theories PROVERIF

can handle are insufficient to model XOR, thus GSVERIF as well as STATVERIF cannot deal with XOR.
Another extension of PROVERIF developed to support theories including XOR [64] is, however, limited
to secrecy and simple authentication properties and also unsuitable for stateful protocols.

MAUDE-NPA [12] offers support for many equational theories, in particular XOR. MAUDE-NPA
treats algebraic properties, such as associative-commutative operators, in a more generic way than
TAMARIN, which only offers support for built-in Diffie-Hellman and bilinear pairing theories, as well
as multisets, and with the extension presented in this paper XOR operators. However, MAUDE-NPA
does not support global mutable state nor protocols with else branches. Moreover, the verification of
equivalence properties suffers from termination problems [19].

The TAMARIN front-end SAPIC [23] has been successfully used to analyze stateful protocols given
in an applied pi calculus extension. It directly benefits from our work.

Computational soundness. It is well-known that there cannot be a computational soundness proof for
symbolic models of XOR [65]. We argue, however, that symbolic analysis including XOR is still useful
in itself, not only because symbolic attacks still constitute valid attacks, but also due to the higher degree
of automation that this approach provides over the computational approach. It allows for the analysis of
complex real-world protocols that are difficult to handle manually, and which are the target of our work.

6. Conclusion

We have extended the TAMARIN prover with equational theories including XOR, consequently ex-
panding the class of protocols that can be faithfully modeled and analyzed using automatic verification

32 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

tools. As TAMARIN is sound and complete, we cannot hope for guaranteed termination since the under-
lying problem is undecidable. However, our new normal form conditions, heuristics, and use of light-
weight tactics encoded as oracles allow for a good level of automation as demonstrated by our numerous
case studies. These case studies as well as recent work [32, 33] using our XOR implementation to ana-
lyze mobile network protocols indicate that TAMARIN can now be used to tackle large-scale, real-world
protocols with XOR.

As future work, an interesting challenge is to lift some of the limitations of equivalence proofs in
TAMARIN. For example, dealing with the combination of diff-equivalence and restrictions in a more
effective way could enable additional case studies, including protocols using weak phases.

Moreover, many of the advanced case studies required manual intervention or specially designed
oracles. Finding ways of improving automation in these cases is another direction for future work.

References

[1] H.-Y. Chien and C.-W. Huang, A Lightweight RFID Protocol Using Substring, in: Embedded and Ubiquitous Computing
(EUC), 2007, pp. 422–431.

[2] S. Lee, T. Asano and K. Kim, RFID Mutual Authentication Scheme based on Synchronized Secret Information, in:
Symposium on Cryptography and Information Security, Hiroshima, Japan, 2006.

[3] I.J. Kim, E.Y. Choi and D.H. Lee, Secure Mobile RFID System against Privacy and Security Problems, in: SecPerU 2007,
2007.

[4] 3GPP, 3G security; Security architecture, TS, 33.102, 3rd Generation Partnership Project (3GPP). http://www.3gpp.org/
DynaReport/33102.htm.

[5] 3GPP, System Architecture Evolution (SAE), TR, 33.401, 3rd Generation Partnership Project (3GPP). http://www.3gpp.
org/DynaReport/33401.htm.

[6] 3GPP, Security Architecture and Procedures for 5G System, TS, 33.501, 3rd Generation Partnership Project (3GPP).
http://www.3gpp.org/DynaReport/33501.htm.

[7] K. Bhargavan, A.D. Lavaud, C. Fournet, A. Pironti and P.Y. Strub, Triple handshakes and cookie cutters: Breaking and
fixing authentication over TLS, in: 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 98–113.

[8] A. Armando, R. Carbone, L. Compagna, J. Cuellar and L. Tobarra, Formal analysis of SAML 2.0 web browser single
sign-on: breaking the SAML-based single sign-on for google apps, in: Proceedings of the 6th ACM workshop on Formal
methods in security engineering, ACM, 2008, pp. 1–10.

[9] M. Arapinis, T. Chothia, E. Ritter and M. Ryan, Analysing Unlinkability and Anonymity Using the Applied Pi Calculus,
in: Proceedings of the IEEE Computer Security Foundations Symposium, IEEE Comp. Soc. Press, 2010.

[10] A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P.H. Drielsma, P.-C. Héam, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò and L. Vigneron, The
AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications, in: CAV, 2005, pp. 281–285.

[11] B. Blanchet, B. Smyth and V. Cheval, Automatic Cryptographic Protocol Verifier, User Manual and Tutorial, 2016.
[12] S. Escobar, C. Meadows and J. Meseguer, Maude-NPA: Cryptographic Protocol Analysis Modulo Equational Properties,

in: Foundations of Security Analysis and Design V, LNCS, Vol. 5705, Springer, 2009, pp. 1–50.
[13] C.J.F. Cremers, The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols, in: 20th International

Conference on Computer Aided Verification (CAV’08), LNCS, Vol. 5123, Springer, 2008, pp. 414–418.
[14] J.D. Guttman and J.D. Ramsdell, CPSA: a cryptographic protocol shapes analyzer, 2009, http://hackage.haskell.org/

package/cpsa.
[15] S. Meier, B. Schmidt, C.J.F. Cremers and D. Basin, The TAMARIN Prover for the Symbolic Analysis of Security Proto-

cols, in: CAV, LNCS, Vol. 8044, Springer, 2013, pp. 696–701.
[16] B. Blanchet, M. Abadi and C. Fournet, Automated Verification of Selected Equivalences for Security Protocols, Journal

of Logic and Algebraic Programming 75(1) (2008), 3–51.
[17] R. Chadha, V. Cheval, Ştefan Ciobâcă and S. Kremer, Automated Verification of Equivalence Properties of Cryptographic

Protocols, ACM Trans. Comput. Log. 17(4) (2016), 23:1–23:32.
[18] V. Cheval, H. Comon-Lundh and S. Delaune, Trace Equivalence Decision: Negative Tests and Non-determinism, in: 18th

Conference on Computer and Communications Security (CCS’11), ACM, Chicago, Illinois, USA, 2011.
[19] S. Santiago, S. Escobar, C. Meadows and J. Meseguer, A Formal Definition of Protocol Indistinguishability and Its

Verification Using Maude-NPA, in: Security and Trust Management (STM) 2014, Springer, 2014, pp. 162–177.

http://www.3gpp.org/DynaReport/33102.htm
http://www.3gpp.org/DynaReport/33102.htm
http://www.3gpp.org/DynaReport/33401.htm
http://www.3gpp.org/DynaReport/33401.htm
http://www.3gpp.org/DynaReport/33501.htm
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa

J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[20] D. Basin, J. Dreier and R. Sasse, Automated symbolic proofs of observational equivalence, in: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, ACM, 2015, pp. 1144–1155.

[21] D. Basin and C. Cremers, Know Your Enemy: Compromising Adversaries in Protocol Analysis, ACM Trans. Inf. Syst.
Secur. 17(2) (2014), 7:1–7:31.

[22] M. Arapinis, E. Ritter and M. Ryan, StatVerif: Verification of Stateful Processes., in: Proc. 24th IEEE Computer Security
Foundations Symposium (CSF’11), IEEE Press, 2011, pp. 33–47.

[23] S. Kremer and R. Künnemann, Automated analysis of security protocols with global state, Journal of Computer Security
24(5) (2016), 583–616.

[24] J. Dreier, C. Duménil, S. Kremer and R. Sasse, Beyond Subterm-Convergent Equational Theories in Automated Veri-
fication of Stateful Protocols, in: Principles of Security and Trust - 6th International Conference, POST 2017, LNCS,
Vol. 10204, Springer, 2017, pp. 117–140.

[25] Tamarin website, 2019, Accessed: 2019-10-16. https://tamarin-prover.github.io/.
[26] H. Comon-Lundh and S. Delaune, The Finite Variant Property: How to Get Rid of Some Algebraic Properties, in: Term

Rewriting and Applications, 16th International Conference, RTA, J. Giesl, ed., LNCS, Vol. 3467, Springer, 2005, pp. 294–
307. ISBN 3-540-25596-6.

[27] K. Osaka, T. Takagi, K. Yamazaki and O. Takahashi, An efficient and secure RFID security method with ownership
transfer, in: RFID security, Springer, 2008, pp. 147–176.

[28] Y. Li and X. Ding, Protecting RFID communications in supply chains, in: ASIACCS, 2007, pp. 234–241.
[29] D. Chaum, Blind Signatures for Untraceable Payments, in: Advances in Cryptology: Proceedings of CRYPTO ’82, Plenum

Press, 1982, pp. 199–203.
[30] J. Dreier, A. Kassem and P. Lafourcade, Formal Analysis of E-Cash Protocols, in: SECRYPT 2015 - Proceedings of the

12th International Conference on Security and Cryptography., SciTePress, 2015, pp. 65–75.
[31] J. Dreier, L. Hirschi, S. Radomirovic and R. Sasse, Automated Unbounded Verification of Stateful Cryptographic Proto-

cols with Exclusive OR, in: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, IEEE Computer Society, 2018, pp. 359–373.

[32] D.A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse and V. Stettler, A Formal Analysis of 5G Authentication, in:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes and X. Wang, eds, ACM, 2018, pp. 1383–1396. ISBN
978-1-4503-5693-0. doi:10.1145/3243734.3243846.

[33] R. Borgaonkar, L. Hirschi, S. Park and A. Shaik, New Privacy Threat on 3G, 4G, and Upcoming 5G AKA Protocols,
PoPETs 2019(3) (2019), 108–127.

[34] S. Escobar, R. Sasse and J. Meseguer, Folding Variant Narrowing and Optimal Variant Termination, Journal of Logic and
Algebraic Programming 81(7–8) (2012), 898–928.

[35] B. Schmidt, S. Meier, C.J.F. Cremers and D. Basin, Automated analysis of Diffie-Hellman protocols and advanced security
properties, in: Computer Security Foundations Symposium (CSF), IEEE, 2012, pp. 78–94.

[36] B. Schmidt, Formal Analysis of Key Exchange Protocols and Physical Protocols, PhD dissertation, ETH Zurich, 2012.
[37] T.v. Deursen and S. Radomirović, Attacks on RFID Protocols (version 1.1), 2009, http://eprint.iacr.org/2008/310.
[38] Tamarin Models for Security Protocols with Exclusive OR, 2019, Accessed: 2019-10-20. https://github.com/

tamarin-prover/tamarin-prover/tree/develop/examples/jcs19-xor.
[39] L. Hirschi, D. Baelde and S. Delaune, A Method for Verifying Privacy-Type Properties: The Unbounded Case, in: IEEE

Symposium on Security and Privacy, SP 2016, IEEE Computer Society, 2016, pp. 564–581. ISBN 978-1-5090-0824-7.
[40] D. Baelde, S. Delaune, I. Gazeau and S. Kremer, Symbolic Verification of Privacy-Type Properties for Security Protocols

with XOR, in: 30th IEEE Computer Security Foundations Symposium, CSF 2017, IEEE Computer Society, 2017, pp. 234–
248. ISBN 978-1-5386-3217-8.

[41] G. Lowe, A Hierarchy of Authentication Specifications, in: 10th Computer Security Foundations Workshop (CSFW ’97),
June 10-12, 1997, Rockport, Massachusetts, USA, IEEE Computer Society, 1997, pp. 31–44.

[42] M. Brusó, K. Chatzikokolakis, S. Etalle and J. Den Hartog, Linking unlinkability, in: International Symposium on Trust-
worthy Global Computing, Springer, 2012, pp. 129–144.

[43] M. Brusó, Dissecting unlinkability, PhD thesis, Ph. D. dissertation, Technische Universiteit Eindhoven, 2014.
[44] L. Hirschi, D. Baelde and S. Delaune, A method for unbounded verification of privacy-type properties, Journal of Com-

puter Security (2019), 1–66.
[45] S. Delaune, M.D. Ryan and B. Smyth, Automatic verification of privacy properties in the applied pi-calculus, in: Pro-

ceedings 2nd Joint iTrust and PST Conferences on Privacy, Trust Management and Security, (IFIPTM’08), Springer,
2008.

[46] B. Blanchet, M. Abadi and C. Fournet, Automated Verification of Selected Equivalences for Security Protocols, Journal
of Logic and Algebraic Programming (2008).

[47] B. Blanchet and B. Smyth, Automated reasoning for equivalences in the applied pi calculus with barriers, in: Computer
Security Foundations Symposium (CSF), 2016 IEEE 29th, IEEE, 2016, pp. 310–324.

https://tamarin-prover.github.io/
http://eprint.iacr.org/2008/310
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/jcs19-xor
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/jcs19-xor

34 J. Dreier et al. / Verification of Stateful Cryptographic Protocols with Exclusive OR

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[48] T.v. Deursen and S. Radomirović, Algebraic Attacks on RFID Protocols, in: Information Security Theory and Practices.
Smart Devices, Pervasive Systems, and Ubiquitous Networks (WISTP’09), Lecture Notes in Computer Science, Vol. 5746,
Springer, 2009, pp. 38–51.

[49] T. van Deursen, S. Mauw, S. Radomirović and P. Vullers, Secure ownership and ownership transfer in RFID systems, in:
Proc. 14th European Symposium On Research In Computer Security (ESORICS’09), Lecture Notes in Computer Science,
Vol. 5789, Springer, 2009, pp. 637–654.

[50] T.v. Deursen and S. Radomirović, Security of an RFID Protocol for Supply Chains, in: Proc. 1st Workshop on Advances
in RFID (AIR’08), IEEE Computer Society, 2008, pp. 568–573.

[51] D. Chaum, A. Fiat and M. Naor, Untraceable Electronic Cash, in: Advances in Cryptology: Proceedings of CRYPTO ’88,
LNCS, Vol. 403, Springer, 1990, pp. 319–327.

[52] G. Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR, in: TACAS, 1996, pp. 147–166.
[53] Y. Chevalier, R. Küsters, M. Rusinowitch and M. Turuani, An NP Decision Procedure for Protocol Insecurity with XOR,

in: LICS, IEEE Computer Society, 2003, pp. 261–270. ISBN 0-7695-1884-2.
[54] R. Sasse, S. Escobar, C. Meadows and J. Meseguer, Protocol Analysis Modulo Combination of Theories: A Case Study

in Maude-NPA, in: STM, 2010, pp. 163–178.
[55] J. Yang, J. Park, H. Lee, K. Ren and K. Kim, Mutual authentication protocol for low-cost RFID, Ecrypt, Graz, Austria,

2005.
[56] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt and P. Strub, EasyCrypt: A Tutorial, in: Foundations of

Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, A. Aldini, J. Lopez and F. Martinelli, eds,
Lecture Notes in Computer Science, Vol. 8604, Springer, 2013, pp. 146–166. ISBN 978-3-319-10081-4.

[57] B. Blanchet, A Computationally Sound Mechanized Prover for Security Protocols, in: 2006 IEEE Symposium on Security
and Privacy (S&P 2006), 21-24 May 2006, Berkeley, California, USA, IEEE Computer Society, 2006, pp. 140–154. ISBN
0-7695-2574-1.

[58] G. Barthe, J.M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B. Schmidt and S.Z. Béguelin, Fully automated analysis of
padding-based encryption in the computational model, in: 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November 4-8, 2013, A. Sadeghi, V.D. Gligor and M. Yung, eds, ACM, 2013,
pp. 1247–1260. ISBN 978-1-4503-2477-9.

[59] G. Barthe, B. Grégoire and B. Schmidt, Automated Proofs of Pairing-Based Cryptography, in: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015, I. Ray,
N. Li and C. Kruegel, eds, ACM, 2015, pp. 1156–1168. ISBN 978-1-4503-3832-5.

[60] M. Turuani, The CL-Atse Protocol Analyser, in: Term Rewriting and Applications, 17th International Conference, RTA
2006, LNCS, Vol. 4098, Springer, 2006, pp. 277–286. ISBN 3-540-36834-5.

[61] D. Basin, S. Mödersheim and L. Viganò, OFMC: A symbolic model checker for security protocols, International Journal
of Information Security 4(3) (2005), 181–208.

[62] J.D. Ramsdell, D.J. Dougherty, J.D. Guttman and P.D. Rowe, A Hybrid Analysis for Security Protocols with State, in:
Proc. 11th International Conference on Integrated Formal Methods (IFM’14), LNCS, Vol. 8739, Springer, 2014, pp. 272–
287.

[63] V. Cheval, V. Cortier and M. Turuani, A Little More Conversation, a Little Less Action, a Lot More Satisfaction: Global
States in ProVerif, in: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, July
9-12, 2018, 2018, pp. 344–358. doi:10.1109/CSF.2018.00032.

[64] R. Küsters and T. Truderung, Reducing protocol analysis with XOR to the XOR-free case in the horn theory based
approach, in: Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, ACM,
2008, pp. 129–138. ISBN 978-1-59593-810-7.

[65] D. Unruh, The impossibility of computationally sound XOR., IACR Cryptology ePrint Archive 2010 (2010), 389.

	Introduction
	Preliminaries
	Messages represented as terms
	Modeling protocols and adversaries using multiset rewriting rules
	Security property specification

	Handling XOR
	Normal dependency graphs
	Proof of Theorem 1 for XOR
	Modified Constraint-Solving Rules

	Adversary Model for Equivalence Properties
	Proof of Soundness of Equivalence Mode for XOR.

	Case Studies
	Introductory CR Example
	LAK'06
	CH'07
	OTYT06
	LD07
	KCL'07
	Chaum's Offline eCash Protocol
	NSLPK3xor
	Summary of Experimental Results

	Related work
	Conclusion
	References

