EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Dissecting unlinkability

Citation for published version (APA):
Bruso, M. (2014). Dissecting unlinkability. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and
Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR774668

DOI:
10.6100/IR774668

Document status and date:
Published: 01/01/2014

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR774668
https://doi.org/10.6100/IR774668
https://research.tue.nl/en/publications/6bf6ee9e-9f80-46a5-b313-33313551979c

Dissecting Unlinkability

Mayla Bruso

Copyright (©) 2014 by Mayla Brusé.

A catalogue record is available from the Eindhoven University of Technology
Library.
ISBN: 978-90-386-3649-8

This work is supported by the research program Sentinels (www.sentinels.nl)
as project PEARL (07639).

Dissecting Unlinkability

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, Prof. Dr. Ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op woensdag 18 juni 2014 om 16:00 uur

door

Mayla Brus6

geboren te Venetié, Italié

Dit proefschrift is goedgekeurd door de promotor:

Prof. Dr. S. Etalle

Copromotor:
Dr. J. I. den Hartog

ACKNOWLEDGEMENTS

I would like to thank everyone who has supported me during my Ph.D. stud-
ies. First, I want to thank my supervisor Sandro Etalle for giving me the
opportunity to pursue a Ph.D. at TU/e, for his help and for all the valuable
comments and suggestions on my papers and on this dissertation. I thank
my daily supervisors Jerry den Hartog and Kostas Chatzikokolakis for their
guidance and support. And thank you all for your friendship and good advice.

I want to express my gratitude to the members of my doctoral committee,
Emile Aarts, Sjouke Mauw, Milan Petkovi¢, Erik Poll and Berry Schoenmak-
ers, for assessing my thesis and providing valuable feedback.

I had a great time in Eindhoven thanks to all the friends I made in the
past years. In particular I want to thank Alessandro, Antonio A, Antonio C,
Alberto, Bruno, Christiane, Cicek, Costas, Daniela, Dave, Daniel, Elisa, Eric,
Fred, Gaetan, Giovanni, Giulia, Henk, Irene, Jan-Jaap, Jing, Jolande, Juan
Carlos, Lida, Mark, Nicola, Patrizia, Richard, Sabine, Shona, Tanir, Vini-
cius. Thanks a lot for all the fun, the coffee breaks, the dinners and the chats!
Thanks also to the other members of the SEC, CC, CASA and DAM groups:
Anders, Anita, Benne, Boris, Dan, Dion, Fatih, Jan-Willem, José, Michael,
Maxim, Meilof, Patricio, Patrick, Peter B, Peter S, Peter vL, Relinde, Rob,
Ruben, Ruud, Sebastiaan, Sokratis, Tanja, Tanya, Thijs, Wil, Yael. You all
made TU/e such a gezellig working place.

I thank all my new colleagues at Riscure for giving me the opportunity to
work on new challenging projects in such a pleasant environment.

Un enorme grazie a Luca per essermi sempre stato vicino nonostante la
distanza che ci separa. Grazie per tutti i bei momenti, i discorsi profondi e
quelli insensati che hanno reso tanto speciale la nostra amicizia!

vi ACKNOWLEDGEMENTS

Vorrei ringraziare tutta la mia famiglia per il costante supporto. In parti-
colare, grazie mamma e papd per tutto il vostro amore e il vostro appoggio,
senza i quali non avrei mai potuto raggiungere questo traguardo.

Infine, il ringraziamento piu grande va a Damiano (aka Antonino o Jaba).
Non ci sono parole per descrivere quanto tu abbia straordinariamente miglio-
rato la mia vita ogni giorno durante tutti questi anni.

CONTENTS

Acknowledgements

1 Introduction

1.1
1.2
1.3
1.4

Privacy in RFID systems
Unlinkability and related notions
Researchquestion
Planof thethesis

2 Preliminaries

2.1
2.2
2.3

Epistemic logic with public announcements
Appliedpicalculuso 0oL
Conclusions

3 Formalisation of privacy properties

3.1
3.2
3.3
3.4
3.5
3.6

An abstract trace-based model L.
Interpretation of existing unlinkability definitions
Comparison between definitions
Formalisation of forward and backward privacy
Relatedwork
Conclusions L L

4 Modelling privacy for RFID systems

4.1
4.2
4.3
4.4
4.5
4.6

Aconcrete RFIDmodel
Unlinkability
Forward privacy
Backwardprivacy oo
Relatedwork,
Conclusions

0 O\ B~ W

11
11
13
19

21
21
24
33
45
49
51

viii

CONTENTS

5 Single-step protocols
5.1 Single-step protocols in the applied pi calculus

5.2 Instantiating our abstract model
5.3 Privacy properties for single-step protocols . . .
54 Conclusions

6 Conclusions

6.1 Limitationsofthemodels
6.2 Directions for future work

A Proofs

A.1 Theorem 3.2.2 (Game-based unlinkability)
A.2 Theorem 3.3.1 (Unification of unlinkability)

A.3 Theorem 3.3.2 (Unification of inseparability)

A.4 Theorem 5.2.1 (Single-step protocols)
A.5 Theorem 5.3.7 (Unlinkability for SSP)
A.6 Theorem 5.3.9 (Forward privacy for SSP)
A.7 Theorem 5.3.11 (Backward privacy for SSP)

B ProVerif code

B.1 Pg;for OSK protocol
B.2 Pp;forOSKprotocol
B.3 Ppgj for basic hash protocol

Bibliography
Summary

Curriculum Vitae

103

..... 103
..... 104
..... 108
..... 109
..... 119
..... 125
..... 130

133

..... 133
..... 135
..... 137

141

147

149

1

INTRODUCTION

Radio-frequency identification (RFID) systems are a wireless technology for
automatic identification of objects or persons. They consist of a set of tags,
a set of readers and a backend. Tags are typically simple battery-less devices
consisting of a tiny chip and an antenna. The antenna is needed to emit radio
signals while the chip is used both for computation and storing data. This data
always includes a unique identification number. Readers are devices that, on
the one hand, can wirelessly connect to tags using radio waves and, on the
other hand, typically communicates to a backend system through a wired net-
work. The backend system contains all the information needed to identify the
tags in the system. Basically, each reader serves as an intermediary between
the tags to be identified and a backend. The sequence of messages that are ex-
changed between these agents is called an identification protocol. At the end
of a protocol execution, the backend system should have correctly identified
the tag running the protocol through a reader, and therefore the person or the
object that carries the tag.

RFID technology is already employed in a wide range of applications.
The main advantage of RFID systems, compared to other identification sys-
tems, is that tags can do computation and a line of sight is not required to
identify items. The possibility of performing computation is vital to guar-
antee privacy while the fact that no line of sight is needed implies that the
reader does not even need to “see” a tag to identify it, but only needs it to
be in its proximity. For example, if a book has a bar code on its inside back
cover, one needs to find it and place it in front of a bar code reader in or-
der to retrieve the corresponding information. If a book contains instead an
RFID tag, one only needs to put it close to a reader, which can read the tag
information through the materials of the book. The fact that there is no need

2 INTRODUCTION

of a line of sight also implies that many items can be identified at the same
time. Thanks to these advantages, the adoption of RFID technology allows
to speed up many existing applications and enables new ones. For example,
they are already used in libraries to manage the inventory, in supply chain
management for process automation, in passports for a better border control,
in cars to automatically pay road tolls without stopping, in badges to let only
authorised people access office buildings, in pets to identify their owner, or
even in the body of human beings to retrieve their medical history. All this
information used to be manually collected by means of slow and error-prone
processes, while the data collection in RFID systems is fully automated and
precise, requiring basically no human intervention.

As a new application, we expect RFID tags to replace the bar code labels
in a wide range of products in the near future, when their price will drop suf-
ficiently to be suitable also for inexpensive products. In this case, tags may
be employed by different users for different purposes. A manufacturer or a
retailer may use tags for managing their inventory and to retrieve asset infor-
mation, and a customer for payment and further future services. For instance,
consider a food product carrying an RFID tag whose unique identification
number is linked to data such as its manufacturer information, its production
and expiry dates, its country of origin, and so on. This information may be
used by its manufacturer and its retailer to instantly know the amount of each
product and to control that products meet the requirements to be sold, result-
ing in an enhancement of the supply chain efficiency. Then, customers may
verify that products satisfy their needs (for instance, one may check whether
the food product is both vegan and gluten-free), and would no longer have
to queue at the checkout counter to have their products scanned one by one.
In fact, a person would only need to walk in proximity of a reader with his
shopping trolley, and all the items and corresponding prices would be imme-
diately detected. Also, the fridge where the customer stores his food may
be equipped with an RFID reader that displays which products are about to
expire and must be used as soon as possible.

Finally, there is a range of RFID applications that are not widely em-
ployed yet, although the technology to implement them is already available.
We already mentioned that RFID tags are still too expensive to be used as
a replacement for all bar codes, but they are certainly not too expensive to
be used in high-priced products. Nevertheless, this and similar solutions are
not widely adopted yet. This is because the wireless nature of RFID systems,
while being their main selling point, is also one of their main vulnerabilities.
Tags are extremely easy to access, also for unauthorised users trying to obtain

1.1 PRIVACY IN RFID SYSTEMS 3

information about the product a tag is attached to or about the person who is
carrying it. For example, a person who buys an expensive coat may forget to
remove the RFID tag and be traceable due to some tag vulnerability. Also,
it has been proposed to use RFID tags in banknotes to avoid their counterfeit
and to monitor illegal activities. In this scenario, a person with a reader may
be able to instantly know whether someone is carrying banknotes or to trace
banknotes, e.g. to link a person to his purchases. These unacceptable privacy
violations are a main hindrance to further RFID adoption. Therefore it is nec-
essary to find solutions to avoid such information disclosure. In the following
sections we discuss these privacy issues in more details and our approach to
solving them.

1.1 Privacy in RFID systems

As it appears in the previous section, RFID systems can raise a number of
privacy issues. An RFID protocol may leak too much data allowing tracing
of tags, which results in disclosing private information about the person or
object carrying them. For instance, if a person carries a traceable RFID tag
(for example sewed to the person’s coat), then one may learn information such
as home address, work address, habits, etc., just by following that specific tag.

In order to avoid such privacy violations, it is essential to clarify which
are the privacy guarantees that an identification protocol should satisfy. For-
malising the concept of privacy in the context of RFID systems is not trivial
though. Privacy definitions typically require that a protocol does not leak
a specific piece of information. However, privacy in RFID systems is only
guaranteed when a protocol does not leak any information that may help to
distinguish a tag from another, thus trace a specific tag. This intuition has
been formalised in different models [38, 3, 18, 27, 4, 32], leading to several
definitions whose relationship is unclear. Although such definitions claim to
guarantee the same privacy property, in practice they seem to provide differ-
ent privacy guarantees, but it is difficult to compare them because they are
modelled in different settings. Thus, the complete understanding of privacy
in this context remains an open problem.

To prevent privacy violations, protocols must adopt some privacy preserv-
ing solutions. Unfortunately, the standard techniques used in identification
systems are unsuitable for RFID systems, due to their uncommon features,
such as their mobile nature and the resource limitations of RFID tag chips. A
tag chip offers a little amount of data storage and a small set of basic opera-

4 INTRODUCTION

tions. This means that a tag cannot store much more than its unique identifier
and it is not powerful enough to execute all the steps of a standard privacy
protocol. Therefore, privacy can only be achieved in RFID systems by devel-
oping ad hoc protocols that meet all the RFID constraints. However, several
protocols proposed in the past years have been proven to fall short of their
privacy goals, sometimes after their implementation in real systems, causing
consumers to lose trust in this technology. The shortage of formal solutions
to validate RFID protocols is thus another open problem to investigate.

In the next section we introduce a range of privacy notions and discuss the
problems deriving from their violation in more detail.

1.2 Unlinkability and related notions

Sensitive data is typically not stored in RFID tags, but rather in the backend
system. The information that allows a backend system to associate such data
to a specific RFID tag is the tag unique identifier, which often is the most valu-
able information stored in a tag. Clearly, an identification protocol must avoid
the public disclosure of such information, otherwise an attacker, namely a user
who wants to illegitimately access user data, may obtain private information
about the person or object carrying an RFID tag, as explained in the previ-
ous section. More formally, a protocol must first of all prevent an attacker
from being able to infer whether two or more protocol executions belong to
the same tag. This cornerstone property is known as unlinkability, and, in the
context of RFID systems, it is the most important privacy notion. It can also
be seen as a special form of anonymity. Anonymity is a more general privacy
property that holds when a protocol prevents an attacker from being able to
uniquely identify a user. A user, in the case of RFID systems, corresponds
to a tag. Instead, unlinkability is violated when an attacker can distinguish
between tags. Therefore, a protocol may not guarantee this property even if
anonymity holds, i.e. when the protocol does not leak tag identifiers. For ex-
ample, a protocol that discloses the session number of an RFID tag is already
an issue, because an attacker can trace a tag by querying the tags in the range
of its reader and following the one that emits the expected sequential session
number.

Sometimes, RFID systems must satisfy privacy properties that are stronger
than unlinkability, because user privacy must be guaranteed even when an at-
tacker is able to tamper with tags. So far, the attacker we mentioned could
only eavesdrop on the wireless channel between legitimate tags and readers,

1.2 UNLINKABILITY AND RELATED NOTIONS 5

and query tags with his own reader, but he could not physically obtain a tag.
Unfortunately, in many practical situations an attacker can easily get hold of
a tag in most RFID systems. Sometimes the tag is simply transferred, e.g.
when the attacker buys a second-hand product. Otherwise, an attacker may
illegitimately get temporary access to a tag. Suppose that a person loses his
wallet, which contains a card with an RFID installed in it. An attacker finds
the wallet and tampers with the RFID tag, obtains its unique identifier, and
then gives the wallet to the lost-and-found office. By using the tag unique
identifier, it may be possible to retroactively trace the RFID tag or to trace its
location in the future. In other words, one may learn where the owner of the
wallet has been and may trace him once he has been given back his wallet. To
capture this, the attacker must be provided with stronger capabilities, i.e. he
can obtain a tag internal state, and see whether he can link it to other legitimate
sessions. A protocol that prevents the attacks described above guarantees the
privacy properties of forward and backward privacy. Intuitively, forward pri-
vacy holds if an attacker cannot infer whether some past protocol executions
belong to a tag whose identifier has been disclosed. Symmetrically, back-
ward privacy holds if privacy is protected even after the disclosure of a tag
identifier.

The privacy concerns raised by the use of the RFID technology are clear,
but there is no agreement in the literature on the concept of unlinkability.
A variety of existing definitions differ in model and strength [38, 3, 18, 27,
4, 32], and are apparently unrelated to each other. Thus, when a protocol
is proven to guarantee some definition of unlinkability, it may actually not
satisfy some other definition. As a result, different protocols that in princi-
ple should guarantee the same property provide, in practice, different privacy
guarantees. Therefore, a first open problem is the lack of clarity on the exact
definition of unlinkability. With a full understanding of the notion of unlinka-
bility, we can provide the formal basis to express privacy properties and verify
protocols.

Developing protocols that satisfy all these privacy properties is not an easy
task and even the smallest mistake in the protocol design may lead to se-
vere consequences. Consider the case of e-passports, passports containing an
RFID tag that stores sensitive information which is claimed to be protected
from unauthorised access. However, some protocol vulnerabilities that lead
to the violation of unlinkability have been found in [20]. Many other identi-
fication protocols have been proven not to guarantee privacy, and every new
protocol may potentially have design flaws. Hence, a second open problem
is the lack of tools to verify whether identification protocols guarantee what

6 INTRODUCTION

they promise. Therefore, after understanding which are exactly the privacy
guarantees that RFID systems should provide, we must find a way to formally
define and verify privacy properties taking into account all the unique features
of RFID systems, otherwise a range of promising new RFID applications will
never be employed.

1.2.1 Unlinkability in other contexts

Unlinkability is not a new concept to the security world. In fact, already in
1985, [19] showed the importance of unlinkability in credential systems. The
problem was that organisations could exchange information about individuals,
and instantly link their records to those held by other organisations, leading
to severe privacy violations.

There are many other applications where unlinkability is desirable. For
example, in e-voting systems, there are typically two phases that should never
be linked: during the initial phase, an election authority certifies that a ballot
is valid (the voter can vote and did not already vote), and, in a later phase, the
votes are sent. If unlinkability does not hold for these two phases of the voting
protocol, a voter’s identity and vote can be linked, resulting in a violation of
the voter’s privacy. Unlinkability may be desirable also in web applications
to avoid that they use the information stored on computers to link current
activities of a user with previous actions.

Given the importance of unlinkability in such a variety of contexts, we
keep our definitions in Chapter 3 general. Although we have been inspired
by definitions in the RFID literature, our results may be also used to study and
compare definitions given in a different context. The reason why we focused
on RFID systems (and designed an RFID model in Chapter 4) is that, due
to their mobile nature, protecting privacy is of paramount importance in this
setting.

1.3 Research question

Given the characteristics of RFID systems and the related challenges listed in
the previous sections, the aim of this thesis is:

To provide a formal framework in which privacy prop-
erties can be specified and verified

1.3 RESEARCH QUESTION 7

To achieve this goal we have to answer two research questions. As ex-
plained in Section 1.2, there is no agreement on the exact definition of pri-
vacy notions in the context of RFID systems. Therefore, our first objective is
to understand the intuition behind all these definitions and compare them to
capture their differences. Thus, our first research question is:

How can we define a unifying framework to model and com-
pare different privacy definitions?

The answer to our first research question helps clarify the notion of privacy.
Then, our second objective is to provide a model tailored to RFID systems
where we can define and verify, in particular, the strongest of the forms of
privacy that we model in our unifying framework. Hence, our second research
question is:

How can we implement a model in which we can verify
whether a protocol guarantees unlinkability and its related
notions?

In the following chapters, we investigate these topics by modelling privacy
first in an abstract and then in a concrete model. The abstract model allows
us to reason about the privacy guarantees behind existing definitions. On the
other hand, the concrete model allows to describe a protocol and to formally
verify it. Also, we show how our solutions can be applied to real protocols.

1.3.1 Contributions

In order to answer the research questions presented in Section 1.3, we propose
formal techniques to define and study a range of privacy properties. Our work
gives rise to the following contributions:

e A general model for the specification and comparison of privacy prop-
erties [13, 12] that helps us capture the intuition behind existing defini-
tions of unlinkability.

e A model tailored to RFID systems that allows us to describe identifi-
cation protocols and use formal techniques to define and verify privacy
properties [11, 10].

The general nature of the model that we present in Chapter 3 enables easy
specification of privacy properties, abstracting away from non-relevant tech-
nical aspects of more concrete systems. This model captures existing defini-
tions from very different settings in a single unifying model, so their privacy

8 INTRODUCTION

guarantees can be compared. This work allows us to answer the first research
question, since it results in a better understanding of the notions of unlinka-
bility, forward and backward privacy. We show that the existing definitions
are different while they claim to express the same properties. Therefore we
study necessary and sufficient conditions that hold under most realistic situa-
tions and under which the different definitions of the properties do coincide.
Finally, in Chapter 5, we show that a large class of protocols satisfies these
conditions.

In Chapter 4, we present a concrete model tailored to RFID systems. Our
study on unlinkability, forward and backward privacy described above allows
us to identify the privacy guarantees that are desirable for an identification
protocol. Based on the strongest of these privacy guarantees, we define the
properties in our concrete model taking into account specific RFID features.
The more concrete model allows us to analyse protocols and verify whether
they satisfy unlinkability, forward and backward privacy, as required by the
second research question. Because these definitions are not trivial to prove,
we express equivalent and simpler conditions for a class of basic protocols
introduced in Chapter 5. Also, we study some protocols from the literature
checking whether these conditions hold, providing proofs if they do.

In general, this thesis contributes to the field of formal verification. It pro-
vides techniques and tools to analyse identification protocols, with particular
focus on RFID systems. The formalisms that we use to express protocols and
define properties are very intuitive and precise, as our work is in a symbolic
setting. We can directly apply our results to existing protocols or even to gen-
eral cases such as the class of protocols that we study in Chapter 5. Finally,
our definitions can be easily expressed in existing tools like ProVerif [8] in
order to automatically verify certain protocols, as we do for our case studies.

1.4 Plan of the thesis

The remainder of this thesis is structured as follows.

Chapter 2 presents an overview of the epistemic logic and the applied pi
calculus, the ingredients used to model unlinkability and other privacy
notions in the remainder of this thesis.

Chapter 3 introduces a general model where we capture several definitions
of unlinkability from the literature to compare the intuition behind them
and to fully understand the privacy guarantees that they offer. Then, we

1.4 PLAN OF THE THESIS 9

formalise the stronger properties of forward and backward privacy. This
is a joint work with K. Chatzikokolakis, S. Etalle, and J. den Hartog,
published in [13], later extended in [12].

Chapter 4 presents a model where we redefine unlinkability, forward and
backward privacy, but this time in a more concrete and specific way.
In fact, this model is an instance of the model in Chapter 3, meant
for protocol verification rather than properties comparison. Here, we
take into account RFID features in the protocol and properties descrip-
tions and provide definitions of those model elements that were left
abstract in Chapter 3. This work is the result of a collaboration with K.
Chatzikokolakis and J. den Hartog [11], later extended in [10].

Chapter S presents a class of single-step protocols, namely identification
protocols consisting of one message from a tag to a reader. First, we
discuss the privacy guarantees that single-step protocols provide with
respect to the definitions given in Chapter 3. This work is presented
in [13, 12]. Then, we provide necessary and sufficient conditions for
these protocols to satisfy all the privacy definitions given in Chapter 4.
Finally, we prove that some protocols from the literature satisfy these
conditions and, therefore, guarantees the privacy definitions of Chap-
ter 4. These results are discussed in [11, 10]

Chapter 6 presents our conclusions and provides possible directions for fu-
ture work.

10

INTRODUCTION

2

PRELIMINARIES

The objectives of this thesis are to clarify the notion of privacy in the con-
text of RFID systems and to provide a model for RFID systems that supports
defining and verifying privacy properties. To achieve these goals we first
need to introduce epistemic logic (Section 2.1) and the applied pi calculus
(Section 2.2) that we use in the next chapters.

2.1 Epistemic logic with public announcements

Epistemic logic with public announcements [30] is a logic modelling agent
knowledge. This logic allows us to define and compare privacy definitions in
a very intuitive manner, namely in terms of an attacker’s knowledge. In this
section we provide the syntax and semantics of the epistemic logic that we
use in this thesis.

Given a set of propositional constants (atoms) P, the set £(P) of epistemic
formulas ¢, ¢, ... is given by:

o, = plopleAY V| Kol el

with p € P. The first four formulas are standard and represent an atom, the
negation not of a formula, the conjunction and and the disjunction or of two
formulas, respectively. The formula K ¢ means “the attacker knows ¢”. Note
that epistemic logic typically involves multiple agents, with K; denoting the
knowledge of agent ?. We only consider the knowledge of a single agent,
namely the global attacker. Thus, we simplify the notation by omitting the
agent identifier in the knowledge formula K. Finally, [¢]¢) means “after ¢

12 PRELIMINARIES

is revealed, v holds”.

The semantics of epistemic logic is given in terms of Kripke structures. A
Kripke structure M is a tuple (.5, f, ~) where

e S is a set of possible states;

e f:S — 2P isa function assigning to each state a set of atoms that hold
in that state;

e ~ is an equivalence relation on S.

Intuitively, s; ~ s, means that, from the attacker’s point of view, the two
states are indistinguishable.

For a Kripke structure M and a state s € .S the semantics of the logic is
given by

e M,sE pifandonlyifp € f(s);

M,sEoAN¢ifandonlyif M, sF ¢ and M, s F v;

M,sE eVifandonlyif M, sE ¢ or M,sF 1;

M, s E —pif and only if M, s ¥ ¢;

M, s E K if and only if M, s’ E for all the states s’ such that s’ ~ s;

M, s E || if and only if (M, s E ¢ implies M |p, s E).

M,s E p means that M satisfies p at state s. The rules for A,V and — are
standard. The knowledge formula /K ¢ holds when the attacker knows ¢ at
state s, which is true if and only if ¢ is satisfied in all the states that are
indistinguishable from s from the attacker’s point of view. Finally, let M|y
be a Kripke structure obtained by M by restricting it only to states satisfying
¢, i.e. having state space S’ = {s € S| M, s F ¢}. Intuitively, revealing [¢]
in a state where ¢ holds, restricts the model to a smaller one where ¢ always
holds. Thus, [¢]4) is true if ¢ holds in the restricted model.
From now on we simply write s F ¢ for M, s F .

2.2 APPLIED PI CALCULUS 13

2.2 Applied pi calculus

The applied pi calculus [1] is a language for the description of concurrent
processes and their interaction. Similarly to the pi calculus [31], it provides
simple syntax and semantics for the description of cryptographic protocols,
but adds the possibility to model cryptographic primitives through a signature
and an equational theory.

2.2.1 Syntax

The ingredients to define terms in the applied pi calculus are a set of names,
a set of variables and a signature Y, which consists of a finite set of function
symbols. Given these ingredients, the set of terms can be defined by the
grammar shown in Figure 2.1.

T := Terms
a,b,c,... name
T, 2 variable

f(Ty,...,T;) function application

FIGURE 2.1: Terms of the applied pi calculus

A set of terms contains names, variables and all the terms that can be built
up by applying function symbols to other terms. In particular, f is a function
symbol that ranges over X and has an arity of /. A function symbol with ar-
ity O is a constant symbol. The signature Y. is equipped with an equational
theory, i.e. an equivalence relation =g on terms that is typically assumed to
be closed under one-to-one substitution of names [1]; in this thesis we as-
sume a slightly stronger property, namely that =g is closed under one-to-one
substitution of fresh variables for names. This means that from an equation,
say f(n) =g g(g(n)), we can not only deduce that f(m) =g g(g(m)) for any
name m, but also f(z) =g g(g(z)). Note that this stronger property holds for
all theories generated by a finite number of axioms, which is the usual way
of generating theories. We finally assume that =g is not the trivial theory
equating all terms.

The signature together with the equational theory are used to model cryp-
tographic primitives. For instance, to model symmetric encryption we may
include in X the function symbols encrypt and decrypt, both with arity 2.
Typically, the parameters of encrypt are two terms corresponding to a clear-
text and a symmetric key, while the ones of decrypt are a ciphertext and a

14 PRELIMINARIES

PQ R:= plain processes
0 null process
PlQ parallel composition
'P replication
vn.P restriction
if M = N then P else () conditional
u(zx).P message input
u(N).P message output

A B,C = extended processes
P plain process
Al B parallel composition
vn.A name restriction
ver.A variable restriction
M/} active substitution

FIGURE 2.2: Syntax of the applied pi calculus

symmetric key. If the key used to decrypt a ciphertext corresponds to the key
used for its encryption, the decryption function decrypt should return the
correct cleartext. To model this, we can define the following equation in our
equational theory

decrypt(encrypt(z, k), k) =gz

Metavariables u, v, w are used for both names and variables. We denote by
n,x, M a (possibly empty) sequence of names, variables and terms, respec-
tively. We write {y} for the set of elements in a sequence y. We write M <N
if and only if M is a subterm of NV and M < N if and only if M <N and
M # N,and M =< N if and only if M’ : M =g M’ QN and M =< N if
and only if IM’ : M =g M’ < N.

The syntax for processes is shown in Figure 2.2. The null process does
nothing. In the parallel composition of two processes P | (), the processes P
and () are executed concurrently. The replication process ! P behaves as the
parallel composition of an infinite number of copies of P. We write [[;_, P
for the parallel composition of n processes P, ..., P,. The restriction pro-
cess vn. P creates a new private name n and continues as P. We write vn or
vny, ne, ... for a sequence of restrictions vn;.vns. The standard primi-

2.2 APPLIED PI CALCULUS 15

tive if-then-else tests for the equality (according to the equational theory) of
M and N. The input process u(x).P awaits a message from channel u; when
a message is received, the process continues as P, where all the occurrences
of x are replaced by the received message. Symmetrically, the output process
u(N).P is the process that sends a message N on the channel v and then con-
tinues as P.

Figure 2.2 also presents the syntax for extended processes, which extends
the syntax for plain processes with active substitutions. An active substitu-
tion {¥/,} replaces a variable x with a term M and models the informa-
tion known to the environment. We assume that substitutions are cycle-free.
We use {*/;} for a sequence of substitutions. Finally, we sometimes write
N[M/,] for the term obtained by substituting M for x in N. Note that N [*/]
substitutes a term for a variable in a term, while an active substitution affects
all the processes that are in its scope.

Names and variables have a scope that is delimited by restrictions. An
input u(z). P also implicitly restricts z. Given an extended process A, the set
bn(A) contains all the names that are bound by a restriction in A, while the
set bv(A) contains all the variables bound by a restriction or an input process.
Symmetrically, the sets fn(A) and fv(A) contain all the names and variables,
respectively, that are not bound in A. Note that an active substitution {#/,}
does not bind names or variables (the variable x is free). We say that an
extended process is closed when its variables are either bound or defined by
an active substitution.

Finally, every extended process can be mapped into a frame, denoted by)
and ¢, by replacing all the plain processes with the null process. A frame is an
extended process built up from 0 and active substitutions of the form {*/,} by
parallel composition and restriction, and it collects the static knowledge that
the corresponding extended process outputs to its environment. The domain
of a frame), written dom(v)), is the set of variables z in the substitutions
{M/,} that are not under restriction. The domain of an extended process is

that of its frame. A frame v is in canonical form if and only if ¢ = yﬁ.{M [z}

—~ —~

where fv(M) = 0 and {n} C fn(M).

2.2.2 Operational semantics

The operational semantics of the applied pi calculus describes the transitions
that extended processes can perform and it is given in terms of two relations:
structural equivalence = and internal reduction —.

Structural equivalence = is the smallest equivalence relation on extended

16 PRELIMINARIES

Alo=A PAR-0
Al (B|C)=(A|B)|C PAR-A
A|B=B|A PAR-C
lP=\P| P REPL
vn.0=0 NEW-0
vu.vv.A = vv.vu. A NEW-C
ve{M/,} =0 ALIAS
(M3 1A= {3 LAY SUBST
A|vu.B=vu.(A|B) NEW-PAR
when u ¢ fv(A) U fn(A)
M/ =1 REWRITE
when M =g N

FIGURE 2.3: Structural equivalence

processes that is closed under a-conversion on both names and variables, is
closed under application of evaluation contexts, and satisfies the rules of Fig-
ure 2.3.

The rules for parallel composition (PAR-0, PAR-A, PAR-C), replication
(REPL) and restriction (NEW-0, NEW-C) are standard. ALIAS enables the
introduction of an arbitrary active substitution. SUBST describes the applica-
tion of an active substitution to a process that is in contact with it. NEW-PAR
allows to move a restriction vu without changing the meaning of the pro-
cess. REWRITE allows to replace a term for another term that is equivalent
to it in the specified equational theory. It can be shown that any frame ¢ is
structurally equivalent to a frame ¢’ in canonical form.

Internal reduction (—) is the smallest relation on extended processes closed
under structural equivalence and application of evaluation contexts such that

a(z).P|a(x).QQ — P|Q CommMm
if M = M then P else) — P THEN
if M = N then P else () — @) ELSE

for any ground terms M and N such that M #g N. The rule COMM represents
a communication on channel a defined on variables. The rules THEN and

2.2 APPLIED PI CALCULUS 17

ELSE compare terms and continue as P if the terms are equivalent in the
equational theory, as () otherwise. They may require the application of active
substitutions in the context to ensure that A/ and N are ground terms.

2.2.3 Observational equivalence

Several privacy properties can be formalised in terms of observational equiva-
lence between processes. Two processes are equivalent if an external observer
cannot tell them apart. To understand observational equivalence we need to
introduce the concept of context, that is an extended process C'[—] with a hole
replacing an extended sub-process. A context C'[—] represents an environ-
ment, thus it may be used to model an attacker. An evaluation context is a
context whose hole is not under a replication, a conditional, an input, or an
output process. A context C'[—] closes A when C[A] is closed. The definition
of observational equivalence contains the syntax A | a for “A can send a
message on a channel a”, that is when A —* C[a(M).P], where —* indi-
cates zero or any finite number of steps —*, for some evaluation context C'
that does not bind a.

DEFINITION 2.2.1. Observational equivalence (=) is the largest symmetric
relation R between closed extended processes with the same domain such that
ARB implies

1. if Al athen B | a;
2. if A —* A then B —* B' and AR B’ for some B’;
3. C[AJRC|B] for all closing evaluation contexts C.

Hence, two processes are observationally equivalent when, for all closing
evaluation contexts, they can output on the same channel and perform the
same reduction steps, which must lead to two observationally equivalent new
processes.

2.2.4 Static equivalence

Observational equivalence may be difficult to handle in proofs. Therefore,
in this thesis we use labelled bisimilarity that is proven to be equivalent to
observational equivalence (~;=~) in [1]. To define labelled bisimilarity we
need to introduce the concept of static equivalence.

Static equivalence compares the static knowledge that is output by two
extended processes to their environment.

18 PRELIMINARIES

DEFINITION 2.2.2. Two terms M and N are equal in the frame ¢, written
(M = N), if and only if ¢ = vn.o, Mo = No, and {n} N {fn(M) U
fn(N)} = 0 for some names n and substitution o.

Two closed frames p,1) are statically equivalent, written p ~;1), when
dom(y) = dom(v) and, for all terms M and N, we have (M = N)y if and
only if (M = N).

Two closed extended processes are statically equivalent, written A ~; B,
if the frame of A is statically equivalent to the frame of B.

Intuitively, two closed extended processes are statically equivalent when
their static knowledge cannot be distinguished. Their static knowledge is the
information that is already known to the environment and it does not include
the information that the processes may send after some transitions. In fact,
static equivalence does not consider the dynamic behaviour of the processes.

2.2.5 Labelled operational semantics and equivalence

The labelled operational semantics extends the operational semantics of Sec-
tion 2.2.2 and defines a relation A = A’, where « is a label that corresponds
to an input a(M) where M is a term, or to an output a(u) or vu.a(u), where
u is a variable or a name. This semantics allows us to reason about processes
interaction with their environment. In addition to the operational semantics
rules of Section 2.2.2, it also satisfies the rules of Figure 2.4. The rule IN in-
puts a term M from the channel a while OUT-ATOM and OPEN-ATOM model
the output of a name or variable v on the channel a. In particular, OPEN-
ATOM may be used to output a restricted channel (when w is a name) as well
as a term (when w is a variable that is bound to a term). The rule SCOPE allows
a process under a restriction to perform a labelled transition step when the re-
striction does not appear in the label. PAR and STRUCT deal with the parallel
composition and the structural equivalence of processes, respectively. The as-
sumption bv(a) N fv(B) = bn(«a) N fn(B) = 0 in the rule PAR prevents the
transition A = A’ from changing the meaning of the process B.

A labelled bisimilarity ~; between extended processes requires the pro-
cesses to be statically equivalent and to perform the same reduction steps,
which must lead to two statically equivalent new processes.

DEFINITION 2.2.3. A labelled bisimilarity (=;) is the largest symmetric rela-
tion R on closed extended processes such that AR B implies

1. A=, B;

2.3 CONCLUSIONS

19

a(z).p "M pryy A

alu).P 2 p
AM wta

vu.a

vu.A —<7>J> A

« .
A— A u does not occur in «

vu. A - vu. A
A A bv(a) Nfv(B) = bn(a) Nfn(B) =0
A|B-* A |B
A=B B4 B B = A
A A

FIGURE 2.4: Labelled semantics rules

2. if A— A, then 3B’ such that B —* B’ and A"RB’;

3.ifA S A and fv(a) C dom(A) and bn(a) N fn(B) = (, then

B —*3%—* B' and ARB' for some B

2.3 Conclusions

IN

OUT-ATOM

OPEN-ATOM

SCOPE

PAR

STRUCT

In this chapter we presented the epistemic logic and the applied pi calculus,
the basis that we use to formalise privacy models in the remainder of the

thesis. The epistemic logic is used in Chapter 3 to define a general formal

model and several privacy properties. In Chapter 4, we use the applied pi

calculus to develop an RFID model where the privacy properties are redefined
taking into account specific RFID aspects. Finally, in Chapter 5, we use both

the resulting models to study and verify the properties for a class of protocols.

20

PRELIMINARIES

3

FORMALISATION OF PRIVACY
PROPERTIES

As explained in the introduction, given the lack of agreement on the exact
definition of privacy, our first goal is to clarify which are the privacy guaran-
tees that an identification protocol should satisfy. In this chapter we provide a
unifying framework that we use to model and compare different definitions of
the unlinkability property. All these definitions are expressed in terms of an
attacker’s knowledge using epistemic logic. Also, we give examples to show
that all these definitions are different, but we demonstrate that, in many prac-
tical situations, they coincide. Finally, we provide definitions for the concepts
of forward and backward privacy, which both are stronger than unlinkability.

3.1 An abstract trace-based model

In this section we present our abstract formal model, which will be the basis
for formalising several privacy properties using epistemic logic in Section 3.2.

An RFID system consists of a number of tags, readers and backend sys-
tems, which interact to execute the steps of an identification protocol. The
purpose of an identification protocol is to identify a tag to a backend system.
The reader, which must be in the proximity of the tag, is used as an interme-
diary. Communication between tags and readers takes place over an insecure
(wireless) channel, where an attacker is able to intercept and forge messages.

In order to capture one or more protocol runs in our model, we introduce
the concept of transactions. A transaction is an abstract collection of proto-
col runs consisting of one or multiple messages. A transaction starts when
the attacker gains access to a tag and lasts until the attacker loses this access.

22 FORMALISATION OF PRIVACY PROPERTIES

During the transaction the attacker can passively eavesdrop the communica-
tions or actively modify and forge messages. We allow the attacker to execute
an arbitrary number of protocol sessions within a transaction, while knowing
that the tag participating in the transaction does not change. For example, the
attacker may see a tag at the entrance of a building at 12:00 and can interact
with it. The attacker can query the tag many times, and he is sure that the
same tag responds every time, since there is no other tag around. When he
loses proximity to the tag, this transaction ends. Then, at the same or some
other location, the attacker once again sees a tag and can interact with it in a
different transaction. The tag can be either the same as before, or a different
one.

The goal of the attacker is to trace tags by linking transactions. In our
model, the attacker’s approach is captured by the concept of strategy. For
example, the attacker might passively eavesdrop the session of the first agent
he sees, then build a message from that agent output and send it to a second
agent, then interact with a third agent and so on. This strategy involves three
transactions, and defines the messages sent to the agents in each transaction.
On the other hand, the attacker does not control which agent will be involved
in each transaction. Different agents will clearly lead to different executions
producing different messages. Note that when the model captures an RFID
system, the agents correspond to tags.

For simplicity, we assume that all interactions happen between the attacker
and the tags (honest sessions are also allowed, since the attacker can forward
messages between agents) as in the Dolev-Yao model.

In our model, an attacker strategy, together with a mapping of transactions
to agent identities, completely defines one of the possible executions of the
system. Abstracting from the details, we consider a protocol as a set of traces
composed of strategies and agent mappings, and we define privacy properties
based on the attacker’s ability to distinguish traces.

DEFINITION 3.1.1. A system is a tuple (A, X, T, ~) where
o A= {ay,ay,...}is a(possibly infinite) set of agents;

>

e Yl is a set of strategies; each strategy o € 3. has a length |o

o T={(m0)|0ceX xcllll}, where 11°! is a set of agent mappings
of length |o|, is the set of traces; each trace T € T is a pair (7, o) where
o € Y is a strategy and m € 11°! is a sequence of agents;

e ~ is an equivalence relation on T such that (w1, 01) ~ (79, 09) = 01 =
09.

3.1 AN ABSTRACT TRACE-BASED MODEL 23

A strategy 0 € X, chosen by the attacker, describes what the attacker
does in each transaction. We do not specify this further than the number of
transactions |o| in the strategy.

To still be able to talk about specific transactions we assume an ordered
set of transaction names {pi,...,p,}. We interpret 7 € II" as a mapping
function from {pi,...,p,} to A. We use Domy, . to denote the domain of
this function, i.e. {p1,...,ps|}-

A strategy o and a mapping 7 together form a trace 7, which represents a
complete execution of the system.

Finally, ~ captures which traces are indistinguishable for the attacker. An
equivalence between traces is a fundamental concept underlying all the un-
linkability definitions in the literature. In formal models, such an equivalence
has been expressed either in terms of process equivalence (e.g. observational
or trace equivalence in the applied pi calculus [3, 11]) or using the concept
of “reinterpretation” [38]. In computational models, the equivalence is stated
in terms of the inability of the attacker to distinguish the two cases in the
corresponding game.

We write S™ to denote a sequence of n elements from the set S. We use
S* for a sequence of an arbitrary number of elements from the set S.

In our model, a protocol is an abstract object that describes the behaviour
of the agents in a system. Given a protocol description, the corresponding
set T' contains all the possible traces that can be obtained under any attacker
strategy o € . The relation ~ is crucial for defining privacy properties.
Consider a trace 7y = (7, o) produced when the attacker chooses the strategy
o and interacts with the agents in 7, and a trace 75 = (79, o) produced by
the same strategy when different agents are involved. If 7, ~ 7, it means
that, when using the strategy o, the attacker cannot tell which agents he was
interacting with.

We sometimes use 7, to emphasise that m belongs to the trace 7. For a
trace 7 = (m,0) we define A, and A, as the image of 7 (i.e. the set of agents
involved in the trace). We write II for U,,>II".

We use ~ also for mappings as follows:

T~ iff (7w 0)~ (7,0)Vo e st |o| = x|

Note that we keep our model abstract and do not explicitly define the
messages in the protocol, the exact strategies > and the relation ~. We assume
that these are produced by a concrete protocol model (such as the one given
in Chapter 5). For example, when using the model of [3] based on the applied
pi-calculus, a strategy corresponds to a context modelling the attacker, 7 is

24 FORMALISATION OF PRIVACY PROPERTIES

the trace produced by the corresponding process, and ~ is static equivalence
between traces. This “instantiation” of our model is used in Chapter 5 to study
a class of protocols.

3.2 Interpretation of existing unlinkability defi-
nitions

In this section we express several definitions of unlinkability from the liter-
ature in our trace-based model. Each definition is given in an intuitive form
using epistemic logic. We also express the definitions in terms of trace equiv-
alence, which provides the restrictions on the traces for the privacy properties
to hold more explicitly.

First, we state the definition of weak unlinkability from [38, 3]. This def-
inition requires that for every pair of transactions (p,p’) the attacker cannot
know whether they are linked.

Second, we show that there are several definitions in the literature that
are stronger than weak unlinkability. Therefore, we first study the notion of
strong unlinkability inspired by the work of [3], requiring that every trace is
equivalent to one without any linked messages (i.e. the attacker cannot even
know about the existence of a link). Then we focus on game-based defini-
tions. These definitions, which often appear in the literature in the compu-
tational setting [18, 27, 4, 32], are stronger than weak unlinkability, but are
incomparable to strong unlinkability. Such definitions set up a game between
an attacker and a challenger, in which the former tries to distinguish between
situations created by the latter. We express two such definitions in our model
and we call them two-agents game unlinkability and three-agents game un-
linkability.

Note that our purpose is not a technical comparison between the compu-
tational and formal models. Instead, we are interested in the idea behind each
definition, so we first express all the definitions in our trace-based model, and
then we compare them within this formal model.

Finally, we introduce the concept of inseparability, a dual notion to un-
linkability, requiring that the attacker cannot infer whether transactions are
not linked to each other. Although inseparability has not been previously
studied in the literature, it arises naturally from the definitions of weak and
strong unlinkability, thus we believe that investigating its relationship to the
unlinkability definitions is of interest.

Table 3.1 gathers all the resulting epistemic notions.

3.2 INTERPRETATION OF EXISTING UNLINKABILITY DEFINITIONS 25

Property For any trace T the attacker cannot infer

Weak U

K (link(p,)
Strong U

- K (anyLink(T))

that two transactions p, p’ are linked

the existence of linked transactions

Two-agents game U i .
the mapping 7, even when 7, V 7, is revealed

[Ta V Ty | 7Kg

Three-agents game U i)
the mapping 7, , even when 7, o V T4, 4, 1S revealed

[ﬂ-a,a V 7"'al,ag]_‘f(ﬂ'a,a

Weak 1
~K (unlink(p,p'))

that two transactions p, p’ are unlinked

Strong 1
- K (anyUnlink(T))

the existence of unlinked transactions

TABLE 3.1: Epistemic definitions of unlinkability (U) and inseparability (I)

3.2.1 Kripke structure

To express the various notions of unlinkability using epistemic logic, the first
step is to define a Kripke structure M, starting from the system described in
Section 3.1.

We recall that T is the set of all traces of our system and ~ is an equiv-
alence relation on T, representing the fact that an attacker cannot distinguish
between those executions.

Starting from a system (A, >, T,~) we build a Kripke structure M =
(T, f,~). We assume that the set A contains at least two agents. The set of
states is T and the indistinguishability relation of the attacker ~ is provided
directly by the system. The set of atomic propositions P and the assignment
function f : T — P are built as follows:

P =1U{link(p,p") | p,p’ € Dom,,7 € T}
f((m,0)) ={m} U {link(p,p’) | 7(p) = = (p)}

We use two types of propositions: 7 € 1I simply denotes that the mapping of

26 FORMALISATION OF PRIVACY PROPERTIES

a trace is 7; link(p, p’) denotes that the transactions p, p are linked, and it is
true in a trace 7 = (7, o) if and only if both transactions are mapped to the
same agent in that trace.

3.2.2 Weak Unlinkability

The first definition that we study is the one of weak unlinkability of van
Deursen et al. [38] and Arapinis et al. [3]. Although presented in different
models, the two definitions are similar in nature. They require that, given
a trace with two linked transactions (sent by the same agent), an equivalent
trace must exist where the corresponding transactions are not linked. This can
be expressed using epistemic logic as follows.

DEFINITION 3.2.1 (Weak unlinkability). A protocol T guarantees weak un-
linkability if and only if

Vr €T, p,p’ € Dom,,p#p': 7F K (link(p,p')).

This definition states that a protocol is weakly unlinkable when the at-
tacker does not know whether any two given transactions are linked to each
other. This implies that for all the traces 7 and all the pairs of distinct transac-
tions, there must exist an equivalent trace 7" ~ 7 in which the corresponding
transactions are mapped to two different agents. Hence, the above definition
can be written as follows.

VreT, p,pf € Dom.,p#p : 37 € T,7 ~71:7 E =link(p,p).

This formulation of unlinkability corresponds exactly to the ones of [38, 3].
Note that if 7 F —link(p,p’) then we can simply take 7" = 7.

The weakness of this definition lies in the existential quantification. In
particular, the attacker might still be able to infer that a transaction is linked to
some other one in the trace, without being able to tell which one, as illustrated
in the following example.

Example 1. Let T be the set of traces of a given protocol that guarantees
weak unlinkability in a system with at least three agents. Let 7, = (71, o) and
Ty = (mg, 0) be two equivalent traces in T such that

® T = (al,ahcm);

® Ty = (a17a27a1)-

3.2 INTERPRETATION OF EXISTING UNLINKABILITY DEFINITIONS 27

Assume that the classes of equivalence are {{m, 72}, T \ {71, 72}}, i.e. the
attacker can distinguish 7y, 75 from other transactions in the system, but 7
and 7, are indistinguishable. Weak unlinkability is satisfied, in fact it is easy
to see that each pair of linked transactions in a trace is unlinked in another.
Still, when the attacker sees 77 (or 73), he knows that p; is linked to either ps
or p3 in the trace. Formally, 7 F K (link(p1, p2) V link(p1, p3))-

3.2.3 Strong Unlinkability

Arapinis et al. [3] define also a strong version of unlinkability by requiring
that a system is equivalent to one where each agent executes a single proto-
col session. A simplified form of their definition, which uses the applied pi
calculus, requires that

'T'~!T, where (3.1
T = vm. init. 'main

T, = vm. init. main

where T' represents an agent carrying out an initialisation phase (in:t) and
then an unbounded number (denoted by !) of protocol sessions (main), while
T} is an agent executing a single session. ~ denotes observational equivalence
in [3], while we use trace equivalence here because it is directly expressible
in our model.

To capture this definition in our framework, we not only require that the
attacker is not able to infer the link between two given transactions, but also
the existence of linked transactions. We define

anyLGk(T) = \/pGDomT \/p’#pGDomT llnk(p7p,) (32)

Intuitively, anyLink(7) holds for a trace if there exists at least one linked
transaction. We can now define strong unlinkability as follows.

DEFINITION 3.2.2 (Strong unlinkability). We say that a protocol T guaran-
tees strong unlinkability if and only if

VreT:7F-K(anyLink(T)).

Strong unlinkability holds when the attacker does not know whether there
is a link in a trace at all. For this to hold, each trace must be equivalent to one
where no transaction is linked, namely

VreT: 3 e T, 7" ~71:Vp,p' € Dom,,p#7p : 7 E =link(p,p').

28 FORMALISATION OF PRIVACY PROPERTIES

This formulation corresponds exactly to the equivalence (3.1) since 7’ is a
trace that can be produced by the process |7}, where no agent executes more
than one transaction.

Clearly, strong unlinkability is stronger than weak unlinkability, as stated
below.

THEOREM 3.2.1. Strong unlinkability implies weak unlinkability.

PROOF. We need to prove that strong unlinkability implies weak unlinkabil-
ity, namely that

Vr e T:7kE-K(anyLink(T)) =
Vr eT, p,p) € Dom,,p#p :7E-K(link(p,p)).

This is a tautology in the epistemic logic, as shown below. Note that in the
proof we use the following property of K (Prop. K) in its contrapositive form

VP, :\/ K(P) = K\/ P.

For all 7 € T we have

7 FE K (anyLink(T))
[Def. 3.2] 7F =K\, V,,link(p,p')
[Prop. K1 7F =\, K\, link(p,p)
Vp € Dom, : 7E =K \/p,?ép link(p,p')
[Prop. K1 Vp € Dom, : 7F =\, K(link(p,p'))
Vp,p' € Dom,,p #p : 17 E =K(link(p,p')).

1 1 1

Therefore strong unlinkability implies weak unlinkability. Note that this re-
sult is also proven in [3] in their setting. [

3.2.4 Game-based definitions of privacy

We now give two definitions of privacy based on privacy games. We believe
that these two definitions cover most privacy definitions from the literature
and show that they are equivalent in our model. Then, we give a simpler
translation based on trace equivalence and demonstrate that it is also equiva-
lent.

In all the game-based definitions, privacy is defined as the result of a game
between an attacker (whose goal is to distinguish between the actions of dif-
ferent agents) and a challenger.

3.2 INTERPRETATION OF EXISTING UNLINKABILITY DEFINITIONS 29

The definitions can be split in two categories. The first is related to the
definition given by Ohkubo et al. [33], variations of which can be found also
in [18, 27, 4, 34], while the second corresponds to the definitions given in
[18, 32]. Since the challenge involves two agents in the first type of game and
three agents in the second one, we name the corresponding properties two-
agents game unlinkability and three-agents game unlinkability, respectively.

Both types of games consist of three phases. In the two-agents game type,
during the first phase, the attacker is allowed to interact with all the agents
of the system. In the second phase, the attacker is asked to select two agents
a,a’. Then, the challenger selects an agent x € {a,a’}, and gives x back to
the attacker for interactions. The attacker is still allowed to interact with all
agents in the system, including a and a’. During the final phase, the attacker
responds to the challenge and wins the game if he can infer whether x is a or
a’ with non-negligible probability.

In order to express this definition in our framework, we need to introduce
some notation:

e 7, € II7 is a partial mapping (A U {z})". We interpret 7, as a partial
mapping from transactions to agents or a variable x. This mapping
represents the situation in which the attacker knows the identities of the
agents involved in all the transactions of a trace, except for the ones
mapped to x.

e II, denotes the set of all partial mappings (for all n).

e T, is a complete mapping obtained from 7, by mapping to an agent a
all the transactions previously mapped to the variable z.

In our model, we formalise the unlinkability game by requiring that the at-
tacker cannot infer whether he is given a mapping w, or 7./, where a and o’
correspond to the agents selected by the challenger during the second phase
of the game. Formally, we say that a protocol T guarantees two-agents game
unlinkability if and only if

VreT, a,d € Aja#ad 7, €1l : 7E [m, V]|~ K(m,). (3.3)

Note that, although the only forbidden knowledge concerns 7, (3.3) is in fact
equivalent to 7 F [m, V my|] K (7,), thus the attacker is not allowed to know
7, either. For two-agents game unlinkability to hold, the two mappings 7,
and 7, should be equivalent under all strategies, thus we can equivalently
express (3.3) as

Va,a' € A,a# d' 7, €11, : 71, ~ Ty

30 FORMALISATION OF PRIVACY PROPERTIES

We now turn our attention to the three-agent game type of game [18, 32].
As for the previous game, during the first phase the attacker is allowed to
interact with all the agents. Then, he selects three agents a, a;, as to be chal-
lenged on. The challenger gives to the attacker access to two agents x, y. The
challenger can either set + = y = a or x = a1,y = as. In the last phase, the
attacker wins the game if he can infer whether x and y are linked.

Again, we need to introduce some notation

e 7., € II} is a dual variable partial mapping (A U {z,y})". We inter-
pret 7., as a partial mapping from transactions to agents or variables
x and y. This represents the situation in which the attacker knows the
identities of the agents involved in all the transactions except for the
ones mapped to x and y.

e II, , denotes the set of all the partial mappings.

e 7, is a complete mapping obtained from 7, , by mapping to an agent
a all the transactions previously mapped to the variable = and an agent
b to the variable y.

We require that the attacker cannot infer whether he is given a mapping 7, ,
Or Ty, 4,- Formally, we say that a protocol T' guarantees three-agents game
unlinkability if and only if

VreT, a,a,a0 € A,a1 # ag, mpy € 15y
TE [Wa,a \ 7Ta1,a2]_‘K(7ra,a)- (3.4)

In terms of equivalence of traces, (3.4) can be expressed as
VT € T7 a,ap,az € A, ay 7é a2, Try S Hm,y ‘P Taa ™ Tay,az-

It is easy to see that both two-agents game unlinkability and three-agents game
unlinkability require all the mappings to be equivalent. Therefore we give a
definition of game-based unlinkability which unifies the two notions given
above.

DEFINITION 3.2.3 (Game-based unlinkability). We say that a protocol T
guarantees game-based unlinkability if and only if

Vo, el |n| = |7'|:m ~ 7. (3.5)

3.2 INTERPRETATION OF EXISTING UNLINKABILITY DEFINITIONS 31

Each of the referenced works uses a variant of either (3.3) or (3.4), while
[18] mentions both, referring to two-agents game unlinkability as untrace-
ability and to three-agents game unlinkability as unlinkability, but does not
explore the relation between the two. Instead, we can demonstrate that both
definitions reduce to Definition 3.2.3.

THEOREM 3.2.2. A protocol satisfies game-based unlinkability if and only if
it satisfies two-agents game unlinkability, which it does if and only if it satisfies
three-agents game unlinkability.

The proof of Theorem 3.2.2 can be found in Appendix A.1.

From now on we will only use the definition of game-based unlinkabil-
ity. However, by Theorem 3.2.2, all the results that involve game-based un-
linkability in the following hold also for two-agents game unlinkability and
three-agents game unlinkability.

As one may expect, game-based unlinkability is stronger than weak un-
linkability, as stated below. Hence, we consider game-based unlinkability as
a strong definition of unlinkability.

THEOREM 3.2.3. Game-based unlinkability implies weak unlinkability.

PROOF. It follows directly from the definition of game-based unlinkability.
In fact, it implies the equivalence of all the traces, thus also weak unlinkabil-
ity, which only requires the equivalence of some traces. 0

In Section 3.3.1 it is shown that weak unlinkability actually differs from
the strong and game-based definitions of unlinkability, and that strong unlink-
ability is incomparable to game-based unlinkability.

3.2.5 Inseparability

In some situations we want to hide the existence of unlinked transactions in-
stead of linked ones. For instance, an attacker might be interested in changes
in the system rather than in tracking agents. Examples where this might be
useful to the attacker are easily found in access control systems. For exam-
ple, consider a high security location protected by a guard who authenticates
himself using an RFID tag. Since the guard is the same every day, all the
authentication messages are obviously linked, therefore this information is
useless to the attacker. However, the attacker might want to be alerted when
a new guard appears. The definitions of weak and strong unlinkability im-
pose no condition when two messages are unlinked. To model this property

32 FORMALISATION OF PRIVACY PROPERTIES

we need to introduce the concept of inseparability, which requires that the
attacker cannot infer whether two specific transactions are not linked. As for
unlinkability, we introduce a weak and a strong form of this privacy property.

DEFINITION 3.2.4 (Weak inseparability). We say that a protocol T guaran-
tees weak inseparability if and only if

Vr e T, p,p' € Dom,,p#p' : 7 E =K (unlink(p,p')) (3.6)

where unlink(p,p’) = —link(p, p').

The definition states that the attacker should not be able to infer whether
any two given transactions are not linked. Thus, if there is a pair of unlinked
transactions in the trace 7 then there must exists an equivalent trace where the
same transactions are linked to each other. Then, (3.6) corresponds to

Vr €T, p,p' € Dom,,p # p' : 7 F unlink(p,p’) =
I e T,7" ~ 7 : 7 E link(p,p').

Similarly to the case of weak unlinkability, this definition does not capture
the situation in which the attacker is able to infer the existence of two un-
linked transactions. This brings us to the definition of a stronger notion of
inseparability.

DEFINITION 3.2.5 (Strong inseparability). A protocol T guarantees strong
inseparability if and only if

Vre T :7E =K (anyUnlink(T)).
where anyUnlink(t) = \/p Vo, unlink(p, p')

Similarly to unlinkability and weak inseparability, also the definition of
strong inseparability can be expressed in a direct way in terms of trace equiv-
alence

VreT:37 €T, 7 ~7:Vp,p € Dom,,p#p : 7 Elink(p,p)

As expected, strong inseparability is stronger than weak inseparability. On
the other hand, somewhat surprisingly, game-based unlinkability turns out to
be stronger than strong inseparability, although game-based unlinkability is
incomparable to strong unlinkability, which is incomparable to strong insepa-
rability. The reason is that game-based unlinkability implies that all the traces

3.3 COMPARISON BETWEEN DEFINITIONS 33

are equivalent to each other, thus every trace is equivalent to the one run by a
single agent, as required by strong inseparability. Game-based unlinkability
does not explicitly talk about linked or unlinked messages, but about the at-
tacker seeing a difference between two observations, therefore it offers both
“unlinkability” and “inseparability” guarantees. Note that this implication
would not hold in systems that limit the number of sessions that a tag can
execute. In this case, a trace run by the same tag would not exist for a strat-
egy that executes more sessions than the limit imposed by the system, hence
strong inseparability would not hold, while game-based unlinkability could
still be guaranteed. However, we do not consider this possibility, since we
assume that a tag may run an infinite amount of protocol executions in our
model.

THEOREM 3.2.4. Game-based unlinkability implies strong inseparability,
which implies weak inseparability.

PROOF. The first part of the theorem states that the game-based definition of
unlinkability implies strong inseparability. Strong inseparability holds when
all the traces are equivalent to a trace executed by one agent. Game-based
unlinkability holds when all the possible traces are equivalent. Hence, they
are also equivalent to the traces executed by one agent, and this corresponds
exactly to the definition of strong inseparability.

For the second part of the theorem, the steps showing that strong insep-
arability implies weak inseparability are the same as those for unlinkability
(see proof of Theorem 3.2.1).]

3.3 Comparison between definitions

In Section 3.2 we gave three definitions of unlinkability as well as two of in-
separability. Here, we show that these properties are in general different by
providing examples that illustrate such differences. However, these examples
have features that are unlikely to be found in practice. Therefore, we investi-
gate conditions under which some or all of the properties become equivalent.
In Chapter 5 we also formally prove that a class of protocols satisfies all these
conditions and we argue that most RFID protocols actually satisfy them, at
least in their abstract form.

34 FORMALISATION OF PRIVACY PROPERTIES

3.3.1 Protocols where the properties do not coincide

This section lists some examples of RFID protocols that guarantee only some
of the properties described in Section 3.2. The examples are constructed and
use artificial settings. Indeed, the differences between the properties arise
from features of these examples that are unlikely to be present in realistic
applications.

In the next section, we identify some conditions under which weak and
strong properties become equivalent. The examples correspond to or are vari-
ations of the OSK protocol for RFID systems [33]. In the protocol, each tag
is initialised with a unique secret. During each session, the tag calculates the
hash g of the current secret and outputs it. Then, it updates the state using a
different hash function h. The OSK protocol guarantees strong unlinkability
under certain assumptions, as we demonstrate in Chapter 5, where we also
give a more detailed description of the protocol.

Example 2 (System with a bounded number of tags). Consider the OSK proto-
col in a system with a bounded number of tags. Note that, though the number
of agents in the model is infinite, the number of tags in a system is determined
by 7', the set of traces of the protocol, which may limit it.

v Game-based unlinkability: all the traces of equal length produced by
the OSK protocol are equivalent, therefore game-based unlinkability
holds.

X Strong unlinkability: the original OSK protocol is considered to guar-
antee strong unlinkability; however, when the number of tags in the
system is bounded, the attacker who sees a number of sessions greater
than the number of agents knows about the existence of linked sessions,
although he cannot point to any specific message. In Chapter 5 we ac-
tually prove that the OSK protocol guarantees strong unlinkability in
the model of [3], but this is because this model implicitly assumes the
existence of an unbounded number of tags.

v/ Weak unlinkability: this property holds because the attacker, who does
not know any tag secret, is unable to link two specific messages.

v/ Strong inseparability: the restriction on the number of tags does not
affect the equivalence of all the possible traces to the one completely
linked, which exists for any trace length; therefore strong inseparability
holds.

3.3 COMPARISON BETWEEN DEFINITIONS 35

v Weak inseparability: the protocol guarantees strong inseparability, which
implies weak inseparability.

Example 3 (System with several “types” of tags). Consider the OSK protocol
in a system where there are two types of tags, T'ype; and T'ypes. We assume
that the attacker can distinguish these two types, for example because the tags
have different technical characteristics.

X Game-based unlinkability: this property is violated, because the at-
tacker can trivially distinguish some traces from others (e.g. one com-
pletely linked from one executed by tags of different type).

v/ Strong unlinkability: it holds because the attacker cannot infer the exis-
tence of any linked transactions since all transactions of the same type
could come from different tags. Together with the previous example,
this shows that strong unlinkability and the game-based definition of
unlinkability are incomparable.

v/ Weak unlinkability: the protocol guarantees strong unlinkability, which
implies weak unlinkability.

X Weak inseparability: when two transactions of different types are ob-
served, the attacker knows that the transactions cannot come from the
same tag, thus weak inseparability is violated.

X Strong inseparability: the protocol does not guarantee weak insepara-
bility, which implies that strong inseparability is also violated.

If the number of tags of T'ype, is bounded, we have a situation similar to
the previous example (although the total number of tags might still be un-
bounded). Consider a case where the number of protocol sessions belonging
to tags of T'ype, in the trace is greater than the number of tags of T'ypes. Then
strong unlinkability is violated while weak unlinkability still holds.

Example 4 (System forcing the execution of a single type of tag per trace).
Consider the OSK protocol in a system where there are two distinguishable
types of tags, T'ype; and T'ype,. We assume that the system allows only one
type of tag within a trace.

X Game-based unlinkability: it does not hold, because a trace run by tags
of type T'ype; is always distinguishable from a trace run by tags of type

Types.

36 FORMALISATION OF PRIVACY PROPERTIES

v’ Strong unlinkability: it holds because the attacker cannot infer the exis-
tence of any linked transactions since all transactions of the same type
could come from different tags.

v/ Weak unlinkability: the protocol guarantees strong unlinkability, which
implies weak unlinkability.

v’ Strong inseparability: it holds, because for each type of tag there always
exists a trace entirely executed by a single agent of that type.

v Weak inseparability: the protocol guarantees strong inseparability, which
implies weak inseparability.

Example 5 (Protocol outputs depending on past sessions I). Consider a vari-
ation of the OSK protocol where the reader does some observable action (a
“beep”) when the session it is executing is linked to a previous session, but
only if at least two tags appeared in the past sessions of the trace.

X Game-based unlinkability: since not all mappings are equivalent to each
other due to the observable action, game-based unlinkability is violated.

X Strong unlinkability: the attacker knows that the session that made the
reader beep must be linked to a past session of the trace, thus strong un-
linkability is violated. For example, consider the observation that pro-
vides more knowledge to the attacker, namely the one where the reader
beeps at the third session. The beep tells him that the third session is
either linked to the first or the second one, violating strong unlinkability.

v/ Weak unlinkability: it holds because the beep does not allow the at-
tacker to point to any two specific sessions and tell that they are linked.

X Weak inseparability: it is violated because the trace which causes the
reader to beep at the third session tells the attacker that the first two
sessions are not linked.

X Strong inseparability: this variation of the OSK protocol does not guar-
antee weak inseparability, which implies that strong inseparability is
also violated.

Example 6 (Protocol outputs depending on past sessions II). Consider a vari-
ation of the OSK protocol where the reader beeps when the third tag of a trace
first appears. This example is similar to the previous one and satisfies exactly

3.3 COMPARISON BETWEEN DEFINITIONS 37

the same properties. However, the protocol fails to achieve some privacy goals
for a different reason, hence the example leads to the definition of a different
condition in the next section.

b 4

b 4

Game-based unlinkability: as for the previous example, it is violated
because the protocol leads to distinguishable observations.

Strong unlinkability: it is violated. Consider a trace that causes a reader
to beep after four or more sessions. This trivially implies that there
must exist a link.

Weak unlinkability: it is satisfied because no observation gives the at-
tacker information about the messages that may be linked in a trace.

Weak inseparability: since a beep during the third session means that
the first three sessions are not linked, weak inseparability is violated.

Strong inseparability: this variation of the OSK protocol does not guar-
antee weak inseparability, which implies that strong inseparability is
also violated.

Example 7 (Protocol outputs depending on past sessions III). Consider a vari-
ation of the OSK protocol where the reader beeps when it sees at least two
tags and one link.

b 4

b 4

v

Game-based unlinkability: again, this protocol violates game-based un-
linkability because it leads to distinguishable observations.

Strong unlinkability: when a reader beeps the attacker knows that there
is a link, thus strong unlinkability is violated.

Weak unlinkability: it is satisfied because no observation tells to the
attacker which specific messages are linked when a reader beeps.

Strong inseparability: it is violated, because a beep means that at least
two tags were involved in that trace.

Weak inseparability: the attacker cannot point to two sessions and claim
that they are unlinked; therefore, weak inseparability still holds.

Table 3.2 summarises only the negative relationships between the proper-
ties and lists the references to the corresponding examples. Figure 3.1 shows
the relation between all the properties.

Now that we have shown that the privacy properties are different, we are
ready to introduce the conditions under which they coincide.

38 FORMALISATION OF PRIVACY PROPERTIES

Negative relationship References

Weak unlinkability > Strong unlinkability Examples 2,5,6,7

Weak unlinkability 2 Game-based unlinkability =~ Examples 3,5,6,7

Strong unlinkability # \ <= Game-based unlinkability =~ Examples 2,3

Weak inseparability > Strong inseparability Example 7

Strong unlinkability 2 Strong inseparability Example 3

Strong inseparability # Game-based unlinkability =~ Example 4

TABLE 3.2: Negative relationship between properties

Strong Game-based Strong
unlinkability unlinkability inseparability
Weak Weak
unlinkability inseparability

FIGURE 3.1: Relationship between properties

3.3.2 Conditions

Condition: Unbounded number of agents

As we showed in Example 2, a system with a bounded number of agents
cannot satisfy strong unlinkability, since observing a greater number of trans-
actions reveals that at least two transactions are linked. Thus, protocols that
satisfy all the privacy properties defined in this chapter must contain an un-
bounded number of agents and a trace where each transaction is executed by
different agents should always exists.

DEFINITION 3.3.1 (Unbounded number of agents). We say that a protocol
has an unbounded number of agents if and only if

Vn>03dreT: |A]=n.

3.3 COMPARISON BETWEEN DEFINITIONS 39

Clearly, an unbounded number of agents cannot exist in any real identifi-
cation system. However, identification systems usually include a large num-
ber of agents, therefore an attacker cannot communicate with all the agents in
a limited amount of time in a realistic situation. Moreover, the attacker does
not usually know the number of agents in the system at all. This is why, at an
abstract level, this condition is often assumed in the literature.

Condition: Renaming

As shown in Example 3, having multiple distinguishable types of agents can
be problematic. For instance, observing two transactions run by two tags with
distinguishable features clearly violates inseparability, as we can conclude
that transactions are not linked. However, in real systems agents are usually
identical in functionality, differing only in the secret key used for their identi-
fication. Indeed, agents usually identify themselves to a system by means of
similar or identical devices, e.g. RFID tags or desktop computers. As a result,
we can expect that replacing all the transactions of an agent with a new one
(not participating in other transactions) will not have a visible effect, since the
two agents are identical except for their secret information. We capture this
by the following condition:

DEFINITION 3.3.2 (Renaming). Let 7 be a mapping. The renaming of a to a’
in m, denoted by [a’ /a], is a mapping such that

!/

rld! ol (p) = { frlp) =a

7(p) otherwise

We say that a protocol satisfies the condition Renaming if and only if m ~
w[d’/a] for all mappings 7 and agents a' ¢ A..

In other words, for protocols satisfying the condition Renaming, the only
thing that matters is the positions in which an agent appears in the trace, and
not the exact identity of the agent. For example, the mappings (a3, ay, as, a1,
a1) and (ag, aq, as, ay, ay) should be equivalent (i.e. produce equivalent traces
under all strategies o) since they are identical, except for the renaming of a,
to ay.

Note that in the remainder of the thesis, we assume that this condition
holds and we write all the mappings in a normalised form, sorting the agents
by their order of appearance: the first agent is always aq, the next agent that
differs from a; will be ay and so on. For example, we write (a1, a1, as, as, ai,

40 FORMALISATION OF PRIVACY PROPERTIES

as) instead of (as, as, as, a1, as, az), since these mappings are assumed to be
equivalent. The main advantage of this normalisation is that the number of
normalised traces is always finite for any given length, even when the number
of agents is infinite.

Condition: Swapping

The swapping condition requires that different agents act in an independent
way and the execution of one agent should not affect the execution of another.
We express it as follows. Consider 71 = (..., a;,as,...) and 1o = (..., as,
a4, - . .), two mappings where the k-th (a; in 7; and a3 in 73) and (k + 1)-st
(ag in m and a4 in 7y) transactions involve different agents (which could also
appear elsewhere in the mappings). Now assume that m; ~ 75, i.e. no attacker
strategy can distinguish these mappings, and consider the mappings 7] =
(...,a9,aq,...)and mh = (..., a4, as,...) that differ from 7y and 7, only for
the k-th and (k 4 1)-st agents, which have been swapped. The transactions of
a1, az should not depend on whether as, a4 were previously executed and vice
versa. Thus, 7] and 7/, should also be indistinguishable. Formally, we require
the following condition:

DEFINITION 3.3.3 (Swapping). Let m be a mapping. The swapping of m at
position k < ||, denoted by swy,(7), is a new mapping such that

T(pe1) ifi=k
7(p;) otherwise

We say that a protocol satisfies the condition Swapping if and only if

T~ = swi(m) ~ sw(n)
forall m, ' k such that 7(py) # 7(pry1) and ' (px) # 7 (Pr+1)-

The condition Swapping simply implies that the agents are independent
of each other. As a consequence, the order of appearance of the agents does
not change the knowledge of the attacker.

Note that this condition is violated by the protocol in the Example 5. Con-
sider a passive attacker that eavesdrops three legitimate sessions. We use “_"
and “beep” for “reader does nothing” and “reader beeps”, respectively. The
mappings (aq, ai, az) and (a1, as, ag) produce the same observations (_, _, _).
The reader beeps if it sees a linked transaction, but only if at least two agents

3.3 COMPARISON BETWEEN DEFINITIONS 41

have identified themselves to the system. With a mapping (ai,a,as) the
reader sees a link during the second transaction, but does not beep because
it has seen only one agent. Then, during the third transaction a second agent
appears, but that specific transaction is not linked to any past transaction, thus
the reader does not beep. Clearly, the mapping (aq, as, as) causes no beep
either, since it has no linked transactions at all. By swapping the second and
third transactions of these mappings, we obtain (ay, as,a;) and (aq, as, as),
which produce different observations: (_, _, beep) and (_, _,). Clearly, the
problem here is that the behaviour of the reader depends on the given sequence
of agents. Note that the swapping of the mapping (a1, as, a3) is identical to the
original mapping because we write it in canonical form, instead of (a1, as, az).

Conditions: Extension I and I1

Finally, we introduce two conditions related to extending existing mappings.
The first condition states that two equivalent mappings should preserve their
equivalence when extended with a new transaction mapped to a fresh agent,
i.e. not appearing in the original mapping. Similarly to the swapping rule, the
underlying idea is that the execution of an agent should not depend on the pre-
vious executions of other agents. Therefore, adding a transaction run by a new
agent to two indistinguishable traces should not make them distinguishable.
This is formally stated by the following condition:

DEFINITION 3.3.4 (Extension I). Let m be a mapping. The extension of T
with a new agent a ¢ A, denoted by extn(r), is a mapping of length || + 1

such that
w(pi) i <|m|
extn(m)(p;) =
(m)(pi) {a i=|ml+1

We say that a protocol satisfies the condition Extension I if and only if
7~ 7 = extn(n) ~ extn(r’)
for all mappings 7, 7'.

Note that this condition is violated by the protocol in the Example 6. Con-
sider a passive attacker that eavesdrops three legitimate sessions: if the at-
tacker observes no beep, he knows that they could come from the mappings
(a1,a1,a1), (a1,a1,az), (ai,asz,ay) or (a1, as, as), since a reader beeps only
when a third tag appears in the trace. If we add a new tag to all the map-
pings, the equivalence of these four cases is not preserved since the mapping

42 FORMALISATION OF PRIVACY PROPERTIES

(a1, a1, a1, as) does not make the reader beep, while (a1, a1, as, az), (a1, as, ay,
a3) and (aq, as, as, az) do, thus the condition Extension I is not satisfied.

For the second extension condition, consider two equivalent mappings 7
and 7o of length n. We extend these mappings with a new transaction p,, 1,
which is mapped to the last agent appearing in each mapping. We recall that a
transaction contains an arbitrary number of sessions of a tag. Intuitively, since
the attacker could not distinguish between the mappings 7; and 75, he cannot
distinguish between their extension either, because he does not gain any new
knowledge by querying twice the same agent in the last two transactions.
Basically, what the attacker can do in the transaction p,; in the extended
mappings to disclose information could already be done in p,, in the mappings
m and 7. Thus, we require the following condition:

DEFINITION 3.3.5 (Extension II). Let m be a mapping. The extension of 7
with the last appearing agent, denoted by extl(w), is a mapping of length
7| + 1 such that

_Jmp) i<
€Itl(7T>(pi) - ﬂ-(p|7r|) 7 = |7T| +1

We say that a protocol satisfies the condition Extension Il if and only if
7~ 7 = extl(m) ~ extl(n)
for all mappings 7, 7'.

This condition is violated by the protocol in the Example 7. The traces
with mappings (a1, a1) and (aq, az) are not distinguishable. However, their
extensions, the mappings (a1, aq,a1) and (aq, as, ay), are distinguishable be-
cause the first trace produces no beep while the second trace makes the reader
beep.

3.3.3 Equivalence results

We are now ready to demonstrate that, under the conditions stated in the previ-
ous section, all the definitions of unlinkability coincide. Moreover, we prove
that, under different subsets of these conditions, the definitions of insepa-
rability coincide as well as the strong definitions of both unlinkability and
inseparability.

3.3 COMPARISON BETWEEN DEFINITIONS 43

THEOREM 3.3.1 (Unification of unlinkability). If a protocol guarantees all
the following conditions:

o Unbounded number of agents
® Renaming

e Swapping

e Extension I and I1

then all the unlinkability properties (weak unlinkability, strong unlinkability,
game-based unlinkability) coincide.

The intuition is that, under these conditions, all the definitions require
all the mappings of the same length to be equivalent under all the possible
attacker strategies, which corresponds to the definition of game-based unlink-
ability. Given that we assume an infinite amount of agents, the trace where all
the transactions are not linked always exists and is equivalent to all the other
traces, implying strong unlinkability.

The complete proof of Theorem 3.3.1 can be found in Appendix A.2.

THEOREM 3.3.2 (Unification of inseparability). If a protocol guarantees the
following conditions:

® Renaming
o FExtension I

then it satisfies weak inseparability if and only if it satisfies strong insepara-
bility.

Again, under these conditions, both properties require all the mappings
of the same length to be equivalent. In particular they are equivalent to one
where all the transactions are linked, which corresponds to the definition of
strong inseparability.

The proof of Theorem 3.3.2 can be found in Appendix A.3.

The previous theorems compare properties of each family (unlinkability
or inseparability). We now show that unlinkability and inseparability also
coincide under certain conditions.

THEOREM 3.3.3 (Unification of strong properties). If a protocol guarantees
the following conditions:

44 FORMALISATION OF PRIVACY PROPERTIES

e Unbounded number of agents
® Renaming

then all the strong properties (strong unlinkability, game-based unlinkability,
strong inseparability) coincide.

It is worth noting that this result uses weaker assumptions than 3.3.2. In-
deed, the conditions Swapping and Extension I and II are not needed.

PROOF. Under the conditions Unbounded number of agents and Renaming
all the strong properties coincide. An unbounded number of agents is re-
quired to guarantee the existence of the traces where all the transactions are
mapped to different agents. In fact, game-based unlinkability and strong in-
separability both imply the equivalence of the possible traces in a system. If
the number of agents is infinite and there always exists a trace run by differ-
ent agents, game based unlinkability and strong inseparability imply strong
unlinkability. Instead, the condition Renaming implies that the agents cannot
be distinguished. When strong unlinkability and the renaming condition hold,
each trace is equivalent to a trace run by agents executing no more than one
session and the equivalence to a trace executed by any single agent is always
guaranteed. Thus they imply game-based unlinkability and strong insepara-
bility. If these two conditions do not hold, it is easy to see that strong unlinka-
bility does not coincide to game-based unlinkability and strong inseparability.
This is shown in Example 3 that describes a system with two distinguishable
types of tags, hence a system where the condition Renaming does not hold. In
the example, the protocol satisfies strong unlinkability while it violates game-
based unlinkability and strong inseparability. On the other hand, Example 2
shows that, without an unbounded number of agents, a protocol may violate
strong unlinkability while satisfying game-based unlinkability and strong in-
separability. [

Finally, we can state the result we were aiming at.
COROLLARY 3.3.4. If a protocol guarantees all the following conditions:
o Unbounded number of agents
® Renaming
e Swapping

o FExtension I and 11

3.4 FORMALISATION OF FORWARD AND BACKWARD PRIVACY 45

then all the forms of unlinkability and inseparability coincide.

This result shows that all the privacy definitions of Section 3.2 coincide
under the set of conditions of Section 3.3.2.

3.4 Formalisation of forward and backward pri-
vacy

In this section we discuss how our results on unlinkability can easily be
adapted to define stronger privacy properties such as forward and backward
privacy. These properties are strongly related to the concept of unlinkability.
In cryptography, they are well-known under the names of forward and back-
ward security, respectively. Both properties assume a stronger attacker with
respect to the definition of unlinkability, namely an attacker who is able to
disclose all the secret information of an agent at a chosen time. This corre-
sponds to the attacker physically obtaining a tag by, for example, stealing it or
simply buying it because attached to a second-hand item, and then being able
to extract the content stored in the tag memory. Also, this attacker is able to
extract the content stored in a tag memory. Forward privacy is achieved when
the disclosure of an agent secret does not help the attacker in linking the agent
to any of its past sessions. Symmetrically, backward privacy states that an at-
tacker should not be able to link the agent secret to any future session. These
properties are fundamental in mobile systems such as RFID systems. In fact,
a protocol that does not guarantee forward or backward privacy allows the
attacker to trace a tag by linking it to all the past or future steps of an agent.
Therefore, by tampering with a tag, an attacker may not only obtain the secret
data stored in the tag, but also get to know the locations where the owner of
the tag was or is going to be (by observing future transactions), even if the
RFID protocol in use guarantees unlinkability.

A first definition of forward privacy in the context of RFID systems can be
found in [33], while [24] first modelled backward privacy. Both papers give
definitions in terms of games, which consist of a challenge to the attacker who
has to guess if there exists a session (during the execution of the system) that
belongs to the RFID tag whose secret he disclosed.

Forward and backward privacy can be formalised in terms of traces in our
model. Similarly to unlinkability, forward and backward privacy are guaran-
teed if the attacker cannot infer whether a specific transaction in a trace is
linked, but they involve a notion of time and require stronger assumptions.

46 FORMALISATION OF PRIVACY PROPERTIES

We show that, by assuming a stronger attacker and restricting the analysis
to specific parts of the protocol traces, it is possible to prove forward and
backward privacy.

We assume that the attacker strategy for a certain transaction discloses
the secret of the agent executing it, and we call that transaction p,, where d
indicates that this transaction is the d-th in the trace. The strategy for this
transaction corresponds to the attacker obtaining a tag and tampering with it
in order to trace back the steps of its owner (e.g. the attacker stealing a tag).
In our model it corresponds to revealing part of the mapping of a trace. Since
forward privacy concerns only past transactions, we check whether p,; can be
linked to transactions executed before it only. We express this property in
two different forms, namely a weak and a strong form inspired by the corre-
sponding definitions of unlinkability. Weak forward privacy requires that the
attacker cannot link p, to a specific past transaction, while strong forward pri-
vacy holds when the attacker cannot tell whether p, is linked to any previous
transaction, meaning that he cannot tell whether the agent that runs p; has
ever executed a session in the past.

DEFINITION 3.4.1 (Forward privacy). Consider a protocol T. For each trace
7 € T, let pg be a transaction such that its attacker strategy o(pq) discloses
the secret data stored in w(py)’s tag memory.

We say that the protocol T guarantees weak forward privacy if and only if

V1 € T,pg € Dom,,i < d:71F —K(link(pa, pi))-
We say that the protocol T guarantees strong forward privacy if and only if

V1 € T,py € Dom, : 7 E = K\/p,cpom, link(pa, p;).
1<i<d
Intuitively, these definitions imply that, if the agent whose secret has been
disclosed executed transactions before p,, then the attacker cannot link those
specific transactions when weak forward privacy holds, or cannot infer the
existence of a link to past transactions at all when strong forward privacy is
satisfied.

Example 8. A well-known protocol that guarantees forward privacy is the
OSK protocol [33] described in Section 3.3.1. To prevent the attacker from
linking a secret to sessions executed before its disclosure, the protocol up-
dates the secret after each session. To prove that this protocol guarantees
strong forward privacy in our model, it is sufficient to show that each linked
trace is equivalent to a trace where the transactions involved are unlinked, as

3.4 FORMALISATION OF FORWARD AND BACKWARD PRIVACY 47

described in Definition 3.4.1. Consider, for example, a trace 7 = (7, o) pro-
duced by the OSK protocol such that 7 = (ay,a1,as). Let d = 2, meaning
that the attacker strategy causes the secret disclosure at the second transaction,
so that the attacker knows that it was executed by the agent a;. According to
the definition of strong forward privacy, the attacker should not be able to link
the secret to the first transaction. This holds for the OSK protocol because the
attacker cannot obtain any information from the current state, which corre-
sponds to the hash h(s) of a;’s previous secret s, that helps him link it to the
hashed value s. On the other hand, once the attacker obtains the secret, he is
able to trace it in the future, i.e. he knows that the third transaction is executed
by a different agent. Therefore, in our model, the trace 7 must be equivalent
to a trace such that the second transaction is not linked to the first transaction
nor to the third one. Formally, it must be that 7 ~ 7 = ((a1,a2,a1),0) or
T ~ Ty = ((ay, as, az), o) for forward privacy to hold.

With respect to unlinkability, the definitions of forward privacy limit the
range of the analysis to a specific subset of transactions (those executed be-
fore py). However, the attacker strategy for unlinkability should never allow
the attacker to disclose a tag secret by tampering with the tag, while it must
for breaking forward privacy. As expected, weak forward privacy is stronger
than weak unlinkability. Weak unlinkability holds when each specific pair
of transactions are indistinguishable while weak forward privacy holds when
each transaction p, (that discloses the secret of the corresponding tag) is in-
distinguishable from any other transaction executed before p,. Instead, in
this model strong forward privacy is incomparable to strong unlinkability and
game-based unlinkability. On the one hand, the attacker strategy is assumed
to be stronger than the one used in the strong notions of unlinkability. On
the other hand, in the definition of strong forward privacy we need to check
whether each transaction is not linked to the other transactions, while the
strong notions of unlinkability are more general and require the equivalence
of all traces.

It is easy to prove that strong forward privacy implies weak forward pri-
vacy (it suffices to follow the technique used in last three steps of the proof
of Theorem 3.2.1, which can be found in Section 3.2.3). Also, weak and
strong forward privacy coincide under the conditions given in Section 3.3.2,
because weak forward privacy is stronger than weak unlinkability, hence, to-
gether with all the conditions, it implies the equivalence of all the traces by
Theorem 3.3.1, thus also strong forward privacy.

Symmetrically to forward privacy, backward privacy checks whether the
secret information is linked to future transactions. As in all the previous works

48 FORMALISATION OF PRIVACY PROPERTIES

on this property (e.g. [24, 22]), we need to assume that, subsequently to py,
a synchronisation session in a transaction p, (s > d) takes place. A synchro-
nisation session is a session executed among honest parties only, meaning
that the attacker cannot eavesdrop it. The synchronisation session is needed
to avoid the traceability of the agent, whose secret knowledge is now shared
with the attacker. The session missed by the attacker gives the agent an oppor-
tunity to secretly update its internal state. In our model, after the session py,
the attacker is able to link the transactions executed by the agent 7(p;). We
assume that he models his strategy to ignore a legitimate session that belongs
to m(py) during the s-th transaction. Note that in this model the attacker is
very strong, since he can choose which session he is going to miss. We say
that backward privacy holds if the attacker cannot infer whether p, is linked
to a specific transaction (weak form) or to any other transaction (strong form)
executed after p;.

DEFINITION 3.4.2 (Backward privacy). Consider a protocol 'T. For each
trace T € T, let py be the transaction such that its attacker strategy o(pq)
discloses the secret data stored in 7(p,)’s tag memory, and let p; be the trans-
action such that s € [d+ 1,...,|7|], m(ps) = w(ps) and o(ps) allows the
execution of a synchronisation session.

We say that the protocol T guarantees weak backward privacy if and only if

V1 € T,pg € Dom,,i > s >d:7E K (link(pg,p;)).
We say that the protocol T guarantees strong backward privacy if and only if

V1 € T,pg € Dom,,s >d: 17 FE =K\/p,cpom, link(pa,p;)-

s<i<|T|

If some transactions are executed by the agent m(p,) after the restore ses-
sion in ps then the attacker should not be able to link those specific transac-
tions when weak backward privacy holds, or to infer the existence of a link
when strong backward privacy holds.

Example 9. Consider a variation of the OSK protocol that sends a random
number in plain text together with the hash of the secret, and then updates
the secret by hashing it with the random number. This protocol prevents the
attacker from linking a secret to transactions executed after the restore ses-
sion, because the attacker, by missing a random number, would not be able
to calculate the next secret. To prove that in our model this protocol guaran-
tees strong backward privacy, it is sufficient to show that for any trace, if a

3.5 RELATED WORK 49

tag whose secret has been disclosed executes other transactions, then there al-
ways exists an equivalent trace where all the transactions happening after the
restore session are run by other tags. Consider, for example, a trace 7 = (7, o)
produced by this protocol such that 7 = (ay, as, as, a;). Let d = 1, meaning
that the attacker strategy causes the secret disclosure at the first transaction,
and s = 3, namely the restore session happens at the third transaction. The
attacker cannot link the secret to the fourth transaction, because it is not pos-
sible to calculate the new secret without the random number sent during the
third transaction. In our model, this means that 7 must be equivalent to a trace
such that the third transaction is not linked to the fourth transaction. Thus, it
must be that 7 ~ 7, = ((a1, as,a1,a),0) or 7 ~ 1 = ((ay, as, ay,a3), o).

Backward privacy and unlinkability are related as forward privacy is re-
lated to unlinkability.

It is easy to prove that strong backward privacy implies weak backward
privacy (it suffices to follow the technique used in the last three steps of the
proof of Theorem 3.2.1, which can be found in Section 3.2.3). Also, weak and
strong backward privacy coincide under the conditions given in Section 3.3.2,
because weak backward privacy is stronger than weak unlinkability, hence,
together with all the conditions, it implies the equivalence of all the traces by
Theorem 3.3.1, thus also strong backward privacy.

Below we discuss related work before giving the conclusions.

3.5 Related work

The concept of unlinkability, sometimes called untraceability or simply pri-
vacy, has widely been modelled in the RFID literature in terms of games in
a computational setting [18, 27, 33, 4, 34, 40]. More recently, several works
focused on unlinkability properties for RFID systems in a symbolic setting
[38, 39, 2, 3]. Van Deursen et al. [38] propose a definition of untraceability
in a trace-based model. Arapinis et al. [2, 3] formalise protocols in the ap-
plied pi-calculus and define weak and strong unlinkability in terms of trace
equivalence and observational equivalence, respectively.

Our work makes direct use of several definitions of unlinkability from the
literature. As explained in detail in Section 3.2, we express the notion of
weak unlinkability of [38, 3], strong unlinkability of [2, 3], and game-based
definitions of [18, 27, 33, 4, 34, 32]. While all these works have given their
own definitions of privacy properties in a very specific context, ours provides

50 FORMALISATION OF PRIVACY PROPERTIES

a more general and abstract framework where all the other definitions can be
captured and compared.

Epistemic models have been used in the past to formalise privacy. Simi-
larly to our work, [25] gives general privacy definitions for a multiagent sys-
tem using a modal logic of knowledge. It considers different levels of strength
for anonimity, providing some probabilistic definitions as well. In [17], epis-
temic logic is used to give intuitive definitions of privacy in voting systems,
with the applied pi calculus as an underlying model. Similarly, [21] proposes
a framework in which protocols are expressed in a process language, and se-
curity properties are defined in a logic that uses both temporal and epistemic
operators. The properties considered in the above works are quite different
form the unlinkability properties that we consider in this thesis. Moreover,
the above works are involved with the mechanics of the corresponding for-
malisms, while we try to completely abstract away from concrete models,
considering a system as an abstract set of traces.

Several other privacy definitions have also been studied in the literature.
A logic approach has been followed in [37], where an axiom system is defined
to reason about anonymity, and in [26] that expresses privacy properties using
logic and models the system through other formalisms, like CSP, combining
two different techniques. As in our work, logic is used to define in a natural
way privacy properties, while having an abstract model applicable to any real
system. However, while our work focuses on unlinkability, [25] and [37]
study anonymity, namely a property that ensures that the identity of the agent
which executes some action remains hidden from other observers.

The work in [35] gives a terminology for anonymity, unlinkability, unob-
servability and pseudonymity. While it aims at clarifying terminology at an
informal level, our work aims instead at comparing definitions of unlinkabil-
ity in a unifying formal model.

Finally, other papers introduce the notion of unlinkability using approaches
based on information theory. Examples are [23], [36], and [7] that give prob-
abilistic descriptions of unlinkability, quantifying the linkability of items in
the system. Our work does not provide any probabilistic definition, but this
would be possible by following the approach used in [25], that we leave as
future work.

3.6 CONCLUSIONS 51

3.6 Conclusions

In this chapter we study the privacy notion of unlinkability. We capture several
definitions from the literature in a simple abstract model based on epistemic
logic, obtaining natural and intuitive definitions in terms of the attacker’s
knowledge. We also identify inseparability, a notion dual to unlinkability.
Moreover, we show that these privacy definitions are different in general, but
do coincide in systems satisfying a set of simple conditions. Finally, we model
forward and backward privacy, two privacy properties that are strictly related
to the notion of unlinkability and assume a stronger attacker. In the next
chapter we translate the strongest forms of unlinkability, forward and back-
ward privacy into an RFID model. Moreover, in Chapter 5 we demonstrate
that the conditions of Section 3.3.2 are satisfied for a class of protocols in the
model by Arapinis et al. [3].

52

FORMALISATION OF PRIVACY PROPERTIES

4

MODELLING PRIVACY FOR RFID
SYSTEMS

The privacy definitions given in Chapter 3 provide us with a full understand-
ing of the unlinkability property and its related notions. We also argued that
most protocols either guarantee the strong forms of unlinkability, forward and
backward privacy, or do not guarantee even their weak forms. Hence, in this
chapter we focus on the strong forms of these notions and show how to trans-
late them into a concrete model suitable for RFID systems.

First, we provide a model in a symbolic setting to formally describe RFID
protocols. Then, we focus on three privacy properties corresponding to strong
unlinkability, strong forward privacy and strong backward privacy. In par-
ticular, we follow an approach inspired by the game-based definitions of
[18, 32], which are described in 3.2.4. We do not define game-based un-
linkability because it coincides with the notion of strong unlinkability in this
model, due to its assumptions.

4.1 A concrete RFID model

In the context of RFID systems, the notion of unlinkability [18], also called
untraceability [38, 2], indistinguishability [33] or simply privacy [32] has
been widely studied. This research has also led to the introduction of re-
lated notions, such as forward privacy [33] and backward privacy [29]. Our
main purpose is to create a model that combines together different features
that belong to the existing models that captures the aforementioned notions.
In particular, these features are the clarity of description provided by a for-
mal language, a precise formalisation of privacy properties, the rigour of the

54 MODELLING PRIVACY FOR RFID SYSTEMS

proofs, and the possibility to automatically verify protocols by means of ex-
isting tools like ProVerif [8].

We start by modelling protocols tailored to the characteristic features of
RFID. The applied pi calculus provides an elegant framework for modelling
protocols. It allows specifying the interaction between the various agents,
using the communication primitives of the calculus. It also supports defining
cryptographic operations by using a suitable equational theory.

To model RFID protocols, we first need to identify which are typically the
agents involved in a protocol execution and which are their main characteris-
tics. As we discussed in Chapter 1, RFID systems consist of several tags and
readers that communicate wirelessly. The readers might communicate with a
centralised backend database, typically through a secure channel. In order to
achieve privacy, RFID protocols need the tags to store information (a state),
either sent by a reader (e.g. some random number to randomise the outcome
of the next session) or initially put in their memory (e.g. a secret which is
updated at each run of the protocol using a hash chain). This is required in
order to provide the same functionality of a protocol where the agents have no
state, while using only the simple cryptographic primitives supported by the
limited resources of the tags. Each tag typically has a state that consists of a
unique secret s, shared with the backend database (and in certain systems also
with the reader), and other information, which together are used to identify
tags and possibly update its state after each execution.

We are now ready to formalise all these RFID aspects. First we show how
to model a tag state, then a tag session and a complete tag which is initialised
and offers multiple tag sessions. Finally, we discuss the synchronisation be-
tween different tag sessions and model a complete RFID system with multiple
tags, reader and backend.

The state of a tag is made available through a restricted local channel w,
which represents the tag memory. When a tag needs to read its state, it per-
forms an input w(x) that binds to = the content of the memory w. Similarly,
a tag state M (a term that typically contains or is based on the initial secret of
the tag) can be initialised or updated by performing an output, that we define
as

St(w, M) = w(M).

This process may be used to update a tag internal state or to make its state
available after it has been read.

We define a tag session as P(w, c), a process that communicates with the
rest of the system using two channels. The restricted channel w corresponds
to the tag memory, which can be used as described before. The channel c is

4.1 A CONCRETE RFID MODEL 55

public and represents the wireless means of communication between a spe-
cific tag and any reader. We refer to this channel as a rag interface. The
concept of interface plays a role similar to the one of the transactions in Sec-
tion 3.1. Indeed, both an interface and a transaction model the fact that the
attacker is aware that he is continuously communicating with the same tag
while querying it through the same interface or within the same transaction,
respectively. The intuition behind the concept of interface is that an attacker,
who obtains proximity to a tag and queries it wirelessly an arbitrary number
of times, knows that he accesses the same tag each time. For example, an
attacker can query a tag at the entrance of a building multiple times when
there is only one person in the range of his reader. Clearly, he knows that all
the protocol executions are run with the same tag. On the other hand, a tag
may be accessed by multiple interfaces. For instance, an attacker might query
a tag at the entrance of a building (interface c;) and a tag at the entrance of
another one (interface c;). This gives him two interfaces to freely commu-
nicate with a tag, however it could be either the same tag in both cases (tag
sessions P(w, ¢;) and P(w, ¢y)) or different ones (tag sessions P(wy, ¢;) and
P(wg, CQ)).

An RFID protocol description may include cryptographic primitives.
These primitives are modelled in the applied pi calculus, as usual, by us-
ing a signature and an equational theory. The example protocols analysed
in this thesis only use hash functions as cryptographic primitives. We need
these hash functions to be one-way (they cannot be inverted) and collision
free. To this end, we model them as unary function symbols, h or g, with no
equations. We discuss hash functions in more detail in Section 5.3.1. Other
cryptographic primitives will require proper equations. Several of them are
discussed in [1].

For reasons explained in detail in Section 4.2.1, we need to introduce a
synchronisation mechanism between tags in order to describe a complete pro-
tocol session. We require certain tags of interest to be synchronised, so that
they can execute only one session at a time. Synchronisation is achieved using
a channel ¢, which plays the role of a synchronisation token. A tag can only
run a session (and access its state) once it obtains the token with an input on
t, and must release the token with an output on ¢ at the end of that session.

Example 10. In the OSK protocol [33], as depicted in Figure 4.1, each tag
initially stores a secret s that is shared with a backend. The protocol uses two
hash functions, h and g. The hash function h is used to update the secret at
each run of the protocol while g is used to “encrypt” the output. The tag sends
g(s;), where s; is its current secret and then updates its secret using h, giving

56 MODELLING PRIVACY FOR RFID SYSTEMS

Initial secret Tag state Tag output

S —> S
9

h(s)
9hs)

hi(s)
 ahie) ,

FIGURE 4.1: The OSK protocol

si+1 = h(s;). Basically, the combination of the two hash functions allows
generating an output that looks random to an attacker. If the protocol would
use h only, an attacker could link different sessions by applying h to one of
the observed protocol outputs. On the other hand, by applying only g to a
static secret, a tag protocol output would be constant and it would be trivial to
find a link between sessions of the same tag. We can model a tag session of
the OSK protocol in the applied pi calculus as

P(w,¢) = c(L).t(_)w(w).clg(2)).(I() | St(w, h(z))).

We use ¢(_) and ¢(_) to respectively denote an input and an output on channel
c if the transmitted value is unimportant. Thus, the first part of the process, i.e.
the input on ¢, simply triggers the execution of the protocol and corresponds to
the reader asking “Who are you?” to the tag. Then, the input on ¢ corresponds
to giving the synchronisation token to the tag, which can now execute the
protocol. Thus, the tag reads the current content of its state through an input
on its state channel w and outputs the hash g of the current state on the public
channel c. Finally, it puts both the token #(_) and a new state St(w, h(z))
back to the system. By doing so, the token is available again to the system
and can be consumed by one of the synchronised tags that has been triggered
by a reader.

So far we have modelled a single tag execution. To model a complete tag
we need to initialise the state and run an unbounded number of executions. Let

4.1 A CONCRETE RFID MODEL 57

InitSt(w, s) be a process that initialises a tag state, where w is the channel
used to read the state and s is the unique secret of the tag. For example, the
process

InitSt(w, s) = 7(s).St(w, s).

registers the secret to the database through a private channel n (restricted by
process modelling the system) and then stores s in the state. A complete tag
is modelled as

Tag(c) = vw.s. (InitSt(w, s) | 1P(w,c)).

Tag(c) models a tag with interface c. It can perform an unbounded number
of protocol executions, starting from the initial state InitSt(w, s).
A complete RFID system consists of several tags. Therefore, we define

ReplTag = vevtan(c).(Tag(c) | T(_)).

ReplTag models an unbounded number of tags, each one with its own inter-
face and token. A new channel c is created by each replicated copy and its
name is announced on the public channel an to make it available to the envi-
ronment (thus, to the attacker). The token is used to avoid that the same tag
executes more than one session at a time.

We also need to define processes modelling readers and backend system
in order to include all the parties involved in the protocol description. We
define the processes Reader and Backend. They model the protocol steps
executed by readers and backend, similarly to the process P(w, ¢) that spec-
ifies instead the protocol steps executed by tags. Note that in this thesis we
assume that reader and backend system together have enough information to
identify a tag in the system, but it is worth mentioning that in some privacy-
friendly schemes not even the backend system uniquely identify tags in order
to achieve stronger privacy guarantees (see [15, 16]).

All the parties (tags, readers and backend system) may need to share some
private channel. We define n as such sequence of restricted names. For exam-
ple, n may contain a channel name that is used to register a tag to the backend
system in the initialisation phase.

Finally, a complete RFID system can be modelled as

vn.(ReplTag | Reader | Backend).

Now that we have all the ingredients to formalise an RFID system, we are
ready to define the privacy properties corresponding to strong unlinkability,
forward and backward privacy, presented in the previous chapter.

58 MODELLING PRIVACY FOR RFID SYSTEMS

4.2 Unlinkability

The idea behind our definition of unlinkability is inspired by the three-agents
game unlinkability definition discussed in Section 3.2.4. In this type of game,
the attacker wins if he can infer whether two given agents represent one or two
different tags. In our model, we use tag interfaces to represent a public chan-
nel that connects any reader to a specific tag. Then, our definition requires
that two linked interfaces (corresponding to one tag) are not distinguishable
from two independent interfaces (corresponding to two tags).

In order to formally define unlinkability, we need to introduce some nota-
tion. As discussed in the previous section, we denote by P(w, c¢) the process
modelling a single tag session. The channel c is the tag interface, i.e. the
public channel that it uses to communicate with the environment, and it cor-
responds to its interface. Since all the tags execute the same protocol, they are
only distinguished by their state.

Consider P(w, c¢;) and P(w, cy). Since both processes are connected to
the same state through the channel w, they model two executions of the same
tag, but on different interfaces, e.g. a tag appearing at the entrance of building
A and at the entrance of building B. Hence, we define a tag with multiple
interfaces as

Tag(cy,cs) = vw.ws.(InitSt(w,s) | 1P(w, ¢;) | 1P(w, c2))

This process represents a single tag as it restricts a single channel w and a
single secret s. On the other hand, the tag has two public interfaces ¢; and c5.
Both interfaces can be accessed to execute a protocol session an unbounded
number of times. Since both interfaces access the same state, interacting with
any of them at a particular moment will give the same outcome. Figure 4.2
shows a graphical representation of the difference between T'ag(cy, ¢o) (two
interfaces for a tag) and T'ag(c;) | Tag(cz) (two independent interfaces for
two tags).
We are now ready to define unlinkability.

DEFINITION 4.2.1 (Unlinkability). We define a system context as
Cll =vn.(vt.([] | €(_)) | ReplTag | Reader | Backend).
An RFID protocol satisfies unlinkability if and only if

ClTag(cr,)] = CTag(c1) | Tag(ca)).

4.2 UNLINKABILITY 59

Tag(cy,) Tag(cy) | Tag(co)

FIGURE 4.2: A tag with two interfaces and a tag with two independent inter-
faces

If a protocol satisfies the above definition of unlinkability, then the at-
tacker cannot link two executions on different interfaces, since he cannot dis-
tinguish whether the interfaces correspond to the same tag or two different
tags. The tags are compared in a context modelling a complete RFID system,
which potentially allows the attacker to exploit information from other tags,
the reader(s) or the backend database. Note that the attacker is not modelled
explicitly, but he is considered part of the environment. Observational equiv-
alence guarantees that no environment will be able to distinguish these two
cases. Note also that the two tags are synchronised on a shared channel ¢, the
reason for which is explained below.

The intuition behind Definition 4.2.1 corresponds to the one that inspired
our definition of strong unlinkability (Definition 3.2.2). In fact, both these
definitions require the attacker to be unable to infer whether any two trans-
actions are linked. By Theorem 3.3.3, Definition 4.2.1 also implies the no-
tion of strong inseparability presented in Section 3.2.5. Strong inseparability
and strong unlinkability coincide when the conditions Unbounded number of
agents and Renaming hold, and they are always satisfied in our model in the
applied pi calculus. In fact, the number of tags in the system is unbounded and
alpha-renaming ensures the renaming of a tag secret into another. However,
we do not formally prove the equivalence of the definitions 4.2.1 and 3.2.2,
and we leave it as future work.

4.2.1 Synchronisation issues

Our definition of unlinkability prevents the tags running on the interfaces
c1 and c; from executing more than one protocol session at a time. This is
achieved by using a token ¢ that does not allow a session to start until a tag
has successfully updated its state. Without a token, the resulting definition of

60 MODELLING PRIVACY FOR RFID SYSTEMS

unlinkability would be too strong in our opinion. To understand the type of
attack that it would capture, consider a scenario in which an attacker starts
communicating with a tag using the interface c; (e.g. at location A). In the
middle of the session he stops, leaving the tag in an intermediate state, in
which only part of the protocol has been executed. He then accesses a tag
using a different interface c, (e.g. at a different location B) and tries to run
the protocol again. If ¢, corresponds to the same tag then the protocol can-
not start, because the tag is waiting to complete its previous session. If it is
a different tag then it can start the protocol normally. Thus, the attacker can
decide whether ¢y, ¢, correspond to the same tag, violating unlinkability.

In practice, this type of attack is usually prevented by some property of
the tag that we do not model explicitly. For example, a passive tag (without
battery) will switch off when the tag is moved away from the reader, and
before the attacker is able to start a session on a different interface. Even self-
powered tags are often programmed to run each session for a small amount of
time, and then switch off automatically.

To exclude these attacks, we restrict our attacker model by requiring that
the attacker cannot execute sessions on ¢; and ¢y at the same time. A ses-
sion on interface ¢; must be completed before a session on ¢, can start, and
vice versa. This is achieved by using a single token to synchronise both in-
terfaces. By using this restriction, Definition 4.2.1 ensures that the attacker
cannot distinguish a tag running two sessions from two independent inter-
faces by forcing the two sessions to overlap as in the attack described above.
Note that we do not need to synchronise all the tags in the system, but only
the ones communicating on the “challenge” interfaces c¢; and c,. Indeed, the
tags in ReplT'ag have their own private tokens, thus they can be executed
autonomously.

We should also point out that our definition does not really depend on
the synchronisation requirement. If we want to capture the attack described
above, e.g. to validate a mechanism of a protocol to prevent it, we can remove
all the occurrences of the channel ¢ from our model, and still use Defini-
tion 4.2.1 to express unlinkability. In this case, T'ag(c;) | T'ag(cz) can always
run two sessions on c; and ¢, in parallel, since the tags are independent. How-
ever, T'ag(cy, co) might not be able to do so: if the first session does not update
the state immediately, the second will block when it tries to read it.

4.3 FORWARD PRIVACY 61

4.3 Forward privacy

Forward privacy only differs from unlinkability in the attacker’s capabilities.
Hence, we can easily adapt Definition 4.2.1 to give a further ability to the
attacker: he is now able to tamper with one of the two tag interfaces he is
given and retrieve the information stored in the state of the corresponding tag.
After that, a tag clearly becomes traceable. However, forward privacy requires
that the attacker is still unable to trace protocol sessions occurred before the
tag was broken. To capture this notion, once the tag state is revealed, the
interfaces cj, co can no longer be queried. Thus, the attacker can only use
information obtained in the past sessions to distinguish between linked and
independent interfaces. He can still, however, communicate with all the other
tags of the system.
We define

Break! (w) = br(_).t(_).w(x).br{z)
BrTag’(c) = vw.ws.(InitSt(w,s) | P(w,c) | Break! (w))
BrTag! (c1,¢;) =
vw.s.(InitSt(w, s) | IP(w, ¢1) | 'P(w, ¢z) | Break! (w))

Break?! (w) is a process that models the attacker capability to reveal the
state stored in the tag memory w. The attacker triggers this action by an input
on the public channel br. Then, the token ¢ is consumed, disabling both the
interfaces c¢; and c,, thus the corresponding tags are no longer available. The
state content stored in w is read and sent to the attacker on the public channel
br.

BrTag’(c) models a tag with a single interface ¢ which can be tampered
with. It is similar to T'ag(c), but allows to trigger Break’(w), a subprocess
which reveals the tag state and blocks the two tag interfaces by consuming the
token.

Similarly, BrTag’(cy, c) models a tag with two interfaces, the state con-
tent of which can be revealed by Break’ (w).

We can now define forward privacy.

DEFINITION 4.3.1 (Forward Privacy). Let C[] be a system context as in Def-
inition 4.2.1. An RFID protocol satisfies forward privacy if and only if

C[BrTag’(ci,c)] = C[BrTag’ (c) | Tag(cs)].

The definition is similar to the one of unlinkability: an attacker should
not be able to distinguish a tag with two interfaces from two separate tags.

62 MODELLING PRIVACY FOR RFID SYSTEMS

The difference is the possibility to tamper with one of the tags and read its
state. Also, after the state is revealed, the interfaces c¢; and ¢, can no longer
be queried.

Intuitively, forward privacy is a stronger property since it gives more capa-
bilities to the attacker. In our model, this implication can be formally proven.

PROPOSITION 4.3.1. If a protocol satisfies forward privacy (Definition 4.3.1)
then it also satisfies unlinkability (Definition 4.2.1).

PROOF. The processes in the definition of forward privacy are the same as
the ones of unlinkability, except for the subprocess Break/ (w). By restrict-
ing br, the channel name used to reveal a tag state, we can easily obtain the
equivalence of the unlinkability definition.

Starting from the definition of forward privacy, we restrict the name br,
obtaining by structural congruence

vbr.vn.(vt.(BrTag’ (c1,c5) | T(_)) | ReplTag | Reader | Backend) ~
vbr.vn.(vt.(BrTag’ (c;) | Tag(cs) | () | ReplTag | Reader | Backend).

Note that, br appears inside Break/(w) only, which is contained in the pro-
cesses BrTag’(cy,c;) and BrTag’(c;) in the left and right hand side of the
equivalence, respectively. Thus, we can move the restriction vbr inside such
processes, obtaining in both sides

vbr.Break! (w) = vbr.br(_).t(_).w(x).br(x)

which is equivalent to the null process 0, because this process can perform no
steps. Therefore, we have that

vbr.BrTag’ (¢, ;) = Tag(cy, ¢3)
vBrTag’(c,) = Tag(c,)

From these equivalences we can conclude that the equivalence implies

vn.(vt.(Tag(cy, c) | £(_)) | ReplTag | Reader | Backend) ~
vn.(vt.(Tag(cr) | Tag(ca) | €(_)) | ReplTag | Reader | Backend).

which is the definition of unlinkability. [

4.4 BACKWARD PRIVACY 63

4.3.1 Synchronisation issues

The definition of forward privacy uses a token to synchronise the interfaces
c1, co. Similarly to the case of unlinkability, the use of this token is not es-
sential for the definition. A non-synchronised version can be defined if one
wants to be sensitive to synchronisation attacks. However, in the case of for-
ward privacy, the token is also used to block the two interfaces after breaking
a tag and revealing its state to the attacker. Thus, a non-synchronised version
would be technically more involved than merely removing all the occurrences
of t. A non-synchronised version could be achieved by using two tokens t;
and t,, one for each interface. Since each interface has its own token, there
is no actual synchronisation between them. Then, Break/ (w) can consume
both tokens ¢; and ¢,, blocking the two interfaces before revealing the state to
the attacker.

4.4 Backward privacy

Backward privacy allows the attacker to tamper with a given tag and to re-
trieve its internal state, as for forward privacy. Once a tag state is disclosed,
the tag becomes traceable and remains traceable as long as the attacker is
given the possibility to eavesdrop on the public channel. In fact, the attacker
has the same knowledge as the tag, therefore he can use the information of the
next legitimate session to calculate the new tag state as the tag does. For this
reason we must assume that a complete (restore) execution of the protocol
takes place between legitimate users while the attacker is not eavesdropping
on the wireless channel. Backward privacy is guaranteed if the attacker cannot
link the tag internal state to future sessions run after the restore session.

In the definition of forward privacy (Definition 4.3.1), we block the inter-
faces c; and ¢, to be able to set our focus on the tag state and its past sessions
only, so that the next sessions do not affect the validity of the definition. For
backward privacy the definition should only check whether the tag state can
be linked to its future sessions, rather than to its past sessions, otherwise it
would imply our definition of forward privacy, although they should not be
related. Also, once the attacker knows a tag state, he can certainly distinguish
it from other tags at least until the restore session takes place, thus he can infer
whether the interfaces are linked. However, this should not imply a violation
of backward privacy.

To avoid these issues, we need to limit the attacker abilities by running
a restore session immediately after the tag state disclosure, and to block the

64 MODELLING PRIVACY FOR RFID SYSTEMS

second interface until the restore session is completed. As a result, the tag
state would not provide him with any information that is useful to distinguish
between the cases of linked and independent interfaces before the tag state
disclosure.

We define:

Restore(w) = () | P(w,rc) | 7e(_).re(_).br{c,)
Break®(w) = br(choice).if (choice = break)
then ¢t(_).w(x).br(z).(St(w,) | Restore(w))
else br(cy)
BrTag’(c) = vw.vs.(InitSt(w, s) | '\P(w,c) | Break®(w))
BrTagb(cy, ;) = vw.vs.(InitSt(w,s) | \P(w,c1) | \P(w,cp) | Break®(w))

The processes BrTag’(c) and BrTag®(ci,c;) are the same as the pro-
cesses BrTag’(c) and BrTag’(ci,c;) in the definition of forward privacy,
except for the subprocess Break®(w). The processes BrTag’(c) and
BrTagb(cy, co) are triggered when the attacker sends a message on the chan-
nel br. The attacker can choose between breaking the tag on c¢; to try to
violate backward privacy or breaking no tag to try to violate unlinkability.
In both cases, the process Break®(w) does not permanently disable the in-
terfaces c¢; and ¢, as for forward privacy, but rather gives the attacker access
to the challenge interface c,. In the first case, the attacker sends a message
“break” on the public channel br, and on br he obtains the content of the
memory w (execution of the then-branch of the conditional statement). The
process Break® executes the restore session before enabling the “challenge”
interface co, otherwise the attacker can trivially infer whether the interfaces c;
and ¢, are linked, because he can link the tag state to the sessions executed be-
fore the restore session. To achieve this, the token ¢ is immediately consumed,
blocking the interface c; (c; is already restricted by the system context, see
Definition 4.4.1). Then, the process reads the memory w and gives its content
to the attacker on the public channel br. The tag state is put back in w and
the restore session process Restore(w) is triggered. Restore(w) releases the
token ¢ and allows one execution of the protocol on the private channel rc
(also restricted by the system context), so the attacker cannot eavesdrop any
message communicated during that session. The restore session is triggered
by the subprocess 7¢(_).rc(_).br(cy), that reads (and discard) the output of
the restore session, and finally, when the restore session is terminated, re-
leases the second interface c;. Note that this subprocess should be part of

4.4 BACKWARD PRIVACY 65

the Reader process. For simplicity we include it in the Restore(w) process,
since we never explicitly model a reader. In the second case, when the at-
tacker does not want to break the tag, he is challenged to violate unlinkability.
To do this, he must send any message that does not coincide with break on
the public channel br. The process Break®(w) enables cy, but the tag state in
w 1s not revealed. In the definitions, this corresponds to the case in which the
test (choice = break) fails. Then the else-branch of the conditional statement
is executed, and it only publishes the name of the second interface c,. Since
the Break®(w) process appears once in the processes, it cannot be triggered
again to obtain the tag state. Intuitively, if the attacker immediately sends a
message that is not break as an input to br, he obtains exactly the processes
Tag(c) and Tag(cq, cz).

DEFINITION 4.4.1 (Backward Privacy). We define a system context as
Cl] = viwre.(vtweo.([] | 1(_)) | ReplTag | Reader | Backend).
An RFID protocol satisfies backward privacy if and only if
C[BrTag’(c1, cs)] = C[BrTag"(c1) | Tag(c,)].

Again, the attacker is required to distinguish between these two processes,
modelling linked and independent interfaces. The main difference with re-
spect to the definitions of unlinkability and forward privacy is that the “chal-
lenge” to the attacker does not start at the first run of the protocol, but only
when the attacker requests the second interface. In fact, until the attacker trig-
gers the process Break®(w), the two sides of the equivalence model exactly
the same situation, i.e. an arbitrary amount of independent tags on different
interfaces running an arbitrary number of sessions each. If the attacker de-
cides to trigger the process Break®(w) to obtain the secret of the tag using the
interface ¢y, he cannot use interface c, until the restore session is completed.
If the attacker triggers the process only to reveal the name of the challenge
interface, he is forbidden from tampering with the tag on c¢;. This ensures
that, if the protocol violates unlinkability, also our definition of backward pri-
vacy is violated. Without the else-branch, unlinkability and backward privacy
would be incomparable, because the attacker knowledge would differ: while
unlinkability provides the attacker with a sequence of protocol sessions from
two interfaces, backward privacy would let the attacker query only one inter-
face in the beginning and would prevent him from eavesdropping the restore
session, providing the attacker with a different sequence of protocol sessions.

66 MODELLING PRIVACY FOR RFID SYSTEMS

Similarly to forward privacy, backward privacy is stronger than unlinka-
bility, but is unrelated to forward privacy. The first checks whether a secret
can be linked with future sessions, while the second checks for links with past
sessions. For example, the OSK protocol guarantees forward privacy, as we
prove in Section 5.3.3, but not backward privacy. In fact, the protocol up-
dates the secret by hashing it at every run, thus, even if the attacker misses
the restore session, he can simply apply the hash function twice to the tag
secret to obtain the current secret. On the other hand, backward privacy does
not in general imply forward privacy. For instance, a protocol that updates
a tag secret at any run by adding to it a random number sent in plain text
may satisfy backward privacy, because the information that the attacker loses
during the restore session is needed to calculate the new secret. But forward
privacy would not necessarily be guaranteed, since the function may be re-
versible. The attacker could collect all the random numbers and states sent in
the past sessions of a tag (before revealing the tag state), which may suffice to
calculate all the past secrets and, thus, to link a tag secret to its past sessions.

PROPOSITION 4.4.1. If a protocol satisfies backward privacy (Definition
4.4.1) then it also satisfies unlinkability (Definition 4.2.1).
PROOF. Starting from the definition of backward privacy, we restrict the

name br and output a message noBreak on br, obtaining by structural con-
gruence

vbr.vn.vre.(vt.vey.(BrTag’(cy, ¢3) | br{noBreak) | £(_)) |
ReplTag | Reader | Backend) ~
vbr.vn.vre.(vt.vey.(BrTag’(cy) | Tag(cs) | br{noBreak) | #(_)) |
ReplTag | Reader | Backend).
The process Break®(w) inside the processes BrTag’(cy,) and BrTag®(c:)
synchronises with br(noBreak) by a silent action. Since (noBreak # break),
the process Break®(w) executes the else-branch, which enables the interface
co. The Breakb(w) process, after these transitions, reduces to 0, and by struc-
tural equivalence we have that vbr.0 = 0. Also, the restriction vrc can be re-
moved since rc only appears in Restore(w) in the then-branch of Break®(w),
which is not chosen in this case. We obtain
vn.(vt.(Tag(ci,ca) | €(_)) | ReplTag | Reader | Backend) =~
vn.(vt.(Tag(ci) | Tag(co) | €(_)) | ReplTag | Reader | Backend).
The resulting equivalence is the definition of unlinkability, thus we can con-
clude that it is implied by the definition of backward privacy. [

4.5 RELATED WORK 67

4.4.1 Synchronisation issues

The definition of backward privacy uses a token ¢ to synchronise the interfaces
c1, c2. As for unlinkability, a version without token can be implemented in
order to capture more attacks. Note that the token here is not used as an
interface-blocking mechanism. The second interface is simply blocked by a
restriction in the context.

4.5 Related work

Several papers [27, 33, 4, 5, 34, 14, 40] analyse privacy properties for RFID
systems, at various levels of formality. Most of them, however, define privacy
in a computational setting, typically in terms of games. On the other hand,
our work takes place in a symbolic setting using the formal language of the
applied pi calculus. In Section 3.2.4 we briefly describe two types of indis-
tinguishability games found in the literature [33, 18, 27, 4, 34, 32] given in
a computational setting, which inspired our gagme-based definition (Defini-
tion 3.2.3) that is in a symbolic setting. The advantages of using a symbolic
model are the clarity, the rigour of the proofs and the possibility of automat-
ically verifying protocols using tools like ProVerif [8]. On the other hand,
a symbolic analysis might miss attacks that exploit weaknesses of the cryp-
tographic primitives. In the resource constrained setting of RFID systems
the use of good cryptography is not trivial. Instead, several ad-hoc crypto-
graphic solutions have been employed and some have already been proven to
be insecure. Unfortunately, our model cannot capture all the details of their
implementation.

The closest work to ours is the one of Arapinis et al. [2], who indepen-
dently developed a definition of untraceability in the applied pi calculus, ex-
tended later in [3] where a more detailed trace-based model is provided with
definitions that are similar in nature to [2]. In [2], the authors define the prop-
erties of strong and weak untraceability, as discussed in Chapter 3. The for-
mer is a strong property requiring a given RFID system to be equivalent to one
where an infinite amount of tags executes only one session. This is possible
because, in their model, the attacker cannot choose which tag to communicate
with. Instead, he might get a response from any tag. However, the ability to
query a tag several times, knowing that it is the same tag that replies each
time, is very common to RFID systems. If the attacker obtains proximity to
a tag, he can perform multiple queries within a very short time and be almost
certain that he is communicating with the same tag. Adding this ability to

68 MODELLING PRIVACY FOR RFID SYSTEMS

their model would make it impossible to satisfy this definition, as it is triv-
ial to distinguish a tag that can execute multiple sessions from a tag that can
only execute a single session. Weak untraceability, the second definition of
[2], requires instead a system where a particular tag executes two sessions to
be equivalent to a system where one of these two sessions is replaced by one
belonging to a different tag. Our definition instead requires a system with a
tag that executes an infinite number of sessions to be equivalent to a system
where these sessions are run by two different tags. In general, [2] provides in-
teresting alternatives to our definitions. However, our work provides several
results that are outside its scope: for example the definition of forward and
backward privacy, showing their relationship with unlinkability. Moreover, in
Chapter 5 we study a class of protocols and analyse identification protocols
from the literature.

Deursen et al. [38] also define untraceability in a symbolic setting. This
work differs from ours because their model and definitions are based on traces,
which are a set of actions performed by the system. While our work provides
a specific framework to model RFID systems, this approach does not take
into account any RFID feature, defining untraceability in terms of abstract
traces that could have been generated by any identification system. More
importantly, the definition of Deursen et al. is inherently weaker than ours as
it corresponds to the definition of weak unlinkability given in Section 3.2. It
forbids the attacker from knowing that two sessions are linked, i.e. executed
by the same tag, but it does not forbid the attacker from knowing about the
existence of linked sessions. Moreover, it does not prevent the attacker from
knowing when two sessions are not linked. This, of course, might not be
required depending on the application.

Also the works of [28] and [6] use the applied pi calculus and ProVerif
to prove properties close in nature to unlinkability, such as untraceability and
anonymity, for anonymous credential protocols. As in our work, they pro-
vide formal definitions of security properties and show their effectiveness
analysing existing protocols. However, both the context and the properties
studied in these works are substantially different from ours: they aim at pro-
viding anonymity using zero-knowledge proofs while our work focuses on
privacy for RFID protocols.

Finally, some RFID protocols [22, 24] have been designed focusing on
the goal of backward privacy. [22] introduces a new protocol for delegation
and ownership transfer of tags without compromising the privacy of future
or past owners. Their definition of backward privacy is rather informal, but
it is similar in nature to ours. [24] describes a new protocol that guarantees

4.6 CONCLUSIONS 69

backward privacy based on the OSK protocol. It also provides a definition of
backward privacy in terms of a game. As for the unlinkability and forward
privacy games, there is a first phase where the attacker can interact with tags
and readers. He chooses two tags and he is given one of them after a synchro-
nisation phase. Then, he wins the game if he is able to guess which tag he was
given. This work differs from ours because, while we let the attacker break a
tag and get its secret data, [24] allows the attacker to discover the information
of all the tags.

4.6 Conclusions

In this chapter we define a model in the applied pi calculus to study privacy
properties like unlinkability, forward and backward privacy. Existing defini-
tions are compared in Chapter 3, where we show that they offer different pri-
vacy guarantees. Here we define more concrete versions of the strong forms of
those privacy definitions. In fact, the definition of unlinkability in the applied
pi calculus is inspired by the game-based definition of Section 3.2.4, which
we demonstrate to be equivalent to the notion of strong unlinkability. Also,
the definitions of forward and backward privacy correspond to the strongest
definitions of Chapter 3.

Finally, we show the relationship between all these properties, formally
proving that the notions of forward and backward privacy both imply unlink-
ability.

In the next chapter we study a class of protocols and demonstrate that
verifying privacy definitions for this class is simpler than in the general case.
In fact we identify some necessary and sufficient conditions that are easier to
prove and can be verified by automatic tools such as ProVerif for finite traces.

70

MODELLING PRIVACY FOR RFID SYSTEMS

S

SINGLE-STEP PROTOCOLS

In previous chapters we studied the privacy properties of unlinkability, for-
ward and backward privacy. In this chapter we study how the privacy defi-
nitions given in Chapters 3 and 4 apply to a class of RFID protocols which
we call single-step protocols. More concretely, we describe this class in the
model presented in [3], which we instantiate in our abstract model, and we
study its properties.

This chapter is structured as follows. First we describe single-step proto-
cols and formalise them in the applied pi calculus. Then, in Section 5.2 we in-
stantiate our abstract trace-based model defined in Chapter 3 using the model
in the applied pi calculus of Arapinis et al. [3]. We show that all the conditions
described in Section 3.3 for the abstract model are satisfied in this instan-
tiation, thus the privacy properties presented in Chapter 3 always coincide.
Section 5.3 introduces necessary and sufficient conditions for single-step pro-
tocols under which the privacy properties described in Chapter 4 for our RFID
model hold. We also study some protocols from the literature [33, 41, 29] and
variations thereof, and prove that they satisfy some of the conditions described
in Session 5.3. Section 5.4 provides conclusions of this chapter.

5.1 Single-step protocols in the applied pi calcu-
lus

Single-step protocols are RFID protocols that consist of a single message from
a tag to areader. The reader only activates the tag, so the tag can send its iden-
tification message. This message should suffice to allow the backend system
to identify the tag. We study this class in full generality giving necessary and

72 SINGLE-STEP PROTOCOLS

Initial secret Tag state Tag output

S —» Sy(5)

01(So(s))

A 4

U (So(s))

O(UA(S(s)),

v

}

Uss) |
T OUSHE),

FIGURE 5.1: A single-step protocol

sufficient conditions for unlinkability, forward and backward privacy. In par-
ticular, we define the class of single-step protocols in the applied pi calculus in
this section, and we investigate its properties in the remainder of this chapter.

Each protocol in this class starts with a reader activating a tag. However
the reader does not send any information. Then, the tag reads its state, con-
structs a message (possibly containing fresh nonces) and sends it to the reader.
Depending on the system the reader may forward it to the backend or directly
identify the tag. Finally, the tag updates its state and the session ends.

Although this class of protocols is quite restricted, it is still of great in-
terest for several reasons. First, the simplicity of single-step protocols helps
us to understand the properties that are required to ensure privacy, making
it easier to understand more complex protocols. Second, as we will see in
the Section 5.3.3, some published protocols fall into this class. Moreover, it
should be possible to build on these results, extending them to a wider class
of protocols, e.g. protocols that allow a tag to receive inputs from the reader.
Finally, having general results for a class of protocols allows us to experiment
with protocol design. For example, our results could allow a designer to try a
single-step protocol and quickly check whether it satisfies privacy.

A single step protocol is defined based on three terms:

e Sp(y): the initial state of a tag with tag secret y;

e U(x): the next state resulting from running the protocol in state x;

5.1 SINGLE-STEP PROTOCOLS IN THE APPLIED PI CALCULUS 73

e O(x): the output produced by a tag in state .

The output and state update may use names that are specific for that run of
the protocol, e.g. a random nonce. This is achieved by having a sequence of
names p that are restricted in the protocol session process. Each run of the
protocol will generate new copies of the names p. We use p; to denote the
sequence of names generated in the first ¢ runs of the protocol. We use O; (),
U;(x) to denote the output and update terms using the names generated in the
1-th protocol run, i.e. with the names in p renamed to the corresponding ones
in p;. Finally, we define U*(M) as U;(U;_1(... U1 (M))). Thus, the output of
the i-th session is vs, p;.0;(U1(Sy)).

Example 11. Consider a protocol that generates a new random number n,
outputs it together with the hash of its current state added to n and updates its
state to the sum of its state, n and m, with m a publicly known (fixed) value.
This can be modelled by taking

e O(x) = (n,h(zx+n));
o U(z)=(zx+n+m);
® p=n.

Here p; is ny, ..., n;, Oi(x) is (ng, h(x + ny)), Us(x) is (x 4+ n; + m).

A generic single-step protocol is shown in Figure 5.1. Each tag starts with
an initial state Sy(s), where s is the tag initial secret.

We model single-step protocols in the applied pi calculus as described in
Section 4.1. To properly define a T'ag(c) process, we need to instantiate its
P(w,c) and InitSt(w, s) sub-processes.

DEFINITION 5.1.1. The class of single-step protocols consists of all protocols
of the form

P(w,c) = ¢()t()w(x).vp.e(0(x)).(E) | St(w,U(x)))
InitSt(w, s) = St(w, So(s))
for some terms O(x),U(x), So(s) and names p s.t. s ¢ fn(O(x)) Ufn(U(x)).

InitSt(w, s) simply initialises the state with Sy(s). P(w,c) starts with
an input on ¢, which simply triggers the beginning of the session. Then the
tag consumes the synchronisation token ¢, reads its state in x, generates new

74 SINGLE-STEP PROTOCOLS

names in p, and outputs O(z) on the channel c. Finally, it releases the token
and updates the state with U(z).

A complete tag is first initialised with a state Sy(s) and can execute an
unbounded number of sessions.

Tag = vs.vw.(InitSt(w,s) | 'P(w, c))

Note that from now on we use Sy for Sy(s), since the secret s is clear from
the context.

For this class of protocols, the readers are completely passive, they only
trigger the tag without sending any data to it. Since c is a public channel, the
tag can be triggered by any process in parallel to it, thus we can completely
avoid specifying the reader. To complete the processes instantiation of an
RFID system (Section 4.1), we set Reader = Backend = 0 and n = e.
Thus, a complete system P consists of an unbounded number of tags and can
be defined as

P =1Tag

5.2 Instantiating our abstract model

In Section 3.3 we showed that, under some reasonable conditions, all the un-
linkability and inseparability definitions coincide. In this section, we show
that these conditions are indeed satisfied by the class of single-step protocols.
To this end, we use our definition of single-step protocol and the model of [3],
which provides a concrete set of traces and an equivalence relation between
them.

We start by describing how we obtain a trace from an RFID system P
(the one introduced in the previous section) in the model of [3]. A system P
can perform labelled transitions, according to the semantics of the applied pi
calculus. We denote by == a sequence of internal transitions, followed by
the visible transition «, followed again by internal transitions. A trace is a
sequence

tr=P=%P =% P,=%...=5% P,

Two traces are equivalent, denoted by ¢r; ~y,. tro, if they contain the same
transitions and all the intermediate processes are statically equivalent. For-
mally:

DEFINITION 5.2.1. Let

tra=A)—= A == ... = A,

5.2 INSTANTIATING OUR ABSTRACT MODEL 75

and
tT‘B:B()%Bl%...%Bn.

The traces tra and trg are equivalent denoted tr, ~y,. trg if A;~; B; for
all 1.

We recall that our abstract model (see Definition 3.1.1) requires

e aset of agents A;

e a set of strategies X such that a strategy o together with a mapping 7
from a set of mappings I1 form an abstract trace 7 = (7, 0);

e an equivalence relation ~ between abstract traces.

The agents A = {a; | i € N} correspond to the tags of the system. Note that
in the applied pi calculus model, we use replication to denote an unbounded
number of tags. We identify the tags by their secret s, which is restricted
inside the replication, thus it is unique for each tag. When a; is spawned we
denote its secret by s;.

Since tags in single-step protocols have no input, the only thing that the at-
tacker can decide is how many transactions he will run, and how many proto-
col executions he will trigger in each transaction. The number of executions in
a transaction may depend, for example, on the output obtained in the previous
transaction. For simplicity and without loss of generality, we assume that the
strategies are not adaptive. Thus, a strategy o is a sequence 0 = (04, ..., 0%)
such that £ is the transaction index, and o; the number of executions that the
attacker triggers in the i-th transaction. A mapping 7 determines which tag
will participate in each transaction, for example 7(2) = a3 means that a; is
the tag involved in the second transaction.

Given an abstract trace, i.e. a strategy o and a mapping 7, we can define
a unique concrete trace tr(m, o) starting from P. In this trace, the tag 7(1) is
first spawned and runs oy executions. Then, the tag 7(2) is spawned (unless
(1) = m(2), meaning that it had already been spawned for the first transac-
tion) and runs o9 executions, and so on. Finally, we define trace equivalence
as follows:

(m,0) ~ (7',0) ifandonly if tr(mw, o)~y tr(n’, o)

Now that we have a concrete definition of the set of agents, the set of traces
and the trace equivalence, which together form a concrete trace model, we can
show that single-step protocols satisfy all the conditions of Section 3.3.2.

76 SINGLE-STEP PROTOCOLS

THEOREM 5.2.1. Single-step protocols satisfy all the following conditions:
e Unbounded number of agents;
® Renaming;
e Swapping;
e Extension I and I1.
Therefore all the unlinkability and inseparability properties coincide.

The proof can be found in Appendix A.4.

5.3 Privacy properties for single-step protocols

We now provide conditions for single-step protocols, that are both necessary
and sufficient to satisfy the privacy properties of Chapter 4 (unlinkability, for-
ward and backward privacy). The conditions are based on the notion of frame
independence that we develop in Section 5.3.1 before giving the conditions in
Section 5.3.2. Finally, Section 5.3.3 provides some examples of single-step
protocols from the literature. For each example we use the conditions to prove
whether they guarantee the privacy definitions of unlinkability, forward and
backward privacy.

5.3.1 Frame independence

In this section we discuss a notion that we call frame independence. As shown
in Section 5.3.2, this concept can be used to give necessary and sufficient con-
ditions for unlinkability, forward and backward privacy for a generic family
of protocols. However, the notion itself is generic and we develop it on its
own. We also discuss some results concerning frame independence of frames
containing hash functions.

Consider two frames @1, 5, each containing some free names. Both
frames, where some names s are restricted, are given to the attacker. The
attacker’s goal is to detect whether the names in s are assigned the same value
in both frames. If the attacker is able to distinguish these two cases, we say
that o1, @9 are dependent with respect to s, otherwise they are independent.
Intuitively, two frames being dependent means that the attacker can link them
to the same owner due to the use of the same restricted names s.

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 77

Example 12. Consider the frames

("} ("0,

where h is a hash function. Even if s is restricted, we can still decide whether
s contains the same value in both frames. Namely, we can apply h to = and
then test whether h(z) =g y. However, a shared secret does not always imply
a dependence. Consider for example the frames

"} vr {0/}

Given that r is restricted in the second frame, if s is restricted, it is impossible
to tell whether h(s) and h(s,) contain the same secret s.

We formalise this idea in the following definition.

DEFINITION 5.3.1. Let 1 and s, be closed frames with dom(p1)Ndom(py) =
(). We say that ¢, is independent of o, with respect to the names s, written

¢1 Lz o, if and only if
v5.(p1 | p2) R vS.p1 | V5.3

Intuitively, this definition states that o1, ¢ are independent with respect
to secrets s if and only if their composition under the same restricted names
s is statically equivalent to their parallel execution, where each frame has its
own restricted names. In other words, assigning the same value to names in §
in both frames looks the same to the attacker as assigning different values in
each frame. Clearly, when the sets of free names in ¢; and ¢, are disjoint, the
frames are trivially independent with respect to those names. This definition
is vaguely reminiscent of the independence of probability events, p(AA B) =
p(A)p(B), which requires that the joint distribution (in our case composition
of frames with shared names) is obtained by simply multiplying the marginal
distributions (in our case putting in parallel the two frames).

Going back to our previous examples, we have that

vs b/ . h(h(s))/y} #ovs.ws PO/ h(h(s’))/y}
= vs {")a} |vs PO}

thus

("o} Lo (M)

78 SINGLE-STEP PROTOCOLS

On the other hand
VS‘VT'{h(S)/xv h(s,r)/y s VS-VS/-VT-{h(S)/xv h(S/m)/y}

thus
{h(s)/x} Ls Vr-{h(S’T)/y}

as expected.
We now state some basic properties of frame independence.

PROPOSITION 5.3.1. Let 1, @2, be closed frames such that o1 Lz . If
one of the following holds

1. P2 s 1

2. o3 = 1 | @) for some) with {5} N () = 0 and dom(¢}) N
dom(v)) =)

3. o = vu.y for some u ¢ fv(¢) U fn(v))
then po 15).
PROOF. From ¢; L3 v by definition we get vs.(p; | ¥) & vS.p1 | VS,

1. Since = is closed under application of closing evaluation contexts, we
have

vS.(pa |) msvs.(¢1 | V) msvS.1 | VS RgUS.0o | VS
thus o L3).

2. Note that @9 = 1 | ¢} is closed, so by congruence we get
vs.(p1 |) | @) = vs.pr | vsap |). Since {s} N fn(¢)) = 0 and =~
is closed under =, we get vs.(p1 | @) | V) ~s vs.(v1 | ¢)) | vs.ip and
thus vs.(y2 | ¥) = vS.py | vs.p which implies o L3z 1)

3. Again by simple application of the congruence property.

Thus all the conditions imply o L5 . [

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 79

The second part of the above proposition says that we can extend a frame
1 while preserving independence. An extended frame (, adds new terms to
the ones exported by (1, but these terms can be constructed from ;. The
new terms can contain restricted names of 1, but only if they are contained
in some variable already present in ;. For example,

pa = vn {0, BEO))

is an extension of ¢; = vn.{f(/,} since

p2 = o1 | {59}

Reciprocally, the third part says that we can restrict (; to a subset of the
exported terms, while preserving independence. Moreover, we can restrict
some free names of (1, provided that they are not free in ¢/, and still preserve
independence.

Reasoning about hash functions

One-way hash functions are commonly used in RFID protocols. Indeed, the
protocols from the literature analysed later on in Section 5.3.3 use solely hash
functions as cryptographic primitives. In this section we give some results
concerning the independence of frames using hash functions.

In the applied pi calculus, a hash function is typically modelled by a unary
function symbol, e.g. h with no equational axioms. Still, hash functions can
be combined with other cryptographic primitives with their own axioms. So
we might want to use an equational theory with an arbitrary set of axioms,
the only condition being that they should not contain h. To provide generic
results about hash functions, we should find properties that hold under any
such theory. Seeking even more generality, we can pose the question of what
it means for the function symbol h to be a hash function in an arbitrary equa-
tional theory =g, independently from how =y is generated. We begin by
giving a definition of hash function that we use later on in proofs.

We fix an equational theory =g containing a unary function h. We also as-
sume the typical function symbols pair, fst, snd for creating and decompos-
ing pairs, with the usual axioms fst(pair(z, y)) =g z, snd(pair(z,y)) =g y.
Since pairs are used extensively, we simplify the notation by writing (z, y)
instead of pair(x,y), and h(z, y) instead of h(pair(z,y)).

Let M, K, L be terms. We define M [“/,] as the term obtained from
M by substituting L for all subterms of the form h(K”) with K =g K’. More

80 SINGLE-STEP PROTOCOLS

precisely, M["/n(=K)) is recursively defined as

) ==
[w=r)] =7
£(M)[*/n—r)] = F(M["/nx))), f #h
ifM=—pK
h(M /h(o :{ L/h if M #r K

Note that this is different from M [“/px)] which replaces only exact occur-
rences of h(K).

DEFINITION 5.3.2. We say that a unary function h is a one-way hash function
with respect to =g, if and only if

K=gL = K["/u=m]=¢eL["/n=m)
for all terms K, L, M and variables z.

The idea behind this definition is that h()/) can appear in an equation
K =g L only as a “generic term”. The equation should not depend on the fact
that h(M) is a hash value. Thus, we require that replacing all occurrences
of h(M) by a variable = gives us an equation that is still valid in =g. For
example, assuming that h is a hash function, the equation

dec(enc(h(n), k), k) = h(n)
is allowed, provided that
dec(enc(z, k), k) =gz
holds in general. On the other hand, the equation

g(h(m)) =m

violates Definition 5.3.2 for g unless it is the constant function g(x) =g m.
The following lemma shows that our definition of hash function behaves
as expected.

LEMMA 5.3.2. Let h be a hash function (Definition 5.3.2) and assume that
=g does not equate all terms. Then

1. h s collision-free, that is h(M) =g h(N) = M =g N.

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 81

2. If h(M) =g N then there exists h(N') I N s.t. N' =g M.

3. There is no function that inverts h, i.e. there is no function invh such
that invh(h(z)) =g x.

4. There is no function that checks whether a value is a hash value, i.e.

checkh(M) =g ok if and only if M =g h(M").
PROOF.

1. Assume h(M)=gh(N)and M #g N. Then by Definition 5.3.2 we get
h(M)[x/h(:M)] =E h(N) [:r/h(:M)} thus I =g h(NI> where
N'=g N[*/n(=np]. Finally by substituting h(NN') we get x =g y which
is a contradiction.

2. If no such term exists then by substituting h(M) we get z =g N which
implies z =g y.

3. Such equation would imply that invh(z) =g x which again implies

4. Such equation would imply that checkh(y) =g ok for all y, not just
those of the form h(z), therefore it would not correspond to a test for
hash functions.

]

Definition 5.3.2 can be seen as a generalisation of the traditional definition
of hash functions (a function symbol with no axioms) to arbitrary equational
theories. It should be noted that Definition 5.3.2 is too strong, forbidding
some equations that do hold for real hash functions. For example, if g is a
hash function, then h(xz) = g(g(z)) is also a hash function, yet the above
equation violates Definition 5.3.2. This problem, however, is also true for the
traditional definition of hash functions, and can be circumvented by dropping
h completely and always using g(g(M)) in place of h(M).

We now introduce the concept of derivability of a term, which is used in
the following theorem and propositions.

DEFINITION 5.3.3. Let @ be a frame in canonical form. The term M is deriv-
able from @ if and only if M =g M’ for some M’ such that fn(M')Nbn(p) =
0.

82 SINGLE-STEP PROTOCOLS

This definition says that a term M is derivable from a frame when the
application of the frame to some term M’, which does not contain free names
that are bound in the frame, gives a term that is equivalent to M. In other
words, M is derivable from a frame when the latter contains the knowledge
needed to build M from another term.

We are now ready to state results concerning the derivability of terms
containing hash functions.

THEOREM 5.3.3. Let vn.p be a frame. If h is a hash function, h(M) is not
derivable from vn.p, and h(M) =< p(y) for all y € dom(p), then

vi(o | {0 &, vine | vr{"/s}

Intuitively, if a frame does not allow to derive some hash value, then it will
look as a random value when put in parallel to such frame, i.e. an attacker sees
no difference between a random value and the hash {#*)/}.

PROOF. Let

o o1 =vn.(p | ¢1)
Yo =vr{"/.} 2 = vn.(¢ | ¢2)

To prove the theorem, we first need to show that K¢, =g Ly & Ko =g Ly
(1.) and Ko =g Lys < Kp =g Ly (2.).

(1. <) and (2. <) are trivial. For (1. <) we have that Ky =g Ly,
is Ky =g Ly after a specific variable is bound (similarly for (2. <)). The
restrictions vn may be added using structural equivalence. To prove (1. =)
and (2. =) we first demonstrate two properties. The first is

Ko [/newn) = Ko VK with {7} nfn(K)=0. (5.1)

In other words, the only terms with form h(= M) in K1), are those substi-
tuted for = by ;. We assume that M has no subterm h(M’) s.t. M' =g M,
that is

M[*/n=m)] = M. (5.2)

Otherwise we can replace the term h(/) in the Theorem by the smallest such
subterm h(M/’), i.e. a term that is the hash of some term A/’ which does not
contain any subterm h(= M’). The proof is by structural induction on K.

e Case K = z: we have Ky =z, Koy, = h(M).

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 83

e Case K =y € dom(y): we have K = p(y), and (5.1) follows from
the fact that h(M) =< ¢(y) (hypothesis).

e Cases K = z ¢ dom(y), K =n, K = f(K'),f # h: trivial.

o Case K = h(K') with K'oyy #g M: we have that Ko [%/n=nn)]
= h(K'¢1["/n=m)]) and the result follows from the induction hy-
pothesis.

e Case K = h(K') with K’y =g M: we show that this case is impossi-
ble. We have that K’ o)1 [*/n=r)] =g M [*/n(=1r)] and from the induc-
tion hypothesis and (5.2) we get K'@o=gM and hence
Ko=gh(M). Since fn(K) N {n} = (this means that h(M) is deriv-
able from ¢ which is a contradiction.

Let K, L be terms such that {7,7} N (fn(K) U fn(L)) = 0. Assuming
K, =g Ly, we can use the definition of hash function (Definition 5.3.2)
to obtain K1 [*/n=m)) =g L@1[/n=r]. By (5.1) and (1. <) we can con-
clude that Ko, =g Ly, <& K¢ =g Ly, which is (1.). The second property
is

Koo, = Ko VK with {r} N fn(K) = 0", (5.3)

It follows from the assumption that ¢ fn(y) and the fact that =g is closed
under substitution of variables for names. It states that the application of a
substitution [*/,] to Kpis[*/,] does not affect K'¢. By (5.3) and (2. <) we
can conclude that Ky =g Lys & K¢ =g Ly, which is (2.). From (1.) and
(2.) we obtain

Kopi=gLpy & Ke=glLly <& Kpy=gLps.

Hence, we have that K¢, =g L1 & Kps =g L. By definition of static
equivalence we can conclude that

v (o | {"/2}) = vt [vr{'/a}.

]

Using this theorem we can show that, under certain assumptions, the in-
dependence of two frames is preserved when we extend them by adding a
substitution containing a hash, as stated by the following proposition.

84 SINGLE-STEP PROTOCOLS

PROPOSITION 5.3.4. Let 1, o be frames such that ¢1 1z . Assume
that h is a hash function, h(M) is not derivable from vs.(¢1 | p2), and
h(M) =#< p1(x1), h(M) =< @o(xs) for all x1 € dom(ypy), x2 € dom(ps).
Then

o1 Lo [{"0} and o [{MM)0} Ly g

PROOF. Since h(M) is not derivable from vs.(¢1 | 2) it is easy to see that
it is not derivable from vs.¢, either. By applying Theorem 5.3.3 once for
vs.(¢1 | p2) and once for vs.¢, we get

vs.(¢1 | w2 | {h(M)/I}) ~vS.(¢1 | w2) | vrd"/ .} Theorem 5.3.3
s vS.p1 | VS | vr "/} 01 Lz o9
~ U3 | V3 (pg | {P®)/.Y) Theorem 5.3.3

which means that ¢, Lz ¢, | {P*/,).
The fact that o, | {PM)/.} 15 @, follows directly by symmetry of L . [

The next proposition states that a hashed term is derivable from a frame
only when the term itself is.

PROPOSITION 5.3.5. Let ¢ be a frame and h a hash function. Assume that
h(M) =#< p(y) for all y € dom(p). Then h(M) is derivable from ¢ if and
only if M is derivable from .

PROOF. The if direction is trivial. For the only if direction, assume that
K¢ =g h(M) for some K such that fn(K)Nbn(p) = (. From Lemma 5.3.2,
we get that there exists h(/V) < K¢ such that N =g M. From the hypothe-
sis we have that h(N) =< p(y) for all y € dom(y), so the h of h(/N) must
come from K. That is, there must exist some h(K”’) < K such that K’ =g N.
Since K’ <1 K we have fn(K’) N'bn(y) = 0, and since K’ =g N =g M we
conclude that M is derivable from (. [

We conclude this section by introducing the next proposition. The intu-
ition behind it is that the knowledge of a hash h(M) does not contribute to
derive a term NV, unless it contains the hash.

PROPOSITION 5.3.6. Let o = vn.(¢' | {P™M)/.}) be a frame, let h be a
hash function and N a closed term. Assume that h(M) =< p(y) for all y €
dom(yp), and h(M)=<Q N. Then N is derivable from p if and only if it is
derivable from vn.y'.

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 85

PROOF. The if direction is trivial. For the only if direction, assume that
K¢ =g N for some K such that fn(K) Nbn(yp) = 0.

It is easy to see that if h(M) itself is derivable from v7.¢’ then, intuitively,
we can first derive h(M) from vn.¢' alone, and then use it to derive N. More
concretely, assume that Ly’ =g h(M) for some L such that fn(L)Nbn(¢') =
(. Then, by setting K’ = K[%/,], we have

K'¢ = K['/.)¢' = KoM/, =e K¢'[M),] = Ko=p N

which means that N is derivable from vn.y'.

If h(M) is not derivable from vn.y’, then we can apply Theorem 5.3.3
for vn.¢" and h(M), from which we get that p ~,vn.¢’ | vr.{"/,}. Note
that N = N since N is closed. Picking an r not occurring in K, N, from
Ky =g N and the definition of ~ we get that K["/,]¢' =g N["/.]¢' = N,
which means that NV is derivable from vn.¢’ (using K’ = K[/,]). N

We use these results in Section 5.3.3 to prove privacy properties for single-
step protocols.

5.3.2 Conditions

Not all the single-step protocols satisfy unlinkability, forward and backward
privacy. To understand which conditions need to be satisfied in order to guar-
antee these properties, we identify the possible causes of privacy violations in
a single-step protocol. We start with the notion of unlinkability. This property
is clearly violated when the attacker can distinguish between the ¢-th and j-th
sessions of a tag, thus infer some information about a tag session number.
Consider, for instance, the extreme case where the output of a tag i-th session
is O;(U"1(Sy)) = i. Suppose that Sy is a number, U(z) =z + 1,0(z) = .
Hence, a tag always outputs the sum of its state Sy and its session number. The
attacker can simply run some sessions on ¢; and ¢, to violate our definition
of unlinkability. If the interfaces correspond to the same tag, a session run c;
affects the outputs on ¢, and vice versa. For instance, if the attacker observes
the output sequence (1, 2, 3), after querying c;, ¢; and ¢y, respectively, he can
infer that the interfaces are linked, otherwise the output sequence would have
been (1,2,2).

To improve the readability we define z: M = {*/,}. Then, we define the
property Pg; (session indistinguishability property) as

DEFINITION 5.3.4. A single-step protocol satisfies Pg; if and only if
V8, pn-2:O0n (U H(S0)) R 8, pro-: O (U™ 1(Sp)) Vn,m € NT,

86 SINGLE-STEP PROTOCOLS

‘Psr prevents the simple attack discussed above by forcing outputs coming
from different sessions to look identical. However, it does not imply unlinka-
bility. For instance, consider another extreme case where the tag output con-
tains only the tag secret, i.e. O;(U"1(Sy)) = s, e.g. with Sy(y) = y,0(z) =
U(x) = z. This protocol satisfies Pg; since the output does not depend on
the session number i. However, unlinkability is clearly violated, because the
tag secret is sent in cleartext. The attacker can easily violate our definition
of unlinkability by querying the interfaces c¢; and c,, obtaining two messages
and testing them for equivalence. If the interfaces are linked, the messages
are identical, since each tag secret is unique. Protecting the secret with a
hash, i.e. O;(U"1(Sp)) = h(s) does not help either. Running two sessions
on cy, co Will give two different hashes in the case of independent interfaces
and the same hash twice if the interfaces are linked. Thus, the two cases are
again distinguishable. Unlinkability is violated in these examples because the
output of every session remains the same. However, imposing a variable out-
put would not suffice to imply unlinkability. Consider a single-step protocol
sending a message O;(U""!(Sp)) = h'(s). Running two sessions on ¢; and ¢y
will give (27 = h(sy),z2 = h(sy)) in the case of two independent interfaces
and (z; = h(s),zo = h%(s)) in the case of linked interfaces. Although in
both cases the outputs are different, by checking whether h(z;) = x5 holds,
the attacker can once again distinguish them.

The common problem behind these attacks is that the output of two dif-
ferent sessions can be linked through the use of the common name s. The
solution lies precisely in the notion of frame independence, which brings us
to the definition of the property Po; (output independence property).

DEFINITION 5.3.5. A single-step protocol satisfies Poy if and only if
Hmz (U7YS0)) Lap, Tn:0,(U™(S)) Vn € NT.

Intultlvely, Por requires the tag output of the first n — 1 sessions to be
independent from the output of the n-th session, with respect to the tag secret s
and the names p,,. Hence, it requires n outputs of a tag to be indistinguishable
from n — 1 outputs of a tag and an output of a different tag.

Note that Ps; and Pp; are incomparable. In the first extreme case,
O;(U=Y(Sy)) = 1, the attacker exploits a dependency on i and the protocol
satisfies Po; but not Pg;. Instead, in the second extreme case, O; (U (Sy)) =
s, the attacker exploits a dependency on s and the protocol satisfies Pg; but
not Pp;. To obtain unlinkability for single-step protocols we need both the
properties Pg; and Py, to hold.

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 87

THEOREM 5.3.7. A single-step protocol satisfies unlinkability if and only if it
satisfies both Ps; and Poj.

The proof of Theorem 5.3.7 can be found in Appendix A.S.

For the stronger properties of forward and backward privacy we have to
take into account a stronger attacker. In the definition of forward privacy we
assume that the attacker can reveal the state of a tag. His goal is to link a
tag state to its previous outputs. The properties Pg; and Pp; do not suffice
to guarantee forward privacy. A new property Pr; (forward output indepen-
dence property) is needed to ensure that a tag state (and not just its output) is
independent from all its previous sessions.

DEFINITION 5.3.6. A single-step protocol satisfies Pr; if and only if
Ila% (UTHS0)) Lo, Tn:UY(Sy) Vn € N*,

The property Pr; is similar to Po;, but requires the first n — 1 outputs
to be independent from the n-th tag state rather than the n-th output. Py is
strictly stronger than Pp;.

PROPOSITION 5.3.8. For all single-step protocols, property Prr implies Poj.

PROOF. P requires the first n — 1 outputs to be independent from the n-th
state content, while Py requires their independence from the n-th output. In-
tuitively, when the attacker knows the n-th state of a tag, he can derive its next
output by applying O, to its state U™~ 1(.Sy). Since the only occurrences of the
secret s in the n-th output O,,(U™*(.Sy)) are in the tag state U™ (.S), it can-
not introduce a dependency on s, because the tag state is already independent
from the first n — 1 outputs by hypothesis.
Formally, when Pr; holds, we have that

[T i Of(U(S)) L, y:U™(Sy) Vn € NT.

We extend the right-hand side with x,, : O, (y) (note that s ¢ O,(y)) and we
restrict y to obtain

15 i 0i(U 1 (S0)) Lo, vy-(y:U" 1 (S0) | 20:0uly)) Vn € N
which due to structural equivalence and by Proposition 5.3.1 is equivalent to
[T 2:0;(U(So)) Ly, n:O0n(U"1(Sp)) Vn € N*
which is Po;. O

88 SINGLE-STEP PROTOCOLS

Psr and Pp; together are necessary and sufficient conditions for forward
privacy, as stated by the theorem below.

THEOREM 5.3.9 (Forward privacy for single-step protocols). A single-step
protocol satisfies forward privacy (Definition 4.3.1) if and only if it satisfies
7)3 I and PF I

The proof of Theorem 5.3.9 can be found in Appendix A.6 and it is simi-
lar to the one for unlinkability. Note that Theorem 5.3.9 and Proposition 5.3.8
imply that forward privacy is stronger than unlinkability for single-step pro-
tocols, as already stated in Proposition 4.3.1.

Symmetrically to forward privacy, backward privacy is guaranteed by a
protocol when an attacker cannot link the internal state of a tag to its future
sessions. We need to assume that, after the attacker has tampered with a tag,
the tag executes a legitimate run that the attacker cannot eavesdropped. If this
run suffices to successfully update the internal state in a way that it cannot
be inferred by the attacker, then the protocol guarantees backward privacy.
Hence, we need to express the fact that the internal state and all the previous
sessions are independent from the protocol sessions executed after the restore
session. This leads us to define property Ppg; (backward output independence

property).

DEFINITION 5.3.7. A single-step protocol satisfies Pp; if and only if

sz OU™(0)) | y:U"(S0) spmez O0AU™(5y)
Vd,n,m€N+:d+1<n§m.

‘Ppr requires the internal state of a tag (i.e. the state at the d-th run, con-
tained in variable y) and all its output before the restore session (the n — 1-st
session of the tag) to be independent from its outputs after the restore session.
It implies Po;, confirming that backward privacy is stronger than unlinkabil-
ity, as expected by Proposition 4.4.1.

PROPOSITION 5.3.10. For all single-step protocols, property Pg; implies
Por.

PROOF. Pp; requires the outputs of a tag after n — 1 runs to be indepen-
dent from its previous outputs and state content. Instead, Po; requires the
independence of the first n — 1-st outputs from the n-th output. Intuitively,

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 89

the left-hand side of the independence formula of Pp; differs from the one

of Po; for the variable y, which is bound to a tag state in Pp; and does not

appear in Py, where instead there is the n — 1-st output of such tag. Also,

the right-hand side of Pp; contains one output only (the n-th), while in Pp;

we can have an arbitrary number of tag outputs (from the n-th to the m-th).
Formally, assuming Pp; we have

[T Oi(U1(S0) [9: U (S0) Lo [Timpi: Oi(U(S0))
Vd,n,meN":d+1<n<m.

We extend the left hand side with the output z,, 1 : O, (U""%*(y)) and
restrict the variable y. We also restrict the variables z,,, 1, . . ., x,,, on the right-
hand side. By Proposition 5.3.1 and structural equivalence we obtain that

[Tz 0:(U 1 (S0)) | vy (y: U (S0) | 212 0na (U™ (1)) Lo
VEnit, s T] Ley @it Oi(UH(Sy)) Vd,n,meNt:d+1<n<m

that corresponds to
[12 2 O((UY(So)) Loz, 20 0n(U"H(S,)) Vn € NF
which is Po;. O

The properties Ps; and Pp; are necessary and sufficient conditions for
backward privacy, as stated by the theorem below.

THEOREM 5.3.11. A single-step protocol satisfies backward privacy (Defini-
tion 4.4.1) if and only if it satisfies Ps; and Pgj.

The proof of Theorem 5.3.11 can be found in Appendix A.7.

The advantage of having simple conditions to prove properties with re-
spect to the general definitions of Section 4.1 is that they are easier to verify.
These conditions involve only static equivalences between messages and not
the full dynamics of the protocol. In the next section we use these conditions
to verify some protocols from the literature, manually in the general case and
automatically for a bounded number of sessions. This task is much more
challenging using the general definitions of Section 4.1.

90 SINGLE-STEP PROTOCOLS

5.3.3 Examples

In this section we apply the results of Section 5.3.2 to protocols from the liter-
ature. We study the OSK protocol [33] in more detail. We also discuss some
variations of the protocol, where we modify some of its aspects to examine
how privacy is affected. Then we analyse a basic hash protocol of [41], which
falls in the same class even though it is quite different in nature from the OSK
protocol. Finally, we study a simplified version of a protocol proposed in [29].

The OSK protocol

Tags running the OSK protocol [33] (see Figure 4.1 in Section 4.1) can com-
pute two distinct hash functions g and h. The state of each tag is initialised
with a randomly generated secret, which is also known to the backend. Dur-
ing each run, the tag computes the hash g of its current state and sends it to
the reader. Then it computes the hash h of its current state and updates the
state with the result. The output of the i-th run of a tag is g(h*~!(s)), where s
is the initial secret. The backend knows the secret of all the tags. It can thus
compute g(h*~!(s)) for all the secrets to identify the tag. For efficiency, the
backend can precompute the expected output for the next run of all the tags
and perform a fast search. Once the tag is identified, its expected output can
be updated.

The OSK protocol can be modelled as a single-step protocol (Defini-
tion 5.1.1) with

So(y)
0

y O(z) = g(z)
€

This protocol guarantees forward privacy [33]. To prove this, we only need to
show that the OSK protocol satisfies the properties Ps; and Ppy.

PROPOSITION 5.3.12. The OSK protocol satisfies properties Psr, Pri, namely

Psr1 vs.w:gh" (s)) ~yvsa:g(h™ 1(s)) Vn,m e Nt
Per [wig(hi='(s)) Ly z,:h"7Y(s) Vn e N*

PROOF. The frames in Pg; contain hashes of the secret. From Theorem 5.3.3
we know that both these frames corresponds exactly to vr.xz : r. Therefore,
they are statically equivalent, i.e. an observer who does not know the secret s
sees two values that look random.

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 91

The challenging part of the proof is showing that Pr; holds. We have to
show the independence of the current state of a tag from the previous out-
puts. We use Proposition 5.3.4 to prove this condition. We choose ¢ =
[175 2 - g(h"~'(s)) and @, = @), which are trivially independent with re-
spect to the secret s. We want to extend the frame o with the hash h"~!(s)
while preserving its independence from ¢;. The functions h and g are as-
sumed to be one-way hash functions. The hash h"~!(s) is not derivable from
vs.(p1 | p2) because the hash functions are not reversible. Also, it is easy
to see that for i < n — 1, h"~!(s) is not a subterm of () (its domain is
empty) or of ¢, (z) = g(h*"!(s)), which follows from the fact that a subterm
of g(h*~!(s)) contains at most n — 2 occurrences of h. Hence, we can directly
apply Proposition 5.3.4 obtaining 1 L, ¢ | h"~1(s), which is Pg;. O

By Theorem 5.3.9 we can conclude that the OSK protocol satisfies for-
ward privacy (and, as a consequence, also unlinkability).

Proof mechanisation. Static equivalence between applied pi calculus pro-
cesses can be proven automatically in many cases using the tool ProVerif [8].
Proving Pg; and Ppg; involves proving an infinite number of static equiv-
alences. For Pg; we can overcome this problem by constructing a pair of
dynamic processes that can produce all the pairs of messages, and then use
ProVerif to prove all the static equivalences at once. The ProVerif code can be
found in Appendix B.1. This is not possible for Pp;, Pr; and Pp;. Still, each
one of their static equivalences can be proven automatically by ProVerif (see
Appendix B.2). Proving these equivalences up to a fixed n corresponds to
proving the privacy properties up to a fixed number of tag sessions. We used
ProVerif successfully to prove these equivalences for up to 1000 sessions,
which only took a few minutes of computation.

ProVerif is capable of automatically proving observational equivalence
[9], but this capability is limited to very simple cases where the processes to
test are almost identical. Equivalences like the ones of our general defini-
tions of unlinkability, forward and backward privacy (Definitions 4.2.1, 4.3.1
and 4.4.1) are currently beyond the capabilities of the tool. Also our condi-
tions for unlinkability, forward and backward privacy do not result in a com-
plete mechanisation for the single-step protocols. Still, it can be argued that
extending ProVerif (or building new techniques) to deal with conditions Py,
Prr and Ppg; should be easier than to deal with Definitions 4.2.1, 4.3.1 and
4.4.1. Moreover, ProVerif translates applied pi calculus processes into horn
clauses which effectively causes them to be replicated. Thus, there is no direct

92 SINGLE-STEP PROTOCOLS

way of using ProVerif to prove our general definitions of unlinkability even
for a bounded number of sessions (which we achieved for the single-step pro-
tocols). Even though no complete mechanisation has been achieved, the use
of the conditions rather than the general definitions allowed us to manually
prove forward privacy for OSK for an unbounded number of sessions and the
proof was greatly simplified.

Weak OSK protocol

Here we examine the effects of relaxing the conditions on the hash functions
h and g of the OSK protocol. First, we consider the case where h is not one-
way, that is there exists a function invh and an equation invh(h(z)) =g z.
This violates forward privacy since the attacker can compute s from h"(s) (the
state of the tag that the attacker tampered with), which can be then used to link
past sessions to the tag. Indeed, Proposition 5.3.4 cannot be applied to h™(s)
since h is not a hash function as defined by Definition 5.3.2. Property Py is
violated. On the other hand, even if h(z) is an invertible but non-repeating
function (h'(x) # hi(z) for i # j), e.g. h(z) = = + 1, then property Por is
still satisfied as

[T5 wig(h(s)) L z,:g(h"(s)).

This follows again from Proposition 5.3.4. By Theorem 5.3.7 we can con-
clude that the protocol satisfies unlinkability.

On the other hand, if the inverse of g exists, then both unlinkability and
forward privacy are violated. In this case, given two outputs g(h’(s)) and
g(h’(s)) with i < j, the attacker can easily infer whether they belong to the
same tag. He can extract h’(s) and h’(s) from the outputs. Then, since h is
a public hash function, he can apply it (j — ¢) times to the first value. If the
resulting value coincides with the output g(h’(s)), the attacker can conclude
that the outputs belong to the same tag. Hence, both properties Po; and Py
are violated (even though Pg; is still satisfied).

BP protocol: a variation of the protocol in [29]

The OSK protocol does not guarantee backward privacy. Once the attacker
obtains the secret of a tag he can calculate all the next outputs because they
only depend on the secret. To achieve backward privacy this protocol should
be strengthened so that a tag state is updated in a way that looks random to the
attacker when he misses one session. Hence, we propose here the BP protocol

5.3 PRIVACY PROPERTIES FOR SINGLE-STEP PROTOCOLS 93

(Backward Privacy protocol) inspired by the protocol proposed in [29], with

So(y) =y O(z) = (g(x),7)
p=Tr U(z) = h(z,r)

In the BP protocol the tag generates a random number 7 and sends it to the
reader together with the hash (g) of the current state. Both the tag and the
reader update the secret with the hash (h) of the secret and the random num-
ber. Intuitively, if the attacker misses one session, he also misses the random
number sent during that session that is needed for calculating the next secret.
He therefore cannot link the future sessions of a tag to its state. Proving back-
ward privacy for the BP protocol is equivalent to proving the properties Pg;
and Pp;. We use r; for the random number sent in the i-th session and we
define h™!(s) as h(s, ry) for n = 0 and h(h?(s),7,.1) for n > 0.

PROPOSITION 5.3.13. The BP protocol satisfies properties Psr, Pgr, namely

Psr s, Fa:(gh? 1 (s), rn 1)) ~svs, Fa: (g(h™ 1 (s), rm_1))
Vn,m € N*

Por 12 7 (g(hiv1(s)),m) | y:hé Y (s) Lo,
[T,z (gh7(s)),m) Vd,n,meNT:d+1<n<m

PROOF. By Theorem 5.3.3 we have that vs, 7.z : (g(h? !(s),r,_1)) and
vs,7.x : (g(h™1(s),r,_1)) are both equivalent to vs,r*.x : r*, therefore
they are equivalent to each other by transitivity (Ps;). For Pg; we repeatedly
use Proposition 5.3.4 first with ¢; = [[7- 2, : (g(hi'(s)),7:) | y:h1(s)
and o = [[X, v; : r;. These frames are trivially independent with respect
to the secret s and the random values r; because 7 only contains the ran-
dom values 7y, ...,7,_o and (p, only contains r,, ..., r, and does not con-
tain s. We take g as the hash function and h]'(s) as the term A/. The term
g(h?1(s)) = g(h}*(s),r,_1) is not derivable from vs, 71, ..., 7'm.(01 | 2)
because the latter does not contain r,,_;. Also, this term (g(h”~!(s))) is not
equivalent to a subterm of terms in (; or ¢s. Therefore we can apply propo-
sition 5.3.4 obtaining

[T e (g (),m) [y (s) Lo
zn(g(hy(9) | TTS, yiiri Vd,n,m e Nt :d+1<n<m.

Note that (as g is a hash function) having g(h’(s)) does not help in deriving
g(hi(s)) (j > 4). In fact, by Theorem 5.3.3 we know that x: g(h’(s)) equates

94 SINGLE-STEP PROTOCOLS

to x:vr.{"/,} (anonce) which clearly gives no information to build g(h’(s)).
Therefore we can use the same reasoning to add substitutions to the right-hand
side of the independence and obtain

[T (g(hy () 73) |y () Lo
H:inzl(g(h:il(s))) | H?inyz’f’z Vahn,m € NJF : d+ I<n S m

We now have g(h’~!(s)) and r; on the right-hand side, but we need g(h’ ™! (s),
r;). We extend the right-hand side with J]" . ;: (z,y:) as the conditions
for Proposition 5.3.4 are trivially satisfied. Then, we can restrict all the y; and

z; using structural equivalence and we get

[l (ghi=t(5)),7:) [y: 0= (s) Lopm
[[Z,2::(g(hi'(s)),m) Vd,n,meNFt:d+1<n<m

which is Pg;. O

By Theorem 5.3.11 we can conclude that the BP protocol satisfies back-
ward privacy (and, as a consequence, also unlinkability by Proposition 5.3.10).

Basic hash protocol of [41]

The basic hash protocol of [41] uses a random number generator and a hash
function h. The state of each tag is initialised with a randomly generated
secret, known to the backend, which is never updated. Instead, a tag generates
a fresh nonce r and computes the hash h(s,) of its secret together with 7.
Finally it outputs the pair (r, h(s,r)). The backend computes h(s,r) for all
the known tags and compares it with the given value to identify the tag.

This basic hash protocol differs from the other protocols described in this
section in that it never updates the tag state. We can model it as a single-step
protocol (Definition 5.1.1) with

So=s O(z) = (r;h(z, 7))
p=r Ulx)==x
We use r; for the random number sent during the i-th session. Therefore, we
can prove unlinkability by proving the properties Ps; and Po;.

PROPOSITION 5.3.14. The basic hash protocol satisfies properties Psy, Por,
namely

Psr vswr.w:(r,h(s,r)) ~,vs.wr.a: (r,h(s, 7))

Por H?;llxi:(ri,h(s,ri)) Lsryoon Tn:(ri,h(s,r;))Vn € NT

5.4 CONCLUSIONS 95

PROOF. Pg; follows trivially from reflexivity of ~.

For Por we want to prove the independence of a tag output from its pre-
vious ones. Let 7, ..., r, be distinct names, p; = H:.L;llxi :(ri, h(s,r;)) and
Y2 = Yn Ty Since h(s, r,) cannot be derived from vs, 71, ..., 7,.(1 | p2) (s
is secret) and is not a subterm of terms contained in (; or ¢s, we can directly
apply Proposition 5.3.4 to obtain ¢y L, . .. 2 | h(s,r,) thatis

H?:_llxi : (Ti7 h(87 TZ)) is,'r'l Tn Yn'Tn | Zn - h(37 Tn)-

We now have h(s, r,,) and r,, in the right-hand side of the independence, but
we need (r,, h(s,r,)). Using Proposition 5.3.1 (2.) and (3.) we extend the
right-hand side with x,, : (y,, 2,,) and we restrict y,, and z,,. Thus we get

H?;11$i: (Ti,h(S,’f’i)) J—s,rl Tn M (Tn,h(S,T‘n))

which is Ppoj.
Thus, by Theorem 5.3.7, we conclude that the protocol satisfies unlinka-
bility. [

Similarly to the OSK protocol, each one of the infinite equivalences of
Por can be proven by ProVerif (see Appendix B.3). We can thus have an
automated proof of unlinkability for any bounded number of sessions.

Forward and backward privacy are violated. If the attacker obtains s by
tampering with a tag, he can link it to any previous and future session by
hashing the secret with the random numbers sent by the tags. Indeed, Ppr;
and Pp; are not satisfied.

5.4 Conclusions

In this chapter we study the class of the single-step protocols. First, we show
how our abstract model in the epistemic logic can be instantiated to a con-
crete model, in particular to the one in the applied pi calculus of Arapinis et
al. [3]. Then, we demonstrate that all the privacy properties defined in Chap-
ter 3 coincide for the class of single-step protocols. Also, we identify the
conditions that must hold for a single-step protocol in order to guarantee un-
linkability, forward or backward privacy in the RFID model that we presented
in Chapter 4. Finally, we study some protocols from the literature and prove
when they satisfy the privacy properties described in Chapter 4 and prove it
by showing that they satisfy the conditions presented in this chapter.

96

SINGLE-STEP PROTOCOLS

6

CONCLUSIONS

In this thesis we study RFID systems, a technology that raised a number of
concerns and introduced new challenges in the last few years. The mobile na-
ture of RFID systems and the limited capabilities of tags are the main factors
that make it difficult to protect user privacy. In fact, the wireless communi-
cation simplifies eavesdropping protocol sessions, while the impossibility to
use full-fledged cryptographic algorithms makes it unfeasible to use most of
the existing protocols. These features cause RFID protocols to be subject to
a range of attacks that differ from privacy threats in other systems. These at-
tacks do not aim at disclosing private information stored in the user devices,
as tags do not usually store valuable data, but rather at linking sessions run
by the same user in order to trace the movements of a specific tag and gain
sensitive information about the person or the object carrying the tag.

The main goal of this thesis is to propose a formal framework in which
we can define privacy properties, describe identification protocols and verify
whether they guarantee these properties. Our main challenge is to formally
demonstrate whether an RFID protocol guarantees privacy properties such
as unlinkability, forward and backward privacy. Accordingly, the research
questions of this thesis (see Section 1.3) are:

e How can we define a unifying framework to model and compare differ-
ent privacy definitions?

e How can we implement a model in which we can verify whether a pro-
tocol guarantees unlinkability and its related notions?

A framework that responds to the first research question is required to be gen-
eral and abstract, so that it can capture properties defined in other models, and
also allow their formal comparison. To satisfy this requirement, we present a

98 CONCLUSIONS

model in the epistemic logic in Chapter 3. Our model is kept general by not
instantiating the elements it is composed of. By abstracting away from the
technical details of concrete models, we can capture the intuition behind the
corresponding definitions and compare them in a unifying framework. We
demonstrate that these definitions provide different privacy guarantees and
study these differences. Hence, we study the conditions under which the def-
initions coincide. Such conditions, in our opinion, are satisfied by a large
number of identification systems. By also capturing different notions of for-
ward and backward privacy we provide a complete study of the most relevant
privacy definitions in the context of RFID systems. Moreover, in Chapter 5
we show, as an example, how to instantiate our abstract model into a concrete
one, in particular the one of Arapinis et al. [3]. To instantiate our model, we
only need to select a concrete model and use its definitions of the attacker’s
abilities and the equivalence relation between traces as instances of our ab-
stract definitions. By using the concrete model presented in [3], we can prove
that all the notions of unlinkability discussed in Chapter 3 coincide for the
class of single-step protocols in this specific setting.
To answer the second research question, we take the following actions:

(1) we fully clarify which verifiable conditions must hold for a protocol
in order to satisfy the notions of unlinkability, forward and backward
privacy;

(2) we define an intuitive model, tailored to RFID systems, that allows to:

(a) specify protocol descriptions;
(b) specify privacy properties;

(c) formally (and automatically) verify whether a protocol guarantees
the properties.

The answer to the first research question provides us with an overview of the
existing definitions and corresponding privacy guarantees that they imply, sat-
isfying (1). We express the strongest privacy properties of our abstract model
in the syntax of our concrete RFID model. This model, described in Chap-
ter 4, is based on the applied pi calculus, that provides mechanisms to describe
protocols and specify cryptographic primitives through an equational theory.
However, since one of our goals is to specifically model RFID systems, the
description of a protocol must follow some rules. We modelled the system
as an infinite amount of tags running in parallel with readers and a backend

99

system. Each tag process is composed of an initialisation phase and an un-
bounded number of protocol sessions (2a). The initialisation phase is needed
to capture the fact that tags have a state, therefore we use it to store data in the
tag memory including its initial unique secret, which we use in our privacy
definitions. In fact, our RFID model defines unlinkability, forward and back-
ward privacy (2b) by requiring that sessions executed by one tag (using the
same initial secret) are indistinguishable from sessions executed by different
tags (having therefore different initial tag secrets). These privacy definitions
use the concept of observational equivalence, that cannot be verified by auto-
matic tools because they are not satisfactorily able to handle it yet. Hence, in
Chapter 5, we show that our definitions can be reduced to checking simpler
conditions for a class of protocols. Each of these conditions can be verified by
the tool ProVerif for a bounded number of sessions. We also formally prove
by hand that such conditions are satisfied by some protocols for an unbounded
number of sessions, as required by (2c).

Several works in the literature aim at comparing existing privacy defi-
nitions, thus sharing our goal of analysing definitions in an abstract frame-
work as we do in Chapter 3. For example, [37, 26, 25, 17, 21] follow a logic
approach to study and compare privacy properties. However, none of these
works investigates unlinkability. Instead, they focus on other privacy proper-
ties, e.g. anonymity. Although the concept of unlinkability has been widely
studied, its several definitions in the literature have never been formally com-
pared. As far as we know, only [35] attempted to clarify the meaning of un-
linkability (and other privacy notions), but only at an informal level. Hence,
with respect to existing works, the benefits of our first contribution, namely
our abstract model, are two-fold. First, by formalising existing definitions of
unlinkability in a unifying framework, we clarify exactly which privacy guar-
antees are offered by such definitions. Second, we extend the model to study
other privacy notions such as inseparability, forward and backward privacy.

The second contribution of this thesis is an RFID model where it is pos-
sible to describe protocols and to define and verify privacy properties. The
literature on this topic includes several works, both in a computational set-
ting [18, 27, 33, 4, 34, 40] and in a symbolic setting [38, 39, 2, 3]. On the one
hand, the definitions given in a computational setting correspond to games
played between an attacker and a challenger. In these games, unlinkability
holds if the attacker cannot win, e.g. by telling whether two sessions are run
by the same tag or different ones, with a probability higher than guessing. On
the other hand, all the models in a symbolic setting give definitions based on
the comparison of traces. We do not use a game-based approach because we

100 CONCLUSIONS

want our RFID model to allow automatic verification of protocols. Therefore
we choose a model in a symbolic setting using the applied pi calculus. The
approach we use to define our framework is based on observational equiv-
alence and provides a stronger notion of unlinkability than [38]. Moreover,
it also captures forward and backward privacy, and it formally proves that
these properties are stronger than unlinkability. As far as we know, ours is
the first attempt to define forward and backward privacy in a symbolic set-
ting, since the existing definitions are usually given in a computational set-
ting [33, 22, 24]. Hence, the main benefit of this second contribution is that
the privacy definitions expressed in our model offer the precision deriving by
the use of a symbolic setting and the strongest privacy guarantees.

Finally, the definition of our formal models led us to the study of a class
of protocols. In Chapter 5 we study their properties in both our abstract and
concrete models. Since our models are given in a symbolic setting, we for-
mally demonstrate that all the privacy properties that we studied in Chapter 3
coincide for single-step protocols. Also, we prove that the privacy proper-
ties defined in Chapter 4 correspond to simpler conditions in this case. These
conditions consist of equivalences that can be tested in ProVerif, therefore we
could automatically verify some RFID protocols.

6.1 Limitations of the models

Our models achieve their main objectives, but have some limitations.

Our abstract model captures and compares definitions of unlinkability ex-
pressed in the epistemic logic. Our ddefinitions are inspired by definitions
from the literature given in both a symbolic and a computational setting. On
the one hand, this framework helps to understand the differences between the
intuition behind each definition, but, on the other hand, translating definitions
in our setting is a difficult task that may introduce imprecisions. These impre-
cisions may negatively affect the possibility of comparing definitions given in
different models.

In Chapter 4 we present an RFID model based on the applied pi calculus.
By using a formal language, we can provide precise definitions and formally
prove our results. Moreover, we can model protocols from the literature and
demonstrate (manually in the general case and automatically for a bounded
number of sessions) whether they guarantee the privacy definitions given in
our model. The drawback of using our symbolic analysis is that it does not
allow to capture all the concrete properties that cryptographic primitives may

6.2 DIRECTIONS FOR FUTURE WORK 101

have. This drawback is common to any symbolic approach, but it is worth
mentioning. The applied pi calculus allows to describe such primitives by
means of an equational theory. However, such a theory cannot always fully
express their functioning. For example, when we model the functions for the
encryption and decryption of messages using a symmetric key, as shown in
Section 2.2.1, we are implicitly assuming that there is no way to reverse the
encryption function without knowing the symmetric key. However, there may
be some weakness in the function implementation that leak information about
the encrypted message. Such weaknesses are not always expressible in the ap-
plied pi calculus, therefore the protocol analysis might miss attacks that aim
at using them to disclose secret information. As mentioned in the introduc-
tion of this thesis, RFID protocols often adopt ad-hoc cryptographic solutions,
which have sometimes been proven insecure. If the cryptographic primitives
in use leak private information and this is not modelled in the equational the-
ory, a protocol may not guarantee unlinkability, forward or backward privacy,
while satisfying the conditions of our definitions. Therefore, when a protocol
satisfies our privacy definitions, it is important to ensure that the assumptions
in the equational theory actually match those on the security level offered by
the cryptographic primitives in use.

6.2 Directions for future work

In this section we discuss possible extensions to the work presented in this
thesis.

The set of properties that we analyse in Chapter 3 includes several def-
initions that are translated into our possibilistic epistemic model. However,
there exist also some probabilistic approaches to define privacy notions that
our model does not capture. In order to extend it to include probabilistic
definitions, it is possible to use the technique that [25] introduced for the def-
inition of probabilistic variants of anonymity. In the case of anonymity, [25]
argues that a possibilistic definition may seem to have strong requirements
while giving no concrete guarantee. This may happen also for unlinkabil-
ity and its related notions of inseparability, forward and backward privacy.
Consider for example a protocol satisfying our epistemic definition of strong
unlinkability, meaning that an attacker cannot infer the existence of a link in
any given trace. The fact that it is possible that each transaction of a trace is
performed by a different agent (as required by our definition) does not imply
that this is probable. 1t may actually happen that a protocol guarantees the

102 CONCLUSIONS

epistemic definition of strong unlinkability, but, when the attacker applies his
strategy and observes some particular outcome, he knows that there is a high
chance that this outcome was produced by a specific sequence of agents. In
this example, although strong unlinkability holds, it is easy for the attacker to
guess links. Hence, a possible direction for future work is to extend both our
abstract and concrete RFID models and investigate probabilistic descriptions
of unlinkability and its related notions.

One of the objectives of this thesis was to develop solutions to auto-
matically verify privacy protocols. We achieved this goal for the class of
single-step protocols by providing privacy definitions that can be verified us-
ing ProVerif [8] for a bounded number of sessions. A second direction for
future work is to develop a framework able to verify the privacy properties
described in this thesis for a wider class of protocols. One way to do so is to
extend the RFID model by modifying the conditions of Chapter 5 to include
protocols that consist of multiple messages, allowing an agent to receive in-
puts (in single-step protocols the agents are the tags of an RFID system and
they can only output messages). This extension should consider that a proto-
col session may generate more than one output at a time and that the number
of messages may even change from a session to another if the protocol has
more functionalities (e.g. a protocol may have a mechanism to change a tag
secret when needed). Hence, the analysis has to deal with much more infor-
mation than in single-step protocols. Also, the attacker may overlap different
sessions by sending, for example, the first tag output of a session as an input to
another tag running a different session. Our analysis of single-step protocols
does not capture these attacks, since these protocols allows no input in a tag
process. Another way to generalise the analysis is to start from our abstract
model described in Chapter 3 and follow the approach of [21]. [21] develops
a more concrete model that bridges the gap between operational semantics
and epistemic logic. It does so by offering a combined framework where it
is possible to easily model a protocol in a process language with an opera-
tional semantics and to reason about properties expressed in a rich epistemic
temporal logic.

A

PROOFS

A.1 Theorem 3.2.2 (Game-based unlinkability)

A protocol satisfies game-based unlinkability if and only if it satisfies two-
agents game unlinkability, which it does if and only if it satisfies three-agents
game unlinkability.

PROOF. In Chapter 3 we introduced the definitions of two-agents game un-
linkability (corresponding to equation 3.3) and three-agents game unlinka-
bility (corresponding to equation 3.4). Here, we demonstrate that these two
notions coincide to a third simpler definition of unlinkability, which we called
game-based unlinkability (Definition 3.2.3).

First, we prove that both two-agents game unlinkability and three-agents
game unlinkability imply game-based unlinkability. To show this, we have to
prove that, when two or three-agents unlinkability holds, all the traces with
the same length are equivalent. In particular, we show their equivalence to the
trace executed entirely by a single agent for any given length n.

e Two-agents game unlinkability. For each trace 7, we need to consider
its mapping 7, = (7,(1),...,7-(n)). We define 7 as the first mapping
index such that 7, (1) # 7.(i) and we choose 7, such that all the oc-
currences of the agent 7, (7) in the mapping 7, are replaced by x. Then
we set a = 7,(1) and ' = 7,.(7). By two-agents game unlinkability,
the original trace 7 is equivalent to a trace 7’ that has the same map-
ping except for the occurrences of agent 7, (i), which are replaced by
a mapping to agent 7.(1). The trace 7’ has now one less agent in its
mapping with respect to 7. If we repeat this procedure on 7’ until the
number of agents of the resulting trace is 1, we have that 7 is equivalent

104

PROOFS

to the trace executed by a single agent, in particular its first agent, by
transitivity. Using this method, we can prove that all traces are equiva-
lent to a trace run by their first agent. To prove that it is also equivalent
to any other trace, we need to show that the traces run by a single agent
are equivalent to each other. By choosing 7, such that it is a sequence
of x only, we obtain that all the traces executed by a single agent are
equivalent. Therefore we can conclude that all the traces in the system
are equivalent by transitivity.

For example, consider a trace with mapping 7, = (a1, az, as, as). The
first agent different from a; is a, on the transaction ¢ = 2. We replace
all the occurrences of ay by x, obtaining 7, = (ay,z,as,z). Using
equation (3.3), we have that 7,, ~ 7, = 7, i.e. (a1,a1,as3,a1) ~
(a1, a9, a3, as). Then, we choose 7, = (ay, a1, ,a;), and using equa-
tion (3.3) we have that 7, ~ m,_,i.e. (a1, a1,a1,a1) ~ (a1, a1, as,a1).
By transitivity, we can conclude that the original mapping 7 is equiva-
lent to 77, , which is executed by a single agent, namely 7. = (a1, az, as,
ag) ~ (a1,a1,a1,a;) = m, . Using two-agents game unlinkability, we
choose 7, = (z,7,,z) and obtain that 7/, is equivalent to any trace
run by a single agent.

Three-agents game unlinkability. Three-agents game unlinkability is
exactly two-agents game unlinkability when partial mappings do not
contain y. Since two-agents game unlinkability implies game-based
unlinkability, we can conclude that three-agents game unlinkability also
implies game-based unlinkability.

We can conclude that when two-agents game unlinkability (3.3) or three-
agents game unlinkability (3.4) holds, then all traces are equivalent, therefore
also game-based unlinkability (see Definition 3.2.3) holds.

Now we need to prove that game-based unlinkability implies two-agents
game unlinkability and three-agents game unlinkability. This implication triv-
ially holds, since two and three-agents game unlinkability both require spe-
cific pairs of mappings to be equivalent while Definition 3.2.3 already implies
the equivalence of any pair of mappings. [

A.2 Theorem 3.3.1 (Unification of unlinkability)

If a protocol guarantees all the following conditions:

e Unbounded number of agents

A.2 THEOREM 3.3.1 (UNIFICATION OF UNLINKABILITY) 105

® Renaming
e Swapping
o Extension I and Il

then all the unlinkability properties (weak unlinkability, strong unlinkability,
game-based unlinkability) coincide.

PROOF. In Chapter 3 we introduced three definitions of unlinkability: weak
unlinkability, strong unlinkability and game-based unlinkability. We want to
prove that these definitions coincide under the conditions listed in the theo-
rem. We start by showing that weak unlinkability coincides to game-based un-
linkability. By Theorem 3.2.3 we know that game-based unlinkability always
implies weak unlinkability, therefore, in order to demonstrate their equiva-
lence under the conditions, we only need to prove that weak unlinkability
implies game-based unlinkability.

Game-based unlinkability holds when all the traces in T are equivalent
under any attacker strategy o € X.. Hence, we need to show that, under the
conditions Unbounded number of agents, Renaming, Swapping, Extension I
and II, weak unlinkability implies that

V(r,7) €T :m, ~ mp.

The proof is by induction on the number of transactions n and is split in two
parts: one for systems with two agents only and the other for systems with
more than two agents.

Case with two agents

Base case. For n = 1 we only have a single trace (under the condition Re-
naming), hence there is no trace equivalence to prove. For the case n = 2
we have two possible mappings m = (a1, a;) and 7’ = (a1, az). By weak un-
linkability, the mapping 7 must be equivalent to a mapping where the link is
broken, and this can only correspond to 7. Thus all the mappings with length
2 are equivalent.

Inductive case. We have to show that all the mappings with length n > 2 are
equivalent. The induction hypothesis gives that all the mappings with length
n — 1 are equivalent. We divide the mappings of length n over three sets that
contain mappings equivalent to all the other mappings in that set. We use 7—°
to denote the sequence of the first n — ¢ agents in a trace.

106

PROOFS

EE

DE,

DE,

Mappings ending in two transactions executed by the same agent
(772, z,x). They are equivalent to each other according to the in-
duction assumption and condition Extension II.

Mappings of the form (773, x, y, x) with x # y. Any two mappings
in this set can be obtained from mappings in EE by swapping at po-
sition n—2 (when possible). So they are equivalent by the Swapping
condition and (EE). Note that we write EE and DE; for the sets and
(EE) and (DE,) for the corresponding equivalence properties.
Mappings of the form (773, x, z,) with x # y. Any two mappings
in this set can be obtained from mappings in DE; by swapping at
position n — 1. So they are equivalent by the condition Swapping
and (DE,).

As there are only two agents in the system, these sets together cover all traces.

Note that any trace in EE has the last two transitions linked. By weak
unlinkability, each mapping must be equivalent to a mapping in which these
two transactions are not linked, i.e. a mapping not in EE. Similarly for DE; at
the last and third to last and DE, at the second to last and third to last positions.
Therefore in each set there is a mapping that is related to a mapping outside
the set, and thus in one of the other two sets. As we only have three sets and
equivalence is transitive, this is sufficient to conclude that all the mappings
are equivalent.

Case with more than two agents

Base cases. The base cases are the followings:

e n = 1,2: With at most two transactions there are at most two agents

on
(a1, a9,a1), (a1, a9, as), (ay,as, az). All these mappings are equivalent:

involved. The proof remains the same as in the case with two agents.

= 3: There are five possible mappings: (a1, a1, a1), (aq,a1,as),

— The condition Extension I applied to the mappings with length 2
gives (a1, ay, az) ~ (a, asz, as).

— The condition Swapping applied on the last two positions of these
two traces gives (ai,az,a;) ~ (a1, as, a3) (note that swapping
has no effect on (a1, as, az) due to the renaming to the canonical
form). If we apply the condition again to now swap the first two
positions we obtain: (a1, as, as) ~ (a1, as, as) (note the renaming
from (as, aq, ay) to canonical form (aq, as, as)).

A.2 THEOREM 3.3.1 (UNIFICATION OF UNLINKABILITY) 107

- (a1, a1, a;) must be equivalent to one of the other four (equivalent)
mappings by weak unlinkability.

Inductive case. For the inductive case we have to show that all the mappings
with length n are equivalent. We use a;" for a sequence of m times the agent
a;. The induction hypothesis is that all equal-length mappings with length up
to n — 1 are equivalent. We give four sets of mappings that are equivalent to
(a,") and thus to each other.

EE Mappings ending in two transactions with the same agent
(7=2, z,x). They are equivalent to each other (including (a,")) ac-
cording to the induction assumption and condition Extension II.

FR Mappings ending in a transaction with a fresh agent (77!, y),

y € m ! They are equivalent to each other according to the in-
duction assumption and condition Extension I. They are equiva-
lent to (a;") because: (a}™* ay,ay,as,as) ~ ()% az,as,a,a;)
by (EE). So, by using the condition Swapping twice to move the
second to last transaction to position n — 3 and twice more to move
the last transaction to place n — 2, we get: (a}™*, as, as, ay,a;) ~
(a}™*, a1, a1, as, az) with the former in EE and the latter in FR.

ST Mappings of the form (a%,ay,a}) with k +1 = n — 1. They are
equivalent to (a,"). This is clear for [> 2 by (EE) and for [= 0 by
(FR). For [= 1 consider: (a]™ 2, ay,a;) ~ (a?2, as, as) (by (FR)).
By using the condition Swapping on position n — 1 we get also
(a2, a, a1) ~ (a2, ay, as) (note that swapping has no effect on
the latter mapping due to the use of normal forms by renaming),
with the former in ST and the latter in FR.

SW Swaps of mappings equivalent to (a,"). If a mapping 7 is equivalent
to (a,") then it is also equivalent to 7 ~ (a¥~!, ay,a?™%) by (ST),
s0 swy(m) ~ (a;*, as, a?"*~1) by the condition Swapping. But then
swy(m) ~ (a;") by (ST).

These sets contain all the traces. Any trace that is not in FR is of the form
(71, z, o, &) with x ¢ my which we obtain from (7,79, x,2) in (EE) by
swapping 7o times. Therefore we can conclude that all the mappings are
equivalent, therefore game-based unlinkability holds. Note that there is no
need to use the unbounded number of agents condition for the game-based
definition.

The second part of the proof consists in showing that weak and strong
unlinkability coincide. By Theorem 3.2.1 we know that strong unlinkability

108 PROOFS

always implies weak unlinkability, hence we only need to prove that weak
unlinkability implies strong unlinkability under the conditions. From the pre-
vious proof, we know that the conditions, with the exception of the unbounded
number of agents condition, are sufficient to prove that all the traces of a given
protocol are equivalent under any attacker strategy. The existence of an un-
bounded number of agents implies that there always exists a mapping where
all the transactions are not linked, which is the requirement for strong unlink-
ability to hold.]

A.3 Theorem 3.3.2 (Unification of inseparability)

If a protocol guarantees the following conditions:
® Renaming
o Extension Il

then it satisfies weak inseparability if and only if it satisfies strong insepara-
bility.

PROOF. As for unlinkability, we expressed the notion of inseparability in a
weak and a strong form. Here we show that under the conditions Renam-
ing and Extension II they coincide. By Theorem 3.2.4 we already know
that strong inseparability always implies weak inseparability (no condition
needed). Hence, we only have to show that under the two aforementioned
conditions, weak inseparability implies strong inseparability. In our abstract
model this corresponds to showing that all the traces with the same length
given by a protocol are equivalent. The proof is by induction on the number
of transactions (n).

Base case. For n = 2 the only possible mappings are 7 = (a1, a;) and
7" = (a1, az). They are trivially equivalent by weak inseparability. Therefore,
all the traces are equivalent for n = 2.

Inductive case. We have to prove that all the mappings with length n > 2
are equivalent. The inductive hypothesis gives that all the traces 7 € T such
that || < n are equivalent under any attacker strategy o. Therefore, by the
condition Extension II, we have that all the traces 7 € T such that |7, | = n
and 7, (p,_1) = 7, (p,) are equivalent under any attacker strategy o. By weak
inseparability, these traces are equivalent to the remaining traces 7 € T such

A.4 THEOREM 5.2.1 (SINGLE-STEP PROTOCOLS) 109

that || = n and 7, (p,_1) # 7, (p,). By transitivity of ~, all the traces with
length n are equivalent. Therefore we can conclude that under the conditions
Renaming and Extension II weak and strong inseparability coincide. [

A.4 Theorem 5.2.1 (Single-step protocols)

Single-step protocols satisfy all the following conditions:
o Unbounded number of agents
® Renaming
e Swapping
e FExtension I and I1
Therefore all the unlinkability and inseparability properties coincide.

PROOF. In Chapter 3 we presented several definitions of unlinkability and
inseparability. We proved that, under the conditions listed above, all these
properties coincide. Now we want to prove that the same conditions are sat-
isfied by the class of single-step protocols in the model of Arapinis et al. [3].
Hence, a protocol in this class either guarantees all the properties or none of
them.

A single-step protocol in the concrete model described in [3] provides
traces of the form

(=) vxy 1.c{x
P :>* LQLQ Al,l
i‘})*y:m,gti,j) A@j

;)*Vﬁn,g»,gxn,o’n> An,an
where

e the indexes (i, j) are used to indicate the j-th query of the i-th transac-
tion;

e A, ; corresponds to the process obtained from the process modelling the
system after a tag output in the session (i, j);

110 PROOFS

e 1, ; is the variable that contains the term sent over the network in the
session (7, 7).

We have to prove that single-step protocols as modelled in Section 5.1
guarantee all the conditions of Section 3.3.2.

First we define some notation and two lemmas used later on to prove the
conditions.

A.4.1 Notation

We use @, ,(k) to denote the frame produced by a trace (7, 0) at the k-th
transaction

O o (k) = vpl 75 r 2 Orgiy (UTED ™ (s7,))

where [(k,7) =i+) ;<. o is the number of sessions by the agent 7 in a
T =)

trace up to the ¢-th session of the k-th transaction.

We use 7! and o' as short for sw;(m) and sw;(o), respectively, denoting that
the [-th agent and the [-th strategy have been swapped with the (I + 1)-st agent
and the (I + 1)-st strategy, respectively.

A.4.2 Lemmas

The first lemma (Lemma A.4.1) simplifies the concept of trace equivalence
between processes, so proving that two traces are equivalent reduces to prov-
ing that they produced the same inputs and outputs and that their final pro-
cesses are statically equivalent while the original definition requires to prove
the static equivalence of each intermediate process.

LEMMA A.4.1. Consider two traces T4 and 75 (|Ta| = |75|) generated by
two processes A and B in canonical form modelling an RFID system running
a single-step protocol. If T4 and Tg process the same sequences of inputs and
outputs and their last pair of processes are statically equivalent, then T4 and
Tp are equivalent.

PROOF. Consider two processes Ag and By in canonical form modelling a
complete RFID system as defined in Section 5.1. Note that any process can
be transformed in an equivalent process in canonical form. Their form cor-
responds to the one used in the definition of trace equivalence of Arapinis

A.4 THEOREM 5.2.1 (SINGLE-STEP PROTOCOLS) 111

et al. [3]. We use s for the sequence of all the names restricted by the sub-
processes modelling the tags in the system. Consider two traces 74 and 73,
generated by the processes Ay and By:

An—1

TA:A()%Al%...:An_lgAn

=By = B =% .. 2= B, = B,

We recall that the notion of trace equivalence given by Arapinis et al. [3]
states that the traces 74 and 7p are equivalent (74 ~y,. 7g) if A; =~ B; for
all 7. Each transition in the traces can only augment a frame, namely it can
only add variables, but it cannot destroy them or change their content. ¢(A;)
always has all the variables in ¢(A;_1) and possibly more. Clearly, all the
terms bounded to the variables in ¢(A; 1) do not contain any of the new
variables present in the frame ¢ (A;). The same reasoning hold for the frames
of the processes B;. We want to prove that if the frames p(A,,) and ¢(B,,)
are equivalent then the traces 74 and 7 are equivalent. In other words, if A,
is statically equivalent to B, then all the intermediate processes are statically
equivalent:
A, = B, = Vi o(A;) =, 0(B;).

Each of the ==-transitions as, . . ., a,, either produces a new substitution or
does not change the frames of the corresponding processes. When the frames
do not change from the (i — 1)-st to the i-th transition, it is trivial to show
that the (i — 1)-st transition produced a pair of statically equivalent frames,
since the i-th pair is statically equivalent by inductive hypothesis. Thus, for
simplicity, in the rest of the proof we only consider the transitions that produce
a substitution. Consider the n-th frames

P(An) = V5 {{"ar} - {2t}
p(Ba) = va {0 AT })

where 7T; and 7} indicate the terms produced by the i-th transitions of the
traces 74 and 7, respectively.

By hypothesis, the processes A,, and B, are statically equivalent, namely
d(A,) =5 ¢(B,). We prove by induction on the number of transitions i <
n that all the pairs of frames (¢(A;), p(B;)) are statically equivalent. The
inductive hypothesis, gives that

p(Ai) = o(Bi)

112 PROOFS

This can be written as

v.(a sy | { e} R va (o | {7})

where ¢4, ,, and pp, , contains all the substitutions generated until the
(2 — 1)-st transition and 5 contains all the restricted names, including possible
names generated by the ¢-th transition. Static equivalence is closed under
the application of closing evaluation contexts, therefore we can restrict the
variable x; to obtain the equivalent frames

Vmi'yg'((pA(iq) ‘ {TZ/SCZ}) ~s I/xi'yg'((pB(iﬂ) ‘ {Tl/wz})

Since the variable z; is not used in @4,_, norin g, ,, We can move its
restriction vx;, obtaining two structurally equivalent frames

V§'<¢A(i—l) | VxZ{TZ/Iz}> ~s Vg'(SOB(i—l) | VxZ{TZ//zz}>

va; {"/,,} and v {7/, } are structurally equivalent to the null process. We
can also safely remove restrictions used by the i-th transaction only. More-
over, the parallel composition of a process P with the null process is struc-
turally equivalent to the process P, therefore we obtain

V§.(¢A(i71)) R V§-(<PB(¢,1))
Which corresponds exactly to
P(Agi-1)) =5 d(B(i-1))-

Thus, we can conclude that all the pairs of processes in 74 and 7 are statically
equivalent. 0

LEMMA A4.2. Let

YA = Vﬁ'{QOlle/wn s va ﬂcm?Nl/ﬂCmH’ B 7Nn/37m+n7(102}

= 1 M! M! N/ N/ !
SOB_VIO'{SOD 1/1717"'7 mHDm? l/mm+1>"'7 n/ym+n7§02}

be frames in canonical form such that p o =, pp, and © a substitution function
such that

O(z,) = { i Dmod(rtm) 1 1<i<n+m
Z L otherwise

If 'y = a0 and o'z = @O then @'y ~; .

A.4 THEOREM 5.2.1 (SINGLE-STEP PROTOCOLS) 113

PROOF. Given two statically equivalent frames in the form of ¢4 and ¢p,
we want to prove that if we rename the variables x1, ..., Ty, Tyma1, - -+, Tonan
into i1, - - -y Tty L1, - - - , Loy, the resulting frames are still equivalent. By
hypothesis we know that

dom(p4) = dom(pp) AVM, N : (M = N)py if and only if (M = N)pp
and we want to prove that
dom(¢’y) = dom(pz) AVM, N : (M = N)¢', if and only if (M = N)¢/5.

The domains of ¢, and ¢ coincide because O preserves the variable names,
i.e. dom(pa) = dom(¢’y) and dom(pp) = dom(y’z). From the hypothesis
we know that

VM, N : Mg, = N, if and only if Mop = Nop.
Since MO and NO are also terms and ¢4 ~ @ g, then we have that
VM,N : (MO)ps = (NO)p, if and only if (MO)pp = (NO)pp.
But Oy, is ¢’y and Oyp is ¢’; therefore
VM,N : M¢', = N¢/, if and only if My = N5,

Thus, we can conclude that ¢/, /= ¢'5.

We are now ready to demonstrate the theorem.

A.4.3 Conditions

SSP: Condition Unbounded number of agents. We say that a protocol has
an unbounded number of agents if and only if

Vn>03dreT: |A]=n.

We have to show that for each n it is possible to create a trace with n
transactions run by n different agents. This can simply be done by spawning
n copies of the agent process in the system P.

114 PROOFS

SSP: Condition Renaming. Let 7 be a mapping, a € A, and a' ¢ A,. The
renaming of a to ' in w, denoted by w[a' /a), is a mapping such that

/

ol fal(p) = { s~

7(p) otherwise

We say that a protocol satisfies the condition Renaming if and only if m ~
w[d’/a] for all mappings 7 and agents a' ¢ A..

We have to show that m ~ w[s’/s| for all possible mappings 7 of traces
in T and tags s € A,, s ¢ A,. We use s as an agent in the RFID model
is 1dentified by its unique secret (typically denoted by s). In the applied pi
calculus it is always possible to a-rename a name or a variable in a process
without changing its semantics. In the model of [3], a trace 7 = (7w,0) €
T is a sequence of processes obtained by applying some sequence of ==--
transitions. a-renaming all the processes in 7 to map the transactions executed
by an agent s; to an agent s, does not affect the ==-transitions. Also, each
a-renamed process is equivalent to the original one. Consider for example the
frame of the last process produced by 7

VST ..., VSi.. .. VS|, V0] [Pr o (k).

If we a-rename all the occurrences of the secret s; with s, ¢ A, in the trace,
then we obtain the following frame

VS1..... vsh. ... ZIPMBZON | L RN {)

By a-renaming, this frame is statically equivalent to the original one. We can
apply the same reasoning to all the intermediate processes in 7 and conclude
that the resulting a-renamed trace is equivalent to 7. Since this hold for any
attacker strategy o, we can conclude that ~ m[*'/,].

SSP: Condition Swapping. Let m be a mapping. The swapping of ™ at
position k < ||, denoted by swy(7), is a new mapping such that

T(pe1) fi=k
swp(m)(pi) = ¢ w(pe) fi=k+1
7(p;) otherwise

We say that a protocol satisfies the condition Swapping if and only if

7~ 7 = swi(w) ~ swy(n)

A.4 THEOREM 5.2.1 (SINGLE-STEP PROTOCOLS) 115

forall w, o', k such that m(py) # 7(pr+1) and 7' (px) # ™ (Prt1)-
Consider two equivalent mappings 74 and 7. We have to prove that 7%

is equivalent to 7% for any valid k. This means that we have to show that
a single-step protocol produces equivalent traces (7%, o) and (7%, o) for all
valid £ and strategy o. According to the definition of trace equivalence in [3]
and by Lemma A 4.1, this consists in showing that (7%, o) and (7%,) (Vk, o)
produce the same sequences of ==>-transitions and that their final processes
are statically equivalent. Since (7%, 0) and (%, o) share the same attacker
strategy o (which corresponds to the number of queries executed for each
transaction) and they are produced by a single-step protocol, they trivially
lead to the same sequence of ==-transactions, which correspond to as many
message outputs on the public channel as queries in 0. We also need to show
that all the pairs of swapped traces produce final processes that are statically
equivalent, namely

VSVle 1 7r U(Z)NSVSVle 1 7r U(l)

for all valid £ and o. The frames ®_ (/) and ®_. _(I) contain exactly the

o o
same terms produced by the traces (74, c*) and (ﬂ'B, o"), namely traces with
the original mappings 74 and 75 and an attacker strategy o* that is obtained
by swapping the attacker strategy o (k) with the attacker strategy o(k + 1)
in 0. Although the terms in (7%,) and (74, %) are the same, the ones
involved in the swapping process are assigned to different variables, and
similarly for (7%, o) and (7g,0*). Therefore, we can equivalently express
the final frames of the traces (7%, c) and (7%, 0) in terms of the original
mappings by applying a substitution function © that renames the variables
(Th1s s Thos Thtt,1s - - s Thtlioprn) 10 (Thpt1s o s Thtliopyys Thyls - - -5
Tk,). Clearly, the substitution only changes the variables produced by the
k-th and the k + 1-st transactions:

@WA,O.I@(IC + 1)@ = @lef“o.(k) (A.1)

(I)ﬂ.A’Jk(k‘)@ = @WIZJ(]C + 1) (A.2)
and

@WB,UI@(I{J + 1)@ @Wk U(/ﬂ) (A.3)

@wB,o-k(k;>® @Wk U(k‘ + 1) (A4)

Furthermore, we have that

Oyt (i) = O (1) Vie{l,... k—1k+2,. .. n} (A.5)

116 PROOFS

(and similarly for ®, ,» and ®_k), i.e. the transactions that are not in-

volved in the swapping process produce the same assignments in (7%, o) and
(74, 0"). Note that the final frames of (74, o*) and (7, ") are in canonical
form and the function © is in the form required by Lemma A.4.2. Therefore,
we can use Lemma A.4.2 by applying © to the final frames of (74, c") and
(75, 0") to obtain the equivalence

Vvalidk € {1,...,n—1},0:
S (TSP (1) | @) | B 1) | TTa®ry ot ()0~
ZERZON(f:i]_l@ﬂ.B’o.k(l) | @, ok (K) | @rpor (B4 1) [T4 0®ryor(1)O.

Since © does not affect the first k¥ — 1 and the last n — k£ + 2 transactions, we
can move it as follows:

Vvalidk € {1,...,n—1},0:
Va1 By (1) | By ot (K)O | By ik + 1)O | T n Py ot (1) =
Vv ([T @y (1) | Dy e (K)O | Dy (4 1)O | TI} gy o (1):

Using the equations (A.1)-(A.5), the above equivalence can be written as

Vvalidk € {1,...,n—1},0:
Vs (T @ (1) | @y (k) | Do o (k1) | T ot o (1)
5.0 (TS @ o (1) | By g () | Bg (k1) | TTiicn®rg o (D).
This corresponds to
Vvalid k € {1,....n—1}, 0 : v8.00.[[}, @rk o (1) = vSvw [, @r o (1)

Therefore, all the traces obtained by swapping two equivalent mappings 74
and 7 produce final frames that are statically equivalent for any choice of
k and 0. By Lemma A.4.1, we can conclude that all these pairs of traces
are equivalent, and thus also the mappings 7% and 7%. Hence, single-step
protocols always satisfy the condition Swapping.

SSP: Condition Extension I. Let m be a mapping. The extension of ™ with
a new agent a ¢ A,, denoted by extn(r), is a mapping of length || + 1 such

that
m(pi) @ <|m|
extn(m)(p;) =
(m) () {a i=n|+1

A.4 THEOREM 5.2.1 (SINGLE-STEP PROTOCOLS) 117

We say that a protocol satisfies the condition Extension I if and only if
7~ 7 = extn(m) ~ extn(r’)

for all mappings 7, 7',

We have to show that two equivalent mappings 74 and 75 (mappings that
generate equivalent traces under any attacker strategy for a given protocol)
preserve the equivalence under any attacker strategy o when we extend their
domains by adding a new agent. Again, this implies proving that all the pairs
of traces that can be constructed with the mappings extn(m4) and extn(np)
are trace equivalent. By lemma A.4.1, this reduces to show that these traces
perform the same ==-transitions and their final frames are equivalent. As
explained before, two traces of a single-step protocol will produce the same
sequence of outputs under any attacker strategy o. Hence, to conclude the
proof we have to demonstrate that

Vo : v ([Peatn(ray.o (1) 2 V300 ([T Pevtn(rg) o (1) (A6)
where n = |m4|. The left hand side of the equivalence can be written as
V8V ([12 Pryo (D) | Peatn(ra) o(n +1))

because @, »(1) = Pegtn(ra)o (1) Vi < n. We know that the last transaction,
by hypothesis, belongs to a fresh new tag. This means that the names that are
restricted in @y (xy),0(n + 1) are not used in [} -, (1) and vice versa.
Therefore, we can separate the restrictions obtaining an equivalent frame

Vv [} Pryo(l) | Vs 00 Ppin(ra)o(n+ 1).
Similarly, the right hand side of the equivalence can be written as
Vv Prp (1) | vS0W.DPpin(np)o(n + 1).

We know by hypothesis that the frames of the final processes generated by
traces with mappings 74 and 73 are equivalent. Formally:

Vo : vsvw. ([, Pr,0(l) msvsvw. (1] Prp o (1)) (A7)

Also, if we choose any attacker strategy for one transaction executed by an
agent, it will produce the same knowledge that would have been produced by
using the same strategy with another agent. In particular

VS VW Pegin(ny)o (N + 1) R Vs VW Pegin(ny) o (n + 1). (A.8)

118 PROOFS

By putting in parallel the processes in A.7 and A.8 we obtain the equivalence

V5. | Prpo (D) | vS.0W.PRppn(my) 0 (n + 1) &
V5. [} Prpo(l) | VS W Pepin(np) o (n + 1)

that corresponds exactly to A.6. Therefore, extn(ns) ~ extn(mpg), thus
single-step protocols satisfy condition Extension I.

SSP: Condition Extension II. Let m be a mapping. The extension of m with
the last appearing agent, denoted by extl(r), is a mapping of length || + 1

such that
A <
cati(m)(p) = {) 1=
T(plr) = |m|+1

We say that a protocol satisfies the condition Extension Il if and only if
7w~ 7 = extl(r) ~ extl(r)

for all mappings 7, 7'.

As in the previous proof, we have to show that extended mappings pre-
serve trace equivalence. The difference is that the last transaction is not ex-
ecuted by a new tag, but by the same tag which executed the last transaction
in the original traces. Formally, we want to prove that if 74 ~ 7 then also
extl(ma) ~ extl(mp).

For any possible attacker strategy o applied to the mappings extl(m4) and
extl(mp), there always exists an attacker strategy o’ such that

=lo| -1

, {Ji i< o'
° 0, = /’

On+0p1 i=|o

o |0

By hypothesis we know that w4 ~ 7p, therefore (74,0’) ~ (wg,0’). Since
(m4,0") and (7p,0') produce the same ==-transitions and final frames as
(extl(ma), o) and (extl(mg), o), respectively, then (extl(m4), o) ~ (extl(mp),
o) for any attacker strategy o. Hence, also condition Extension II is satis-
fied. [

We can conclude that all the forms of unlinkability and inseparability de-
fined in Section 3.2 coincide for the class of single-step protocols. As a conse-
quence, if any of these properties is proven to hold for a single-step protocol,
by Theorem 5.2.1 it also guarantees all the unlinkability and inseparability
properties.

A.5 THEOREM 5.3.7 (UNLINKABILITY FOR SSP) 119

A.5 Theorem 5.3.7 (Unlinkability for SSP)

A single-step protocol satisfies unlinkability if and only if it satisfies both Ps;
and Pory.

PROOF. In Chapter 5 we described the class of single-step protocols. Here,
we prove that a single-step protocol satisfies the definition of unlinkability
(Definition 4.2.1) given for our RFID model when it satisfies two conditions,
Psr and Ppy, which are easier to prove. The proof consists of two parts:
first, we prove that the conditions Pg; and Pp; imply unlinkability. Then, we
demonstrate that when unlinkability holds also the conditions are satisfied.

Note that, since the reader and the backend database are not explicitly
modelled, Definition 4.2.1 is greatly simplified. To prove that Pg; and Po;
imply Definition 4.2.1, it is sufficient to show that C[Tag(cy,ca)] =~
ClTag(cy) | Tag(c)] with C[] = vt.([] | €(_)), as the subprocess ReplTag
and the restrictions n can always be added without affecting the equivalence
of the processes. The resulting processes are simple and both can clearly per-
form the same transitions. The challenging part of the proof is to show that
all pairs of frames produced by C[T'ag(c1, c2)] and C[Tag(cy) | Tag(cq)] are
statically equivalent.

Let L. = C[Tag(cy,¢2)] and R = C[Tag(c1) | Tag(cz)] be closed ex-
tended processes. Formally, we want to prove that L. ~ R, that is

vt.(vwo.vso. (InitSt(wo, So) | P (wo, c1) | 1P(wo,) | T(_))
is observationally equivalent (=) to
vt.(vwy.vsy. (InitSt(wy, S1) | 1P(wi, ¢1)) |
vwa.vsy. (InitSt(ws, S) | 1P(wa, e2)) | £()).

Note that Sy, S; and S, are terms containing the secrets sg, s; and so, respec-
tively. They are used to model the internal state of three tags in the definition.

For the sake of simplicity, we use the equivalent notion of labelled bisim-
ilarity (=) [1] instead of observational equivalence. Hence, we have to show
that there exists a relation # between the processes L and R (L% R) such that

1. L~ R;
2. if L — L/, then 3R’ s.t. R —* R’ and L'# R’ and vice versa;

3. if L % L' and fv(a) € dom(L) and bv(a) N fn(R) = 0, then IR’ s.t.
R —*3%—* R and 'R’ and vice versa.

120 PROOFS

We use the following notation:

e We use P, ; as a short for P(w;, ¢;):
P,y = ¢;(0)()-wi(2)vpci(O(x)).(E0) | St(wi, U(x))).

e We use ();; for the process F; ; that has been triggered on the public
channel c;:

Qi = t()-wi(2).vpieg(0(2)).(2() | St(w;, U(x)))

and Qﬁ ; for k processes (); ; in parallel.

o We use ¢1, Vg1, ¥ro for frames with the following forms:

— Y = [2:: 0:(U1(Sp))
— Yp1 = [} @, : O:(U1(S1))
— YRr2 = Hézl g, 1 0;(U771(S2))

V increasing sequences «;, §js.t. {a; | 1 <@ < E}U{B; |1 <j <} =
[1,...,k+1]. The frame vsg, py1;.101, corresponds to the frame obtained
after the execution of k sessions on the first interface and [sessions on
the second (in any order). Similarly vsy, pr.1g1 | ¥S2, p1.¢r2 represents
the corresponding frame for the independent interfaces.

e We define:

~ LI(X) = vt, 50, w0, pert-(¥r | 1Pox | 1Po2 | Q31 | Q| X) to
describe the tag on two linked interfaces;

— I1(X) = vsy,wy, pp-(Yr1 | 1Py | Q7 | X) to describe the tag
on the first of the two independent interfaces;

— I15(X) = vsy, wa, pr-(Vro | 'Pas | Q%5 | X) to describe the tag
on the second of the two independent interfaces.

To describe the state of a system modelling a single-step protocol we need to
model any possible pair of processes that may be obtained from L and R.
Using the notation above we can write, for instance, LI(¢(_) |

St(wo, UF(Sy))) to express a process modelling a single tag, which initi-
ated n sessions on the first interface and m sessions on the second one, and
completed k and [sessions, respectively, on these interfaces. Similarly, we
can write vt.(I 1, (St(wy,o"(x))) | I1(St(wq,c'(z))) | (_)) to describe the
corresponding process with interfaces modelling two independent tags.

A.5 THEOREM 5.3.7 (UNLINKABILITY FOR SSP) 121

As other tags can be added by congruence, we only have to address the ac-
tions of the tags connected to the interfaces c¢; and c,. In single-step protocols,
tags do not input any information, hence their state is fully determined by the
number of sessions they run. A tag state may depend on new names it intro-
duced in previous sessions, so we keep track of those names in p. Because
of the token there can be only one session active at a time on either interface.
However, the token does not prevent from triggering new sessions on ¢;(_),
thus we also need to account for the number of sessions triggered but not yet
started. Finally, we need to model the knowledge that the attacker gains from
the tag sessions (the output of each session, collected in /). Summarising, the
state of a system is captured by (1) the attacker knowledge, (2) the number of
sessions started on either interfaces (n and m, respectively), (3) the number
of sessions that have completed on either interface (k and [, respectively), and
(4) the state of the current session.

We are now ready to define the relation &%. Each pair of processes models
a possible evolution of the process L as first element and the corresponding
evolution of the process I? as second element, i.e. the processes obtained after
the execution of the same labelled transactions on L and R. For instance, the
first element of the first pair (1.1) in & (see the next page) corresponds to a
parallel composition of:

e the knowledge of the attacker (¢1);

e the replications of the protocol processes for the same tag with two
different interfaces (! Fp; and | Fp 5);

e the processes spawned by the replications that have been triggered, but
did not consume the token yet (Qg; and Qgs); n and m denote the
numbers of processes triggered on the first and second interface, re-
spectively;

e the token (£(_));

e the content of the tag memory (St(wo, U*(S))).

122 PROOFS

(LI(E() | St(wo, U(S0))), (1.1)
vt (I1(St(wr, UR(S1))) | s(St(ws, UY(S2))) [7)), (1.2)

(LI(St(wo Uk+l(So)) |

wo(z).vp.er(O(x)).((_) | St(wo, U(x)))), (2.1)
vt.(I1(St(wy, U*(S))) |

wi(z).vp.er(O(@)).(H_) | St(w, U(x)))) |

I1,(St(wy, U'(S2))))), (2.2)

(LI(St(wo, U*(Sy)) |

wo(x).vp.c2(0(x)).(E_) | St(wo, U(x)))), (3.1)
vt.(I1(St(wy, U*(S)))) |
15(St(ws, U'(S5)) |
)-(t

wa(2).vp.3(0(x)). (L) | St(wz, U(x)))))), (3.2)

(LI(wper(O(U™(80))).(H2) | St(wo, UUH(S0)))), (4.1)
vt.(I1(vper(O(UM(S1)))(E0) | St(wy, UU*(S1)) |
T1,(St(ws, UY(S,))))), (4.2)

(LI(wpez(O(U™(S0))).(EH_) | St(wo, UUF(S0))))), (5.1)
vt.(I1(St(wy, U*(S)))) |
I[T(vpe(O(U'(S2)).(E_) | St(wz, U(U'(S2))))))) (5:2)

Vk,l €N
}

The process L corresponds to (1.1) for vy, = O,n = m =k =1 =0,
and reaches this form after every complete protocol execution on one of the
linked interfaces ¢, c2. (1.2) models the same situation, but for independent
interfaces.

The processes of the second and third pairs model the processes resulting
after the token has been consumed to run a session on c¢; and on cs, respec-
tively.

A.5 THEOREM 5.3.7 (UNLINKABILITY FOR SSP) 123

The last two pairs in the relation model processes where a tag (on the first
and on the second interface, respectively) has read its internal memory and is
about to output the identification message on the public channel.

To complete this part of the proof we have to show that the relation & is
a bisimulation and all its pairs are statically equivalent.

Z is a bisimulation if any reduction step that may be performed by one ele-
ment of a pair in % can be matched by the corresponding other element, and
the resulting processes are in Z.

The only possible reduction steps for the first pair in & (1.1) and (1.2)

are:

1. The token ¢ synchronises with Qf , and Q7 in (1.1) and (1.2), respec-
tively;

2. The token ¢ synchronises with Qg’, and @3, in (1.1) and (1.2), respec-
tively.

After step (1.), the processes (1.1) and (1.2) reduce to processes with the
forms of (2.1) and (2.2), respectively. Similarly, after step (2.), they reduce
to the forms of (3.1) and (3.2).

The processes of the second pair (2.1) and (2.2) can only synchronise
the input and output processes on wy and ws, respectively, because the token
prevents other processes from starting a new session. This reduction creates a
new pair of processes of the forms of (4.1) and (4.2). Similarly, the third pair
would reduce to (5.1) and (5.2) after the communication on wy and ws.

The fourth pair consists of the processes (4.1) and (4.2), that can only
perform an output on the public channel ¢;. The restrictions in vp can be
moved to the beginning of the resulting processes by structural equivalence.
The substitution, which bounds the output (i.e. the tag message) to a new
variable, becomes part of the frames 17, and ¥ r;, respectively. The resulting
processes have the forms of (1.1) and (1.2). Similarly, the last case reduces
to the first pair in Z.

Note that in all these cases we should also consider that the processes
might spawn a copy of Qo 1, Q1,1, Qo2 or QQ22. All the resulting pairs of
processes trivially belong to Z#. In fact, they preserve their form, causing
only the exponents of corresponding processes to increase by one.

To complete our proof we have to demonstrate that all pairs in &% con-
tain processes that are statically equivalent. To do so, we have to show that
their frames vsg, pr1i-(¥r) and vsy, pr.(Vr1) | vSa, pi.(¥gro) are equivalent.
In the proof we use a property of Po;, which allows us to turn a frame of

124 PROOFS

the form vs, py,. [}, z; : O;(U1(Sy)) into a new frame [[}_, vs, p;.x; :
O;(U1(Sy)), because

s, pu.][y 2i:0;(U1(Sy))

s, p- (T 22 Oi(U71(S0)) | 2 : On(U"1(S0)))

RS, P11 [1351 O;(UTY(S0)) | v8, P : On(U™1(Sy))

~ 8, Pro- [Lot i Of(U(S0)) | 8, Pn1-Zn—1:On_1(U"2(Sp)) |
VS, pp-Tn: On(U"1(Sp))

. oo
~g

Ly vs, piewi: O (U1(Sy))

Using this property and Pg;, we can conclude that
VS0, Prpthr = VS0, st] L2 O:(U1(Sp))

%s[POI] HZ+1IVSOa Pi-Ly: OZ(Uzil(SO))

~;[Ps1] [T, 1vs0, pi-tta, : O;(U1(Sy)) |
[1;_1vs0, pi-wa,: O;(U7(So)

~[Por] VS0, Di- Hf \Ta, 1 0(U1(S)) |
vso, o1 1% O;(U7~(S

~[a-ren.] vsy, pr. Hf 1Ty Oi(UTY(|
vsa, I Tmws,: 05077
= VS1, D (1/JR1) | V82,Pz-(¢R2)
V increasing sequences «;, 3; s.t. {a; | 1 < i < k}U{B; |1 <j <[} =
[1,..., k+1.
Therefore, each pair in % contains statically equivalent processes. This con-
cludes the first part of the proof.

)

)

)
51))
52))

)
)
)

The second part of the proof consists in showing that if unlinkability holds
for a single-step protocol then Ps; and Ppo; also hold. We prove its contra-
positive: when one of the properties is violated, unlinkability does not hold.
There are two cases:

1. If P does not hold, then there exists k and [(k < [) such that
vs, pr.x: Op(UF1(S0)) %5 vs, pr.a: Oy (U1(Sp)).

If the attacker queries k£ — 1 times the first interface, [— k the second,
and then again the first, he obtains a frame with

VSg, P1-T1: OZ(UZ_1 (So))

A.6 THEOREM 5.3.9 (FORWARD PRIVACY FOR SSP) 125

if the interfaces are independent and
vsy, pr-x: Ok (UF1(S1))

if the frames are linked. These frames are not equivalent by hypothesis,
thus the processes in the definition of unlinkability are not observation-
ally equivalent.

2. If Pp; does not hold, then there exists n such that
[15 20U (S0)) L, Tn: On(Um(Sh))-

If Pg; does not hold then unlinkability is violated (see case 1). If Pg;
holds then the attacker can query 7 times the first interface and once the
second interface, obtaining the frame

V50, pr-(21:01(80) | -+ | n1:0n0_1(U"2(S0)) | 2 : On(U"1(S)))
if the interfaces are linked, and
vsy, ﬁn,1.<l‘1 . 01<Sl> ’ R | Tn—1 3On,1(Un72(Sl)>) ’
V82, P-T 2 O (S2)
if the interfaces are independent. By Pg;, the last frame is equivalent to
vsy, ﬁn—l-(ml . 01(51) | Ce | Tp—1 ZOn_l(Un_Q(Sl))) |
V59, Pr-n: On (U™ (Sy)).

By hypothesis we know that these frames are not statically equivalent.
Therefore the definition of unlinkability is violated.

Thus, we can conclude that for single-step protocols the properties Pg; and
‘Por are necessary and sufficient conditions for unlinkability. [

A.6 Theorem 5.3.9 (Forward privacy for SSP)

A single-step protocol satisfies forward privacy (Definition 4.3.1) if and only
if it satisfies Ps; and Pr.

The proof is similar to the one for unlinkability. Note that Theorem 5.3.9
and Proposition 5.3.8 imply that forward privacy is stronger than unlinkability
for single-step protocols, as expected by Proposition 4.3.1.

126 PROOFS

PROOF. Again, the proof is divided in two parts. First, we prove that the con-
ditions Pg; and Ppy imply forward privacy by demonstrating that
C|[BrTag’(cy1,cs)] is equivalent to C[BrTag’(c;) | Tag(cy)] for C[] =
vt.([] | £(_)). Later we prove that forward privacy implies the conditions.

In the proof we use the process Break’ (w) with two meanings, namely
br(_).t(_).w(x).br(z) and t(_).w(x).br(z). These processes model the abil-
ity of the attacker to get the secret of the tag linked to the first interface, before
and after sending an input on the channel br. We have to prove that when a
single-step protocol satisfies Pg; and Pp; then

vt.(vwo.vso. (InitSt(wo, So) | 'P(wo, c1) | IP(wo,) | Break! (w)) | £(_))
is observationally equivalent (=) to

vt.(vwy.vsy. (InitSt(wy, Si) | '1P(wi,¢1) | Break! (w)) |
V@UQ.I/SQ.([HﬂISIf(”LUg,SQ) ’ !P(wg,CQ)) |Z<_>)

For simplicity, we prove that the processes are labelled bisimilar, which im-
plies that they are observationally equivalent. We define the relation # as

7 =1

(LI(T{_) | St(wo, U*(Sy)) | Break? (wy)), (1.1)
vt.(ITy(St(wy, U*(Sy)) | Break?! (w)) |

I15(St(ws, U'(S2))) | (1)), (1.2)
(LI(St(wy, U*(Sy)) | wo(x).br{z)), (2.1)
vt (11 (St(wy, UF(S))) | wi(z).br(z)) |

]IQ(St(UJQ, UZ<SQ>>)>), (22)
(LI(br{U*'(S0))), (3.1)

vt (11 (br(U*(S1))) | 11:(St(ws, U'(S2))))),

A.6 THEOREM 5.3.9 (FORWARD PRIVACY FOR SSP) 127

(LI, 0 1), (4.1)
vt (IL ({7 0 1) | TI(St(we, U'(S,))))), (4.2)

(LI(St(wo, UM(Sy))
wo(z).vp.cr(O(x)).(t

vt.(I1(St(wy, U*(SY))
wy (z).vp.cr(O(x)).(t
115(St(wz, U'(S5))))

|
) | St(wo,U(x))) | Break! (wy)), (5.1)

(-
|
(L) | St(wi,U(x))) | Break! (wy)) |
), (5.2)

(L](St(wo Uk+l(50

) |
wo(w).vp.c2(0(x)).

(#() | St(wo, U(x)) | Break! (wp))), (6.1)
vt.(I1(St(wy, U*(S})) | Break! (wy)) |
]IQ(St(U)Q,UZ(SQ>) |
wa(7).vp.ea(O0(2)).(H_) | St(ws, U(x)))))), (6.2)

(LI(vpe (O(U™(S))).

(2C) | St(wo, U(UF(S0)))) | Break! (wo)), (7.1)
vt.(I1(vp.er(O(U*(S)))).

(HC) | St(wi, UUM(S1)))) | Break! (wy)) |

IT5(St(ws, U'(S2))))); (7.2)

(LI(vpe(O(U(Sy))).

(1) | St(wo, U(U*!(S0)))) | Break? (wy)), (8.1)
vt.(I1,(St(wy, U*(S))) | Break! (w)) |

1L (vpe(O(U'(5:)))-(EC) | St(wa, U(U'(S2))))))) (8.2)

Vk,l €N
}

We have to prove that any reduction step that may be performed by one el-
ement of a pair in % can be matched by its corresponding element, and the
resulting processes must be in Z%. Also, we have to show that all the pairs
contain statically equivalent processes.

128 PROOFS

We start from the first pair ((1.1),(1.2)) in the relation, which also cor-
responds to the initial state of the system. The processes can perform three
different transitions, by synchronising the token with the processes modelling
the tags on the interfaces c; and c,, or with Break/. These transitions lead
to the forms of ((5.1),(5.2)), ((6.1),(6.2)) and ((2.1), (2.2)), respectively,
which are in Z.

In the processes ((2.1), (2.2)) the token is not available, therefore the only
possible transition is an input on the channel wy, which leads to the processes
((3.1),(3.2)). Such processes can only output the tag state on the public
channel br. After this transition, we obtain two new processes of the form
of ((4.1),(4.2)). Their frames v;, and ¢ r; are extended with the substitu-
tions x4, : U (Sy) and xp,; : U*(S)), respectively. For the fourth pair no
transition is possible, since the token is no longer available for any process.

Both processes of the fifth pair can only synchronise the input and output
processes on wy and wq, respectively. The resulting processes have the form
of ((7.1), (7.2)), respectively. The case of the pair ((6.1), (6.2)) is similar.

The processes in ((7.1),(7.2)) and ((8.1), (8.2)) can only output a mes-
sage on the channel ¢; and ¢, respectively. The resulting pairs have the form
of ((1.1),(1.2)). Note that the position of the token in the resulting processes
differ from the one in ((1.1), (1.2)), but the processes are structurally equiva-
lent.

In the above cases we should also consider that the processes might spawn
acopy of (o1 and Q1 1 or Qg 2 and ()3 . They trivially belong to the relation,
because they only increase the powers of the corresponding processes. More-
over, when Break” (w) is br(_).t(_).w(z).br{x), the process can be triggered
becoming ¢(_).w(z).br{(x), but this transition, due to our notation, would lead
to processes of the same form.

To complete the proof we have to show that the frames of the processes in
each pair are equivalent. All the static equivalences to prove for the processes
in Z, except for the ones in ((4.1), (4.2)), have the form

VS0, Prt1-(VL) =s vs1, pr-(Vr1) | vS2, pr-(Vr2)

This equivalence has been proven to hold when Pgs; and Pp; hold. Being Pr;
stronger than Py, we can conclude that these frames are statically equivalent.
Thus, we only need to prove the static equivalence of the frames of the pro-
cesses (4.1) and (4.2):

VSOaﬁkH-(wL \ kaIUkH(So)) s 1/81,ﬁk-(¢31 ’ 95k+l¢Uk(Sl)) ’ V82, P1-YR2

A.6 THEOREM 5.3.9 (FORWARD PRIVACY FOR SSP) 129

This can be proven using the properties Ps; and Pr; (and Po; that is im-
plied by Prr):
V50, Prr1-(Yr | Tpsr: UM(Sp))
= vso, Pt ([L 7 Oi(U1(S0)) | wisr: URH(Sp))
s(Pril S0, Pt (Hk+1l$z i(U71(S0))) | vs0, Presr-ir: U (So)
(Porl I vso, piwi: O4(UY(So)) | v80, Prri-rss: UFH(So)
s|Psi] Hf:lys()’puxaz (Uz 1(0)) |
Hé’:l”smﬁj-xﬁ i (U771(80)) | vso, Prri-rs: UR(So)
s[Poil vs0, P (H'»c 1:rai.01(Ul 1(S0)) | wr4a:UM(S0)) |
S0, PI- HJ 125, 0;(U771(S0))
~famren] wsy, P (ITy %o, Od(U 1 (S1)) | wxsa: UR(S))) |
v, [[y, : 0;(U71(S2))
= vsi, pr-(Vri | 02 UR(S1)) | vsa, prtbmy
V increasing sequences «;, 3; s.t. {a; | 1 < i < k}U{B; |1 <j <} =
[1,..., k + []. Therefore, all the frames in each pair of Z are statically equiva-
lent.

Y

Q

To conclude the proof we still need to prove that if forward privacy holds
also Pgr and Ppg; hold. We prove this by showing that =Pg; V =Pg; implies

C[BrTag’(c1,)] % C[BrTag’ (1) | Tag(cs)).
There are two cases:
1. If Pg; does not hold, see proof of Theorem 5.3.7.

2. If Pr; does not hold then there exists n such that

Hml (UYS0)) Lez, n:UH(S).

If Ps; does not hold then forward privacy is violated (see case 1). If Pg;
holds, the attacker can still break forward privacy by querying n times
the second interface and then breaking the tag on the first interface. The
resulting frames are

V50, Pr-(21:01(S0) | -+ | 201100 1 (U™ 2(S0)) | 20 : U™ 1(Sp))
and

I/SQ,ﬁn_l.(ﬂfolOl(Sg) | ce | l’n_liOn_l(Un_Q(Sg))) | l/Sl.ZIZ'nZU()(Sl)

130 PROOFS

that, by Pg; corresponds to
VSo, ﬁn_l.(.f() . 01 (SQ) | ce | Tp—1- On_l(Un_2(S2))) | VS1.Zp . Un_1<51>.

By assumption we know that these frames are not statically equivalent,
therefore the definition of forward privacy is violated.

O

A.7 Theorem 5.3.11 (Backward privacy for SSP)

A single-step protocol satisfies backward privacy (Definition 4.4.1) if and only
if it satisfies Ps; and Ppy.

PROOF. First we prove that Ps; and Pp; imply backward privacy, namely
the equivalence

C[BrTag’(ci,cy)] =~ C[BrTag’(c) | Tag(cs)]

with C[] = vt, re, co.([] | £(_)). This corresponds to proving that

vre,t, co.(vwo.vso. (InitSt(wo, So) | 1P (wo, 1) | 1P (w, ¢2) |
Break®(w)) | (_))

is observationally equivalent (=) to

l/rc,t,cg.(l/wl.usl.(InitSt(wl,51) | 1P(wq,c1) | Breakb(wl))]
l/wg.l/sg.([m'tSt(wQ,Sg)] !P(wQ,CQ)) | £(_)).

This equivalence can be proven by demonstrating that these processes are
labelled bisimilar. The relation % between the processes is similar to the one
that we defined in the proofs of Theorems 5.3.7 and 5.3.9, hence we do not
explicitly define it here. It consists of:

e Pairs of processes similar to those defined in the proof of Theorem 5.3.9
for forward privacy. The only difference is in the process Break® (that
replaces Break’). The pairs ((2.1),(2.2)), ((3.1),(3.2)) and ((4.1),
(4.2)) must be replaced by the processes modelling the evolution of the
process Break®, which lead to the disclosure of the secret on ¢; (and
consequent restoring of the tag secret) or not, according to the attacker’s
choice. In both cases, the interface ¢, is enabled.

A.7 THEOREM 5.3.11 (BACKWARD PRIVACY FOR SSP) 131

e Pairs of processes as defined in the proof of Theorem 5.3.7 for unlinka-
bility, modelling the processes obtainable after the complete execution

of Break®. Note that all these processes must also contain the substitu-
tion {V*"(S0)/ 1.

All the frames (obtained by these pairs of processes) that model the sys-
tem before the state disclosure, or when the attacker chooses not to break the
tag, are proven equivalent in the proof of Theorem 5.3.7. The frames cor-
responding to the processes that have just output the state of the tag on c;
are proven equivalent in the proof of Theorem 5.3.9. We only need to prove
the equivalence of the frames corresponding to processes that have sent some
outputs after the tag state disclosure (k + [> n):

VSoaﬁkH-(?/JL \ y5Ud_1(50)) s V51>ﬁk-(¢R1 | yiUd_l(Sl)) ! VS, P1-UR2

This can be proven using the conditions Pg; and Pg; (and Py that is implied
by PB])Z

vso, pret-(Vr | y: U (S))
= V80, Dk-t- (H?ﬁ%iiOi(Ui_l(SO)) | y:U"1(So)
| TTEi: O:(U(50))
%s[,POI PBI] Hz 1 I/So,pl Ty OZ(UZ_I(SO)) ‘ VSO?ﬁd'y:Ud_l(SO) ‘
[T vso, pii: O; (Ui_l(So))

~s[Psi] [1:2) vso, pi-ta, : Oi(U1(S0)) |
[1_1v50. .25, : O;(UI=(S0)) | vso, pa-y: U1 (So)
~s[Psi] vso, D ([T @y : 05U (S0)) | y: U4 (S0))

[0, 1T, 15,2 05 (U7! (S0)
~lamren] s, e (T1) %o, O((UH(S1)) | y:U2(Sh)
| vs2, 1T Tjmyvs, : O;(U7(S2))
= vst, pr-(r1 | y: U (S1)) | vs2, pribre
V increasing sequences «;, 3; s.t. {o; | 1 < i < kJU{B; |1 <j <[} =
1., k+1.
To conclude the proof we still need to prove that if backward privacy holds
also the conditions hold. We show that =Pg; V =Pp; implies

C[BrTag(e1, c2)] # CBrTag(c1) | Tag(cy)]
There are two cases:

1. If Pg; does not hold, see proof of Theorem 5.3.7.

132

PROOFS

2.

Thus,

vacy.

If Ps; holds but Pg; does not, there exists n such that
11572 00U (S0) [y: UM (S0) Lz TTimni: Os(U1(Sh)).

If Ps; holds, the attacker can still break backward privacy by querying
n— 2 times the first interface, breaking it after d— 1 protocol executions,
and querying the second interface m — n times. The frames that the
attacker obtains in the case of independent and linked interfaces are
not statically equivalent by assumption, therefore we can conclude that
backward privacy is violated.

Psr and Pp; are necessary and sufficient conditions for backward pri-

]

B

PROVERIF CODE

To run ProVerif:

analyzer —-in pi <file>

Pg; for OSK can be verified for infinite number of sessions:

analyzer —-in pi model-osk-pl-infinite

For Pr; OSK a model can be generated for any fixed number of sessions:

perl generate-osk-p3.pl 10 > model-osk-p3-10
analyzer —-in pi model-osk-p3-10

Same for the basic hash protocol and Pp;:

perl generate-basichash-p2.pl 10 > model-basichash-p2-10
analyzer —-in pi model-basichash-p2-10

B.1 Pg; for OSK protocol

(*
This model checks P_SI for an infinite number of
sessions

The bi-processes starts with x=s on one side and
x=h(s) on the other (x is the state, communicated
on channel a).

At each step we ouput g(x), and set x = h(x).

134 PROVERIF CODE

Proverif proves that the processes are
observationally equivalent hence the frames at
each step are statically equivalent. The
equivalences we get at each step:

step 1: g(s) = g(h(s))
step 2: g(h(s)) = g(h"2(s))
step 3: g(h"2(s)) = g(h"3(s))

step n: g(h”®n(s)) g(h*n+1(s))
This holds for all n, so by transitivity we get
property P_STI:

g(h*n(s)) = g(h*m(s)) for all n,m

*)

fun h/1.
fun g/1.

free c.

process
new aj;
new sj;
(
!
in(a, x);
out (¢, g(x));
out (a, h(x))
) 1«

out (a, choice[s, h(s)])

(*
This is the same but using "phase" so that there
is a single output
g(h®n(s)) = g(h®n+l(s))
for some deterministically chosen n.

process
new aj;
new s;

B.2 Pr; FOR OSK PROTOCOL

135

|

in(a, x);

out (a, h(x))
) I

in(a, x);

phase 1;

out (¢, g(x))
) I

out (a, choicel[s, h(s)])

*)

B.2 Pp;for OSK protocol

B.2.1 Generate code

#!/usr/bin/perl -w
use strict;

Generates a ProVerif model for checking P_FI for

OSK for N sessions.

my $n = SARGVI[O0]
or die "\nusage: generate-osk-p3.pl
<number of sessions> [--p2]\n\n";

my $p2 = SARGV[1] && S$ARGVI[1] eqg '—-—-p2';

static part

print gf

param traceDisplay = none.

param verboseExplainClauses = false.
param explainDerivation = false.
param reconstructTrace = false.
param traceBacktracking = false.

fun h/1.

fun g/1.

(# sanity check: uncommenting the part below adds an
invert function for g hence the property should no

136 PROVERIF CODE

longer work =)

(*
fun gi/1.
equation gi(g(x)) = x.

*)

process
new s;
new s’;

bi

print output common for both processes

my $i;
for($i = 0; $i < S$n; Si++) {
my $s — "g(" . ("h(" X $l) . "S" . (")" X $l) . ")";

print "out (c, $s);\n";

print "choice" part

my $Sl — ("h(" x $l) Lonhgn . (n)" < $l),’
my $32 = <"h(" X $i) . "Sl" . (")" X $i>;
1f(9p2) A

$sl = "g(Ssl)";

$32 — "g($82)",‘

print "out (¢, choice[$sl, $s2]1);\n";
print "O0\n";

B.2.2 Model for the OSK protocol

param traceDisplay = none.

param verboseExplainClauses = false.
param explainDerivation = false.
param reconstructTrace = false.

param traceBacktracking = false.

B.3 Pgr; FOR BASIC HASH PROTOCOL 137

fun h/1.
fun g/1.

(» sanity check: including the part below adds an
invert function for g hence the property should
no longer work x)

fun gi/1.
equation gi(g(x)) = x.

process
new sj;
new s’
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
out (c,
h (h (h(

~.

QY QY Yuuvuuvuuyuuy

00 NN~~~ s~~~ o~
[R R R e S S e)]

Q
O
'_l
~ ~ D 00 505800 n =

oD NN~~~ ~
~ ~D 0o 5058058 n -

0D~~~ o~~~
~ ~ D 0o 50 50 n - -

0

B.3 Pg; for basic hash protocol

B.3.1 Generate code

#!/usr/bin/perl -w
use strict;

Generates a proverif model for checking P_OI
for the basic hash protocol for N sessions.

my $n = $ARGV[O]
or die "\nusage: generate-basichash-p2.pl
<number of sessions>\n\n";

138 PROVERIF CODE

static part

print gf

param traceDisplay = none.

param verboseExplainClauses = false.
param explainDerivation = false.
param reconstructTrace = false.
param traceBacktracking = false.

fun h/1.

(» sanity check: uncommenting the part below adds an
invert function for h hence the property should no
longer work x)

(*
fun hi/1.
equation hi(h(x)) = x.

*)

process
new sj;
new s’;

}i

print output common for both processes

#
my $i;
for($i = 0; $i < $n; S$i++) {
print gg {
new r$i;
out (¢, (r$i,h((s, r$i))));

}i

print "choice" part

print gqf
new r$i;
bi
my $sl = "(r$i, h((s , r$i)))";
my $s2 "(r$i, h((s’, rs$i)))";

B.3 Pgr; FOR BASIC HASH PROTOCOL 139

print gg {
out (¢, choice[$sl, $s2]);

bi
print "0\n";

B.3.2 Model for the basic-hash protocol

param traceDisplay = none.

param verboseExplainClauses = false.
param explainDerivation = false.
param reconstructTrace = false.
param traceBacktracking = false.

fun h/1.

(» sanity check: uncommenting the part below adds an
invert function for h hence the property should no
longer work x*)

(*
fun hi/1.
equation hi(h(x)) = x.

*)

process
new sj;
new s’;

new r0;
out (¢, (r0,h((s, r0))));

new rl;
out (¢, (rl,h((s, rl))));

new r2;
out (¢, (r2,h((s, r2))));

new r3;
out (¢, (r3,h((s, r3))));

140 PROVERIF CODE

new r4;
out (¢, (r4,h((s, rd))));

new rb5;
out (¢, (r5,h((s, r5))));

new ro6;
out (¢, (r6,h((s, r6))));

new r7;
out (¢, (r7,h((s, x7))));

new r8;
out (¢, (r8,h((s, r8))));

new r9;
out (¢, (r9,h((s, r9))));

new rl0;

out (¢, choice[(r1l0, h((s , rl0))), (rl0, h((s’, rl0)))1);
0

BIBLIOGRAPHY

[1]

(2]

[3]

[4]

[6]

[7]

[8]

ABADI, M. AND FOURNET, C. (2001). Mobile Values, New Names,
and Secure Communication. In Proc. of POPL. ACM Press. pp. 104—
115.

ARAPINIS, M., CHOTHIA, T., RITTER, E. AND RYAN, M. (2009).
Untraceability in the applied pi-calculus. In Proc. of ICITST. IEEE.

pp. 1-6.

ARAPINIS, M., CHOTHIA, T., RITTER, E. AND RYAN, M. (2010).
Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
In Proc. of CSF. IEEE Computer Society Press. pp. 107-121.

AVOINE, G. (2005). Adversary Model for Radio Frequency Identifi-
cation. Technical Report LASEC-REPORT-2005-001. Swiss Federal
Institute of Technology Lausanne, Switzerland.

AVOINE, G. (2005). Cryptography in Radio Frequency Identification
and Fair Exchange Protocols. PhD thesis. EPFL Lausanne, Switzerland.

BACKES, M., MAFFEI, M. AND UNRUH, D. (2008). Zero-Knowledge
in the Applied Pi-calculus and Automated Verification of the Direct
Anonymous Attestation Protocol. In SP ’08: Proc. of the 2008 IEEE
Symposium on Security and Privacy. 1EEE Computer Society Press,
Washington, DC, USA. pp. 202-215.

BERMAN, R., FIAT, A. AND TA-SHMA, A. (2004). Provable Unlink-
ability Against Traffic Analysis. In Proc. of Financial Cryptography.
LNCS. Springer. pp. 266-280.

BLANCHET, B. (2001). An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In CSFW. IEEE Computer Society Press.
pp- 82-96.

142

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BLANCHET, B. (2004). Automatic Proof of Strong Secrecy for Security
Protocols. In IEEE Symposium on Security and Privacy. 1EEE Com-
puter Society Press. pp. 86—.

BRUSO, M., CHATZIKOKOLAKIS, K. AND DEN HARTOG, J. Formal-
ising Privacy Properties for RFID Systems. Submitted.

BRUSO, M., CHATZIKOKOLAKIS, K. AND DEN HARTOG, J. (2010).
Formal Verification of Privacy for RFID Systems. In Proc. of CSF. IEEE
Computer Society Press. pp. 75-88.

BRUSO, M., CHATZIKOKOLAKIS, K., ETALLE, S. AND DEN HAR-
TOG, J. Dissecting Unlinkability. Submitted.

BRUSO, M., CHATZIKOKOLAKIS, K., ETALLE, S. AND DEN HAR-
TOG, J. (2013). Linking Unlinkability. In Proc. of Trustworthy Global
Computing. Eds. C. Palamidessi and M. D. Ryan. LNCS. Springer.

BURMESTER, M., LE, T. V. AND DE MEDEIROS, B. (2006). Provably
Secure Ubiquitous Systems: Universally Composable RFID Authenti-
cation Protocols. In Proc. of Securecomm. 1EEE. pp. 1-9.

CAMENISCH, J. AND GROAS§, T. (2008). Efficient Attributes for
Anonymous Credentials. In ACM Conference on Computer and Com-
munications Security. Eds. P. Ning, P. FE. Syverson, and S. Jha. ACM
Press. pp. 345-356.

CAMENISCH, J. AND LYSYANSKAYA, A. (2001). An Efficient System
for Non-transferable Anonymous Credentials with Optional Anonymity
Revocation. In Proc. of the International Conference on the Theory and
Application of Cryptographic Techniques: Advances in Cryptology. Ed.
B. Pfitzmann. EUROCRYPT ’01. Springer, London, UK, UK. pp. 93—
118.

CHADHA, R., DELAUNE, S. AND KREMER, S. (2009). Epistemic
Logic for the Applied Pi Calculus. In Proc. of IFIP. Vol. 5522 of LNCS.
Springer, Lisbon, Portugal. pp. 182-197.

CHATMON, C., VAN LE, T. AND BURMESTER, M. (2006). Secure
Anonymous RFID Authentication Protocols. Technical Report TR-
060112. Florida State University Tallahassee, Florida, USA.

BIBLIOGRAPHY 143

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

CHAUM, D. (1985). Showing Credentials Without Identification. Signa-
tures Transferred Between Unconditionally Unlinkable Pseudonyms. In
Proc. of EUROCRYPT’85. Ed. F. Pichler. Vol. 219 of LNCS. Springer.
pp- 241-244.

CHOTHIA, T. AND SMIRNOV, V. (2010). A Traceability Attack against
e-Passports. In Financial Cryptography. Ed. R. Sion. Vol. 6052 of
LNCS. Springer. pp. 20-34.

DECHESNE, F., MOUSAVI, M. R. AND ORZAN, S. (2007). Operational
and Epistemic Approaches to Protocol Analysis: Bridging the Gap. In
Proc. of LPAR. Vol. 4790 of LNCS. Springer. pp. 226-241.

DimiTRrIOU, T. (2008). RFID-DOT: RFID Delegation and Ownership
Transfer Made Simple. In Proc. of 4th International Conference on Se-
curity and Privacy in Communication Networks. ACM Press. pp. 1-8.

FRANZ, M., MEYER, B. AND PASHALIDIS, A. (2007). Attacking Un-
linkability: The Importance of Context. In Proc. of Privacy Enhancing
Technologies. Vol. 4776 of LNCS. Springer. pp. 1-16.

GARCIA, F. D. AND VAN ROSSUM, P. (2010). Modeling Privacy for
Off-Line RFID Systems. In Proc. of CARDIS. Vol. 6035 of LNCS.
Springer. pp. 194-208.

HALPERN, J. Y. AND O’NEILL, K. R. (2003). Anonymity and In-
formation Hiding in Multiagent Systems. In Proc. of CSFW. IEEE
Computer Society Press. pp. 75-88.

HUGHES, D. AND SHMATIKOV, V. (2004). Information Hiding,
Anonymity and Privacy: A Modular Approach. Vol. 12. 10S Press.
pp. 3-36.

JUELS, A. AND WEIS, S. A. (2007). Defining Strong Privacy for RFID.
In Proc. of PerCom Workshops. IEEE Computer Society Press. pp. 342—
347.

L1, X., ZHANG, Y. AND DENG, Y. (2009). Verifying Anonymous
Credential Systems in Applied Pi Calculus. In CANS ’09: Proc. of
the 8th International Conference on Cryptology and Network Security.
Springer, Berlin, Heidelberg. pp. 209-225.

144

BIBLIOGRAPHY

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

LiMm, C. H. AND KWON, T. (2006). Strong and Robust RFID Authen-
tication Enabling Perfect Ownership Transfer. In Conference on Infor-
mation and Communications Security — ICICS’06. LNCS. Springer,
Raleigh, North Carolina, USA.

MEYER, J.-J. C. AND HOEK, W. V. D. (2004). Epistemic Logic for
Al and Computer Science. Cambridge University Press, New York, NY,
USA.

MILNER, R., PARROW, J. AND WALKER, D. (1989). A Calculus of
Mobile Processes, parts I and II. Vol. 100. pp. 1-77.

NoHL, K. AND EvVANS, D. (2009). Privacy Through Noise: a De-
sign Space For Private Identification. In Annual Computer Security Ap-
plications Conference (ACSAC 2009). 1IEEE Computer Society Press.
pp- 518-527.

OHKUBO, M., Suzuki, K. AND KINOSHITA, S. (2003). Crypto-
graphic Approach to “Privacy-Friendly” Tags. In Proc. of RFID Privacy
Workshop.

OUAFI, K. AND PHAN, R. C.-W. (2008). Privacy of Recent RFID Au-
thentication Protocols. In Proc. of ISPEC. Vol. 4991 of LNCS. Springer.
pp. 263-277.

PFITZMANN, A. AND KOHNTOPP, M. (2001). Anonymity, Unobserv-
ability, and Pseudonymity - A Proposal for Terminology. Springer.

STEINBRECHER, S. AND KOPSELL, S. (2003). Modelling Unlinkabil-
ity. In Proc. of Privacy Enhancing Technologies. Vol. 2760 of LNCS.
Springer. pp. 32-47.

SYVERSON, P. F. AND STUBBLEBINE, S. G. (1999). Group Principals

and the Formalization of Anonymity. In Proc. of World Congress on
Formal Methods. Vol. 1708 of LNCS. Springer. pp. 814-833.

VAN DEURSEN, T., MAUW, S. AND RADOMIROVIC, S. (2008). Un-
traceability of RFID Protocols. In Proc. of WISTP. Vol. 5019 of LNCS.
Springer. pp. 1-15.

VAN DEURSEN, T. AND RADOMIROVIC, S. (2009). Algebraic Attacks
on RFID Protocols. In Proc. of WISTP. Vol. 5746 of LNCS. Springer.
pp- 38-51.

BIBLIOGRAPHY 145

[40] VAUDENAY, S. (2007). On Privacy Models for RFID. In Proc. of ASI-
ACRYPT. Vol. 4833 of LNCS. Springer. pp. 68-87.

[41] WEIS, S. A., SARMA, S. E., RIVEST, R. L. AND ENGELS, D. W.

(2003). Security and Privacy Aspects of Low-Cost RFID Systems. In
Proc. of SPC. Vol. 2802 of LNCS. Springer. pp. 201-212.

146 BIBLIOGRAPHY

SUMMARY

Radio-frequency identification (RFID) systems are a wireless technology for
automatic identification of objects or persons. This technology has raised a
number of privacy concerns due to its mobile nature and to the limited capa-
bilities of RFID tags.

The privacy issues in RFID systems differ from those affecting other sys-
tems. In identification systems an attack typically aims at disclosing private
information stored in the user devices, while in RFID systems an attack aims
at tracing the movements of a person (or an object) carrying a specific tag, as
tags do not usually store personal information (or object description).

In this thesis we study the notion of unlinkability, a privacy property that
holds in an RFID system when it is impossible to trace one of its tags. As the
current literature comprises a number of different interpretations and defini-
tions of this property and other related notions, we start by formally compar-
ing these interpretations in a unifying framework. Then we develop a formal
framework tailored to RFID systems where it is possible to describe and anal-
yse RFID protocols.

More specifically, in Chapter 1 we briefly introduce the concept of un-
linkability in the context of RFID systems. Chapter 2 provides the reader
with the main ingredients that we use to define the unifying framework pre-
sented in Chapter 3 and the RFID model in Chapter 4. We use our unifying
framework to capture several definitions of unlinkability from the literature
and to formalise other related privacy properties. The differences between
all these privacy definitions are explored, formally proving their relationships
and showing that, under a set of conditions, the properties coincide. The RFID
model in Chapter 4 allows us to describe RFID protocols using the applied pi
calculus and to define unlinkability and other privacy notions taking into ac-
count the particular features of RFID systems. In Chapter 5 we describe and
study a class of protocols and analyse some protocols from the literature that
fall in this class. Finally, we present our conclusion and future work in Chap-
ter 6.

148 SUMMARY

CURRICULUM VITAE

Mayla Brus6 was born on 19/11/1984 in Venice, Italy.

She studied Computer Science at Universitd Ca’ Foscari in Venice, Italy,
where she graduated cum laude in 2008. The main subject of her research was
formal analysis of security protocols. Her master thesis "‘Non-Repudiation
Analysis With LySa"” was supervised by Prof. Dr. Agostino Cortesi. From
2009 she started a Ph.D. project at TU/e in Eindhoven, The Netherlands, of
which the results are presented in this dissertation.

	Acknowledgements
	1 Introduction
	1.1 Privacy in RFID systems
	1.2 Unlinkability and related notions
	1.3 Research question
	1.4 Plan of the thesis

	2 Preliminaries
	2.1 Epistemic logic with public announcements
	2.2 Applied pi calculus
	2.3 Conclusions

	3 Formalisation of privacy properties
	3.1 An abstract trace-based model
	3.2 Interpretation of existing unlinkability definitions
	3.3 Comparison between definitions
	3.4 Formalisation of forward and backward privacy
	3.5 Related work
	3.6 Conclusions

	4 Modelling privacy for RFID systems
	4.1 A concrete RFID model
	4.2 Unlinkability
	4.3 Forward privacy
	4.4 Backward privacy
	4.5 Related work
	4.6 Conclusions

	5 Single-step protocols
	5.1 Single-step protocols in the applied pi calculus
	5.2 Instantiating our abstract model
	5.3 Privacy properties for single-step protocols
	5.4 Conclusions

	6 Conclusions
	6.1 Limitations of the models
	6.2 Directions for future work

	A Proofs
	A.1 Theorem 3.2.2 (Game-based unlinkability)
	A.2 Theorem 3.3.1 (Unification of unlinkability)
	A.3 Theorem 3.3.2 (Unification of inseparability)
	A.4 Theorem 5.2.1 (Single-step protocols)
	A.5 Theorem 5.3.7 (Unlinkability for SSP)
	A.6 Theorem 5.3.9 (Forward privacy for SSP)
	A.7 Theorem 5.3.11 (Backward privacy for SSP)

	B ProVerif code
	B.1 PSI for OSK protocol
	B.2 PFI for OSK protocol
	B.3 PFI for basic hash protocol

	Bibliography
	Summary
	Curriculum Vitae

