742 research outputs found

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    UE Uplink Power Distribution for M2M over LTE

    Get PDF

    2011 Exhibitors

    Get PDF
    Listings and Descriptions of 2011 Small Satellite Conference Exhibitor

    A next generation manufacturing control system for a lean production environment

    Get PDF
    This thesis focuses on addressing the need for a new approach to the design and implementation of manufacturing control systems for the automotive industry and in particular for high volume engine manufacture. Whilst the operational domain in the automotive industry has moved to lean production techniques, the design of presentday manufacturing control systems is still based on systems intended for use in a mass production environment. The design and implementation of current manufacturing control systems is therefore inappropriate when viewed from a business context. The author proposes that it is possible to create a more appropriate manufacturing control systems based on an optimised use of advanced manufacturing technology within the complete business context. Literature is reviewed to provide a detailed understanding of the relationship between modem operating practices and the application of contemporary control systems. The primary tasks of manufacturing control systems, within the context of a structured systems approach to manufacturing technology, production management and industrial economics are identified. A study of modem manufacturing control system technology is carried out, highlighting the fundamental principles that influence application engineering in this area. The thesis develops a conceptual design framework that aids the identification of attributes required of a next generation manufacturing control system (NGCS), in order to enhance the business performance of lean automotive manufacturing. The architecture for a next generation control system is specified and a Proof of concept system implemented. Potential advances over contemporary practice are identified with the aid of a practical implementation at a major automotive manufacturer

    Equipment management trial : final report

    Get PDF
    Executive Summary The Equipment Management (EM) trial was one of the practical initiatives conceived and implemented by members of The Application Home Initiative (TAHI) to demonstrate the feasibility of interoperability between white and brown goods, and other domestic equipment. The trial ran from October 2002 to June 2005, over which period it achieved its core objectives through the deployment in early 2005 of an integrated system in trials in 15 occupied homes. Prior to roll out into the field, the work was underpinned by soak testing, validation, laboratory experiments, case studies, user questionnaires, simulations and other research, conducted in a single demonstration home in Loughborough, as well as in Universities in the East Midlands and Scotland. Throughout its life, the trial faced significant membership changes, which had a far greater impact than the technical issues that were tackled. Two blue chip companies withdrew at the point of signing the collaborative agreement; another made a major change in strategic direction half way through and withdrew the major portion of its backing; another corporate left at this point, a second one later; one corporate was a late entrant; the technical leader made a boardroom decision not to do the engineering work that it had promised; one company went into liquidation; another went up for sale whilst others reorganised. The trial was conducted against this backdrop of continual commercial change. Despite this difficult operating environment, the trial met its objectives, although not entirely as envisaged initially – a tribute to the determination of the trial’s membership, the strength of its formal governance and management processes, and especially, the financial support of the dti. The equipment on trial featured a central heating/hot water boiler, washing machine, security system, gas alarm and utility meters, all connected to a home gateway, integrated functionally and presented to the users via a single interface. The trial met its principal objective to show that by connecting appliances to each other and to a support system, benefits in remote condition monitoring, maintenance, appliance & home controls optimisation and convenience to the customer & service supplier could be provided. This is one of two main reports that form the trial output (the other, the Multi Home Trial Report, is available to EM Trial members only as it contains commercially sensitive information). A supporting library of documents is also available and is held in the virtual office hosted by Loughborough University Centre for the Integrated Home Environment

    Internet-based monitoring and controlling of real-time dynamic systems

    Get PDF
    The study in this report mainly focuses on the Internet-based Monitoring and Controlling of a Real-Time Dynamic System interfaced via a dedicated local computer. The main philosophy behind this study is to allow the remote user to conduct an Internet-based Remote Operation (I-bRO) for the dynamic system. The dynamic system has been defined as the system which has its parts interrelated in such a way that a change in one part necessarily affects other parts of the system [I]. In order to achieve this goal, the study has been conducted in a form of an on-line and real-time Virtual Laboratory (VL). Through this form of laboratory, a user can carry out the experiment, perform real-time monitoring and controlling operations of the experiment and collect real and live data from the experiment through the network link as the user was physically in the laboratory. The dynamic system that has been selected for the test-rig of this study is a 3-phase Induction Motor (IM) which is mechanically coupled with a DC-Dynamometer that acts as a variable load to the IM. This system is a common laboratory experiment in the study of the Electrical Engineering for both undergraduate and postgraduate students. The study covers both sides of the I-bRO; the hardware and the software. The hardware side includes the design and the development of a load control box that has been used to interface the DC-Dynamometer and consequently control it from the local computer. The software side covers the design and the development of the Virtual Instrumentation System (VIS) that has replaced successfully the physical Measurement and Test (M&T) instruments of the test-rig. Beside that, the software side includes the development of the internet remote front panel for the remote operation.Furthermore, the software side includes the development of the software that has been used to analyse the system during the I-bRO. In this study, the LabVTEW7 program has been used to design and develop the VIS and the Matlab program has bee used to aualyse the system performance for the remote operations. This study also addresses the issues and problems related to the intranet or the internet to be used as the network for data communication between the test-rig and remote users. This study has been carried out in different stages as follows: 1. Designing and development of the VIS. 2. Interfacing the test-rig apparatus with a local computer. 3. Upload the system from the local computer to the network. 4. Study the performance of the system on the network for the purpose of the remote operations controlled over the internet. The developed system of this study has been used for data acquisition, network communications, instruments monitoring and controlling applications. A user can execute on-line and in the real-time the developed VIS from any point in the university. Due to the fact that the university network is directly integrated to the main internet server. a remote user through the main internet server is able to perform I-bRO of the selected dynamic system. There are many factors associated with the network, the internet or the intranet, and have direct influences on the control system performance throughout the remote operations. The most dominant factors are the random time-delays and the data losses.These factors among others have to be addressed for a proper application of the I-bRO. For this reason, different cases and scenarios of the I-bRO have been investigated and simulated to study the affection of the network on the control system performance. The system is analysed under two control cases, closed loop with random time-delays and open loop when the internet server is disconnected and no communication between the input and the output of the system. In the first case, the closed loop, the internet server is assumed to be closed and subjected to random time-delays. In the second case, the internet server is subjected to random cut-off and thus opens the control loop. The results of both cases have been analysed and discussed. It has been found that, if the control system without the time-delays is stable, it remains stable even with small time-delays up to twenty seconds. This result is different from what has been shown in the literature

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis
    • …
    corecore