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SYNOPSIS 

This thesis focuses on addressing the need for a new approach to the design and 
implementation of manufacturing control systems for the automotive industry and in 

particular for high volume engine manufacture. Whilst the operational domain in the 

automotive industry has moved to lean production techniques, the design of present- 
day manufacturing control systems is still based on systems intended for use in a mass 

production environment. The design and implementation of current manufacturing 

control systems is therefore inappropriate when viewed from a business context. The 

author proposes that it is possible to create a more appropriate manufacturing control 

systems based on an optimised use of advanced manufacturing technology within the 

complete business context. 

Literature is reviewed to provide a detailed understanding of the relationship between 

modem operating practices and the application of contemporary control systems. The 

primary tasks of manufacturing control systems, within the context of a structured 

systems approach to manufacturing technology, production management and 
industrial economics are identified. A study of modem manufacturing control system 

technology is carried out, highlighting the fundamental principles that influence 

application engineering in this area. 

The thesis develops a conceptual design framework that aids the identification of 
attributes required of a next generation manufacturing control system (NGCS), in 

order to enhance the business performance of lean automotive manufacturing. The 

architecture for a next generation control system is specified and a Proof of concept 
system implemented. Potential advances over contemporary practice are identified 

with the aid of a practical implementation at a major automotive manufacturer. 
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DEFINITIONS 

The purpose of this section is to define the meaning of scribe a number of terms in the 

context of this thesis. 

Architecture 

The Oxford English dictionary' provides a number of definitions of the term 
Architecture. The most appropriate within the context of this thesis is: The 

conceptual structure and logical organisation of a computer based system. 
For the purposes of this thesis this definition is taken to have a broader 

meaning i. e. lite manner in which elements of a SPecifIc system are 
organised and integrated together, [Zwegers, 19981. 

Reference Architecture 

This thesis reserves the term Reference Architecture for: a generic 

architecture serving as a point of departurefor many specTic architectures. 

Architectural Units 

An Architecture is made up of a number of fundamental building blocks 

known in this thesis asArchitectural Units. 

Engineering Design 

The systematic, intelligent generation and evaluation of specifications for 

artefacts whose form and function achieve stated objectives and satisfy 
specified constraints. [Dym. 1999]. 

Method 

The term method is used to define: the procedures or process used to 
construct the orderly arrangement of ideas. 

1 Oxford English Reference Dictionary, Second Edition, Oxford University Press 1996. 
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Methodology 

Methodology is considered to be: a body of methods used within a particular 

framework 

Framcwork 

The term 'Framework' is used to describe: the environment within which aU 

the stated terms, structures and methodologies are organised 

Domain 

A parficularfield of use within which aframework is applied. 

Model 

A model is considered to be aparticular instance of a Reference Architecitire 

used to analyse andpredict the performance of a systenL 
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CHAPTER I 

1. Introduction 

This thesis focuses on addressing the machine control requirements of the automotive 
industry and in particular high volume engine manufacture. It will show that whilst the 

operational domain in the automotive industry has moved to lean production techniques 

(Section 2.2), the design of contemporary manufacturing control systems is inappropriately 

based on the requirements of a mass production environment. 

The hypothesis on which this thesis is based is that the design and implementation of present 

day manufacturing control systems is inappropriate when viewed from a business context. 

The author proposes that it is possible to create a more appropriate next generation of 

manufacturing control systems based on the optimised use of advanced manufacturing 

technology that better meets the needs of a lean manufacturing environment. This thesis 

therefore aims to provide a contribution to the development of a new design framework that 

identifies the design attributes required of a next generation manufacturing control system in 

order to enhance the business performance of lean automotive manufacturing facilities. 

ýp 

In order to address this hypothesis the author considers that it is necessary to: 

I- Study and characterise contemporary manufacturing paradigms with a view to identifying 

key strategic issues in automqtive manufacturing. 

2. Consider manufacturing strategies that are currently adopted within this environment. 

3. Identify the role of manufacturing control systems as part of an advanced manufacturing 

system. 
4. Critically review current and emerging manufacturing control technologies and 

architectures. 
5. Consider how manufacturing control technology (MCT) may be aligned and used to best 

fulfil manufacturing strategy. 
6. Identify solution principles and functional structures that will underpin a conceptual design 

framework that will produce a next generation control system. 

7. Create and test a next generation manufacturing control system based on optimised use of 

available manufacturing control technology within the complete business context. 

To clearly define the scope of the thesis a brief overview of the context of the research, the 

adopted design and development process, the primary attributes of the resultant Next 

18 



CHAPTER I 

Generation Control System (NGCS) and the evaluation undertaken is given below in section 
I. I. Throughout this section the NGCS approach is contrasted with traditional design and 
development methods to highlight the research focus of the thesis. The structure of the thesis 
is detailed in section 1.2. 

1.1 Research Focus of the Thesis 

The changes in characteristics and aims of manufacturing practices over the last 30 years are 
illustrated in Figure 1-1. This diagrarn has been derived from Maskell at al 1998 and 

summarises typical business environments for four development stages, namely: traditional 

manufacture, gaining control, world class manufacture and agile manufacture. The aim is to 

provide the reader with an appreciation of the environment and requirements (i) in which PLC 

based control was adopted and (ii) that has lead to the NGCS research reported within this 

thesis. PLC based control of manufacturing systems was developed under the Traditional 

Manufacture and Gaining Control paradigms where departmentalism and movements towards 

better control, planned operations and better communications were adequately addressed (see 

Chapter 2). The movement towards lean and agile manufacture requiring less costly systems 

that are more responsive to change and address long-term profitability, highlights the 

limitations of present day manufacturing control system development processes. This new 

operational environment places a much greater emphasis on the system lifecycle and socio- 

technical issues of designing, implementing, maintaining and reusing control systems within 

complex manufacturing environments, employing a smaller multi-skilled workforce. The 

NGCS process addresses requirements to facilitate the achievement of flexibility (with respect 
to manufacturing structure and customer requirements), organisation (for change and 

uncertainty) and virtual corporations (to achieve competition through co-operation) that are 
the cornerstones of an Agile Manufacture paradigm. 

A comparison of the work described in this thesis (NGCS Process) with the current state of 
the art (traditional control system development process) is illustrated in Figure 1-2. The 
differences between the NGCS approach and traditional processes are highlighted in italic for 

each of the different phases. The Life Cycle phases covering design implementation and 
system application / operation contain similar generic activities (albeit producing radically 
different solutions) in the NGCS and PLC processes (see Figure 1-3). In both cases reference 
architectures are adopted which in turn are utilised to generate practical implementations. 

19 



CHAPTER I 

The NGCS Conceptual Framework presented in Chapter 5 is a single integrated design and 
development method. In contrast the traditional approach involves a number of methods each 

with a limited scope, focused on a specific system component (e. g. Controller, Power Supply, 

Drives, Man machine Interface). In the Design Requirements Analysis and Capture phase, 
the standard practices of Business Environment Analysis (BEA) and Technical Requirements 

Analysis (TRA) are supplemented in the NGCS process by Life Cycle Analysis (LCA) and 
Socio-technical Analysis (STA. ) (see Chapter 5). The design and development tools used to 

support the LCA and STA activities are detailed in the same chapter. A key feature of the 

NGCS process is the capture and analysis of the complete system requirements via the Design 

Attribute Relationship Matrix (DARM). The DARM enables the mapping of business drivers 

through all the phases to operational requirements and from there to design attributes. 

Feedback (e. g. in terms of cost, quality and time) for the optimisation of the NGCS design is a 

vital component of the NGCS process developed in this thesis. Under the current state of the 

art there is no formalised mechanism to enable the lessons learned from particular solutions to 

be appreciated in future system development. The NGCS addresses this shortfall by ensuring 

that a Feedback for Design Optimisation activity is undertaken. Details of the optimisation 

activity and lessons learned are given in Chapter 6. 

The outcome of the traditional approach to control system development and the NGCS 

approach is illustrated in Figure 1-3. In the traditional approach the components (i. e. the 

Programmable Logic Controller (PLC), input and output (1/0) devices, and drives) are vendor 

specific and are integrated in an ad-hoc manner. The design approach adopted is fragmented 

with each of the system components (e. g. RS232 ports, networks, and parallel interfaces) 

being configured by a different vendor specific design tool. System configuration data (i. e. 
for the 1/0, User Interface and Drives) is held in a number of separate files. Such a system 
inevitably relies on highly skilled specialists for its commissioning and maintenance. 

The NGCS approach utilises an open, integrated system architecture encompassing the 

complete system (e. g. the controller, 1/0, drives, Power Supply Unit). Open standards are 
utilised to provide vendor independence where possible. An integrated design approach is 

adopted with a single location for all system configuration data. The system is designed to be 

commissioned and maintained by multi-skilled operators. 

20 



CHAPTER I 

A Proof of Concept System is presented in Chapter 6, with a particular focus on attributes that 
differ from contemporary control systems. The second part of the chapter describes 

Simultaneous Engineering led by the author with the aim of realising the NGCS design 

principles on a new high volume assembly line at Ford Motor Company's Dagenham Engine 

Plant. Evaluation of the NGCS solutions has involved consideration of a number of issues 

that are illustrated in Figure 14. Experimental design has been undertaken to determine both 

quantitative and qualitative assessment of cost, system abilities and external influences on a 
lean production system from a number of different perspectives (e. g. operators, supervisors, 

production managers). Details of the experimental design analysis are given in Chapter 7. 

21 
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CHAPTER I 

1.2 Structure of Thesis 

The thesis is broken down into four principle sections, namely: context and need, hypothesis 

development and conceptual design, implementation and evaluation, and finally discussion 

and conclusions. The Thesis Structure shown in Figure 1-5 demonstrates how each chapter is 

positioned within this structure. 

Figure 1-5 Thesis Structure 

Context gnd Need 

Chauter I Charter 2 CIw ter 3 
The Role of Mitriuf; mcturing conternp. ý Hvp. tlie. iý. Research Technology &, Pwt of. k1tinufaturing 

Focus & TI., m M-facturing System- Control Systerns. 
Structure. 

Hvpothesis Dcvellopment Conceptual Design 

Chapter 4 Cl. pler ý 

NUCS Solution Principles NUCS Conceptual 

and Functional Structures. F--. rk- 

Implementatiom Application and EvAusition 

Chapter 6 Oh, pter ' 

Application of the NOCS NGCS Coniparative Shiciv. 
Conceptml Frarneworic 

Discussion juid Conclusions 

chgoter 8 
Comlý%mlw and Recoýcndatiow fm 
Futý WorL 

1.2.1 Context and Need 

Chapter 2 discusses manufacturing control technology within the context of a manufacturing 

system. A review of the methodology associated with the life cycle cost of manufacturing 

systems is presented and 111'e cycle costing of manufacturing control systems is considered. 
Literature is reviewed to provide a detailed understanding of the relationship between modem 

operating practices and the application of present-day control systems. The primary tasks of 
manufacturing control systems in the wider context of a structured systems approach to 

manufacturing technology, production management and industrial economics are identified. 
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Chapter 3 reviews current manufacturing controls systems, highlighting the fundamental 

principles that influence application engineering in this area. The literature survey goes on to 
highlight the limitations of current systems and critiques emerging trends. Attention is paid to 

the state of the art in manufacturing control systems, by encompassing a review of relevant 

standards and research initiatives. 

1.2.2 Hypothesis Development and Conceptual Design 

Chapter 4 draws conclusions from the literature survey and proposes a case for adopting a 

new approach. A set of guidelines for the development of a next generation manufacturing 

control system are proposed. The stated hypotheses is developed and examined against the 

research data. The operations and activities that occur within increasingly complex 

manufacturing systems are represented as a model in order to describe in a formal manner the 
ideal solution with regard to (i) ftinctional, requirement and flow; and (ii) dependencies 

between activities. Standardised terminology and structures allow the development of a clear 

set of criteria and requirements to allow the development of a Next Generation Manufacturing 

Control System (NGCMS) design framework. The design framework identifies contemporary 
design deficiencies and produces a set of objectives designed to enhance manufacturing 

performance in a lean production environment. 

1.2.3 Implementation, Application and Evaluation 

Chapter 6 applies the conceptual design framework to a proof of concept system and shows 

evidence of applicability. Deviations from the model are discussed and potential advances to 

contemporary practice identified. The chapter goes on to describe Simultaneous Engineering 

activity led by the author with the aim of implementing the design at the Ford Motor 

Company Limited. The functionality of the new system is tested, and then measured against 
the performance of a conventional control system in Chapter 7. 

1.2.4 Discussion and Conclusions 

Chapter 8 discusses the benefits and limitations of adopting the new design methodology. 
Concluding remarks summarise the principal elements of the work carried out in the thesis. 
Major contributions to knowledge are listed, highlighting areas where these contributions 
have satisfied the criteria identified in the body of the work. Finafly recommendations for 
further research are outlined. 
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CHAPTER 2 

THE ROLE OF MANUFACTURING CONTROL TECHNOLOGY AS 

PART OF A MANUFACTURING SYSTEM 
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2. The Role of Manufacturing Control Technology as part of a 
Manufacturing System 

2.1 Introduction 

The aim of this chapter is to consider the role of automation and in particular machine 

control systems within the context of modem manufacturing strategy. The chapter is divided 

into two sections. The first section considers present-day business requirements and drivers 

of change. Manufacturing strategies employed to fulfil these requirements are considered. 

The second part of the chapter identifies the role that manufacturing control systems have in 

supporting current manufacturing strategy. 

2.2 Business Requirements and Drivers of Change in the Automotive Industry 

The business environment now faced by manufacturing companies is significantly more 

competitive and dynamic than anything experienced in the past. Some of the trends that 

characterise this include: [Fuchs 1996] [Furness 1996] [Rao 1993] [Shaharoun 1993] [Singh 

1996] [Wobbe 19941. 

" globalisation of technology and markets; 

" fragmented, sophisticated, and demanding customers; 

" complex products with fused technologies; 

" rapid product and process technology changes; 

" environmentally conscious manufacturing. 

During the life of the automotive industry, expanding markets and global competition led to 

Taylorist and Fordist principles of work organisation. Managers viewed specialisation and 

high levels of automation as key enablers in achieving these principles. The shift to 

customised quality products has grown at the cost of standardised mass production leading to 

an increase in product variants and quality features, and a decrease in batch sizes and product 
life. These changes have had a dramatic impact on company management and organisation. 
Traditional automotive producers based on mass product and price competition are losing out 
to lean producers mainly from the Far East who offer greater flexibility, lower overall cost 

and higher quality. 
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Slow or nil growth in many developed economies is enticing the automotive companies into 

developing markets such as India, China, and South America. Pressure is being placed upon 

manufacturers to compete not just on cost, but on quality, flexibility, and innovation. 

Skinner promotes the view that successful companies must learn to use their manufacturing 

effectiveness as a competitive weapon, [Skinner 1985]. 

Over the last thirty years Managers have often looked on electrical, electronic and 

programmable systems as one of the key enablers in realising initially the goal of mass 

production and more recently lean production principles. In the 1980s many Western 

manufacturers installed thousands of the latest Robots, CNCs and Programmable systems in 

an unsuccessful attempt to match Japanese productivity, flexibility and quality. There is clear 

evidence that the Japanese consistently used relatively simple control equipment, 

concentrating instead on using appropriate levels of technology that allowed them to improve 

flexibility. The same basic manufacturing control technology was available globally 

implying that the Japanese utilised available technology more effectively in their 

manufacturing systems. Western mass production companies clearly failed as can be seen 

from the almost universal adoption of lower levels of automation and Japanese lean 

production techniques. 

Despite the ubiquitous acceptance of lean production, considerable uncertainty still exists 

both in Japan and the West concerning the introduction of automation. Deficiencies in 

current automation systems is often concealed through the use of highly skilled shopfloor 

staff and costly engineering to initially configure, maintain and then reconfigure the systems. 

Manufacturing Technology is often viewed from a narrow technical view point ignoring the 

broader strategic awareness. Successful manufacturing enterprises require a clear and 
detailed understanding of the key drivers of change, the strategies required to meet those 

challenges and finally the advanced methods and technologies that will deliver the desired 

competitive advantage. 

2.3 Manufacturing Strategy. 

The vast network of individuals that make up an organisation must be harnessed and directed 

toward a common set of goals. Garvin, Nutt and Goodman promote the view that the long 

term success of an enterprise requires a sound strategy, [Garvin 1992], [Nutt 19791, 
[Goodman 19821. A corporate strategy implies a consistency in a company's preferences for 
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certain management options including: dominant orientation, pattern of diversification, 

attitude toward growth and choice of competitive priorities. These strategic preferences are 

shown in Figure 2-1 

Figure 2-1 Corporate Attitudes That Imply Strategic Preferences [Garvin 1992a] 

Dominant orientation 
Market 
Product or material 
Technology 
Pattern of diversification 
Product 
Market (geographic or consumer group) 
Process (vertical integration) 
Unrelated horizontal (conglomerate) 
Corporate attitude to growth 
Growth sought explicitly 
Growth viewed as a by-product of successful management of the 'core' 
business. 
Competitive priorities 
Dependability Quality 
Product flexibility Volume flexibility 
Price 

The concept of a manufacturing strategy is a natural extension of this concept. 

Manufacturing must arrange its structure, management and production technology to 

facilitate the support of t4e corporate strategy. 

The lack of a manufacturing strategy or failure to communicate the strategy to the team 

tasked with implementing the control system, often leads to supplier and technology 

selection carried out on a short term economic basis rather than as a result of a long-term 

business need. The impact of poor interaction and integration of suppliers into the project 

team is felt more in the automotive sector than any other [DTI 1995]. A recent report 

published by the Department of Trade and Industry compares developments between 

suppliers and car manufacturers in the UK, Japan and the USA. The report concludes that in 

the UK partnerships have progressively improved over the past few years with: 

9 sixty four percent of suppliers surveyed reporting that they are developing 

partnerships with vehicle manufacturers, 
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the proportion of UK suppliers who believe that their customer would help them 
improve performance in the face of competition increasing from 39% in 1989 to 
8 1% in 1995 and, 
UK suppliers matching their Japanese counterparts in demonstrating the greatest 
confidence in their customers' commitment to maintaining the relationship. 

In contrast Pollack reports that in Japan the supplier, end user base is breaking down as 
automotive suppliers look to overseas suppliers who are able to offer more cost effective 
contracts and are breaking away from long-term partnerships with their local supplier base 
[Pollack 1995]. 

Hakensson and Ostberg present a model that considers the relationship between suppliers 

and users as the major dependent variable, [Hakansson 19751. The model explains 

situational aspects which lead suppliers and developers to innovate and users' willingness to 

adopt the developed innovations and technologies. The model suggests that the level of co- 

operation is based on a social exchange process and a degree of fit in the adaptation of the 

technology both from economic and technological grounds. However in the development of 
AMT systems the Hakensson and Ostberg model assumes that organisational changes in the 

production system are carried out after the decision to accommodate the innovation is made 
[Zairi 1998a]. It can be deduced from this that manufacturing strategy has not been 

incorporated in the model. 

Increasing research attention is being given to production competence as the source of 
competitive advantage [Choe 1997], [Cleveland 19891. Cleveland el al define production 
competence as 'the function of the fit between business strategy contents and manufacturing 
strategy contents'. They report empirical evidence supporting a significant relationship 
between production performance and business performance. 
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CHAPTER 2 

2.4 Lean Manufacturing Principles 

2.4.1 Introduction 

A review of the manufacturing strategies employed by automotive manufacturers reveal a 
broadly common set of goals as summarised in Figure 2-2, [FMC 19981, [VW 1998], 

[Daimler-Benz 1997]. To effectively support the manufacturing strategies outlined the large 

automotive producers can no longer rely on functional or regional achievements instead they 

need to operate as a single organisational structure. Companies need to identify how the 

processes within these organisational functions integrate and overlap. For example, Product 

Development is responsible for product planning and development. It shares responsibility 

and works with Manufacturing on product and process design through simultaneous 

engineering and both integrate and share processes with Marketing and Sales for'Voice of the 

Customee input and vehicle scheduling, [Sapota 19981. In the search for the most efficient 

method to address this dynamic environment a review of contemporary leading automotive 

producer's manufacturing strategy reveals that in every case Toyota! s Lean Production System 

model has been used as a source of inspiration. 

2.4.2 Evolution of Manufacturing Methods to Lean Manufacture 

Lean production is aimed at the elimination of waste in every area of production including: 

customer relations, product design, supplier networks and factory management. Its goal is to 

incorporate less human effort, less inventory, less time to develop products, and less space to 

become highly responsive to customer demand while producing top quality products in the 

most efficient and economical manner possible, [Cochran 1998]. 

The birth of the modem manufacturing era is normally associated with Henry Ford's Model 

T. With this vehicle Ford had finally achieved two key bbjectives. The first was that almost 

anyone could drive and repair the car without the need for a chauffeur or mechanic. The 

second and more important innovation was that the product was 'designedfor manufacture'. 
It was this complete and consistent interchangeability of parts and the simplicity of attaching 
them to each other that finally made the moving assembly line and hence mass production 
possible [Womack 1990]. 

The idea of interchangeability of parts was first developed by General Jean-Baptiste de 
Gribeauval in the second half of the eighteenth century [Batchelor 1994]. His incentive was 
the efficient maintenance and repair of guns. This system, which reduced reliance on skilled 
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craftsmen, attracted the attention of the United States Ordnance Department. Under the 
Ordnance Department's patronage interchangeability was promoted in both its own and 

private armouries, [Rolt 1986]. 

The second key enabler of mass production involved breaking complex tasks into a series of 

simple operations with a set target time for each [Liepietz]. In the late 19th century Taylor of 
the Bethlehem Steel Company published a new philosophy for manufacturing management 
that put forward such a principle including the payment of bonuses to those that achieved 
them. Ford adopted Taylor's principles. 

Henry Ford's mass production drove the auto industry for more than half a century and was 

eventually adopted in almost every field of industrial activity in North America and Europe 

[Womack 1990a]. 

Henry Ford recognised the importance of eliminating waste within the manufacturing 

environment and designed the Ford industrial structure accordingly [Ford 1926]. After World 

War II, the manufacturing capacity of U. S. companies dominated the world market place with 

domestic manufacturers having little competition. Such conditions encouraged wasteful 

practices and allowed unsound managerial polices to evolve. The focus of many 

organisations shifted to meet market demand at any cost. 

The managers of mass production factories forgot some of the lessons that Ford had laid 

down and in an attempt to meet market demand unwittingly shifted their focus away from 

synchronised production flow to the attributes surnmarised below: 

" high levels of indirect labour including relief workers, trouble shooters and 
housekeepers, 

" high levels of in process stock used to buffer the production operation from 

uncontrolled events; for example, breakdowns, stock shortages, 

" extensive end of line test and repair facilities, 

" high volume dedicated production facilities. 

Mass production had evolved into a system that attempted to isolate the factory operations 
from its own deficiencies and outside disturbances. In contrast in Japan a system started to 
evolve that deliberately exposed the manufacturing facility to the market. This new approach 
is commonly known as leanproduction. 
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A five year study by the Massachusetts Institute of Technology on the automotive industry 

reported a number of problems witnessed in mass production facilities including: poorly 
balanced production lines, assembly process problems with no root cause procedure, a 
dispirited workforce, no career progression for production workers and engineers progressing 
through their area of technical expertise with little experience of production. 

In 1950 a young Japanese engineer, Eiji Toyoda spent several months studying Ford Motor 

Company's Rouge Plant in Detroit. Back home in Nagoya, he came to the conclusion that the 

mass production techniques he had witnessed could never work in Japan [Womackl990b]. 

The reasons for this conclusion were: the market for Japanese vehicles was much smaller, 

therefore high volume single product manufacturing facilities were unsuited, the native 
Japanese work force was not made up of temporary 'guest' workers willing to put up with 

sub-standard work conditions; (In the West by contrast, these individuals had formed the core 

of the work force. ); and finally, the war-ravaged Japanese economy was starved of capital, 

meaning that purchase of the latest Western production technology was out of the question. 

The key attributes of lean production can be summarised as follows: 

complete and consistent interchangeability of parts and the simplicity of attaching 

them to each other with a root cause identification procedure for any part that fails 

to assemble correctly, 
breaking complex tasks into a series of simple operations with a set target time for 

each [Liepietz], 

low levels of indirect labour. The majority of repairs and housekeeping is carried 

out by the production team, 

low levels of in process stock, 

very little end of line test and repair, 

compact layouts facilitating face to face contact and leaving no room to store 
inventories, 

high levels of empowerment to the tearn workers adding value to the vehicle, 

multi-skilled workforce, 

" continuous improvement on a proactive basis at all levels, 

" every employee begins by working on the production line for some period of time, 

" more flexible (than massproduction) production facilities. 
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2.5 Lean Manufacturing Tools and Measurables 

Manufacturing tools to assist in the delivery of lean manufacturing strategies are shown in 

Figure 2-2. These techniques represent the primary means of producing an efficient 

manufacturing system, [Tang 19971, [Paashuis 1997], [Womack 1990b]. 

2.5.1 Systems Engineering 

Modem society functions within the framework of a physical infrastructure which is vast, 

complex and pervasive [Dandy 1989]. Manufacturing (the production of tangible goods or 

products) has a history extending back several thousand years, [Hitomi 1996]. In 1991 the 

National Academy of Engineering and Science in Washington, D. C. rated 'manufacturing' as 

one of three most important subjects necessary for America's economic growth and national 

security, the others being 'science' and 'technology'. 

Today, manufacturing must considered not only from the technological view but also from 

wider standpoints such as management, economy, social sciences and philosophy. The study 

of manufacturing and production must include both hard and soft technologies. Such an 
integrated study of manufacturing is termed 'manufacturing systems engineering', [Hitomo 

1996a]. Systems theory emerged as a field of study from the biological and engineering 

sciences, [Aguiar 1995]. The application of systems theory to organisations emanates from 

cybernetiCS2 in particular the works of Beer, (viable system model), Forester, (system 

dynamics), Stacey, (strategic management and organisational dynamics) and Ashby (an 

introduction to cybernetics), [Espejo 19961. 

Stacey states that: 'organisations are open systems comprised of interconnected parts which 
interact with one another and with their environment! The system imports energy and 
information from its environment and exports the transformed results. Imports and exports 

occur across the organisations boundary. 

Work in contemporary global organisations is co-operative, often involving vast networks of 
individuals. Espejo et al [Espejo 1996a] reason that managers often lack the means to 

measure the complexity of organisational tasks and therefore rely on their 'intuition or good 
luck' for successful decision making. Designers of modem advanced manufacturing systems 
must take account of these factors to ensure that the one sided interest of engineers in 

2 CYbemetics - taken to be: 'science of effective organization' 
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technical aspects, does not result in the neglect of social and organisational issues and 
therefore lead to the creation and implementation of inadequately functioning systems. 

In his inaugural address the current President of the IEE stated; 'Education in the methods, 
tools and techniques of systems engineering will be essential for all engineers for the future. ' 

Real world-class competitiveness comes only from the successful combination of two 

elements: [Pamaby 1995] 

" soft system methodologies - procedural tools, heuristic techniques and new organisational 

practices, 

" hard technologies - for developing products, production processes and utilising modem 

capital equipment. 

2.5.2 Multi-Skilled Work Groups 

The latest technology, equipment or material is no substitute for the ability and creativity of 

satisfied people, successfully and safely working together. Participating within a multi-skilled 

group provides the benefits of a broad knowledge base and diverse experiences to better 

analyse problems and reach solutions. Effective work groups are built around capable, 

motivated and empowered people who trust and rely on each other, [Sopata 981. 

The keys to making this principle work are education, training, communication and 

appropriate technology. The work group is most effective when it has the full picture of what 

and why a task needs to be accomplished.. Objectives can then be aligned and work together 

to meet them and take ownership in the process and the results. 

The structure of an example assembly workgroup is shown in Figure 2-3. The groups are a 

mixture of skilled and semi-skilled operators working within a flexible environment. This 

provides greater job satisfaction than the traditional mass production models that limited 

operators to a single operation. The skills mix within the team raises the skill level of 

operators and supports lower mean time to repair due to the quicker response time. Peak 

work-loads can be shared, due to each individual's greater knowledge of the overall process 
and increased flexibility, allowing higher overall loading and productivity. 
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Figure 2-3 Assembly Workgroup Structure 

Assembly 
r M Rger anager 

K izen Area M anager Area Manager Engineering 
Group Leader 

1 

Lin eI Line I Process 
Skilled x8 Qualih, 

Area I Area 4 
Group Leader Area 3 Group Leader Area 5 
Skilled x2 Group Leader Skilled x2 Group Leader 
Semi-skilled x8 Skilled x2 Semi-skilled x8 Skilled x2 

Semi-skilled x8 Semi-skilled x8 
Area 2 Hot Test 
Group Leader Cylind r Head Group Leader After Test Dress 
Skilled x2 Group Leader Skilled x2 Group Leader 
Semi-skilled x 1, Skilled x2 Semi-skilled x7 Skilled xI 

Semi-skilled x Semi-skilled x3 
Stock Handling 
Group Leader 
Semi-skilled x8 

Ford sets the objective for an effective work group by setting targets against the team's 

success rate, (ability to achieve the task) a job satisfaction measure and finally a measure 

based on safety. Progress is tracked by monitoring: 

how consistently the group demonstrates continuous improvement in meeting the 

aligned objectives of the group and the Company, 

surveys of our attitudes about ourjob and working environment, 

a Safety and Health Assessment Review Process. 

2.5.3 Total Quality Management 

Quality excellence is best achieved by preventing problems rather than by detecting and 

correcting them after they occur. All functions carried out by the manufacturing system is 

part of a process that creates a product or service for a customer. Each person can influence 

some part of that process and, therefore, affect the quality of its output and the ultimate 

customers' satisfaction, [Peterson 1985]. 

The variety of techniques and by their very nature their complexity often leads to difficulties 

in their selection, application and use. Empirical evidence collected by McQuarter [McQuater 

19941 shows that five factors have an effect on Quality Management Techniques. They are: 
experience, management, resourcing, education and training. McQuarter et al claim that "It is 
the accumulation of these influences that yield a cascade effect on quality management tools 
and techniques (QMT&T) as shown in Figure 2-4. 
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Figure 24 The Cascade Effect of Specific Influences on Quality Management 
Tools & Techniques. 

Organisation of TQM. 
Understanding of QMT&T 

Process --10 Perceived Benefits Experience 
Product Knowledge 
T&T Commitment 
Process Sh-le jo Managemeni 
Product --10 Understanding 
T&T Money 

People Po Resource 
Technology 

Literacy Equipment 
Numerate Individual p Education 

Organisation 
Learning Appropriateness 
Driven Targeted Training 

Facilities 

QMT&T 

The Japanese are considered to be the leaders in techniques for the management of quality in 

manufacturing. Despite this lead the work of two Americans J. M. Juan and W. E. Demming 

are often cited by the Japanese as highly influential, [Lillrank 1989], [Schonberger 1982]. 

Kaizen is the Japanese term for improvement. Imai describes kaizen as the single most 

important Japanese management concept, [Imai 19861. He defines the technique with four 

characteristics: 
1. Improvement combines both innovation and maintenance. Innovation seeks new 

methods, processes or products; and maintenance ensures that incorporated 

innovations remain as they should be and do not deteriorate. 

2. Improvement normally happens in small steps, through continuous corrections to 
details. 

3. Improvement must involve everyone in the organisation from senior management 
to shop floor workers. 

4. Improvement emphasises the production processes. It is assumed that if the 

process is good, good results will flow automatically. 

From the literature surveyed the author concludes that from a lean Manufacturing perspective 
these factors represent the most significant elements within the five pillars of Total Quality 
Management (TQM) [Goh 1994]. 
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2.5.4 Zero Waste/Defect 

This principle represents continuous efforts to eliminate anything that does not add value to 

the end product or service. This means eliminating waste of materials, space, equipment 
time, energy or indeed the ideas of the organisations people. For example, co-ordinating 
Supply and Manufacturing processes so that materials flow through the system just as they are 

needed eliminates the waste of space for storing or purchasing excess inventories. 

The principle of Zero Waste/Defect also contributes to improved quality by allowing the 
immediate feedback to suppliers of issues and minimises the potential of defects being passed 
to the next phase of the production process. Typically the measures and objectives for this 

principle are: zero defects made, zero defects passed on and total 'Dock-to-Docie time. 

'Zero defects made and zero defects passed on' is measured by 'first time through capability. 

This means that each part or product can progress through every step in the process with the 

highest quality and without needing repairs or rework. This measurable combines with the 

'dock to dock' time to focus attention on the capability of processes. 

An important element in achieving 'first time through capability' is understanding the 

difference between a defect and the root cause effor that caused the defect. The elimination of 

root cause factors is possible if the work group is supported by a system that is based on 

preventing effors. Examples include: product and process compatibility, robust designs, 

in-station process control, appropriate technology and an environment that allows a job to be 

accomplished coffectly the first time. All these factors affect whether defects are produced 

and passed on to the next operation and customer. 

The measure of 'Total Dock-to-Dock Time' is defined as the time required to produce a 

product, for example, from the time material arrives in receiving until the product leaves the 

plant. This measurable drives the enterprise to consider the integration of people, equipment 

and material to continuously improve efficiency and speed to market. The manufacturing 
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Actions designed to improve 'Total Dock-to-Dock Time' and the eliminate non-value-added 

steps include: 

Concentrating on reducing complexity, 

Improving the reliability of our machines, products and processes, 

Assuring our products are easy to build, 

Continuously improving the efficiency of facilities and work elements. 

2.5.5 Flexible/Agile Facilities 

The fundamental driver for agile3 production facilities is change in markets and customer 

requirements and the alignment of capacity with demand. Market fragmentation into many 

segments and niches, each with its own set of specific, complex, and rapidly changing needs 

make agile facilities essential to remain competitive. 

The words agile and flexible are often used with little distinction between the two. Despite 

considerable research literature recognising the crucial importance of flexibility Cheng et al 

show evidence of confusion among the numerous definitions of flexibility and agility, [Cheng 

19971 

Gould and Owen agree that the 'agility' of an enterprise is its ability to survive and indeed 

prosper in an environment of rapid and unpredictable change [Gould 19971, [Owen 1997]. As 

a subset of an enterprise this definition can equally apply to manufacturing facilities and 

technology. In contrast flexibifij)ý as used in the automotive industry is described by 

Tempelmeier et al as a system that can process a limited spectrum of different workpieces in 

an arbitrary order, [Tempelmeier 1993]. From this it could be said that a flexible system 

prospers in an environment of planned change. 

Gould and Dove discriminate between 'agile' and lean' enterprises by describing an agile 

system as the next step on from the lean' concept (Figure 2-5). Dove highlights the 

reconfigurability aspect as the main addition to lean manufacturing. 

3 Within the context of this Thesis 'Flexible manufacturing' is considered to be a facility designed to rapidly 
adapt to known product variance. (i. e. 2. OL and 1.81, models). An agile facility is by nature flexible but can in 
addition can rapidly adapt to unforeseen change. (i. e. the introduction of a new material or product feature). 
4 Flexible facilities in the automotive industry normally consist of several flexible machines with a central 
transfer mechanism. See [Tempelmeier 1993] PA 
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Figure 2-5 The Evolution to Agility 

Craft Mass Lean Agil 
Reconfigurable X 
Flexible X 
Fixed X 
Comprehensive 

IX 

Design modularity is an important contributory factor to both flexible and agile systems. The 
importance of modularity as a feature of design is not limited to production facilities, [Budgen 

1995]. In the context of engineering product design, Stoll states that modular construction 

permits 'standardised diversity' by using different combinations of standard components, 
[Stoll 19961. 

2.5.6 Aligning Capacity with Demand 

The ideal situation would be to exactly match each customer's requirements and to deliver 

these vehicles without delay. Within the constraints of a high volume system, the goal is to 

get as close to this ideal as possible. To achieve this aim the organisation must work to 

identify processes that: 

* accurately identifies the current and projected needs and wants for all markets, 

* makes full use of available capacity to schedule and build vehicles and components 

to satisfy the immediate demand, 

reduces the time it takes to design, engineer, order, manufacture and deliver 

vehicles and vehicle sub-systems, 

* provide flexible/agile facilities and equipment. 

The business objectives are: to build a high percentage of products to market demand, 

improve the time from order-to-delivery and to optimise capacity and commodity planning. 
The facilities must support the overall aim by facilitating quick model changeover and allow 
the introduction of new design features with minimal expense. This principle demands that 

each element of the production system be disciplined and promotes a sense of urgency in 

solving problems. 
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2.5.7 Optimization of Throughput 

To survive in the global market place automotive companies must strive to be employ the 

most efficient facilities, materials and equipment. Organisations must find ways to 

continuously work better and smarter and make the best use of investments. 

Ford identify several enablers that together will allow them to maximise both quality and 

production volume from existing facilities. Their primary objective is to gain a significant 
increase in capacity from existing sites with little or no additional investment. The identified 

enablers are: [Sopota 1998] 

designing product robustness and process compatibility, 

effective capacity planning, 

replicating and using best practices world-wide, 
delivering and maintaining equipment and facilities with world class reliability, 
increasing Overall Equipment Effectiveness (OEE). 

OEE looks at the amount of time a piece of equipment is in use and how efficiently it 

performs to build quality products, [Pierson 1998]. OEE measures performance in areas 

('constraints' or 'bottlenecks') that prevent products from flowing at desired levels. 

Improvements focus on minimising or eliminating bottlenecks in Production, Maintenance 

and Product changeovers qnd therefore reinforcing the importance of consistently maintaining 

the reliability and cfficiency of equipment, improving capacity planning, designing for 

manufacturing and reducing complexity in products and processes. 

2.5.8 Total/Life Cycle Cost 

In any process or function, looking at the costs of labour, equipment, quality, shipping, 
inventory, material and other elements as parts of a total system, provides the data required to 

make knowledgeable trade-offs to achieve the best overall results, [Sheng 19971. 

The period from conception, through to design, production, marketing and product change has 

shrunk rapidly in recent years as companies try to reduce time-to-market. Cost recovery of 
investment and shareholder value have become major topics of discussion generating issues 

of concern for the manufacturing facility designer, [Kirk 1995], [Kolli 1992], [Lavelle 1992], 
[Boelzing 1989] [Nassau 1998]. Issues include facility obsolescence and reuse, 
environmental sustainability, operational effectiveness (re-engineering), total quality 
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management (TQM) and value engineering (VE) [Kirk 1995a]. These factors have led to the 

various stages of the automation's life-cycle to be carefully examined in the search for cost 
improvement and competitive advantage. 

Life Cycle Cost (LCC) is the total cost of ownership of a piece of equipment during its 

operational life. The cost of support over the life-cycle is usually much more than the initial 

acquisition cost. Acquisition cost is primarily concerned with the conceptual design, build, 

and installation phases of the equipment life cycle and is a non-recurring cost, while the 

support cost goes on until the system is decommissioned. This does not allow these phases to 

be ignored. Hagen and Whitney estimate that 80 to 95% of the support costs are determined 

during the concept and design phases, [Hagen 1997], [Whitney 19881. 

By looking beyond initial investment cost, long term gains can be achieved. A key enabler of 

this process is a thorough understanding of the business; how it has worked in the past, what 

the current needs are, and finally the likely requirements in five or ten years. 
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Life-cycle economic profiles are typically based on a standard life-cycle model. A number of 

specialist terms can evolve to support particular products; however the basic models are linear 

and easy to develop, [ARC 1996]. The life-cycle benefit is the benefit gained from the 

automation system. The life-cycle cost includes the initial investment costs and operational 

costs as shown in the example calculation below, [ARC 1996]. 

Life - cycle = Life - cycle Benefits - Life - cycle Costs 
Value 

YEL Annual Annual Annual 
NPV Cost + Production + Yield 

Y. 1 

(Saving 

Increases Increases) 

YEL 

ystem Price + Initial Eng. Cost + Inst. Cost + NPV(Annual Eng. Cost + Annual Ops. Cost + Annual Maint. Cost 
(S 

Y=1 

Where YEL = Years of expected life of the system 
NPV = Net present value 

To remain competitive enterprises must continually improve the 'Life-cycle value' of their 

facilities. The author concludes that with the rapidly reducing 'Product life-cycle'5 the 

automation systems that produce the end product must evolve in one of two directions: 

1. The initial cost of the equipment including engineering must reduce significantly to 

allow facility disposal. It is often found in automotive manufacture that this method is 

uneconomic as mechanical systems have a natural life that extends beyond that of a 

single manufactured product. 
2. To design flexible facilities that can respond to product change without significant 
disruption to production or investment cost. Understanding the manufacturing 

strategies and manufacturing technologies able to respond to these requirements is 

essential. 

Product life-cycle refers to the life-cycle of the end product produced by the manufacturing facility 
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2.6 The Role of Machine Control Systems in Supporting A Lean Manufacturing 
Strategy. 

The primary areas where automation has a role to play in supporting lean manufacturing 
strategy are: Life cycle cost, the facilitation of workgroups, the introduction and use of 
flexible/agile facilities and the support of continuous improvement. Each of these areas are 
covered in the sections below. 

2.6.1 Life-cycle costing of Control Systems 

The principle phase of a Control Systems life-cycle as shown in figure 2-6 are: problem 
definition, design and development, application, operation and maintenance, reuse and 
disposal 

Figure 2-6 Control System Life-cycle Architecture 
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Figure 2-7 Life Cycle Value 

Control System Life Cycle 
Value 

Life-cycle Benefits Life-cycle Costs 

Flexibility, * Purchase cost 
Agility, 0 Spare part cost, 
Scalability, 0 Lead time, 
Mean Time Between 0 Training, 
Failures, * Mean time to repair, 
Reusable Engineering. 0 Support cost, 
Accuracy 0 Configuration, 
Operational Effectivenessý 0 Complexity, 

0 Specialist skill 
I requirement. 

All of the attributes shown are found in modem computer controlled automation. The 

attributes can be divided into two groups one for benefits and the other for costs depending on 

whether the attribute makes a positive or negative contribution to life-cycle costs. By 

focusing on these attributes and making demonstrable improvements significant benefit in 

operating efficiency can be made. Increasing life-cycle benefits and reducing life cycle costs 

shown in Figure 2-7 enhances life cycle value. 

The SAE Life Cycle Cost model [SAE 19931 (Figure 2-8) identifies that although the Concept 

Phase represents just three percent of the total life cycle cost it is estimated that some twenty 

five percent of life-cycle cost is predetermined when the Concept is complete. Similarly some 

ninety five percent of life cycle cost is predetermined prior to the machines and equipment 

being built. Continuous improvement techniques employed in lean production may reduce 

this figure however a significant principle remains. 

6 Operational Effectiveness; -A measure of the ability of an AMT to integrate widi the operating environment 
(i. e. multi-skilled teams) in particular manufacturing facility. 
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Figure 2-8 Life-cycle Cost Model [Adapted from SAE 19931 
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2.6.2 Machine Control System's Support of Multi-skilled Work Groups 

There are marked differences in working practices in different regions of the world (e. g. 

North America, Europe and Japan). Traditionally each shopfloor worker had considerable 

skill in a specific trade for example: electrician, mechanical fitter, and machine operator. This 

Trade Union led culture created strict demarcation between the tasks each tradesman 

undertook. The author concludes from personal experience of working in the North America 

Automotive Industry that these traditional working practices have remained largely 
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unchanged, however, Japanese and the majority of European manufacturing plants have 

moved to multi-skilled work groups. 

Multi-skilled operation involves the use of small 'empowered' teams responsible for all 

aspects of production in an area. The members of the team are normally trade7 staff who have 

been retrained to extend their skills to encompass quality and operational issues as well as 

other trades' skills. In future the bulk of people emerging from company sponsored training 

centres will be 'process' orientated, armed with the necessary broad cross section of general 

skills required to fit into a multi-skilled production environment, [Training 1998]. 

The empowerment of the multi-skilled team is an important 'total quality management'8 

concept [Berry 19911 that allows individuals or groups to develop and implement ideas to 

improve the process or overcome problems. The major benefits of this approach include: 

[Schniederjans 1994a] 

" Quick identification of problems, 

" An increased number of solutions to quality and productivity problems, 

" Improved employee motivation to participate in quality enhancement and problem 

resolution, 
Modem machine control systems must support this changing environment; the one sided 

interest of engineers in technical aspects, should not result in the neglect of social and 

organisational issues and. therefore lead to the creation and implementation of inadequately 

functioning systems or technologies. 

2.6.3 Machine Control System's Support of Flexible/Agile Facilities 

Programmable control systems have been a core enabler in allowing the automotive industry 

to move from fixed mass production to support a more flexible manufacturing environment. 

Key features of modem control systems that support this advance are: modular architecture 

and programmable functionality. Control systems capable of supporting agile production 

facilities will require the integration of more open systems, providing the opportunity to select 

specialist software and hardware. Next generation systems must allow the integration of other 

products from other vendors without the need to develop special programs, hardware or tools. 

Being as independent of the underlying technologies as possible. 

7 Trade staff. An employee that has served a recognized apprenticeship in an engineering discipline. 
a Total quality management (TQM) - is a management concept that focuses the collective efforts of all managers 
and employees on satisfying customer expectations by continually improving operations management processes 
and products. 
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2.6.4 Machine Control System's Support for Continuous Improvement 

The cascade affect on quality management tools and techniques (QMT&T) shown in Figure 

24 identifies four areas where machine control system's can support Continuous 

Improvement (CI), namely: experience, resource, education and training. In each of these 

areas Control systems must match the skills required to support machine control systems with 
those available at the users site. 

In addition control systems must provide information to allow the Cl team to function. This 

will include predictive failure and performance information. A system that allows easy 

upgrade is essential to allow the tewn to take advantage of new technologies or processes. 

2.7 Summary 

A paradigm shift has occurred in automotive manufacturing around the world. All the major 

automotive manufacturers are moving toward lean manufacturing techniques. This change 

requires new manufacturing techniques, fundamentally changing the processes and principles 

when compared to traditional mass production. Lean manufacturing techniques deliberately 

expose the production facility to market pressures. In contrast the nature of a mass production 

system demands that it be isolated from external demands to ensure the stability required by 

the system. 

Mass production focuses. pn sub-optimisation, for example, considering only investment costs 

of individual machines when making decisions about capital purchases; optimising a single 

workstation without considering the broader systems costs and building in large batches to 

avoid the costs of changeovers. In contrast, lean manufacturing demands a systems 

perspective that focuses on creating a value-added flow through the elimination of waste. For 

example; three smaller machines feeding the assembly line with a batch size of one and quick 

changeover capability is a preferred option to one large machine that takes a long time to 

changeover and builds huge batches. The modem production system model must look 

beyond the activities in the production plant to encompass and support the manufacturing 
strategy. 
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From the study of contemporary Manufacturing Strategies in Automotive applications the 

author concludes that: 

Next generation control system (NGCS) design, development and implementation require 

a systems approach taking into account manufacturing strategy, technical, and operational 

requirements. This is particularly the case if the technology is to be introduced not only 

for its economic benefits but also for its strategic advantages. 
The NGCS must be closely aligned and play a key role in the enhancement of 

manufacturing strategy including life cycle cost, work practices and product and 

production agility. 

in order to produce an optimum solution the realisation of machine control systems needs 

to be considered from a number of viewpoints. The principle stakeholders and linkages are 

shown in Figure 2-9. Each linkage is colour coded to indicate the communication flow 

present in current control system development. The author concludes that some of the 

viewpoints are poorly integrated, demonstrate a lack of efficient information flow and use 

adhoc methods and tools for development. New links (shown in Red) identify the need for 

improved coordination between the Manufacturing Strategy, Human factors and the 

manufacturing control system design. 

Figure 2-9 Communication Links between Autonomous Units 
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This chapter has established the role of manufacturing control systems within the context of a 

manufacturing system. Business requirements and the drivers of change have been discussed 

followed by a review of common manufacturing strategies and some of the tools used for 

manufacturing systems integration. The role of modem control systems in the enhancement 

of life cycle benefits and reducing life cycle costs has been established. 

Chapter 3 will review current control system hardware and application software and discuss 

their effectiveness in a lean manufacturing environment. 

53 



CHAPTER 2 

REFERENCES 

[Aguiar 1995] M. W. C. Aguiar; An Approach to Enacting Business Process Models in 

Support of the Life Cycle of Integrated Manufacturing Systems, Ph. D. 

Thesis, Loughborough University of Technology, 1995 
[ARC 1996] Automation Research Corporation - Automation Strategies August; P. 3, 

1996. 

[Backhouse 1997] C. J. Backhouse and N. J. Brookes; Variety and Concurrent Engineering; 

Manufacturing Engineer; P72-75; April 1997. 

[Batchelor 19941 R. Batchelor; Massproduction, Modernism and Design; Manchester 

University Press; P39 - 62; 1994. 

[Berry 1991] T. H. Berry; Managing the Total Quality Transformation, McGraw Hill 

Inc. 1991. 

[Boelzing 19891 D. Boelzing and H. Schulz; Calculating Investments for Integrated 

Manufacturing - Looking at the overall cost and benefits; International 

Journal of Computer Integrated Manufacturing, Vol. 2 No. 6 P. 329-338, 

1989. 

[Budgen 1995] D. Budgen; Software Design, Addison-Wesley Publishing Company, 

P13,1995. 

[Cheng 1997] J. M. J. Cheng, J. E. L. Simmons and J. M. Ritchie; Manufacturing System 

Flexibility: the "capability and capacity" approach; Integrated 

Manufacturing Systems, Vol. 8/3, P. 147-158; 1997. 

[Choe 1997] K. Choe, D. Booth and M. Hu; Production Competence and Its Impact 

on Business Performance; Journal of Manufacturing Systems Vol. 16 

No. 6, P 409 - 421.1997. 
[Cleaveland 1989] G. Cleaveland, R. Schroeder, and J. Anderson; A Theory of Production 

Competence; Decision Sciences Vol. 20 / No. 4, P655 - 668,1989. 

[Cochran 1998] D. S. Cochran; An Introduction to Product System Design Laboratory, 

Massachusetts Institute of Technology, http: //Iean2. mit. edu/, 1998. 
[Daimler-Benz 1997] Daimler-Benz; Annual Report 1997. 
[Dandy 1989] G. C. Dandy, and R. F. Warner; Planning and Design of Engineering 

Systems; Unwin Hyman; P2; 1989. 
[Dilworth 1992] J. B. Dilworth; Operations Management, McGraw Hill, Inc. P64 - 65, 

1992. 

54 



CHAPTER 2 

[DTI 19951 Supplier relations in the UK car industry: comparisons with Europe, 

Japan and the USA, Vehicles, Metals and Minerals Division, 

Department of Trade and Industry, London, 1995. 

[Espejo 1996] R. Espejo, W. Schuhmann, M. Schwaninger, and U. Bilello; 

Organisational Transformation and Learning -A Cybernetic Approach 

to Management; J. Willey & Sons. P55 - 215 1996. 

[Ford 19261 H. Ford; [Ford 1926] H. Ford; Today and Tomorrow; The Garden City 

Publishing Company; P 100 -I 10; 192 6. 

[Fuchs 1996] D. Fuchs; Looking Forward to Tomorrow; Conference, Automation 

Strategies for Success in Manufacturing; 1996. 

[Furness 1996] R. Furness, S. Jones, J. S. Rankin, M. Muth, K. C. Wei, and J. Cooper; 

Control System Requirements to Support Intelligent Sensor-Based 

Manufacturing; Proceedings of the 1996 IPC Conference and 

Exposition; Society of Automotive Engineers, Inc; P55; 1996. 

[Galbriath 19741 J. R. Galbriath; Organisation Design - An information Processing View; 

Interfaces Vol. 4, P. 28-36. 

[Garvin 19921 D. A. Garvin; Operations Strategy, Prentice-Hall International Inc., 

P414 -422,1992. 
[Garvin 1992a] D. A. Garvin; Operations Strategy, Prentice-Hall International Inc., P98, 

1992. 

[Goh 1994] P. L. Goh and K. Ridgway; Total Quality Management in Small and 

medium Sized Manufacturing Companies; Factory 2000, The 1994 

Factory Automation Conference, P567 - P573. 

[Goodman 1982] P. S. Goodman; Why Productivity Programs Fail: Reasons and [Furness 

1996] R. Furness, S. Jones, J. S. Rankin, M. Muth, K. C. Wei, and J. 

Cooper; Control System Requirements to Support Intelligent Sensor- 

Based Manufacturing; Proceedings of the 1996 IPC Conference and 

Exposition; Society of Automotive Engineers, Inc; P55; 1996. 

[Gould 19971 P. Gould; What is Agility?, Manufacturing Engineer; P. 28-3 1; February 

1997. 
[Hagen 19971 W. Hagen; Use of Life Cycle Cost, Operating Procedure No. 1721 Lima 

Engine Plant, Ford Motor Company Limited, 1997. 
[Hakansson 1975] H. Hak-ansson and C. Ostberg; Industrial Marketing: An organisational 

Problem, Industrial marketing Management, Vol 4, P 113 -123,1975. 

55 



CHAPTER 2 

[Hitomi 1996] K. Hitomi; Manufacturing Systems Engineering; Taylor and Francis 

Ltd, 1996. 

[Hitomi 199641 K. Hitomi; Manufacturing Systems Engineering; Taylor and Francis 

Ltd, P. xiv, 1996. 

[IEE 1992] Institute of Electrical Engineers; Factory 2000 - The 1992 Factory 

Automation Conference, Conference Publication Number 359; 1992. 

[Imai 1986] M. Imai, Kaizen: The Key to Japan's Competitive Success. New York, 

Random House 1986. 

[Keys 1992] L. K. Keys; Concurrent Engineering for Consumer, Industrial Products 

and Government Systems. 1992. 

[Kirk 1995] S. J. Kirk and A. J. Dell'isola; Life Cycle Costing for Design 

Professionals, McGraw Hill, Inc., P1 -6,1995. 
[Kirk 1995a] S. J. Kirk and A. J. Dell'isola; Lifý Cycle Costing for Design 

Professionals, McGraw Hill, Inc., PI, 1995. 

[Kolli 1992] S. Kolli, M. R. Wilhelm, H. R. Parsaei, and D. H. Liles; A Classification 

Scheme for Traditional and Non-traditional Approaches to the 

Economic Justification of Advanced Manufacturing Systems; Economic 

and Financial Justification of Advanced Manufacturing Technologies; 

Elsevier Science Publishers, P. 165-187,1992. 

[Kusiak 19971 A. Kusiak and G. H. Lee; Design of Parts and Manufacturing Systems 

for Reliability and Maintainability; International Journal of Advanced 

Manufacturing Technology, Vol 13, P67 - 76,1997. 

[Lavelle 1992] J. P. Lavelle and H. R. Liggett; Economic Methods for Evaluating 

Investment in Advanced Manufacturing Technologies; Economic and 
Financial Justification of Advanced Manufacturing Technologies; 

Elsevier Science Publishers, P. 119-139,1992. 

[Liepietz A. Liepietz; Towards a new economic order, Postfordism, Ecology and 
Democracy; Polity Press. 

[Liepietz (a)] A. Liepietz; Towards a new economic order, Postfordism, Ecology and 
Democracy; Polity Press. 

[Lillrank 1989] P. Lillrank and N. Kano; Continuous Improvement, Michigan Papers in 

Japanese Studies, No. 19; P. 219 - 220; 1989. 
[McPherson 1986] P. K. McPherson; Systems Engineering -A Proposed Definition; IEEE 

Proceedings, Part A; 1986 

56 



CHAPTER 2 

McQuater 1994] R. E. McQuater, B. G. Dale and R. J. Boaden; Total Quality Management 
in Small and medium Sized Manufacturing Companies; Factory 2000, 

The 1994 Factory Automation Conference, P574 - P580. 
[Nassau 1998) J. Nassau; Annual Report 1998, Ford Motor Company Limited. 
[Nutt 19791 P. C. Nutt; Identifying and Appraising How managers Install Strategy, 

Strategic Management Journal Vol. 8 P. 9,1979 

[Owen 1997] D. Owen and G. Kruse; Follow the Customer; Manufacturing 

Engineering; P. 65-68; April 1997. 

[Paashuis 1997] V. Paasuis and H. Boer; Organizing for Concurrent Engineering - An 

Integration Mechanism Framework-; Integrated Manufacturing Systems, 

Vol. 2 P. 79-89; 1997. 

[Pamaby 1995] J. Parnaby; Systems engineering for better engineering, Inaugural 

address (President); The Institute of Electrical Engineers, London. 

1995. 

[Peterson 1985] D. E. Peterson, Policy Letter, Total Quality Excellence, July 10,1985. 

[Pierson 1998] W. Pierson; Overall Equipment Effectiveness (OEE); 

http: //pt5035. pto. ford. com/www/tooling/oee/oeehome. html, April 1998. 

[Pollack 1995] A. Pollack; 'Japan Inc's supplier firms get purnmelled as yen soars' 
International Herald Tribune, P. 11, May 29,1995. 

[Prasad 1996] B. Prasad; Concurrent Engineering Fundamentals - Integrated Product 

and Process Organisation; Prentice Hall; 1996. 

[Prasad 1996a] B. Prasad; Concurrent Engineering Fundamentals - Integrated Product 

and Process Organisation; Prentice Hall; 1996. 

[Rao 1993] Ming Rao, Qun Wang, and Jianzhong Cha; Integrated Distributed 

Intelligent Systems in Manufacturing; Chapman & Hall; P8 -10; 1993. 

[Rogers 1996] G. G. Rogers and L. Bottaci; Modular Production Systems: a new 

manufacturing paradigm; Journal of Intelligent Manufacturing, Vol 8, 

P147 - 156; 1997. 
[Rolt 1986] L. T. C. Rolt; Tools for the Job; Her Majesty's Station Office; P145 - 

162; 1986. 
[SAE 19931 Society of Automotive Engineers, Inc. Reliability and Maintainability 

Guideline for Manufacturing Machinery and Equipment. P14 / P1-5. 

1993. 
[Sapota 19981 F. Sapota, Ford Production System, Concept and Definition, 

http: //www. fps. ford. conVwhat is f, S/fpsý 101/back-ground8. html 
- -P 

57 



CHAPTER 2 

[Schniederjans 1994] M. J. Schniederjans and S. M. Lee, Operations Management; Houghton 

Mifflin Company, P56 - 58. 

[Schniederjans 1994a]M. J. Schniederjans and S. M. Lee, Operations Management; Houghton 

Mifflin Company, P58 - 59. 

[Schonberger 1982] R. J. Schonberger; Japanese Manufacturing Techniques, Collier 

Macmillan Publishers, London, P50,1982. 

[Shaharoun 1993] A. M. Shaharoun, A. Hodgson, and R. H. Weston; Methods of 
Integrating Cost Models in Heterogeneous Information Systems 

Environment using an Open Approach; International Conference on 
Factory Automation and Integrated Manufacturing, Ireland; P165 - 175; 

1993. 

[Sheng 1997] P. S. Sheng, Energy Efficient and Environmentally-Conscious 

Machining Processes and Machine Tool Design, 

http: //greenmfg. me. berkeley. edu/green/Sponsors/energy. html 

[Singh 1996] N. Singh; Systems Approach to Computer-Integrated Design and 
Manufacturing; John Wiley & Sons, Inc; P14; 1996. 

[Skinner 1985] W. Skinner; Manufacturing, The Formidable Competitive Weapon; 

John Wiley & Sons; P229 - 239; 1985. 

[Stoll 1996] Reference from Int. manu Vol 8 etc. see above. 
[Tang 1997] N. K. H. Tang, 0. Jones, and P. L. Forrester; Organizational Growth 

Demands Concurrent Engineering; International Journal of 

Manufacturing Technology Management, Vol. 8 No. 1; P29 - 34; 1997. 

[Tempelmeier 1993] H. Tempelmeier and K. Kuhn; Flexible Manufacturing Systems - 
Decision Support for Design and Operation, Wiley & Sons; PI-14, 

1993 

[Training 1998] Post Trades Progression, Education and Training, Ford of Australia, 

http: //www. foa. ford. com/emp-rel/web/l&d/tp. htm#intro, 1998. 

VW 1998] Volkswagon; Summary of Volkswagon's Goals and Strategy, Ford 

Motor Company Product and Business Strategy Office, 1998. (Note 

restricted document). 
[Whitney 1988] D. E. Whitney, Manufacturing by Design, Harvard Business Review, 

July/ August 198 8. 
[Wobbe 19941 W. Wobbe; Anthropocentric Production Systems: A new Leitbild for an 

Industrial Symbiotic Work and Technology Culture in Europe; Fourth 
International Conference on Management of Technology 1994. 

58 



CHAPTER 2 

[Womack 1990] J. P. Womack, D. T. Jones, and D. Roos; The Machine That Changed the 

World; Macmillan Publishing Company; P27; 1990 

[Womack 1990a] See Womack 1990; P48 - 69. 

[Womack 1990b] See Womack 1990; P71 - 256. 

[Zairi 1998] M. Zairi; Supplier partnerships for effective advanced manufacturing 
technology implementation: a proposed model, Integrated 

Manufacturing Systems, 9/2 P. 109-119,1998. 

[Zairi 1998a] See [Zairi 1998] 

59 



CHAPTER 3 

CHAPTER 3 

CONTEMPORARY MANUFACTURING CONTROL SYSTEMS 

60 



CHAPTER 3 

3. Contemporary Manufacturing Control Systems 

3.1 Introduction 

Chapter 2 considered the evolution of business and manufacturing strategies from Mass 

Production to Lean Manufacturing. It described the role of machine control systems in 

supporting a lean strategy and considered structural attributes needed to assure an optimum 
NGCS design. 

A prerequisite to the development of a NGCS design framework is a thorough 

interdisciplinary understanding of background concepts in: manufacturing methods utilised in 

the automotive industry, current manufacturing control system architecture, and emerging 

control technologies and strategies. This chapter will provide a brief history and background 

to the use of manufacturing automation in the automotive industry and go on to consider the 

evolution of control systems. Current industrial control technology and tools are reviewed in 

detail followed by a critique of current research effort and emerging trends. Finally 

implications and conclusions are drawn. 

3.2 Machine Control Technology - An Historical Perspective 

Machine control technologies have become invaluable in the operations of many different 

manufacturing industries, [Powers 1987]. As with many other industries the Automotive 

machine tool industry is pulled by end user demands for higher overall equipment 

effectiveness (OEE) and quality. At the same time it is also pushed by technological and 

process development in electronics and other related domain technologies. 

The origins of machines that allowed the introduction of mass production can be traced back 

to the later part of the 19th century. The Frenchman Theophile Gramme first demonstrated an 

electric motor driving a machine at the Vienna Exhibition of 1873; however, the immense 

possibilities of the electric motor in the machine shop were not recognised for over 20 years. 
It was not until just prior to the First World War that use of auxiliary motors and electrical 

switching components to drive the feed motions of machine tools became widely available, 
[Rolt 1986] [Woodbury 1972]. 

In the early days of the automobile industry the availability of reliable electrical power and 
new mass production ideas led to the belief that machines, rather than hand work, could 
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provide a more appropriate means of achieving the required component part and product 

uniformity. Specialised single-purpose machine emerged that reflected the division of labour 

as well as providing set(lacting or semi-automatic machines [Batchelor 19941. 

With the invention of the vacuum tube and transistor, it was possible to build machine control 

systems that to a limited degree could be programmed; thus allowing the production of high 

volume product variants. A significant breakthrough was made in 1947 with the invention of 
the numerical control (NC) at the Massachusetts Institute of Technology. The NC allowed the 

machining of complex low volume parts, [Rembold 1994]. 

In 1968 engineers from the General Motors Corporation laid down a set of design guidelines 
for a product that became widely known as the Programmable Logic Controller, (PLC) 

[Wamock 19881. 

The guidelines provided by General Motors required that the controller must be: 

Easily programmed and reprogrammed, preferably in plant, to alter its sequence of 

operations. 
Easily maintained and repaired - preferably using plug-in units. 

more reliable in a plant environment (than existing relay technology), 

smaller than its relay equivalent, 

cost competitive, with solid-state and relay panels then in use. 

In June 1969 the earliest fully programmable controller was delivered to the General Motors 

Hydramatic Division by a consulting engineering company called Bedford Associates. The 

first system was called the 084 being the result of the eighty fourth iteration of the 

development process, [Kissell 1986]. Bedford Associates changed their name to Modicon 

and went on to develop a number of new models before Gould Inc. purchased them in 1978. 

Modicon were not alone during these early years. Allen Bradley had been working on a solid 
state control system for some time. Their first solid state control system, the PDQ was 
designed in 1959. It could not be reprogrammed as easily as the PLC, but fulfilled a demand 

as a relay replacement system. Allen Bradley responded with a system called a 
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programmable logic controller (PLC9). Even though the General Motors plant did not choose 

the Allen Bradley controller, it went on to become a successftil, reliable system. 

As PLC technology became generally available in the early 1970's the automotive industry 

was one of the first major industrial sectors to utilise the systems in large quantities. For this 

reason, commercially available PLC systems were heavily influenced by the requirements of 

the automotive end users and their machine suppliers. The original specification for PLC 

systems, and the lack of suitable communication technologies led to the PLC being used as a 

relay panel replacement system for a number of years. The development of ladder logic as the 

main stream programming language reflected end user requirements for systems that 

mimicked the JIC electrical drawing format used in North America. The centralised suite of 

panels that once housed the relays was replaced with a centralised PLC architecture. 

In recent years improvements in PC hardware and software performance have made PC-based 

systems viable for real time applications traditionally dominated by the PLC. Adoption of the 

PC platform preserves the application software investment by allowing a degree of portability 

not found in proprietary PLC systems. An additional benefit was the low cost compatibility 

with standard operating systems, networks and user interfaces. Such systems are usually 

implemented as Soft PLC's where software loaded onto the PC provides PLC like 

functionality. 

9 To avoid confusion with the term 'personal computer' (PC) the abbreviation PLC will be used throughout to 
refer to any programmable controller system. PLC is a trademark of Allen Bradley. 
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The significant machine control developments outlined are summarised in Figure 3-1. 

Figure 3-1 Development Stages in Manufacturing Technology [Werneckel9931. 
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Industrial Control Technology 

The domain considered in this section is the sequence and interlock control of machines and 

part transport automation in discrete parts manufacture. The application focus is on 

automated machining and assembly applications (e. g. engine and gearbox components and 
their assembly) at relatively high volumes (typically I OOK - 500K units per year). 

3.2.1 PLC System Hardware 

The PLC is responsible for monitoring the workcell, reacting to events and enforcing device 

behaviour based on the current control strategy residing in its program logic, [Lauzon 1996]. 

In most PLC's the input/output handling and the program logic are processed in a scan based 

manner as shown in Figure 3-2 below. Workcell monitoring is achieved by reading the input 

image table. The input data is applied to the application program and device behaviour set by 

changing the state of the variable in the output image table, [Campbell 1996]. The PLC then 

changes the value of the corresponding output addresses. The time for one complete cycle is 

known as the scan time. On automotive machines it is desirable to keep this time under 60 

milli- seconds as longer scan times increase the potential of missing an input signal making 

the machine unreliable, [Brown 19941 and introduces excessive logic processing delays. 

Figure 3-2 Cyclical PLC Scan [Warnock 19881. 
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PLC products can be placed into one of five categories using their Input and Output capability 

as a basis for segregation: These are: 
1. Micro PLC - <100 Inputs and Outputs, 

2. Small PLC - 100-256 Input and Outputs, 

3. Medium PLC 256-1024 Input and Outputs, 

4. Large PLC - >1024 Input and Output, 

Frost & Sullivan report that in 1995 the PLC market in Europe amounted to fl. 013 million 
[Frost 1995]. Their report predicts that the market will grow at a compound rate of 5% with a 

value of 0.426 million by 2002. The market is dominated by a few global suppliers 
including: Siemens, Groupe Schneider, Allen Bradley, Mitsubishi and Omron. 

The Micro and Small sectors of the market are very price sensitive. Intense competition is 

evident, particularly from Japanese suppliers who pursue aggressive pricing policies. 

Processing speed and memory capacity are climbing continuously without significant rises in 

price. Micro and Small PLCs are being introduced with performance requirements which 

until recently were only found on large PLCs. Most now offer some form of proprietary 

networking; however the predicted arrival of IECI 15810 and EN5017011 is likely to lead to 

suppliers producing systems which are compatible with these emerging international fieldbus 

standards, Powers 1996]. 

The majority of Small PLC's are now able to offer some form of motion control. Accurate 

point-to-point control is possible; however some of the more advanced features, for example 
linear or circular interpolation are not provided. A variety of display systems can be used, 
however because of the limited input/output capability small line display systems are 

normally sufficient to control the application. 

Within the automotive industry the application of micro systems has been limited. Far more 

use has been made of the Small PLC. In their simplest form they have been applied to 

sections of automation (part transfer) and assembly machines. The greatest benefit has come 
from their application as station controllers networked together as shown in Figure 3-9. 

10 IEC1158 -High Efficiency Communication System standard. 
EN50170 -Field Bus Standard, High Efficiency Communication System 
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The application of Medium size PLC's on new automotive projects has dropped significantly 

over the last ten years. The systems themselves are continuing to grow in power with the 

majority able to offer extensive network, memory and input/output capabilities. Most have 

integrated personal computers available. Without exception all the major suppliers are able to 

offer extensive NC and CNC control via proprietary plug-in modules. 

The increased functionality of the Micro, Small and Medium PLC sectors has led to the 

elimination of the Large PLC from the majority of automotive project specifications. Their 

use is now predominantly in process based applications and industries. It is reported that the 

PLC is now closing the gap on the Distributed Control System (DCS) traditionally seen as the 

ideal solution in the process industry [Rohrmann 1995]. The large PLC can now offer access 

to PID loops, SCADA and process management systems. The integrated PC capability allows 

the use of CASE tools which provides a natural language design environment for control and 

management functions; open system networks for system communications, remote intelligent 

device connectivity and management information system integration. A typical PLC in this 

sector of the market will integrate three levels, shop floor, supervisory and management using 

three major components: process PLC hardware at a controller level which combines 

sequence logic, floating point maths, PID loop control and complex functions; UNIX based 

real time process management system integrating PLC supervisory functions, intelligent alarm 

handling, operator interfaces, recipe and data handling; and a management data system. 

The automotive machine tool industry is pulled by end user demands for higher overall 

equipment effectiveness (OEE) and quality. Although not widely used, advances in 

microelectronics have led to the practical feasibility of redundant elements in the control 

system, that will detect a failure and allow the process to continue to the end of the shift, or 

shut down in a controlled way chosen by the designer, so avoiding costly damage [Marcos 

19951. 

As rival PLC suppliers draw closer in terms of hardware and pricing; application software and 

support issues are becoming important differentiating factors. Not only are the selection 

criteria for suppliers becoming nebulous, the systems themselves are changing. It is unclear 
how much longer the terms distributed control system (DCS), programmable logic controller 
(PLC), PC, and supervisory control and data acquisition (SCADA) system can be meaningful 
system differentiators. 
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3.2.2 Open Architecture Initiatives 

Modem PLC's utilize standard microprocessors combined with a proprietary real time 

operating system (RTOS). The RTOS is the Kernel of code that controls all operations and 
tasks run on the microprocessor. PLC's provide fast deterministic and reliable control by 
building the control engine around the RTOS. In recent years there has been a significant 
amount of research and commercial development dedicated to the introduction of RTOS's for 

the PC architecture, [see Appendix A]. To obtain the same level of deterministic control a PC 

must use the same type of hard real time operating system with capabilities beyond normal PC 

operating systems (e. g. MicrosoftTm Windows). The principle claim for this type of system is 

that it facilitates the design of high performance systems by integrating the best production 
technologies from different vendors, and the gradual enhancement of system performance by 

allowing the progressive introduction of new hardware and software elements into existing 

control systems at affordable cost, [Zbigniew 1996]. 

Today many control system manufacturers are offering their new products as in some way 
being Open. According to the IEEE definition "an open system provides capabilities that 

enable properly implemented applications to run on a variety of platforms from multiple 

vendors and coexist with other systems applications" [Zbigniew 1996]. This clearly infers 

that only systems that follow common vendor-neutral conventions can be described as open 

systems. 

The author summarises the goals for the specification of open system architecture to be: 

interoperability, portability, scalability and interchangeability. Interoperability enables 

system components to be designed independently and then integrated with components from 

other vendors. Portability allows system components to operate on different platforms. 
Scalability is a feature, which enables the customer to increase or decrease the functionality of 

a system by changing the number of components and/or upgrading or downgrading specific 
components. Interchangeability allows substitution of one component with another due to its 

capabilities, reliability or performance. 

Harrison provides a broader business view by stating that next generation control systems 
must be based upon products which are designed independently, and can then be integrated 

with other products from other vendors without the need to develop special programs, 
hardware or tools. The system must be fully documented, freely available, managed and 
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promoted by a multi-national independent body. Independent certification of conformity will 
be required to ensure end user confidence [Harrison 1996]. Flexibility is achieved by having 

autonomous subsystems that are relatively self-contained, along with the characteristic of 
incremental development [Kaula 1998]. 

A major issue for researchers in this area apart from reducing complexity is to break the 
dependency between machine controllers and their application software development. For 

example, it must allow machine tool builders to re-use much of their generic software 

engineering and yet accommodate many of the end users' specific standards. Machine tool 

builders must be able to efficiently move from a job in Germany using company A's 

equipment, to another in North America using company B. 

3.2.3 OMAC White Paper 

In December 1994 an "Open Modular Architecture Controller (OMAC)" white paper was 

published by a group of engineers from North America's three largest automotive producers. 

The document outlined their views on the requirements for open modular control systems in 

the automotive manufacturing industry, [Chrysler 19941. The report also highlighted 

numerous problems related to the use of proprietary controllers that, while presented from an 

automotive viewpoint, are common to many other industries. The control system 

requirements outlined in the OMAC report have been summarised and categorised into 

system and sub-system requirements in tables I and 2. 
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Table 1: Overall system requirements specified by OMAC 

OMAC System Requirements 
Meet all safety, reliability, robustness and environmental requirements. 
Satisfy government and company standards. 
Provide multi-vendor solutions. 
Easy upgrade without the involvement of controller suppliers. 
The use of components/tools available in the general purpose computer industry. 
Intuitive and user friendly to reduce training expenditure. 
Support scalability by adding, removing or replacing units. 
Present a common user interface environment across all applications. 
Be deterministic. 
Multi-level security access procedures. 
Provide a controller infrastructure that gives flexibility for integration of user proprietary 
technologies. 

70 



CHAPTER 3 

Table 2: Sub-system requirements specified by OMAC 

OMAC Sub-System equirements 
External Interfaces Allow connection to the upper business management layer using off 

the shelf components. 
Provide an interface to various real time bus systems (for the 
connection of inputs and outputs) with minimal cost and effort. 
Integrate diagnostic capabilities for both the controller and machine. 

Internal Provide flexibility to allow control designer to select the most 
Architecture appropriate system kernel for a particular application 

'Plug and Play' concept through the use a standardised Application 
programming Interface layer. 
Common real time system database. 
Controller hardware bus structure to be a 'de facto' standard, for 
example VME, ISA, EISA or PCI. 
The controller architecture must support standard output to servo 
drives, either digital or analogue. 
The control of the servo amplifier must be able to reside within the 
drive amplifier or OMAC. 

Human Machine Controller must support a commonly accepted graphical user 
Interface (HMI) interface environment for example Microsoft Windows. 

The run-time version of the HMI must be available separately 
without the associated development system at a substantially lower 

cost. 
The HMI must have the ability to interface with other elements in 
the controller using a 'well accepted' messaging scheme, such as 
DDE in the Windows environment. 

Application Sequential control software to be written in IEC 113 1/3 or a flow 
chart style. 

Software The controller must support standard part programming inputs, such 
as RS-274D. 
The motion control editor should reside on the same platform as the 
HML 
The discrete event controller programming software will reside on 
the OMAC. 
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3.2.4 Serial Bus Systems 

There is a clear trend in many industrial sectors toward the use of intelligent decentralised 

systems. Distributed automation concepts demand a means by which the physical flow of 
fragments of information can be realised between systems that need to communicate, [Scheer 

19911. Previously proprietary communication architectures and customised protocols have 

prevailed. However, in recent years open standardised communication systems have gained 

widespread acceptance, [Busby 19901, [Roesler 1996]. 

Industrial control networks are characterised by the transmission of data as opposed to voice, 

and video (as well as data) carried on business networks. Device and control networks 

typically support a relatively small number of devices and provide a deterministic response. 
The main differences between Device and Control networks lie in the areas of message size, 

cost per node and the speed of the network, [ARC 1995]. 

Figure 3-3 Industrial Networking Structure 
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The layers within the standard automation system hierarchy have in recent years typically 

reduced from a five-layer system (plant, centre, cell, station and device) to the present three- 

layer system, (information, control, and device). Recent developments raise the possibility in 
the future that Ethernet (or a similar technology) may be used at the control and sections of 
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the device layers; producing a two tier network infrastructure. Detenninism can be achieved 
by protecting portions of the plant network through the use of smart router technology [Benoit 

1996]. 

The demand for direct information exchange between different system elements, has led to 

extensive research in the area of communication standardisation, [Judge 19881. Some 

examples of the more important standardisation and research efforts in this field are: ISO/OSI 

Standards and the ISO/OSI Reference Model, [Judge 1988], EN50170 Field Bus Standard, 

High Efficiency Communication System Standard IEC1158 and the SERCOS IEC1491 

standard that provides a protocol designed specifically for communication between controllers 

and drive systems, [Hibbard 1996]. 

3.2.5 Manufacturing Control System Software 

The size and complexity of some software application programs has led to considerable 

research into structured methods of programming [Ready 19911; and the verification of 

programmed PLC code [Moon 1994]. This section identifies the most significant initiatives 

and research projects that have shaped automotive manufacturing control system software. 

The number of control system hardware options presented to a specifying engineer has 

increased significantly in recent years. For many years the selection process centred on a 

hardware cost/functionality analysis between different PLC hardware suppliers. Following 

the selection process the end user was then locked into that vendor's application software and 

programming methods. However, recent initiatives toward standardised programming tools 

(IEC 113 1-3) and the acceptance of P. C. based controllers, (softlogic PLCs) [Gyorki 1996] has 

greatly increased choice. 

Basic PLCs run a single language (normally ladder logic) whilst other, more sophisticated 

products run five or more languages at the same time in order to satisfy the IEC1131-3 

standard, (see 3.2.5.1). The use of open platforms has led to third party companies entering 
the market with specialised languages attempting to fill niche markets. The most significant 

of these new languages that have influenced the automotive industry include flow chart, 

natural language, and process development languages. 

Each prograrnming language has a different level of intrinsic structure that will ensure a 
common approach between different machine tool builders. Ladder logic and Statement List 
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languages have virtually no structure and hence require a comprehensive specification to 

obtain uniform structured code. In contrast process development languages (e. g. Polaris 12 ) 

have a regimented set of rules built-in and therefore require only minor definition to ensure a 

common approach. Figure 34 provides a time line indicating the introduction and use of the 
different systems. 

Figure 34 Application software Time Line. 
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3.2.5.1 PLC Programming Standard IECI 131/3. 

IEC 113 1 is the International Electrotechnical Commissions standard for PLCs. A working 

group within the IEC was set up in 1979 to look at the complete design of PLC's, including 

hardware design, installation, testing, documentation, programming and communications. 
The working group assigned with the task (IEC65B/WG7) established a number of specialist 

groups to develop different parts of the standard, [Lewis 1995], [Gyorki 1996]. The five 

major parts are shown in Figure 3-5. 

12 Polaris :- Polaris is a trade nwne of the Rockwell Corporation. 
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Figure 3-5 Parts of the IEC Standard [Lewis 19951. 

Part Title Contents 

Part I General information Definition of basic terminology and 

concepts. 
Part 2 Equipment requirements and tests Electronic and mechanical 

construction and verification tests. 

Part 3 1993 Programmable languages PLC software structure, languages 

and program execution. 

Part 4 1993 User guidelines Guidance on selection, installation 

and maintenance of PLCs. 

Part 5 Message service specification Software facilities to communicate 

with other devices using 

communications based on MAP 

manufacturing Messaging Services. 

Part 3 of the standard specifies application software used to develop and maintain programs. 

The standard provides for a set of three graphical and two textual languages (see Figure 3-6): 

instruction list, ladder diagram, sequential function charts, function block diagram and 

structured text. Programming packages using IEC 1131 are available in two basic forms: as 

proprietary code for use on a single platform or in the form of a soft PLC 13 that whilst 

utilising a dedicated real time kernel, is able to operate on a number of widely available open 

platfonns. 

The program designer is (in a fully compliant system) free to choose the language that is most 

suitable to solve different sections of the control problem. A number of key elements are 

common throughout the five languages, to ensure that programs are interoperable and can be 

readily ported to different systems. The key areas include: character set, identifiers, language 
keywords, data types and variables. 

13 Soft PLC :- trade name. Teledenken U. S. 
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Figure 3-6 IEC1131 Section 3 Languages. 

Language Description Example 
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To increase the awareness and use of the IEC 113 1 standard, PLCopen (a product independent 

association) was formed in 1992. One of the primary objectives of the association was the 
development of a certification process. The certified levels are: 

Base level: defines a limited sub-set of the IECstandard. 

Portability level: this level provides for the exchange of function blocks or 
functions between different manufacturers programming systems. The exchange is 
based upon a neutral file exchange fonnat. 

Full compliance: products complying with this level are able to exchange complete 

applications. 

The standard is gradually being enhanced through the publication of technical papers. An 

example of this is a Function Blocks (FB) library designed for the purpose of driving axes via 
the IEC 1131-3 programming languages [PLCopen 1997]. These gradual enhancements to 

the standard and end user pressure for more open control systems has led to the majority of 
PLC suppliers conforming (or having plans to conform) to the IEC 1131 PLC standard. 

3.2.5.2 EDDI 

EDDI is an acronym for Error Diagnostic Dynamic Indicator and has been the most widely 

used supplier independent programming structure in the Automotive Industry. EDDI was a 
European initiative led by a Ford Engineer in the Body and Assembly Division in the U. K. 

The concept was originafly conceived in 1981 and is still in wide spread use today. In their 
European operations Ford, Jaguar, Rover and General Motors apply various forms of EDDI 

however all contain the same basic principles. Ford instructs their machine tool builders in 

the technique and insist they attend a training course prior to writing control code for their 

machine tools. 

The EDDI concept is an application software structure in its purest form i. e. it does not 
require special hardware or software and can be applied on a variety of PLC and PC based 

software platfonns. It can also be applied within the constraints of the IEC1131/3 

specification. 
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The EDDI philosophy pioneered a number of major achievements including: 

" The first non proprietary software structure for use with PLC systems, 

"A documented system that could be specified by end users and taught to operators, 

maintenance staff and if necessary machine tool builders, 

"A mapped sequence making theprocess apparent to the operator, 

" Fully integrated diagnostics. Le. the diagnostics are an integral part of the sequence 

control progam, 

" The realisation of manual diagnostic capability known as manual cross interlock 

checking. 

3.2.5.3 Zone Logic 

In 1984 a major U. S. machine tool builder in the Automotive industry (Lamb Technicon), 

acquired a 20% interest in a small Texas based electronics company called Septor Electronics. 

Lamb directed Septoes research and development toward finding ways to improve the 

productivity of the transfer machine equipment that it supplied. This research led to a 

patented control philosophy called Septor 2000. 

The goal was to develop a control scheme that could analyse the condition of the machine, 

automatically trap machine fault and compose error messages without the need for a 

programmer to have anticipated the fault. In addition the system would be able to indicate the 

actions available to the operator in manual mode and give the reason why the other buttons 

were inhibited. The technique employed was termedZone Logic'. 

The designers at Septor considered the main problem with conventional machine control to be 

that engineers must program the control system for every possible situation and define the 

sequence of every step to be accomplished which quickly evolves into many thousands of 

lines of code. Malfunctions under this system are often missed initially as it was impossible 

for the programmer to have anticipated and provided error routines for the thousands of 

possible failure modes. Crucially this led to the diagnostics being developed during the initial 

production period when they were most needed. A consequence of this strategy was that 

operators lost confidence in the ability of the system to accurately diagnose problems. 

The concept that set Septor 2000 apart from other system of its time was the ability to 'tell the 

machine what to it could and could not do, set the machine its goal and leave the system to 
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decide how to do if. The valid conditions of each device were entered into the system and the 

current conditions were then compared during operation to the possible valid conditions. Any 

condition detected that did not match an entry in the table was invalid and an error message 

automatically generated. 

Roberts compares the system to a series of still photographs, [Roberts 1989]. The Zone table 

equates to the set of still photographs. The Septor 2000 control system was the camera taking 

a film of each mechanism in real time, and finally the Zone Logic compared the current image 

of the mechanism with the photographs. If the images matched the system was okay. If the 

images did not match, the differences were highlighted and presented to the operator. 

Several other features made the system an important milestone in machine control including: 

distributing the control to a station level, connecting the controllers via a fibre optic bus and 

integrating numerical motion control into the architecture were all innovative concepts at the 

time. 

Unfortunately Lamb's controlling interest in the early days restricted the market for the 

controller with other rival machine tool builders refusing to use the system. In June 1988, the 

controllers biggest customers the U. S. Automotive industry lost interest when a subsidiary of 

Daimler-Benz, the manufacturers of Mercedes Benz automobiles gained a controlling interest 

in Septor. 

3.2.5.4 SIMPLE 

The Chief Control Engineer 14 at one of Lamb's rivals in the machine tool industry; Ingersoll 

Milling Machine Company presented a paper at the 21" ESD Annual International 

Programmable Controller Conference titled; 'The SIMPLE Approach to Transfer Line 

Control'. The paper outlined a programming technique designated as 'Sequential, Integrated 

Motion and Process Logic Educator', (SIMPLE). The aims and eventual achievements of the 

concept mirrored those laid down eight years earlier by the design team at Septor. 

Although the aims were very similar some of the strategies for achieving them were different. 

The similarities included the requirement to integrate motion into the system instead of the 

contemporary practice of adding motion as a poorly integrated 'optional extra% The principle 

14 Chief Control Engineer, Ingersoll Milling Machine Company: - Thomas P. McDunn. 
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of a modular design approach was also similar promoting the idea that a controller should be 

placed at each workstation and then networking the controllers back to a co-ordinating 

controller that synchronised part flow. The major differences were seen in the way that 

individual mechanisms were controlled. SIMPLE unutilised a defined sequence making the 

sequential process the top layer of the control definition and promoting a tabular process 

overview to the operator, [McDunn 19921. 

A German controls company, Indramat'5 developed the concept in conjunction with Ingersoll. 

The result was a product based on the SIMPLE concept called TRANS 04. The TRANS 04 

was unsuccessful in the market for many of the same reasons that the Septor system failed. 

However the TRANS 04 had the added disadvantages that it was dedicated to sequential 

processes and heavily focussed on a particular segment of the machine toot market; transfer 

machines. The product was hindered by modularity problems making it impossible to use on 

more complex single purpose machines and too expensive to be used for automation and 

simple machines [Lomax 1998]. 

3.2.5.5 Flow Chart Programming 

General Motors Powertrain Division (GMPD) in conjunction with a small software house 

called Universal Automation pioneered a software programming tool based upon classical 

flow diagramming and designed to execute on a standard PC platform. 

Flow chart programming provides a flexible toolkit for the programmer with no formalised 

structure. The lack of an inherent structure gives the technique very few advantages over 

Ladder Diagram although some argue that the language lends itself more naturally to 

sequential flow and as such is easier to understand. Following GMPD's experience on the 

Romulus program General Motors have now started to lay down a set of rules for use with 
flow diagram programming in a similar way that EDDI acts a structured set of rules for 

Ladder Diagram. 

Despite its application on over 500 machines in General Motors the automotive industry is 

doubtful as to the benefits. A report compiled by the Advanced Manufacturing Group in Ford 

Motor Company recommended not to move to FloPro 16 now, but to continue with present 

15 Indrarnat is a division of the Rexrodi Corporation. 
16 Flopro :- trade name. Nernatron Corporation. U. S. 
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controls policy for major programs, [Hyrilla 1994]. Chrysler and the European manufacturers 
are also playing a waiting game, having no large scale implementations planned. 
Another language that claims the same advantages as graphic flowcharts is called 'Natural 
Language Programming'. A program is made up of a number of tasks. Within each task are 
several 'states'. The code is tailored for machine control therefore its supporters claim that it 

is more intuitive and understandable than common computer or machine language. No major 

automotive program has used the technique. 

3.3 Evolution of Shopfloor Control System Architectures 

Automotive manufacture encompasses a wide range of machining, welding, fabricating, 

process and assembly technologies. This varied application requirement leads to a wide range 

of control system complexity. At one extreme are discrete systems with simple sequential 

code. At the other end of the scale large complex systems can be found capable of process 

and data manipulation with fully co-ordinated multi-axis motion. The rapid advances in 

computing and communication technology have made possible a large number of possible 

architectures. 

The author's study of several automotive plants reveals that by correlating control system 

architecture against the age of machines, a trend from a centralised, to a progressively more 
distributed architecture is evident. This leads to an increase in the autonomy of control 

elements and hence a reduction in the processing of accumulated data at a central point. 
Dills et al, note this evolutionary increase in the autonomy of control elements in the research 
domain by describing four control forms, they are: a Tentralised form, Proper Hierarchical 

form, Modified Hierarchical form and Heterarchical form, [Dilts 1991]. 
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Figure 3-7 Evolution of Control Forms [Adapted from Dilts et al. 1991] 
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3.3.1 Centralised Form 

In the centralised form represented in all control elements are concentrated at a single point. 

Normally the electrical power supply systems are placed adjacent to the controlling elements 

along with the safety systems. The only partial distribution is hydraulic and pneumatic 

elements that rely on close proximity to the actuator for satisfactory performance. In the late 

1970's the first industrial communication networks led to the sequence controllers' 

input/output system to be placed at the cell or station level. A significant reduction in the 

length of cable runs was achieved, however from an architectural perspective the system 

remained a 'centralised architecture'. 
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3.3.2 Proper Hierarchical Form 

The requirement for increasing machine accuracy and reliability inherently drives ever more 

complex solutions and the need for effective diagnostic systems. Improvements in serial bus 

technology designed for use on the shop floor facilitated the emergence of the 'proper 

hierarchical fonn' as shown in Figure 3-9. 

The representative machine shown consists of a number of machining heads positioned on 
both sides of a part transfer system. The centralised PLC is replaced with a number of small 
PLCs controlling discrete sections of the machine. Each section is then linked via a real time 

serial network back to a co-ordinating controller. This distribution of the control elements 
facilitates standardised design of cells or machining stations, and a standardised transfer 

mechanism. Engineers are able to commission individual heads before the machine is 

complete reducing lead-time. Hardware savings are minimal; however investment saving is 

expected from the modularisation of hardware, application software and documentation. 

Significant complexity benefits are realised via the standardisation of machine control 

software including: [Victory 1997] 

Smaller less complex application software, making maintenance easier, 
17 Reduced processing load (scan time) on an individual controller , 

System scan time (including serial communication) of less than 20 milli-seconds, 
Greater program modularity and reusability. 

The Chrysler Corporation in North America utilised this modular construction of machines 

and control systems to complete the final stages of construction on their factory shopfloor 
[Wicksted 1997]. The machine tool builder (Giddings & Lewis) built and tested individual 

machining heads in their factory and then shipped the completed modules to the Chrysler 

automotive manufacturing facility for final assembly. Normally the units would have been 

built up into a complete machine on the machine builder's shopfloor tested and then stripped 
back to their modular form for shipment. Eliminating this activity makes considerable time 

and cost savings. 

17 Reduced from typically 60 milli-seconds with a centralised. controller architecture, to 5 milli-seconds on each 
of the distributed PLC's. 
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3.3.3 Modified Hierarchical Form. 

Heterarchical elements are being progressively introduced into control system architectures to 
improve performance; however the vast majority of these systems can be classed as modified 
hierarchies since this remains their predominant structure. In many applications the Proper 

Hierarchical Form acts as messenger between two cell or station controllers, adding no value 
to the data. Galbraith noted that serious delays started to occur as cell controllers wait for the 

upward transmission of information and the response to be downloaded from the master 

controller, [Galbraith 1973]. The use of vertical master/slave relations combined with peer to 

peer relations between cell controllers characterise the modified hierarchical form. Practical 

automotive applications include, machining stations with direct gauging feedback from the 

adjacent station. 
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CHAPTER 3 

3.3.4 Heterarchical Manufacturing Architectures 

Considerable research effort [Gausemeier 1998], [Luntz 1995], [Gausemeier 19951, is now 
focused on taking the partially distributed PLC systems shown in Figure 3-9 and developing 

concepts that decompose the task into a highly distributed artificial intelligence (DAI). 

Throughout this thesis this style of architecture is referred to as a Heterarchical form. This 

style of architecture is characterised by peer-to-peer, lateral relations between controllers, 

which requires no master for the correct operation of the system. 

This development has been mirrored in the evolution of information technology; twenty years 

ago, mainframes dominated computer science. Now only a few of them are still in use. 
Instead, networks of PCs and workstations are spread over offices, homes and factories. The 

centralised PLC may be thought of as the mainframe of industrial automation. 

Two main areas of research can be distinguished: distributed problem solving and multi agent 

systems [Bond 1988]. Distributed problem solving considers how different tasks or problems 

can be divided among a number of nodes that co-operate in dividing and sharing knowledge 

about the task and its solution. 

Research in multi-agent systems (MAS) considers the behaviour of a collection of 

autonomous agents aiming at solving a given problem. A MAS can be defined as 'a loosely- 

coupled network of probiern solvers that work together to solve the given task that is beyond 

their individual capabilities' [Durfee 19891. Research into distributed control systems for 

manufacturing applications has been carried out at Loughborough University for more than 

ten years, [Harrison 1998] resulting in research tools and methods to aid the implementation 

of ftilly distributed systems. 

It is possible to identify a generalised methodology for the implementation of a fully 

distributed control strategy using event driven code [Lee 1996]. Experimental tests at 
Loughborough University have demonstrated that machines can be cycled and returned to 
initial position without the use of an overall sequence [Harrison 1998]. The event driven code 
used eliminates the need for a step sequence and instead relies purely on interlocks to 

constrain elements of the machine. This technique has the potential to produce multi agent 
systems that self optimise to the most efficient cycle. If a fault occurs causing an element to 
slow down, (e. g. due to an oil leak in a cylinder) the sequence of operations has the potential 
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to automatically re-optimise and automatically change the machine cycle. Node scan time is 

negligible due to the small amount of embedded code however network speed is a critical 
factor. 

Embedding tried and tested software into a standardised node greatly increases the predefined 

code, and to a large extent eliminating the need for the end user to program equipment. The 

system will instead, require the elements of a machine to be identified and then linked for 

automatic and manual operation. This will facilitate the use of process focused development 

languages that eliminate the translation process that occurs when the Controls Engineer 

converts the mechanical timing charts into machine logic. In conclusion it can be shown that 

DAI has a number of potential benefits including [Lee 1996], [Gausemeier 1998]: 

* Improved machine reliability through the use of tried and tested code, 

" the potential to build redundancy into the node allowing improved system 

availability and predictive failure, 

" simplified maintenance and support the use of multi-skilled labour to operate and 

maintain the production facility, 

" accurate life-cycle prediction's. 

" the replacement of sequence programming widi interlock definition, 

" improved scalability and flexibility. 

At the time of writing very few inherently Heterarchical systems are evident in industry, and 

to the authoes knowledge none in the automotive industry. Limited examples can be seen in 

textiles, [Tlon 19981 the semiconductor industry [Semi 1998] and building automation 

[Echelon 1996]. 

18 Accurate Life-cycle prediction: With the control device being embedded into an actuator the manufacturer 
should be able to predict the life of the actuator based on its application/duty cycle and automatically warn the 
operator of failures. 
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3.4 Practical Shopfloor Control System Models 

Elsag Bailey identifies an integrated command, control, and communications model based 

on extensive practical experience in the design, manufacture and deployment of industrial 

control systems [Jensen 1993]. Although his experience is mainly in the domain for 

continuous and batch automation, the platform and application enterprise model (EBPA) can 
be equally be used to define sequential or discrete manufacturing enterprises. 

The EBPA model comprises of a five-level structure which, from the bottom up, is defined 

in terms of the spans of control of various entities, whether they be people or automation 

[Bayne 1995]: 

Level 0- Field Operations: comprising field-mounted measurement and actuation devices 

and the local controllers for selected physical and logical process variables; state space size - 

10 elements. 

Level I- Unit Operations: comprising InterDevice operations related to cell level machine 

controls, safety interlocks, or other critical processes; state space size - 10 * 10 elements. 

Level 2- Area Operations: comprising InterUnit operations involving the planning and 

execution of area coýtrol polices, manufacturing planning, start-up and shutdown 

sequencing, state space size - 10*10*10 elements. 

Level 3- IntraPlant Operations: comprising of IntraArea co-ordination, plant scheduling, 

maintenance and configuration management, order processing, product quality control: state 

space size - 100*100*100 elements. 

Level 4- Enterprise-Wide Operations: comprising IntraPlant operations involving order 

processing, logistics, multi plant production scheduling, and inventory management; state 

space size - 1000* 1000* 1000 elements. 

The system model separates logical physical process management policy into four abstract 
layers, including process regulation, process optimisation, process adaptation, and process 
Organisation. All four layers are present in some form at each level of the automation 
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hierarchy, and are supported by a set of services that provide for the supervision of process 
behaviour. Taken together these services provide for the "Intelligent automation" of 

industrial processes. The review of architectures within this thesis primarily focuses on level 

0 and level 1. 

Previous research into level 0 and level I systems primarily focus on controlling elements 

and the communication technology connecting them, [Dilts 19911. Unfortunately practical 

applications have a number of other elements that are of equal importance in ten-ns of system 

function and are themselves subject to a similar evolutionary development. To illustrate this 

point Figure 3-11 identifies the major elements of a shopfloor control system. The normal 

sequence/interlock controller and sensor actuator elements are present, however in the model 

below the power component and expert controller are added. The expert controller will 

normally contain its own processing capability. In an Automotive application may be, for 

example, an NC motion or gauging controller. The SAE are generally binary devices e. g. 

end stop actuators or fluidic valve devices. The evolution model is further complicated by 

statutory control elements19 whose development Is constrained by different statutory 

requirements in different regions. 

Figure 3-11 Shop Floor Control Model 
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Complex high volume manufacturing is typically decomposed into a series of component 

processing activities which are further simplified by segmentation into individual 

19 Statutory control elements - Elements ensuring the safety of persons operating the equipment. 
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manufacturing operations (drilling, grinding, welding etc. ). Furness describe a generic 
model of the individual processes as members of a larger system, [Furness 19961. 

Figure 3-12 Diagram of Manufacturing Processes as elements of a Production 
System. 
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This model can be used to represent manufacturing operations in the majority of Automotive 

manufacturing facilities. 
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3.5 A Case for Adopting a New Approach 

The Automotive industry was instrumental in the development of the first programmable 
logic controllers. The early PLC's reflected this influence by providing a careful match 
between end user skills, technical requirements and product design. The automotive industry 

has remained a significant end user of manufacturing control technology; so why has a gap 
formed between contemporary automotive manufacturing requirements and available 

technology? The authoes research identifies a number of factors, namely: 
1. The market for PLC's has expanded rapidly in the last thirty years and hence diff-used the 

ability of the automotive industry to influence design. 

2. Automotive strategy in North America and Europe has been changing rapidly in an 

attempt to compete with the Japanese Automotive Industry. The 1980's produced a 

strategy that tried to beat the Japanese with increasing levels of complex manufacturing 

technology. The change to lean production methods is a relatively recent change leaving 

the control technology providers with products designed for a now outdated mass 

production strategy. 
3. Contemporary products have been designed with disproportionate influence of technical 

staff and engineers, which has resulted in the neglect of social and organisational issues. 

A lean' manufacturing environment requires a balanced symbiotic design approach. 

4. Regional differences in the techniques used to fulfil operational requirements have made 

it difficult for control technology providers to focus on a particular set of requirements. 

In North America the most influential initiative in the Automotive Industry has been the 

OMAC initiative. This has generated strong interest in Open P. C. based control solutions, 

whilst in Europe and Japan a more pragmatic approach has been taken. Europe has led 

the development and use of Industrial control networks in the automotive industry. Based 

on the author's industrial experience, in North America industrial control networks are 

often (mistakenly) linked to the use of open P. C. based solutions. In Japan and the Far 

East a relatively conservative approach to control technology exists. Machines (and 

hence control systems) tend to be relatively simple with a high focus on cost, size and 
functionality. The gap between control technology and end user requirements is not so 

evident in Japan due to the high skill level found in their manufacturing facility. This 

diversity of requirements further dilutes the influence that the automotive industry can 

exercise over new product design. 
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5. The gap between end user capabilities and control technology has to a large extent been 

masked by increasing levels of support provided. The cost of the support has been hidden 
in the price of the product. It is common in the automotive industry for seven year 
warranty and permanent on site support. 

The conclusions drawn from Chapter 2 identify that the design and implementation of 
machine control systems should be closely aligned and play a key role in the enhancement of 

manufacturing strategy, including life cycle cost, work practices and product/production 

agility. The supply of technology and technological innovation into the factory environment 
is a subject of great debate with many reported problems of poor implementation of 
technological systems and difficult relationships between users and their suppliers. 

Many social scientists claim that the one sided interest of engineers in technical aspects, 

results in the neglect of social and organisational issues and therefore leads to the creation 

and implementation of inadequately functioning systems [Zairi 1998]. During the past 40 

years individual researchers and research groups have repeatedly recognised the existence of 

this problem and have tried to design production systems that were labelled human centred 

or socio-technical, [Badham 1995], [Bender 1995], [Emery 1959]. Bender, Haan and 
Bennett argue that symbiotic techniques are required thereby stressing the necessity for co- 

operation between technical and social elements in designing production systems. This new 
term stresses that neither technical nor social issues dominate. 

Many of the problems raised concerning contemporary systems demonstrate that whilst the 

social and organisational techniques used on the shopfloor have changed extensively in the 

past few years; manufacturing control systems and the associated programming languages 

have remained fundamentally the same. This lack of a complete and consistent environment 
leads to integration problems that are often detected late in the design life cycle. The design 

of such complex and heterogeneous systems requires a methodical approach to requirements 
definition, specification and design as well as verification and validation of the results. 
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The author proposes that the design of next generation manufacturing control systems 20 
, 

require the combination of expertise from a number of different domains. Contemporary 

methods and tools have the potential to support elements of the manufacturing strategy; 

however a new design approach is required is required that takes into account the view of 

technical, human and operational aspects of the problem to fulfil the requirements of this 

new lean manufacturing environment. 

3.6 Summary 

This chapter has focused on the role of current manufacturing control system hardware and 

application software with respect to their effect on control system design and application. 

The review in this chapter has highlighted a number of key issues, namely: 

Improvements in enterprise integration and the ability to react to foreseen and unforeseen 

product changes will require the link between control system hardware and application 

software manufacturer to be broken. 

"A life cycle approach is required at all stages that takes into account technical, human and 

operational aspects of the problem. 

" Currently increased performance is often used to increase system complexity rather than 

providing improvement of system behaviour. 

" Considerable difficulties are faced by existing PLC system suppliers due to competitive 

pressures, loss of key (profit making) segments of their market, and the introduction of 

working practices in the Automotive industry that do not fit with the design of their 

products. 

" Unlike the PLC, current PC based architectures were not originally designed for operation 

on the shopfloor. This has in some applications led to their failure to meet expectations in 

the following areas: reliability, modularity, cost, and training. 

" IEC1131/3 has resulted in the standardisation of a collection of outdated languages. 

Whilst some benefit is gained from this language standardisation the languages 

themselves fail to match with emerging user requirements (e. g. available skills and 

operating practices). 

" Some potentially innovative programming languages have failed in the past due to: 

20 Control System in this context includes sequential control hardware and software, open-loop and closed loop 
control, power supply systems andsensorandactuator components 
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1. strong links with particular control or machine tool suppliers leading to competitor 

reluctance to use the product. 
2. Product development in isolation from one or more of the key user groups. 

Regardless of the widely differing opinions as to which of the currently available 
technologies is best suited to a particular application, there is broad agreement amongst 

managers, engineers and operational staff that taking advantage of the latest manufacturing 
technologies plays a key role in ensuring the success of an enterprise in today's fiercely 

competitive global market. A requirement has therefore arisen to seek ways and means of 

enabling the design and construction of a new generation of manufacturing control systems 
in order to more effectively meet with the changing needs of this new manufacturing 

environment. 

This chapter has substantiated the first part of the authoes hypothesis that the design and 
implementation of contemporary manufacturing control systems is inappropriate when 

viewed from a business context. The following chapters will identify a design framework 

able to create a more appropriate next generation of control system. 
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4. NGCS Solution Principles and Functional Structures 

4.1 Introduction 

This chapter will identify through abstraction, the primary Solution Principles and Functional 

Structures that will underpin a design framework that facilitates and guides the design of Next 

Generation Control Systems used in the automotive industry. The chapter is divided into two 

sections: The first section identifies Solution Principles required of the Design Framework. 

In the course of identifying these principles, work from which the author has drawn elements 

of framework definition are introduced. The second part of the chapter identifies Functional 

Structures that represent the principle design and analysis environments. Supporting tools 

and methods are introduced to facilitate the management of complexity and facilitate modular, 

stable designs with inherent structural stability. 

4.2 Solution Principles 

4.2.1 Use of a Prescriptive Framework Model 

Engineering Design can be defined as the systematic, intelligent generation and evaluation of 

specifications for artefacts whose form and function achieve stated objectives and satisfy 

specified constraints. [Dym 1999]. Design is a creative process however tools and techniques 

can be used to support and structure this creativity. 

The majority of design frameworks fall into one of two categories; namely descriptive 

frameworks or prescriptive frameworks, [Cross 1989]. Descriptive frameworks emphasise 

the importance of generating a solution early in the process and then subjecting that solution 

conjecture to detailed analysis and evaluation. Of course the analysis and evaluation may 

reveal fundamental flaws in the initial conjecture causing the design to be abandoned, and a 

new concept generated. The process is heuristic using previous experience, general 

guidelines and rules of thumb. The conceptualframelvork described in this chapter adopts 

the second categoyýy of designftamework, namely a prescriptive model. This category of 
frameworks are concerned with detailing a more systematic procedure and are often regarded 

as providing a particular design methodology. 

4.2.2 Standardized Terminology and Structures 

Senehi and Kramer propose common tenninology for discussing architectures and a common 
framework for organising information about control architectures, [Senehl 19981. Their 

conceptual framework is based upon developing a number of tiers of architectural definition. 
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An instance of the framework with a set of populated tiers is termed an architectural complex. 
Each tier is made up of a number of architectural units. These in turn are an aggregation of 

the fundamental building blocks of their structure, namely atomic units. An atomic unit is 

defined as the lowest level of decomposition of a functional module or unit, for a particular 

architectural definition. In addition, the tiers are designed to ensure decisions made at lower 

tiers are consistent with those made at higher ones. Hence an implementation must conform 

to the specifications of the given tier and all higher tiers of the architecture complex. Both 

concepts are illustrated in Figure 4-1. 

Figure 4-1 Elements of an Architectural Complex. (Derived from Senehi & Kramer. ) 
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Two additional concepts are proposed to complete the definition of tiers; relations and partial 

orderings. A relation defines an association between architectural units. Using these 

relations, it is possible to generate partial orderings of an architectural complex that may be 

used to group architectural units into tiers. 

A number of different types of relations can be defined. The most applicable in hierarchical 

control systems is decomposition/aggregation. Decomposition/aggregation relates an item to 

its parts. For example, a manufacturing facility is an aggregation of individual machine tools 

and hence each machine tool is part of the decomposition. Any architectural unit that is not 

atomic is an aggregation. 

Many relations can be used to define a partial ordering for the tiers in an architectural 

complex. In a partial ordering of a set, any two arbitrary set elements that are related can 

have a sense of direction established. If W and '13' are architectural units, for 

decomposition/aggregation relations A< B meaning A decomposes into B. This may be used 

to order the different elements of the machine tool control system within a facility. 

In addition to organising information about control architectures, Senehi and Kramer identify 

the need for elements of architectural definition. The elements are conceptual entities, which 

may or may not have any physical realisation (i. e. hardware software). These are: 

1. statement of scope and purpose, 
2. domain analysis, 
3. architectural specification, 
4. methodology for architectural development, 

5. conformance criteria. 

Statement ofScope :- The statement of scope identifies: 

" the situations or domain to which the tier is intended to be applied, 

" general characteristics identified which set limits to its applicability to other 
domains, 

" functions that are out of the scope of the tier. 

Statement of Purpose :- The statement of purpose identifies the objectives of the tier within 
the given scope. Within this statement the major objectives of the tier need to be outlined, for 

example for the next generation controller, 'functionality designed to operate in a multi- 
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skilled working environment' may be an objective for one of the high level tiers with a wide 
scope. 

Domain Analysis :- Domain analysis is required before an architecture can be formulated. 
The author cites the failure of this step as one of the most significant reasons why current 
shopfloor control systems are failing to meet automotive end-user requirements. Within the 

context of this thesis the background material that determines the characteristics of an 
automotive domain is established in Chapters 3 and 4. Different views require different forms 

of domain analysis. The types of analysis that are significant for a next generation shopfloor 
control system are: functional analysis, information analysis and operational analysis. 

" functional analysis is concerned with all functions within the scope of the 

architecture that a conforming control system must be able to perform and the 

sequence and dependencies of the functions, 

" infonnation analysis takes into account information external to each atomic unit 

needed for a conforming control system to function properly, 

" operational analysis is concerned with ftinctions and information in the domain 

that is influenced by operational or social requirements. This emphasis stresses the 

necessity for co-operation between technical and operational elements in defining 

the framework. 

Architectural Specification :- The Architectural Specification is a prescription for the 

architectural units; how they are connected and how they interact. The composition of any 

architectural units that are not 'atomic' should be specified. 

Methodology for Architectural Development :- Senehi and Kramer identify a 'set of 

procedures for refining and implementing an architecture' as a 'methodologyfor architectural 
development'. For example a methodology for producing an architectural specification at one 

of the lower tiers may include the following: 

" set machine actuator limits (e. g. maximum number of actuator devices), 

" set functional limits (e. g. maximum two servo axis, no interpolation), 

" complete timing analysis (maximum scan time). 
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Conformance Criteria :- Conformance criteria are standards that specify how an architectural 
unit at one tier of an architectural complex conforms to the architectural specifications of a 
higher tier. A conformance test is a procedure that detennines if the conformance criteria 
have been met. These terms allow the definition of conformance classes of an architectural 
complex which identify sets of different and incompatible choices of architectural features. 
The advantage of defining conformance classes for a shop floor control system is to have 

choices within the architecture, while allowing the bulk of the architecture to remain 
unchanged. This will allow architectures for specific classes of machine control system to 

coexist as variants of the same basic architecture. 

In giving the tiers a sense of order Senehi and Kramer prescribe a top down approach so that 
decisions made at lower tiers are consistent with decisions at higher ones. The use of an 
iterative decision making process where a top down and bottom up approach is followed will 

maintain the needs of both upper and lower tier requirements ensuring that lower tiers of 

architectural definition are not constrained needlessly by upper tier decisions. 

From Senehi and Kramers work the author identifies the need for the NGCS Framework to 

adopt a standardised terminology that allows he discussion and development of a clear set of 

criteria as a Solution Principle. 

4.2.3 Use of Views Analysis and Structured Scope Management 

One of the most widely researched design frameworks in this field is the Open System 

Architecture for CIM21 (CIMOSA) and the associated methodology proposed by the ESPRIT 

consortium AMICE22. The CIMOSA project was initiated in the mid 1980's and with 

extensions took some ten years to complete, [AMICE 1993]. The aim of the project was to 
develop: (i) a generic CIM reference architecture for the creation and execution of enterprise 

models, i. e. a modelling framework, [Pansel. 9901 and (ii) a set of rules for building CIM 

systems based on the architecture, i. e. an integrating structure, [Klittich 1990]. 

CIMOSA provides a system life cycle framework which takes into account, initial conception, 
design, implementation, maintenance, operation and reuse. This guides designers through the 
development and implementation of CIM systems and system components, that can be added 
and removed at will. The life cycle starts with the collection of business requirements via a 
domain analysis. These are then fed into a requirements definition model, which in turn are 
" CIM -Computers in Manufacturing. 
22 AMICE: European Computer Integrated Manufacturing Architecture 
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translated into a design model and a comprehensive description of the implemented system. 
Finally the model is released for operation to control and monitor factory systems. 

Figure 4-2 CIMOSA Modelling Framework, [AMICE 19931. 
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The CIMOSA cube is illustrated in Figure 4-2. The cubes three-dimensional framework has a 
dimension of genericity, a dimension of enterprise models and a dimension of views. The 

author has adapted this terminology to better suit the architectural requirements of a design 
framework for Next Generation shop floor control systems, namely: 

the dimension of 'scope reduction' (instantiation) progresses from generic building 

blocks to greater levels of specificity, until a model for a particular operational 
domain has been identified. A structured reduction of scope will aid the design of 
architectural units that can be used in a number of tiers and hence have a wide 
range of application, 

the design methodology steps (derivation) provides the design and development 

steps required. Starting with statements of requirements the process must advance 
through a structured design process that concludes with a description of the system 
implementation., 

the dimension of views offers the possibility to work with sub-modules, focusing 

on different aspects of the enterprise. An example representing a function view is 

noticeable in the 'proper and modified hierarchical forms' presented in the previous 

chapter. In this example additional hardware is used (potentially increasing the 
hardware failure rate) to obtain machine/control modularity and simplicity. 
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CIMOSA is a descriptive framework that does not prescribe methods to design a system, 
[Zwegers 1998]. Hence applying CIMOSA does not result in operational systems, let alone 

systems able to function efficiently in a lean production environment. Given that it does not 

offer guidelines and reference models that support designers in the transition from 

requirements to practical specification, the value of CIMOSA should be seen as an overall 
framework within which enterprise integration is described. 

The author concludes that the views proposed by CIMOSA give a valuable insight into 

particular aspects of the system and is therefore adopted as a Solution Principle, however the 

complex array of organisational, technical and human requirements evident in lean systems, 

requires an additional feature that allows their simultaneous examination to ensure overall 

optimisation. The second principle derived from CIMOSA is the need for structured scope 

management that facilitates modular, stable designs with inherent structural stability. 
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4.2.4 Need for a Business Environment Analysis 

There is evidence that for a design framework to achieve relevance and be adopted it must be 

specific to a particular industry's needs and constraints as determined by culture, market, 
products and technologies, [Clark 1993]. This points to the needfor a strong element of 
business environment analysis leading to an essential understanding of how design outcomes 

will interact with company organisation, its culture and environment. 

4.2.5 A Sociotechnical Approach to Design 

Research that stresses the necessity of co-operation between technology, organisation and 

people is normally labelled sociotechnical, [Emery 19591, [Mumford 1983], [Taylor 1993], 

human centred, [Badham 19951 or anthropocentric, [Wobbe 19921. Throughout this thesis the 

term sociotechnical is used to define a manufacturing control system in which the 

interdependent nature of technology and organisation is given a high priority. 

Research and development of symbiotic systems has concentrated mainly on the design of 

man machine interfaces, ergonomic requirements and the consequences for worker skills and 

learning, [Benders 1995]. Whereas most contemporary research in this area concentrates on 

manufacturing applications [Zarakovsky 1991], information systems in general [Blacker 

1988] and knowledge base systems [Kirby 1992] have also been addressed. 

The Sociotechnical Syst6ms (STS) paradigm is a design approach that promotes the notion 

that organisational systems function effectively and proactively because the elements are 

compatible and integrated with each other, and therefore no one element can be taken alone 

and modified without affecting other elements. The presence of these interdependencies 

requires that the STS design methodology be addressed early in the design process. 
Duimering et at go further by suggesting that it is more productive to redesign the 

organisational structure before implementing available technology than to hope technology 

will bring about manufacturing effectiveness, [Duimering 1993]. 

Scandinavia has fulfilled a prominent role in sociotechnical research within Europe with the 
UTOPIA project, [Bodker 1987]. Volvo's Uddevalla plant gained world-wide attention with 
its unique symbiotic organisational design, [Bennett 1992]. The result was a vehicle assembly 
plant with six product shops centred in groups of three around two inspection shops where the 
cars were tested. Every product shop contained eight teams, each team assembling a 
complete vehicle in two hour cycles. Although Volvo's work in this area has been largely 
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phased out, renewed interest has emerged with several initiatives sponsored by the European 

Commission for example the ESPRIT and FAST programmes. Other related concepts such as 

Total Quality Management, [Lawler 1992], the Japanese kaizen perspective [Imai 1986], 

[Lillrank 1989] and Rcliability-ccntred Maintenance, [Moubray 19971 have also played a part 

in promoting a more balanced view of technology design and implementation. In Germany 

the search for more flexible production systems has led to extensive organisational 

experiments, with programmes like Arbcit and Tcchnik, [Latnik 1995]. 

Despite the large body of research completed in this area the application of STS principles has 

been confined to a relatively small number of organisations, [Majchrzak 19951. Majchrzak 

and Finley conclude that the limited diffusion of the STS approach can be attributed to three 

main factors: 

1. the inherent complexity when technical, human and organisational factors need to 

be combined to produce a production system. 
2. the high number of variables that need to be simultaneously considered in the 

design of a sociotechnical design. (Majchrzak and Finley identify in excess of 

three hundred variables). 
3. the additional complexity induced by the large number of relationships that are 

discernible between the variables. 

Their research attempts to manage this complexity by: constructing a knowledge base with a 

comprehensive list of variables and relationships among the variables, manipulating the 

knowledge base to make sociotechnical decisions, and applying the decisions to the 

architectural complex design. Majchrzak and Finley use five knowledge sources to construct a 

comprehensive knowledge base of STS variables and relationships, namely [Majchrzak 

1995]: 

" industry standards and contemporary manufacturing concepts, 

" theoretical and anecdotal literature to identify propositions, 

" empirical studies on the implementation of manufacturing technology, 

" consensus building meetings with industrialists in which each specific relationship 
is discussed, 

" site visits utilising standardised interview and observation protocol. 

Maichrzak and Finley's knowledge base consists first of a comprehensive list of operational 
features describing a sociotechnic work system made up of 17 categories. Examples include: 
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Business Objectives, Employee values, Skills, Production and Process Characteristics. The 

categories are broken down further, into more than 300 different variables. 

Hypothetically, the knowledge base could contain a number of ideal relationships among each 

of the system variables. Given that some of the processes contain a large number of variables, 

the number of ideal relationships among each may be significant. Practical constraints will 

restrict the design making many of the ideal relationships impracticable. To assist the 

designer with these trade offs a method of experimenting with alternative design features to 

determine those that have the greatest potential for increasing organisational effectiveness is 

required. Majchrzak and Finley term this feature a sensitivity analysis model. 

Traditional approaches to technology implementation are characterised by two fundamental 

weaknesses. First, technology-centred approaches neglect human and organisational factors 

in the design and implementation process resulting in the widespread experience of failed 

technology projects that often over-run their original timing and budget, [MaJchrzak 1991]. 

Secondly many of the economic and social benefits of new technology result from post- 

adoption configuration of the system to fit the particular technical and organisational context 

of the user organisation, [Badham 1995]. The author adopts as a Solution Principle the need 

for Sociotechnical Analysis andtools aspart of the NGCSdesignftamework. 

4.2.6 Solution Principles Summary 

A number of issues arise when current design methods are used to design shopfloor control 

systems for a lean manufacturing environment, namely: 
1. The methodologies presented often contain generic concepts. Their generalised nature 

may be viewed as one of their strengths allowing wide spread use in many different 

situations and domains; however, the operational isation of these concepts is a difficult 

process often leading to misapplication of the architecture. 
2. As the design develops, the control system specification moves from generic building 

blocks to particular units causing an inevitable narrowing of the scope and applicability. 
This process is often poorly defined, resulting in systems and sub-systems with a narrow 
scope of applicability. 

3. Shopfloor control systems designed to work in a multi-skilled team based environment 
(typical of a lean manufacturing environment) must address a complex combination of 
process, technical and human requirements. The primary focus of contemporary methods 
is on the application of manufacturing technology and its relation with the production 
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equipment. This often leads to specific views of the system being missed, ignored or given 
inappropriate emphasis. 

4. Continuous improvement is one of the cornerstones of lean manufacturing. The objective 

of contemporary architectures is to define the ideal solution. As a result little attention is 

paid to processes that monitor and feedback design output performance and address 
imperfections. 

The Solution Principles identified in this section of the chapter are summarised, below. Their 

principle aim is to guide the development of Functional Structures that provide 

manufacturing control systems that: correctly relate to business objectives and more 

effectively contribute to manufacturing competitiveness. 
1. Ile NGCS Framework is best described by a prescriptive design model detailing a 

systematic design methodology. 
2. A strong element of business environment analysis is needed to ensure the design is 

relevant to the automotive industry. 

3. Standardised terminology is required that allows discussion and development of a clear set 

of criteria. 
4. The framework should incorporate structured scope management that facilitates modular, 

stable designs with inherent structural stability. 
5. Standardised Vieivs that capture the requirements of a lean manufacturing environment are 

essential. 
6. Finally a Sociotechnical approach to design is required that promotes the notion that 

organisational systems function effectively and proactively because human and technical 

elements are compatible and integrated with each other. 
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4.3 Functional Structures 

The work contained in this section outlines the Functional Structures that together make up a 
Design Framework for the production of a Next Generation Control System (NGCS). The 

NGCS Design Framework consists of four interconnected phases (Figure 4-3), namely: a 
Design Requirements, Analysis and Capture (DRAC) phase, a Design Implementation phase, 

an Application and Operation phase and a feedback phase to provide Design Optimisation. 

4.3.1 DRAC Phase 

The Design Requirements Analysis and Capture phase introduces a body of methods which 

represent the different stages through which the design process must pass. Each method is 

supported by one or more design and development tools (shown in yellow). The first stage of 
the DRAC is called the Business Environment Analysis phase. The principle aim of this stage 
is to define the strategic and product priorities of the organisation. The output provides 
direction in terms of a Manufacturing Strategy, Product definition (in this case an internal 

combustion engine) and detailed Manufacturing objectives. The second stage is termed the 

Life Cycle Analysis (LCA). The aim of LCA process is to initiate the dimensional and 

process flow planning, identify and prioritise lessons from previous programs, analyse life 

cycle costing and understand the relationship of the system in terms of reliability and 

maintainability. 

The third analysis method is termed the Sociotechnical Analysis and aims to provide an 

ordered set of variables with defined relationships. The number and complexity of the 

variables presented to the design team are very high at this point in the process. It is 

important that the design team do not attempt to curtail the complexity by reducing the 

number of variables to a manageable number. This strategy will prematurely judge particular 

variables to be constrained or eliminated and as such not worthy of design attention. 

The STS paradigm states that each variable has some interaction with other variables in the 

sociotechnical system. These relationships are considered to be as important as the variable 
itself and given the large number of variables; the number of relationships present an even 

greater challenge. Compiling these relationships into one place (such as the design team) and 
accessing the relationships is likely to be a difficult task to carry out manually, therefore it is 

essential that suitable tools be procured to facilitate this part of the process. 
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The final phase of the DRAC environment is the Technical Requirements Analysis. The 

objective of the work at this stage is to use available design methodologies and tools to 

translate the variables and relationships into a set of NGCS Design Attributes that may then 

be used to develop an NGCS Reference Architecture and a catalogue of implementation 

technologies. The objective of the Reference Architecture is to serve as a basis for the 

Technical Implementation of specific NGCS control systems that encompass all the identified 

tiers of architectural definition within a specific application area. The implementation 

catalogue contains appropriate hardware and software technologies that fulfil the design 

attributes generated as a result of the DRAC process. 

The DRAC Phase builds an implicit decision making process, that violating one ideal 

relationship is less damaging than violating others. The designer must recognise that the 

inevitable compromises found in practical designs may surface as a flaw in the completed 
design and hence documentation of the violations applied provides a rationale for the 

compromises. To assist the designer the decisions made within the DRAC phase are 

monitored at every stage by a Design Attribute Relationship Matrix (DARM). The objective 

of the DARM is to oversee the relationship between design decisions and the manufacturing 

strategy that it supports. 

A detailed review of each phase of the DRAC environment is presented in Chapter 5. 

4.3.2 Design Implementation Phase 

The Design Implementation Phase employs the Reference Architecture and selected 
technologies to produce an NGCS practical implementation. A proof of concept system and 

practical implementation on a hign volume Automotive Assembly line are presented in 

Chapter 6. 

4.3.3 Design Optimisation Phase 

The completion of the implementation phase often signals the end of the design and 
development process. The study of contemporary applications show that to conclude the 
development process at this point results in a/ end users living with design flaws on a long 

term basis or b/ end users providing their ownfixes. Within the context of this thesis the 

author categorises thefixes applied by the end user into three areas, namely: cost, quality and 
time. Costfixes may be, for example where additional skilled people are employed to cope 
with system complexity that cannot be handled by the normal production team. This design 
flaw manifests itself in the form of software consultants and electronic technicians dedicated 
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to the maintenance of particular parts of the system or production facility. An example of a 

quality fix may be in the form of process variability caused by poorly defined technical 

requirements or process definition. An example of a time element is the additional period 
built into product launch and development plans to compensate for excessive training and 

equipment familiarisation. Time penalties also surface during the operational and reuse 

phases in the form of change over time and equipment breakdown during production time. 

The NGCS Design Optimisation phase recognises the existence of these design flaws and 

seeks to adjust the design to eliminate or minimise their use. The adjustments may be to the 

operating environment or the technical design. Following each iteration of the design the 

Design Optimisation Feedback must be reassessed. This may be achieved by analysis, 

simulation or practical tests. 
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CHAPTER 4 

4.4 Summary 

This chapter presents an overview of development architectures and frameworks 

applicable to the development of manufacturing control systems. Their role as an 

essential tool to assist in the understanding of manufacturing control systems is 

discussed. The sources from which elements of the new framework are drawn, are 
highlighted and additional concepts considered necessary by the author identified. 

An overview of the NGCS Design Framework is presented. Four distinct phases are 
identified namely: Business Environment Analysis, Lifecycle Analysis, 

Sociotechnical Analysis and finally the Technical Requirements Analysis. The four 

phases are bound together using a mapping process in the form of a Design Attribute 

Relationship Matrix (DARM). 

Chapter 5 will expand the understanding of the framework by developing the solution 

principles and functional structures (Figure 4-3) outlined in this chapter. Each phase 

of the Framework will be described in detail and where possible the interconnections 

between each phase formalised. 
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5. NGCS Conceptual Framework 

5.1 Introduction 

The creation of a new automated manufacturing line is based on the use of numerous 

procedures, methods, tools and checklists established over many years. One part of the 

activity relates to design and implementation of the control system. The ad-hoc nature of the 

current approach means that there is little visibility of the interconnections between the 
business, sociotechnical and technical aspects of the control system specification and design 

process. As a result of this it is difficult to map business objectives through the design 

process to ensure they appropriately impact on the implementation of the control system. 
Chapter 3 identifies that this failure often leads to the creation of control systems that are 
inappropriate when viewed from a modem business context. 

In this chapter the author has taken the solution principles and functional structures (Figure 

4-3) outlined in Chapter 4 and modelled the behaviour of each element in the control system 
design process in the form of a prescriptive model. Where possible the interconnections 

between each phase have been fonnalised. 

The mapping process is summarised in the form of a Design Attribute Relationship Matrix 

(DARM), which highlights to the various stakeholders in the design process: a/ the 

relationship between the key business, lifecycle, socio-technical and technical design factors 

and, b/ promotes a method of forward and backward propagation between them. 
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5.2 Business Environment Analysis 

The first stage of the Design Requirements and Capture (DRAQ phase is the Business 

Environment Analysis, (Figure 5-1). The aim of the BEA is to collect Product and Corporate 

requirements and provide strategic direction for the manufacturing team working on the next 

generation controller. The human resources required are an Executive Steering Team (EST) 

made up of senior management from the organIsation, Manufacturing Program Steering 

Team (M-PST) and Program Management group. Figure 5-1 identifies the four principle 

activities contained within the BEA activity, namely Vision Document Development, 

Product Complexity Mapping, Manufacturing Programme Strategy Definition and Product 

Design. The interface to Product Design is discussed however the design process itself is 

considered by the author to be outside the scope of this work. 

Figure 5-1 Business Environment Analysis 
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5.2.1 Vision Activity Development 

The Vision Document Development activity requires the active involvement of the EST and 
M-PST teams. The primary input documents are the Corporate Vision Statement and high 

level lessons leamt. Further to this, it is expected that members of the EST and M-PST are 

able to provide experience of the business environment, an awareness of current/future 
legislation and knowledge of competitor status. 

During the activity the two groups work to determine a common corporate strategy view and 

generate a program vision statement. The Vision Document Development activity provides 
direction to two other activities within the BEA: the Manufacturing Programme Definition 

and Product Complexity Mapping. 

Figure 5-2 Vision Development Process 
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5.2.2 Product Complexity Mapping 

The aim of the Product Complexity Mapping activity illustrated in Figure 5-3, is to ensure 

appropriate levels of flexibility and agility are built into the manufacturing facility to 
facilitate the production of the end product (in this case an Internal Combustion Engine). 

This will in turn influence the design of the associated manufacturing control system. The 

Management of complexity is also a key aim of the activity to ensure cost and operating 

complexity is controlled. In the case of an internal combustion engine a block diagram is 

produced to shoW the principle changes that are made to step from one engine derivative to 

another. Figure 54 shows how from a core engine with a displacement of 2. OL complexity 

can be minimised by making selective changes to produce 1.8L, 23L and 2.8L versions of 

the same base engine. Additionally core technologies common to all derivatives may be 

implemented to provider customer requirements. Examples include variable valve timing 

and turbo charging. 

Product Complexity Mapping and management requires the active involvement of the M- 

PST and the Simultaneous Engineering Team (SET). The activity also requires data input 

from, and provides feedback to; the Vision Document Development and Product Design 

activities. A four-stage process is used to construct a document defining the end product 
definition, volume and complexity mix. The first stage of the internal activity establishes a 
detailed understanding 6f the need for complexity from a customer's perspective. The 

second and third stages evaluate the required complexity for potential rationalisation 
followed by a study to determine manufacturing feasibility. In addition to providing 
feedback to activities within the BEA environment it also provides input for the Life Cycle 

and Socio-technical phases. Throughout the program the complexity status of key 

components must be tracked. An example of a tracking document is shown in Figure 5-5. 
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Figure 5-3 Product Complexity Mapping 
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Figure 5-5 Engine Derivative Complexity Mapping 
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5.2.3 Manufacturing Program Definition 

Whilst the Simultaneous Engineering team are defining the scope of the end product, the 

Manufacturing Program Management staff must determine the Manufacturing Programme 

Definition specifically-, program cost, timing and scope (See Figure 5-6). Detailed timing is 

established via a top down approach., considering the principal tasks, expected duration and 

cost constraints. This leads to high level timing definition and finally a detailed work 
breakdown structure in the form of a proprietary work-planning tool (e. g. Microsoft Project). 

The Manufacturing Strategy for the program is taken to the next stage of definition by means 

of a Lean Evaluation Matrix (Figure 5-8). The purpose of the document is to define a current 

state map in terms of Lean manufacturing practices and the future, desired status at the end 

ofthe program. The difference between the states is subjected to a gap analysis and 

appropriate action plans or inhibitors (requiring management support) are identified. The 

process used to generate the document is illustrated in 
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Figure 5-9. Each of the 14 categories used to define a lean environment are reviewed by the 

M-PST and a design objective set. The objective is to set a realistic level that a/ the 

operational management can achieve and b/ is within the program time and cost targets. The 

design is evaluated against the objective and a gap analysis created. The Gap Analysis is 

used by the LCA and STA phases to guide the design. The strategy definition process must 
be re-visited prior to the design finalisation to establish if the gaps between status and 

objective have been eliminated or reduced to the minimum possible. 

The Program Management group is also charged with providing overall program status to the 

EST and M-PST groups. A standard set of metrics should be used to facilitate efficient 

senior management reviews. When collated the metrics form a single page program status 

covering all the major deliverables of the program. A suggested list of metrics and format 

for the single page program status are shown in Figure 5-7. 

Figure 5-6 Manufacturing Program Definition 
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Figure 5-7 Program Metrics and Status Reporting 
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Figure 5-9 Strategy Definition 
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5.3 Life Cycle Cost Analysis 

The second stage of the DRAC is the Life Cycle Analysis. An overview of the four 

interconnected processes within this environment are shown in Figure 5-10. The aim of 
LCA process is to initiate the dimensional and process flow planning, identify and prioritise 
lessons from previous programs, analyse life cycle costing and understand the relationship of 
the system in terms of reliability and maintainability. 

5.3.1 Manufacturing Process Control Planning 

The Manufacturing Process Control Planning (M-PCP) requires a completed Design FMEA 

(D-FMEA) as its primary input. The D-FMEA will identify Critical and Significant 

characteristics of the design which if not maintained will impact on functionality and hence 

customer satisfaction. Initially the Critical and Significant Characteristics are used to define 

a Dimensional Control Plan. The plan will identify the type of control that needs to be 

applied to maintain an identified product characteristic. A critical characteristic may need 

closed loop feedback control with gauging to verify process integrity. Often critical 

characteristics are safety or legislation related for example a design feature that will effect 

engine emissions or the fastening process that attaches the flywheel to the crankshaft. The 

resultant output is the Dimensional Control Plan. This acts as an input to the Technical 

Requirements Analysis as well as a reference document. 

Internally within the M-PCP process the output of the Dimensional Control Planning allows 

the optimum process flow to be established. Evaluation of the Design FMEA and 

Dimensional Control Plan allows the generation of a Process FMEA and Process Flow Plan. 

The completion of this step will in turn allow the Engineering Team to identify the classes of 

machines and equipment required to fulfil the process requirements. This final stage of the 

M-PCP also requires input from the Manufacturing Strategy and Objectives, the Lean 

Evaluation matrix and the product definition in terrns of volume and mix. As the evaluation 

matures feedback from the Life Cycle Costing may influence the class selection. Examples 

of the each step and the different classes of machine are shown in Figure 5-11. 
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Figure 5-10 Life Cycle Analysis 
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5.3.2 Lessons Learned Prioritization and Use 

An overview of the Lessons Learned process is shown in Figure 5-12. In a global 
organisation such as those found in the automotive industry it is essential that a process to 

collect and prioritise new and existing knowledge be established and maintained continually. 
The process for this continuous activity is shown in some detail in Figure 5-14 and the 
lifecycle of the lesson in Figure 5-13. The knowledge will come from a number of sources, 
examples include: research and experimentation, use of processes or products and customer 
feedback. The collection and effective prioritisation of corporate memory is a powerful tool 
to ensure that previous mistakes are not repeated and good practice replicated. Ideally 

anyone within the company should have access allowing them to write and enter lessons. All 

lessons should be forwarded to a clearing house where a specialist with the appropriate 
technical skills and experience would ensure the lesson is indeed new knowledge and 

scrutinize the lesson for accuracy, clarity and completeness. The corporate memory or 
Lessons Learnt database must run independently of the needs of a particular program. Many 

lessons will be missed or wrongly interpreted if the organisation attempts to initiate the 

process in response to a particular program of work. 

Assuming the lesson is approved a central administration area would publish the lesson on 
the global database. The central administration area would also be responsible for tracking 

the initial submission afid subsequent changes. 

In addition to the continuous process described, the program team must initiate a procedure 
that extracts lessons from the corporate database and identifies those applicable to the 

program. The listed lessons must then be prioritised and fed to the appropriate areas of 
design. The Lesson Learnt Priorities are listed and where appropriate acted upon during the 
Socio-technical and Technical Analysis phases. 

A typical lesson is illustrated in Figure 5-15. The documented recommendation often cannot 
be taken and directly applied. In the example shown the lesson highlights an issue with the 
training of staff relative to the new control system and calls for training to be completed prior 
to the first machine arriving on site. The recommended action advocates a reactive response 
that may solve the problem however a more effective means is to proactively eliminate the 
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concern by significantly reducing the training required (through improved skill matching) 

and hence eliminate the issue at source. 

Figure 5-12 Lessons Learned Process 
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Figure 5-14 Lessons Learned Global Database Process 

Anyow within the cmp,. Y: T-k-A., Sp-i-lkk P_ sq-i- 
ý- -., lh. I. - ý6t lb. I- fý -I Mlýb- - I. - ,, h p- --), &. &, D-mt, .. d 
ýd-fy -p- ffwd cmillm corPM10 mmmy fln- affmied P__ Ow_: 
f-ardto d-. IL h- Mhb- - J- -th ý., p- 

dd- 
f-. d . --I ., *n. 

d- p- 

.. 
PW. 

pd.,. d- 

C-I Ad.. f 
pd. - 

E, p--- Fd cl" Dmtabsw 

R-11, I-I Sid- Ad. h, NVb. NI. Wl. 

11, _ "n 
pbl. h:., heI- 

� b- 
'Orp", mm"y 'p, 

:. 
b- , p- 1,0IMP-i 

-A .. P- ---)1. 
= 

cl- 
.- I- I.... dd.. b- 

Figure 5-15 Example Lesson 

136 



CHAPTER 5 

5.3.3 Life Cycle Cost Analysis 

The cost of a manufacturing facility is spread throughout its lifecycle. The main areas of 

cost in the order that they occur are illustrated in Figure 5-16. Acquisition cost is generally 
the investment associated with procurement including any contract support prior to and 
during installation and the cost to apply the system. Often organisations mistakenly focus 

almost exclusively on this area: a/ because it has an immediate effect on the companies 
finances and b/ because it is easy to measure, (unlike some of the ownership costs). Cost of 
Ownership includes the cost of operations and maintenance, which in the case of automotive 

users can vary between eight and fifteen years. The costs incurred during this period 

normally far outweigh the purchase cost and as such should receive an appropriate amount of 

attention. The need for flexible, adaptable facilities increases the importance of the final part 

of the Life Cycle costing, namely the cost to convert facilities mid way through their life. In 

many countries the disposal of equipment is now strictly controlled increasing the need to 

consider costs related to the eventual disposal of the equipment. The majority of 

opportunities to minimise Life Cycle Cost are locked in to the system in the first third of the 

program design and installation cycle, (see Figure 5-17). It is therefore crucial that the 

program management team organise a Life Cycle Cost critical design review early in the 

program design process. 

The overall Life Cycle 66sting process is illustrated in Figure 5-18. The author proposes the 

use of an agreed Life Cycle cost model in the form of a spreadsheet application. The model 
is used to calculate the control system life cycle cost as a function of investment, operating 

and maintenance cost over the facilities useful life. A typical LCC model is shown in 

Appendix B. The model design and data input requires detailed knowledge of the 

manufacturing operation, where the system will be used, and relevant data that can be used 

to quantify costs. Maintenance cost will be influenced by equipment reliability, mean time 

to repair and the suitability of the system when matched with the skill levels and operating 

practices utilised in the plant. 

The application of the model involves a more complex process than initially indicated by the 

spreadsheet. An example of this complexity can be illustrated by considering the MTTR. In 

its simplest form the reported MM is based upon the historical data for that machine type, 

the complexity of the machine (e. g. number of stations, specialist gauging. ) and level of 
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diagnostics. This provides a sound basis for the evaluation, however an allowance for the 

Production System Model (Chapter 2) and Workgroup structure (see Figure 2-3 ) must be 

made; both will influence the response time to the repair and hence calculations within the 

model. The outputs from the LCC analysis are fed to the Socio-technical and Technical 

analysis phases. 

Figure 5-16 Life Cycle Cost Elements 

--------------------------- 

Lifec cle Costs 

----------------------- --- 

----------------------- 

qý + ition 

----------------------- 

------------------------------------------------------------- 

01) 
++ --: 

n coýft 

------------------------------------------------------------- 

Aýq. Wtio- Openti. -I Nfaintenawe Convenion 
DwommL%ion 

Umcheduled Sdduled 

Ad.. E., g. 

F, -1.1 -ý- -- --u -, ý I m 

138 



CHAPTER 5 

Figure 5-17 Life Cycle Cost Drivers 
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5.3.4 Reliability and Maintainability Analysis 

The final step of the Life Cycle Cost process is to establish requirements and design 

objectives in terms of Reliability and Maintainability (R&M). The operational effects of 

production shortfalls and the inability to predict downtime are significant. These include 

unscheduled overtime, unplanned and increased maintenance requirements and costs, and 

excessive work in process around constraint operations. Due to a lack of confidence in the 

performance of equipment, many end users purchase additional facilities, tooling and spares 
in order to meet production requirements. 

Accurately forecasting the performance of machinery plays a key part in driving waste out of 

the manufacturing system therefore; the aim of the R&M analysis shown in Figure 5-19 is to 

improve the predicted level of machinery performance. This must be combined with an 

understanding of how machine performance can be increased providing greater reliability 

and by doing so making a significant contribution to the aim of lowest total cost. The R&M 

process relies to a great extent on historical data generated by equipment suppliers and the 

manufacturing plant. Inputs to the process include historical equipment failure database, tear 

down reports and fault tree analysis. Although the prime objective is to increase reliability, 

inevitably failures will occur therefore the speed and ease of equipment maintenance must 

also be considered. 

The R&M Design Review process results in a set of design recommendations that are 

captured as design requirements and recommendations. The implementation of the 

recommendations and activity, responsibilities are documented in an R&M Activity Matrix 

(see Figure 5-20). The outputs from the process are fed to the Socio-technical and 
Technical phases of the DRAC. 
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Figure 5-19 Reliability and Maintainability Process 
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5.4 Socio-technical Analysis 

The NGC design philosophy promotes a view that no one element can be taken alone and 

modified without affecting other elements of the system design. The Socio-technical 

Activity (STA) phase of DRAC is key to the realisation of this principle. The two processes 

are shown in Figure 5-21, i. e. Socio-technical model development and analysis; and Skill set 
identification and alignment.. The STA process actively promotes the notion that 

organisational. systems function effectively and proactively if the elements are compatible 

and integrated with the technical characteristics of the design. The presence of these 
interdependencies requires that the STA design methodology be addressed after the initial 

definition of Business and Life Cycle Cost strategies and prior to the reference architecture 

and physical definition identified during the Technical Requirements Analysis (TRA). 

The aims of the Socio-technical analysis are: 
To align strategic, organisational design, and human resource variables identified 

in the domain analysis, 
To order and weight the variables, 
To define relationships between the variables, 
To identify and prioritise Socio-technical features that need to be addressed in the 

Technical Design analysis. 
Identify skill-- availability and match these with those required to operate and 

maintain the design. 

The aims are collectively represented in the STA output namely the Socio technical design 

requirements, Skills Gap Analysis. 
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Figure 5-21 Socio-technical Process Overview 
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5.4.1 Socio-technical Model Development and Analysis 

To manage the large and complex set of variables present at this stage of the process the 

author proposes the use of a modelling tool that allows the simultaneous analysis and 

alignment of strategic, organisational, technological, and human resource features against a 

set of ideal conditions. The ideal conditions must come from a large, well-validated base of 

scientific and best-practice knowledge of lean manufacturing practices. A number offeature 

sets are required to cover the various facets of the Business and Operating environment. The 

example given in Figure 5-22 demonstrates the sequential steps to define the environment. 

For the purposes of this application study the author utilises a proprietary modelling tool, 

(Top Modellef") that provides 14 Features Sets (see Figure 5-23) to describe an 
organisation. 
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Figure 5-22 Socio-technical Model Development and Analysis 
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5.4.2 Business Strategy Feature Sets 

T'liree initial feature sets define Business Strategies based on the criteria, variables and 

relationships identified in the Business Environment and Life Cycle Analysis. Thefeature 

sets are: Business Objectives, Process Variance Control Strategies and Organisational 

Values. A series of questions help the user identify two types of objectives: those intended 

to reduce cost while simultaneously improving customer satisfaction, and those intended to 

enhance the organisation's future adaptability. In the Automotive industry it is often the case 

that the organisation will endeavour to improve on three key measurable, namely minimising 

throughput time, maximising quality first time through, and/or maximising changeover 

flexibility (e. g. minimising set-up time). 

Each business objective defined in the model is examined and the most appropriate selected. 
Many of the business objectives, allow the design team to indicate not only if a feature is 

critical or not, but also the scope of operations considered within the application contaxt of 
this Thesis, (ranging from a narrow scope of individual operations to a broad scope of the 

entire assembly line). With the objectives selected, the Objectives Matrix shown in Figure 

5-25 is used to identify the degree of misalignment among the selected objectives 
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5.4.3 Process Variance Control Strategies 

The second modelling step is to select the Process Variance Control Strategies. Process 

Variances are defined as technical variations (planned or unplanned) in the production work 
flow that creates uncertainty in the processing of materials. The team is asked to indicate if a 

process variance is Not of Concern to the operation, this being the case, then that variable is 

selected. If the process variance is of concern, then, the design team is asked to indicate their 

strategy (intention) for controlling that variance, for example: 

* Do nothing, 

Expect the employees in the manufacturing team to react to a process variance 

effectively when it occurs, but not to actively work to reduce its effect (Effective 

Reactive Coping), 

* Attempt to reduce its effect rather than to cope with it, (Proactive Elimination). 

Figure 5-23 TOP Modeller Feature Sets 
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Figure 5-24 Feature Set Value Setting 

5.4.4 Business Objectives Alignment 

Following the selection of Process Variance Control Strategies, the subsequent step is to 

determine if any of the selected strategies conflict with the Business Objectives. The 

modelling tool provides a simple matrix (see Figure 5-25) comparing an ideal set of values 

against those selected by the user. Potential conflicts are highlighted. 

Having selected appropriate Process Variance Control Strategies and Business Objectives the 

final Business Strategy, Organisational Values are selected. Organisational Values describe 

the preferences of management about underlying beliefs concerning how employees 

(management included) should behave. These values include such behaviours as the degree 

of collaboration, risk-taking, and continuous improvement expected of employees. Having 

selected Organisational Values, the design team is able to examine the extent to which the 

selected Organisational Values conflict with the Business Objectives and Process Variance 

Control Strategies. 
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5.4.5 Alignment of Operational Feature Sets 

Once all three aspects of the Business Strategy are aligned, it was possible to determine the 

extent to which the organisation is currently designed to achieve that Business Strategy. 
This is determined by considering the alignment of the remaining eleven feature sets of the 

organisation with the Business Strategy. These feature sets are: 

" Information Resource, 

" Production Process Characteristics, 

" Empowerment Characteristics, 

" Employee Values, 

" Customer Involvement, 

Skill, 

Reporting Structure Characteristics, 

Norms, 

Activities, 

General Technology Characteristics, 

Performance Measures and Rewards. 

Each feature set is defined, and relationships between Business Strategies and feature sets 
displayed in each Matrix. As each organisation or technical feature is entered the matrix is 

used to determine if providing that feature supports and enhances the Business Strategy. A 

tool is provided to indicate the degree to which the selected features reflect the ideal 

attributes given the selected Business Strategy. 

5.4.6 Feature Set Alignment to Ideal 

Having completed the Feature Set input analysis tools are provided to identify which 

elements of a particular Feature Set have greatest variance from the ideal. The features are 
listed in priority order, where the number of different business strategies that the feature is 

affecting determines the priority. The analysis tools assist in the identification of patterns 

across the feature sets, for example: If the Skills Feature Set has a poor rating compared to 
the Technology Set, a reasonable conclusion may be to begin improvements with basic skills 
and/or to consider those actions that may be taken during the control technology design to 

reduce the need for specialist skills. 
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5.4.7 STA Output Variables and Relationships 

Completion of the analysis provides an ordered set of variables and relationships. aligned 

with the strategic, organisational, technological and human resource features of the 

organisation. This establishes the primary input into the Technical Requirements Analysis 

stage. 

Figure 5-25 TOP Modeller Analysis 
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5.4.8 Skill Set Identification and Skill Alignment 

The completion of the Socio-technical model requires an assessment of available skills and 
their alignment with the proposed business and technical requirements of the design. 

Additionally the program will require a knowledge management strategy, both processes are 
illustrated in Figure 5-26. There is no single method that enterprises can turn to when 
looking to improve the efficiency and effectiveness of corporate knowledge and skills 
however the NGC design philosophy identifies four factors that must be considered in order 

to realise an effective knowledge and skill management strategy. These are: 
Managing explicit knowledge. This means capturing knowledge in documents and making 

these documents available as needed. The focus is on leveraging and exploiting knowledge 

that is already available in the enterprise, but which has not been accessible to people who 

could take advantage of it. 

Managing tacit knowledge, This knowledge is not in a system or embedded within a process. 

Benefit for the organisation is gained by finding people with relevant skills and knowledge 

and supporting the interactions between them. This includes not only identifying appropriate 

contacts, but addressing human and technical issues that stop the knowledge moving from 

the tacit to explicit zone. Often during a new program an organisation must acquire new 

knowledge as well as making better use of existing knowledge, this raises new issues. 

Where possible the knowledge acquisition should be structured to ensure it remains in the 

explicit . -One. Each of the areas described contribute to a Skill/Knowledge Analysis finally 

resulting in a Knowledge Management Strategy Document that is used by the Training 

department to direct the training requirements as the equipment is installed. 

The remaining two factors are: Skill availability database andApplication skill requirements. 
The 'Skill availability database' is constructed initially by carrying out structured surveys 

with each member of staff. When the database is populated it is beneficial to keep the 

records up-dated via automated notification of training completion. The skills profile are 

analysed and make up one of the two inputs into the Skill. 4lignment process. The second 
input into the alignment process emanates from a study of the application requirements. 
Factors such as: operating practices, machine type, equipment design and control system 

complexity will all need to be considered. As with many other processes in the NGC design 

framework the application requirement will need to be revisited a number of times before the 
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design is finalised. The output from the skill alignment process is fed to the Socio-technical 

model described above. 

Figure 5-26 Skill Set Identification and Alignment 
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5.5 Technical Requirements Analysis 

The Technical Requirements Analysis (TRA) is the final phase of the DRAC environment. 
An extensive literature survey of TRA application design tools is beyond the scope of this 

thesis, however, a number of suggested tools are highlighted and applied in the proof of 

concept system shown in Chapter 6. The aim of the TRA is to accept the variables and 

relationships from the previous stages and by utilizing defined processes and available tools, 
define a Reference Architecture and list of suitable Hardývare and So/tIvare Implementation 

Technologies. 

The NGCS Implementation process is initiated by two parallel activities as shown in Figure 

5-27. The two processes are: definition of the Essential Architecture and the Appraisal and 

selection of hardivare and sofAvare implementation technologies. 

Figure 5-27 Technical Requirements Analysis 
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5.5.1 Essential Architecture Definition 

The Essential Architecture definition fulfils one of the Solution Principles identified in 
Chapter 4 by utilising a process of structured scope management that aims to identify a 
modular, stable design with inherent structural stability. A representation of the process is 

shown in Figure 5-28. The Manufacturing Process Control Plan input defines the types of 

151 



CHAPTER 5 

machines required and the functionality of each machine. The integration requirements, both 

between machines and with higher level production and business systems (See Figure 5-10) 

are defined. 

The identified manufacturing applications are ordered into the appropriate Tier of 
Architectural Definition. The scope and application domain is widest at tier I and at it's 

most specific at tier W, where W is the tier with the narrowest scope and application domain. 

In the example shown (Figure 5-28) three tiers are identified, namely a Zone Controller Tier, 

Machine Controller Tier, and in the lowest tier with the narrowest scope an Automation 

Controller Tier. Each tier requires a number of functional control elements known as 

Architectural Units to form the required functionality, examples being: drive systems, logic 

control elements and application software. These are in turn made up of Atomic Units, the 

lowest structural element in the process. 

At this stage of the process the application domain and related control elements have been 

decomposed into a highly modular, but impractical state. Therefore the final stage of the 

essential architecture analysis is an examination of the Architectural Units by a team of 

experienced Manufacturing Control Engineers, and the application of coupling and cohesion 

analysis. This iterative process is illustrated at a high level in Figure 5-28 and in greater 

detail in Figure 5-29. The level and form of modularity present in the Reference 

Architecture should ensure that the units are as independent as possible, (known as the 

criterion of coupling), and that each unit carries out a single, problem-related function; 

(criterion of cohesion); hence the aim is to design systems with low complexity, minimal 

coupling and maximum cohesion. 

Design Coupling measures design quality by analysing the linkages between architectural 

units. Low coupling between units indicates a well-partitioned system, [Budgen 19931. 

Practically this is achieved by: eliminating unnecessary relationships, reducing the number of 

necessary relationships, and finally by easing the tightness of relationships. The fewer the 

connections between functional units, the less chance that a fault in one module unit will 

effect the operation or controlled shutdown of an adjacent system. It should also be possible 
to change or up/downgrade one unit with minimum risk of having to change or modify 
another. The Drive Module example shown in Figure 5-29 is refined as the modularity 
analysis progresses. This is shown by the change from a high number of drive modules with 
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an excessive level of dependency to a system with a rationalised modular structure, low 

number of interconnections and moderate level of dependency. 

Design Cohesion is the measure of the strength of ftinctional relatedness of elements within a 

unit, [Jones 1988], [Budgen 19931. Each architectural unit within a tier should contain 

elements that are firmly related to each other. The ideal module is one in which all the 

components can be considered as being present for one purpose. In general the Coupling and 

Cohesion analysis work together, for example, by grouping the drive related input and output 

functions into the drive controller module, the Coupling between this module and the Logic 

Controller Module decreases and the functional relatedness (Cohesion) increases. 

Figure 5-28 Essential Architecture Definition 
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Figure 5-29 Essential Architecture Analysis 
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5.5.2 NGCS Reference Architecture 

The output from the Essential Architectural Definition is the NGCS Reference Architecture 

(RA) as illustrated in Figure 5-30. The RA is implementation independent and aims to 

provide the optimum design in terms of structure, modularity and reconfigurability. 
Consistent with other parts of the process, standardised notation and definitions are used to 

identify the architectural units and their associated interface. The notation for an interface is 

unit / number. interface number, (e. g. 1/411). Like the architectural unit, the interface may 
be hardware, software or a combination of both. For example Module 115 contains the logic 

development environment and as such is entirely software based. The Power Supply module 
(2/1) and Motherboard (1/7) are hardware based and the remaining modules a mixture of 
both hardware and software functionality. A summary of each sub-system unit and its 

primary interface requirements are presented in table 5-7. 
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Table 5-7 Architectural Units and Primary Interfaces 

Unit or Interface Description 
1/1 Unit Central Logic Processing Unit 

1/1 Interface I/I. JI: Sub-system compatibility with external interface 
Requirements connections. 
1/1 Unit Sensor lActuator Unit 

1/2 Interface 1/2. J I: Defines the address area assignment of the 1/0 port. 
Requirements 1/2. J2: Sets the mechanical connection between the unit and the 

enclosure. 
113 Unit Low Level Operator Thterface Unit 

1/3 Interface I/3. JI: Interface via sensor actuator bus. Interface defined by 
Requirements: relevant international body. 

114 Unit Motion Control Unit 

1/4 Interface I/4. JI: Defines the address area assignment of the 1/0 port and 
Requirements: function of individual registers. 

1/4. J2: Interface to Drive Systems. Interface defined by relevant 
international body. 

115 Unit Logic Control Development Unit 
Sensor Actuator Bus Definition Unit 
Motion Control Development Unit 

115 Interface I/5. JI: Software Interface to Sensor Actuator Unit. 
Requirements 1/5. J2: Software Interface to Motion Control Unit. 

1/5. J3: Software Interface to Central Logic processing Unit. 
1/5. J4: Software Interface to System Monitoring and Securi Unit. 

116 Unit "Memory Unit 
1/6 Interface 1/6 J1 Interface with Central Logic Processing Unit during system 
Requirements initialisation. 
117 Unit Motherboard Unit 
in Interface in JiMechanical and Electrical Interface to all hardware units. 
Requirements In J2 Mechanical Interface to Enclosure. 
118 Unit 118 System Monitoring and Security Unit 
1/8 Interface I/8. JI: Defines the address area assignment and CPU interrupt for 
Requirements power and scan failure. 
119 Unit 119 Power Supply Unit 
1/9 Interface 1/9 JI Internal Power Interface, distribution to all hardware units. 
Requirements 
2/1 Unit 211 Machine Power Supply Unit 
2/2 Unit 212 Motor Control Unit 
2/3 Unit 213 Discrete Input and Output InterfacelDevices 
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5.5.3 Appraisal and Selection of Hardware and Software Technology 

The process associated with the Appraisal and Selection of Bardivare and So/tivare 

Implementation Technology is illustrated in Figure 5-31. The first of three input groups 

encompasses safety related attributes requiring high integrity systems often with dual 

channel operation and automatic progressive failure detection. Examples include: European 

standards that cover the design of Two Hand Control (EN574), Safety of Machines (EN292- 

1) and Safety Related Parts of Control Systems (EN9541). Necessarily these standards 

provide limited scope for innovation or user preference. 

In contrast the second group of inputs include Control Standards and Enabling Technologies 

where user requirements and preferences play an important role in defining the technology 

used. Examples include PC Hardware format (PC 104), interface software, serial bus 

standards and application software. In this category often new and in some cases untried 

technologies will be considered; therefore the associated risks and benefits must be taken 

into account. A discrete process associated with this group determines the implementation 

readiness of the technology. The judgement of a particular technology's readiness must be 

based on predefined criteria as determined by the business environment, risk culture within 

the organisation and time to deployment. It should be taken into account that the level ot 

risk that the organisation is willing to bear will change from time to time due to economic 

and personnel changes. The final group of inputs from the BEA, LCA and STA 

environments set and define the Selection Criteria, Scoring and Weighting of the selected 
hardware and software options. All three groups pass through an appraisal process that aims 

to select the most appropriate technologies. 
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Figure 5-31 Appraisal and Selection of Implementation Technologies 
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Two Zones of influence are shown in Figure 5-32. Although both zones are provided with 

critical design requirements from the same source (BEA, LCA and STA environments) it is 

evident that the upper zone processes the architectural requirements of the design. This zone 

is referred to as the zone of architectural influence, creating the Reference Architecture as an 

output. In contrast the lower zone focuses on technologies and standards. This technological 

focus provides as an output, a list of selected hardware and software technology. The author 

refers to this area as the Zone of Technological Influence. 

The practical realisation of control modules, application design tools and associated 

interfaces must combine the attributes of both zones to produce an NGCS implementation. 

Each applied component will contain attributes from both the architectural and technological 

zone of influence. 

A number of practical examples of this concept are given in Chapter 6 however to illustrate 

the concept an example is given in Figure 5-33. The proof of concept system incorporates an 
SRAM memory module (that stores all the application data) and a software initiation module 
designed to automatically distribute the application software to intelligent modules remote 
from the main central logic-processing unit. The architectural input requirements (intelligent 
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sub modules, multi-skilled operation, high system availability and system agility) arc 

processed by the Essential Architecture Definition. The output is represented in the 
Reference Architecture by two units: a memory module (1/6) and a system initiation module 
(1/1). 

The technological influences include: memory size, read/write technology, form and cost. 
The software functionality inputs are: programming language, interface (if any) with the 

operator and configuration tools. These design requirements are processed by the Hard'ware 

and Software appraisal resulting in the selection of an SRAM memory card with a PCMCIA 

interface. The analysis identified that the multi-skilled operator would not interface with the 

system configuration therefore to increase the response time of the download process the 

initiation software was written in a high level language and embedded into firmware 

contained within the central logic processing unit 1/1. The Architectural and technological 

influences are combined in the Implementation Architecture definition. 

If the Business, Life Cycle or Socio-technical requirements had been different the practical 
implementation would have taken a different form. For example, if the multi-skilled 

operator needed to reconfigure the system; a screen on the operator interface would be 

required increasing cost and development time. Equally if the system was never going to be 

reconfigured and there was no requirement for intelligent sub modules the system 
initialisation module 1/1 could be eliminated and the memory loaded on to standard 
EPROM's saving cost and system complexity. 
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Figure 5-32 Architectural and Technological Zones of Influence 
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CHAPTER 5 

5.6 Design Attribute Relationship Matrix (DARM) 

The Business, Lifecycle Cost, Socio-technical and Technical phases generate a high number 

of complex requirements and interdependencies. Throughout the four phases presented in 

this chapter an implicit decision making process is continuously being made that violating 

one ideal relationship is less damaging than violating others. The designer must recognise 

that the inevitable compromises found in practical designs may surface as a flaw in the 

completed design and hence documentation of the violations provides a rationale for the 

compromises. 

To assist the designer the decisions made during each of the phases are captured and linked 

together in the form of interconnecting matrixes. This is referred to as a Design Attribute 

Relationship Matrix (DARM) an example of which is shown in Figure 5-34. The aim of the 

interconnecting matrixes is to highlight to the various stakeholders in the design process the 

relationship between the key business, lifecycle, socio-technical and technical design factors, 

and promote a method of forward and backward propagation between them. It is important 

that the DARM is used not only to record initial design decisions, but also to assess the 

potential impact of requested changes to the system. 

The Corporate Strategy and Vision/Strategy/Product Definition sections of the DARM 

(contained within the flist two matrixes) are common to all the manufacturing engineering 

areas. Moving through the matrix sets, the detail increases therefore after the second matrix 

a specific DARM is required for each engineering discipline (e. g. Control Systems, 

Mechanical Engineering, Gauging and Tooling Systems). A worked example tracing 

individual design features is presented in Chapter 6. 
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CHAPTER 5 

5.7 Summary 

In this chapter a detailed description of the NGCS Conceptual Design Framework is 

provided. Four distinct phases are identified namely: Business Environment Analysis, 

Lifecycle Analysis, Sociotechnical Analysis and finally the Technical Requirements 

Analysis. The four phases are bound together using a mapping process in the form of a 

Design Attribute Relationship Matrix (DARM). 

The Business Environment analysis identifies the corporate and end product requirements. 

This in turn allows definition of the strategic manufacturing direction. Four activities are 

described namely: Vision Document development, End Product complexity mapping, 

Manufacturing Programme Strategy definition and Product Design. 

The Life Cycle phase describes the activity required to initiate the manufacturing 

dimensional and process flow planning. The importance of retaining and collecting new 

knowledge within a global organisation is highlighted and a method to prioritise knowledge 

described. A model to judge system Life Cycle cost is introduced. The final step of the Life 

Cycle Cost phase establishes Reliability and Maintainability (R&M) objectives, requirements 

and design objectives. The integration of R&M requirements into the overall process is 

discussed and the use of data to design reliable and easily maintained equipment. 

The Socio-technical Design Phase identifies a design approach that promotes the view that 

organisational systems function effectively and proactively when the technical, 

organisational and human elements are compatible and integrated with each other. This 

chapter provides a method to align strategic, organisational. design, and human resource 

variables identified in the domain analysis, to order and weight the variables, to define 

relationships between the variables, and to identify and prioritise features that need to be 

addressed in the technical design analysis. The STA environment provides a process to 

assess the available skills in the manufacturing environment and their alignment with the 

proposed business and technical requirements of the design. 

The final phase of the DRAC environment is the Technical Requirements Analysis (TRA). 

The TRA accepts the variables and relationships from the previous stages and proce§ses 
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them through two zones of influence. The Architectural Zone of Influence provides as an 

output an NGCS Reference Architecture. The architecture is subjected to analysis and 
testing to ensure the structure is implementation independent and provides the optimum 
design in terms of structure, modularity and reconfigurability. The Technological Zone of 
Inj7uence processes the critical design requirements and matches them to available 

technology. The resultant output provides a catalogue of suitable hardware and software 
implementation technologies. 

Finally the chapter concludes by describing a Design Attribute Relationship Matrix which 

aims to bind the four phases together by highlighting to the various stakeholders in the 

design process: a/ the relationship between the key business, lifecycle, socio-technical and 

technical design factors and, b/ promotes a method of forward and backward propagation 

between them. 

The next chapter applies the NGCS Conceptual Framework, initially to a proof of concept 

system and subsequently to an engine assembly line. The implementation is discussed in 

some detail, focusing on design attributes that differ from conventional manufacturing 

control system applications. 
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CHAPTER 6 

6. Application of the NGCS Conceptual Framework 

6.1 Introduction 

Chapter 5 explained in detail each stage of the DRAC environment. The aim of this Chapter 

is to describe the design implementation and Proof of Concept System with a particular focus 

on design features that differ from contemporary control systems. 

The second part of the chapter describes Simultaneous Engineering led by the author with 
the aim of realising the NGCS design principles on a new high volume assembly line at Ford 

Motor Company's Dagenham Engine Plant. The chapter begins with a brief resume of the 
facility and the background that led to the NGCS framework being selected. The 

Simultaneous Engineering method and structure is outlined and each major application tier is 

discussed. The proof of concept design is re-examined in light of the practical application 

and new design features are identified and discussed. In the final section of the chapter the 
design of the new control system is evaluated and the results critiqued against a similar 

contemporary assembly line control system. 

6.2 Proof of Concept System 

To enable the development of a ProqfqfConcept System (PCS) a Structured Scope 

Reduction for an Engine Assembly Control System was documented (see Figure 6-1). Six 

tiers of definition are identified; the scope and application domain is widest at tier I and at its 

most specific in tier 6. The scope narrows sufficiently in tier 3 to identify specific 
'architectural units'. Four specific application tiers are identified, namely the: 'Zone 

Controller' tier, 'Complex Machine Assembly' tier, 'Elementary Machine Assembly' tier 

and finally the 'Transport System' tier. The PCS presented represents a typical machine 

controller system and models all the major areas of control system applications seen in an 

engine assembly system. 
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Three different strategies were employed to realise the component parts, namely, 

identification of 
design attributes that can, (through careful selection) be realised using 

existing products. 

* features that can be achieved by reconfiguration and minor modification of 

existing products, 

* requirement gaps that will require significant development resource. 

Table 6-1 identifies the course of action taken to realise the each NGCS feature in the proof 

of concepi system. Each area that differs from conventional control system is described in 

the following sections. The physical realisation of the Proof of Concept system is shown in 

Table 6-1. 

Figure 6-1 Structured Scope Reduction - Engine Assembly Line 
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CHAPTER 6 

6.2.1 Machine Mounted Quick Release System 

Machine mounted units designed with quick release connection systems facilitate a number 

of NGCS design requirements including: 

" maintenance by multi-skilled operators, 

" high equipment availability, 

" reduced lead time and cost of machine tools, 

" reduced reconfiguration time. 

Due to the nature of the proof of concept system few of the principles are realised at this 

stage. 

Ideally, the units are designed to mount directly to the machine structure rather than a 

traditional control enclosure. The primary reason for this guideline is to aid the multi-skilled 

maintenance of the units, however, other less obvious reasons exist, namely: 

mounting external to a control enclosure will promote the idea that the control units are 

machinefunction units in much the same way as a motor or sensor, and as such remove 

any preconceived ideas regarding traditional labour demarcation 23 
, 

elimination of the control enclosure reduces machine size and allows the process to be 

more easily viewed. 

the use of keyed connectors eliminates the possibility of incorrect connections. 

The concept of quick release connection extends to the serial bus medium, the input and 

output blocks and the connection to the sensors and actuators. The serial bus system selected 

by the author for the proof of concept system achieved this requirement by using an 

insulation deformation system. 

6.2.2 Implementation of NGCS using Open Architecture Hardware Format 

There has been much discussion about the suitability of the IBM Personal Computer 

platform for industrial control systems [OMAC 1994], [Harbers 1996], [Gyorki 1996]. Over 

the past decade however, the P. C. architecture has become an accepted platform for far more 

than desktop computing applications [PCI04]. PC's are used as controllers within vending 

machines, ATM machines, petrol pumps, communication devices and medical equipment to 

23 Currently within most Automotive plants only authorized (electrical) persons are allowed to enter a control 
enclosure 
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name a few examples. PCs are now widely available packaged in a variety of fonns suitable 
for most shopfloor environments and real-time control software is available for a range of 
applications. 

Control system designers can substantially reduce development cost, risk, and time by 

standardising hardware around the broadly supported PC architecture,. This results in faster 

time to market helping manufacturers to meet critical market windows with timely product 
introduction. Another important advantage is that its widely available hardware and 

software are significantly more economical than traditional bus architectures such as VME 

and Multibus, [PC 1041. PC's are capable of very high performance, with the advent of PCI 

bus technology, the standard PC hardware architecture can be used to cover the full spectrum 

of real time and monitoring applications identified in the Architectural Tiers. A controller 

may be simply a low end PC running a single task or may require several coprocessor cards 

with multiple operating systems and special purpose sub-systems. 

The author believes that a major factor in the more widespread use of PC based control has 

been the emergence of control network standards for motion and 1/0. This has removed the 

problem of providing direct connection to input and output devices, a traditional strength of 

the PLC. Typically network connections are available for most devices allowing network 
interfaces manage the connection to the physical environment. 

The standard PC form factor is bulky and requires expensive mechanical systems to ensure a 

robust system. Some of the Architectural Specification requirements are in practice difficult 

to achieve with the standard PC bus form factor (12.4" x 4.8") and its associated card cages 

and backplanes. The use of the standard format would lead to the new controller to be larger 

than equivalent PLC systems, particularly on tier 5 and 6 applications. 

In the past the only practicable way to embed the PC architecture in space and power 

sensitive applications has been to design P. C. functionality directly into the product. This 

however runs counter to the NGCS specification's requirement for the use of off the shelf 

system components. A more robust and compact implementation of the PC bus is required 
without sacrificing full hardware and software compatibility with the PC bus standard. This 

allows the PC's hardware, software, development tools, and system design knowledge to be 
fully exploited. 
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A standard developed in response to this need is PC/104. It offers full architecture, hardware 

and software compatibility with the PC bus, but in compact (3.6" x 3.8") stackable modules. 
Although PC/104 modules have been manufactured since 1987, a formal specification was 
not published until 1992. Like the original PC bus, PC104 is thus the expression of a de 

facto standard, rather than the invention and design of a committee. In 1992, the IEEE 

started a project to standardise a reduced form factor of the IEEE P966 (draft) specification. 
The PC/104 specification has been adopted as the 'base document' for this new IEEE 

standard. The standard has recently been extended to offer PCI bus support whilst remaining 
100% compatible with existing PC/104 modules. 

In addition to the wide range of standard PC boards, for example CPU's, Ethernet, serial 

communications, solid state memory, a number of key suppliers familiar to those in the 
industrial control field produce PC104 boards. Boards are available for InterBus, Profibus 

and CAN (DeviceNet) and Indramat have a multi-axis motion control board using a 
SERCOS interface. Although adopting a standard open hardware platform (like the PC) 

offers many advantages, considerable application software engineering effort is still required 
to integrate control components into a functional system. 

The prototype specification does not rigidly specify how the modules are physically 

configured, however, two typical configurations are illustrated in Figure 6-3. The 

configuration on the left is a self stacking configuration.. In this approach, the modules are 

used as compact bus boards, but without the need for backplanes or card cages. This 

configuration is best suited to Tier 6 applications. For larger machines possibly requiring 

two independent processors; (communicating through dual-port memory. ) it may be the case 

that the PC/104 boards would be better plugged into a custom carrier board which can then 

be populated with application specific units. The multi-layer carrier board shown isolates the 

two PC's. In this way the left side of the carrier board could run Microsoft Windows t' as the 

operating system, whilst the right hand side could operate independently using a 
deterministic real-time kernel. 
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Figure 6-3 Architectural Unit Carrier Board Configuration. 
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6.2.3 Standardized Interfaces 

Clearly defined hardware and software interfaces are required if an open modular system is 

to be achieved. This design attribute is intended to allow specialist control suppliers to 

design and test products independently. Compliance with the specification will allow any 

sub-system to be added, removed or exchanged for another, without effecting other systems. 

Of course additional application software may need to be written particularly if the system is 

required to move tiers, for example, to accommodate the addition of a motion sub-system. 

Where possible interfaces are avoided through the use of coupling analysis, for example, the 

specification dictates that ASCII text is sent to the operator interface unit so eliminating the 

need for a defined number to text interface found in contemporary systems. A second 

strategy is where possible avoid custom interfaces, for example focussing on interfacing via 
the sensor actuator or PC 104 bus system. 

An interface may be hardware, software or a combination of both. There are potentially 
three parts to each interface specification: hardware-system architecture (HSA), instruction- 
set architecture (ISA) and test and certification requirements. ISA determines the software 
requirements for a particular unit. The HSA deals with the hardware requirements. Finally 
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the test and certification section will identify the functional tests carried out by an 
independent body and the certification procedure. 

6.2.4 Maximized use of Bus Systems 

Bus systems are used throughout the NGCS to eliminate the need for enclosure mounted 

input and output modules and to realise the widely recognised benefits of serial 

communication systems (e. g. reduced number of cables, improved diagnostics). Three bus 

systems are required to realise the proof of concept functionality. Table 6-2 highlights the 

bus systems used. 

Table 6-2 Serial Bus Functions 

Serial Bus jXpe Function 
InterBus Loop Input and Output modules, Data tagging system, Operator 

Display, Connection to Specialist Gauging/Measuring units 24 

InterBus S (Fibre-optic) Data transmission between controllers 
ISERCOS I Servo drive control and co-ordination. 

24 The protocol selected (InterBus loop) has the capability to process the data requirements of all devices listed 
in this category, however some devices are not commercially available at the time of writing. In practice 
InterBus S may have to be used for some devices. 
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6.2.5 Supporting Hardware Requirements 

It is a common mistake to limit the design of a new control system to the main controller and 

associated units. The Sociotechnical analysis identifies several significant variables and 

relationships that produce requirements that must be achieved with supporting units which 
fall outside the scope of traditional PLC system modules. The units that must be considered 
in the design are: Machine Power Supply, Motor Controller Unit and Servo Axis Controller. 

The objective of the supporting hardware descriptions is to identify general requirements 
from which a detailed specification may be derived. 

6.2.6 Machine Power Supply 

The machine power supply unit is intended to ftilfil the function of the main power 
distribution and protection devices normally associated with the main distribution cabinet. 
The unit must contain quick change connections and be environmentally sealed to allow 

mounting directly to the machine structure. 

The input voltage and frequency tolerated by the unit must allow for global variation, a 

power supply within the unit transforms the supply to 24V DC. Modem machine tools 

require a number of segregated supplies in order to conform with safety, diagnostic and start- 

up requirements. The safety related supplies must be fed via a dual channel energy control 

system in order to conform to emergency stop and machine access legislation. All circuit 

protection should ideally be achieved by electronic protection to avoid the need for 

mechanical fuse links which may cause unnecessary production delays and be subject to 

errors if fuse links are replaced incorrectly. Control and communication with the unit is 

achieved via a serial bus loop integrated into the unit. The author anticipates the design of 
two or three different units of different power rating and a facility to allow units to be 

combined to make up the machine power requirement. Figure 6-4 shows the main elements 

of the unit and typical set of segregated circuits. 
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Figure 64 NGCS Power Supply 

Main Suppl) 
400 - 500V 
50-6OHz 

Main 

machine 
isolator 

400-500v Non motive 
power devices 

I 400-500vMotive 
power devices 

E 
F. F- Energy 

Control 24V DC Motive 
Systent p -er devices o%% 

- -)0- 24V DC Motive power 
devices e. g. valves. motors. 

ve 24V DC Non moti 
power devices e. g. sensors 

4ý 24V DC e. g. Start up and P. C. 
24V DC Power ýUpply , 

V 
()ý NWk DI. 91-b. 

I Bus Module 

6.2.7 Motor Controller 

The primary objective of the unit is to replace the motor starter and protection equipment 

found in a contemporary control enclosure. The modular unit is designed to be mounted 

directly on to the machine (adjacent to the motor). The general requirements with regard to: 

input voltage, quick release connections and environmental rating described in 6.2.6 apply to 

this unit. Machine mounting and multi-skilled operation and maintenance prohibits the use 

of discrete components for control and protection. The author proposes integrated 

communication and power control with circuit protection provided via the thermister found 

in modem motors. 
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6.2.8 Servo Axis Controller 

In contemporary applications both enclosure mounted and machine mounted servo systems 

are available normally at the discretion of the specifying engineer. The NGCS demands 

machine mounted systems with general requirements regarding: input control voltage, quick 

release connections and environmental rating described in 6.2.6 apply to this unit. 

Figure 6-5 NGCS Servo Control Unit 

Main Supply 
400 - 500V 
50-6014z 

lob. - 
Servo 
Arnplifier 

cl 
rlo 

Servo 
ArýPlifier 

0 

Servo 
Amplifier 

Serial Bus Module 

V 

178 



CHAPTER 6 

6.2.9 NGCS Application Software 

The design attributes defined by the NGCS Framework have a significant influence on the 

application software and operator interface. A Tier 3 application must fulfil the real time 

requirements of CNC movements, discrete logic control, sensor actuator bus and provide a 

suitable user interface including operation, machine programming and diagnosis. In a 

contemporary control system this may require four unique programming environments. The 

methods used to programme and manage contemporary systems directly conflict with NGCS 

requirements. The NGCS application software is different to contemporary systems in two 

areas namely: the method required to load (and reload after module failure) software and the 

number and complexity of discrete software environments required to provide the 

appropriate functionality. 

6.2.10 Automated Software Distribution 

The management of application software for contemporary shopfloor control systems is 

often complex due to the fragmentation of functionality into a number of discrete 

programming and monitoring packages. Each package contains unique loading, archiving 

and diagnostic procedures. Both tasks involve the use of a P. C. and are not usually designed 

to be used by the machine operator. 

Figure 6-6 demonstrates how the NGCS manages the complexity by storing all the 

application files onto a removable memory (PCMCIA) card accessible to the operator. Upon 

initialisation of the controller (power on) the System Initiation Unit (Main CPU) 

automatically distributes the application files to the appropriate intelligent units. The files 

that eventually reside on the main system CPU are compiled in their native form, whilst files 

generated for sub-systems (e. g. motion uniQ are produced in a standardised textual format 

(ASCII file). The time required to load and reload the program after a unit failure is 

dramatically reduced and designed to be achieved by the line operator. Diagnosis of unit 
failure (or machine failures affecting a unit) is designed to be fed-back via the Sequential 

Control unit giving the operator a single point of diagnosis, (Figure 6-7). 
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CHAPTER 6 

6.2.11 Integrated Process Development Software. 

Whilst hardware design has been moving along rapidly, reducing: price, size and increasing 

performance; industrial software techniques in comparison have been moving in small 
incremental steps. Brooks cites the following properties of software as major factors 

affecting its development: [Brooks 1987] 

Complexity: This is seen by many an essential property of software, in which no two parts 

are alike. The complexity is often arbitrary, being dependent upon the designer rather 
than the problem. 
Conformity: Software being pliable is expected to conform to the standards and 
limitations imposed by other components, such as hardware, or by existing software. 
Changeability: Software suffers from constant change throughout its life, partly because 

of the apparent ease. 
Invisibility: Because software is 'invisible, ' any forms of representation that are used to 

describe it will lack any form of visual link that can provide an easily grasped relationship 
between the representation and the system. This not only constrains the ability to 

conceptualise the characteristics of software, it also hinders communication among those 

involved with its development. 

In the past automotive manufacturers have tried to address some of the problems identified 

by Brooks through the imposition of structured application code. Complexity has been 

reduced in the programming and configuration environment due to the widespread use of 
Microsoft WindowsT', ' as the operating environment. However, the NGCS design attributes 

require a single, embedded environment designed specifically for use by Manufacturing 

Process Engineers and Machine Operators. The integrated environment should support 

application configuration, programming, monitoring and problem diagnosis. 
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The author proposes the following design steps that go some way to achieving these 

objectives: 

1. Categorise code into functional modules, 
2. Arrange the modules into two classes, application speciji'c and system related, 
3. Where possible generate application specijic code through the use of structured 

dialog boxes, 

4. Move system related code to the background environment and standardise, 
5. Identify the associated hardware unit where code will reside, 
6. Integrate discrete (hydraulic, pneumatic or electrical) steps and servo motion steps 

into a single environment, 
7. Apply software quality measures to the design for example coupling and cohesion 

analysis. 

The model generated via the application of these design principles is significantly different 

to contemporary systems. Benefits of their application include: greater familiarity with the 

application software, reduced training, integrated diagnosis of problems, integrated 

environment for programming and configuration, highly regularised application specific 

code through the use of structured dialog boxes and finally a better skills match during the 

application and end user phases. 

The design of a comprehensive programming environment is beyond the scope of this thesis, 
however by using the objectives to select suitable commercially available packages (Figure 
6-8) many of the required attributes can be achieved (although not in an integrated form). 
The commercially available application software used on the prototype system is 
PCWORXt' from Phoenix GmbH, Germany. The product is suitable for use with both 
Motorola"" and Intel" based systems and utilises an IEC 1131 base with an optional module 
known as Machine Sequence Function Chart (MFSQ. Bus configuration is achieved with 
System WORX" again from Phoenix. Ile PCWORX and System WORX systems have a 
moderate level of integration. The operator interface environment selected is produced by 
J-A_ Krause. The primary benefit of this tool over the many on the market is its relative 
simplicity and ability to accept ASCII text messages so allowing pre-configured display 
systems that do not require software download on initialisation. Finally the motion 
functionality is achieved with software Motion Manager from Indramat GmbH. This 
Product allows the configuration of motion in a graphical form. The Author does not 
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propose the following products as achieving the NGCS requirements however within the 

limited time and resource available the combination of modules together provide many of the 

features required of an NGCS Software Configuration, Programming and Diagnostic 

environment. 

Figure 6-8 Selected Commercially Available Programming/Diagnostic Software 

KrauscKADESS Indramat Motion Manager 
Operator Interface Multi Axis Motion 

Ehoe. 

nix System Worx Phoenix Program Wx 
Bus onfiguration CII Bus 

FIE 

C 1113 

jx 

Phoenix MSFC 
Machine Sequential 
Function Chart 

6.2.12 Proof of Concept System - Design optimization Analysis 

The Feedback for Design Optinfisation process outlined in Chapter 4 recognises the 

existence of design flaws and seeks to adjust the design to eliminate or minimise their etTect. 

Following each iteration of the design the design optimisation process is applied. In the case 

of the proof of concept system this is achieved by analysis, simulation and practical tests. On 

completion of the proof of concept system the following active elements exist and at this 

stage remain to be resolved. 

Active element: Cost 

Issue: Price comparison of tier 6 controller hardware compared to conventional PLC 

hardware is unfavourable. Whilst architectural benefits occur by maintaining the NGCS 
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Reference Architecture structure the author recognises the cost sensitivity of this section of 
the market. 
Potential resolutionlcompromise: The most basic PC104 processor board available has been 

shown by the author to be more than adequate in terms of processing power. Suppliers tend 

to increase functionality of the boards rather than reduce cost. Future compromises may be 

to accept the cost penalty and by doing so maintain the NGCS principles, or integrate units 

together e. g. Central Logic Processing Unit and Sensor Actuator Bus in order to better 

optimise available processing time. 

Active element. Quality 
Issue: The selected sequential control software was unable to support integrated servo 

motion as part of its structure in the way prescribed by the NGCS specification. 
Potential resolutionlcompromise: The prototype NGCS system used two separate 

programming packages which in their own way fulfilled many of the requirements laid down 

by the NGCS specification. 

Active element Quality 
Issue: A number of supporting hardware units specified by the NGCS specification were not 

available at the time of the Prototype NGCS development. Theses included: machine 
mounted power supply, standard 3 phase induction motor control unit, and servo axis unit. 
Potential resolution1compromise: The Prototype system was not connected to a machine 
therefore laboratory power supplies could be used. A machine mounted industrial power 
supply is required prior to implementation on a machine tool. The control of induction 

motors was achieved by mounting bus connected input and output blocks adjacent to 

standard industrial contactors. A small control enclosures would be required to house the 

components on a machine tool incurring a cost penalty. The author proposes the 
development of a purpose designed unit that contains: communication, control and motor 
protection elements. 
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Active element. Quality 

Issue: The Process Development Environment used to program the sequential part of the 

control problem stopped short of NGCS specification requirements. The structure defined 

initial type (of the step) and messages however several lines of IEC 1131/3 code was required 
to identify the assigned input and output variables and to drive standard variables used in the 

background function blocks. 

Active element. ý Time 

Issue: During system set-up the time required to assign input and output points to internal 

variables did not compare favourably to a proprietary system that has predefined input/output 

structure and definition.. 

Potential resolution/compromise: The open structure of the serial bus system used dictates 

the need for user defined parameters. No improvements were made. 
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6.3 Application of the NGCS Framework to an Engine Assembly Line 

This section describes Simultaneous Engineering led by the author with the aim of realising 
the NGCS Framework principles on a new high volume assembly line at Ford Motor 
Company's Dagenham Engine Plant. The section begins with a brief resume of the facility 

and the conditions that led to the NGCS framework being selected. The Simultaneous 

Engineering method and structure is outlined and each major application tier discussed. The 

Proof of Concept system is re-examined in light of the practical application and new design 

features are identified and discussed. In the final section of the chapter the design of the new 

control system is evaluated and the results critiqued against a similar contemporary assembly 
line control system. 

6.3.1 Background 

The intended target application area was a high volume Engine Assembly Line at the Ford 
Motor Company Limited. The control applications found on the assembly line range from 

simple engine transport systems to complex multi-axis systems with a number of complex 
sub-modules. An engine assembly line is a large and complex manufacturing system, 
therefore a full presentation of each system component is beyond the scope of this thesis. 
NGCS elements that highlight pertinent issues addressed within the thesis are discussed in 

some detail. Whilst several S. E. teams are discussed it should be noted that only the 
Controls Team followed the NGCS Design Framework Principles. 

The Puma Engine manufacturing facility (see Figure 6-9) is designed to produce a new range 

of four cylinder diesel engines at a volume of 450,000 units per year. The assembly line is 

split into three main areas: Cylinder Head assembly, Engine assembly, and Engine test. The 

line consists of. complex machines (tier 4), elementary machines (tier 5) and approximately 
200 metres of engine transport conveyor (tier 6). The line is segmented into 8 zones to 

facilitate monitoring and control, requiring a zone controller (tier 3) for each. 
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Figure 6-9 Puma Assembly Line 

Several events combined to provide the opportunity for a major change from Ford Motor 

Company's existing Assembly Line control system strategy, namely: 

1. Ford had been using the same control system on Engine Assembly lines for eight years 

and the same control supplier (Siemens) for twelve years. The control system had 

progressed through two generations and numerous upgrades, however the supplier had 

informed Ford that the current system would in the near future be replaced. Production of 

the control system was planned to cease by the year 2001. Whilst supplies were 

guaranteed for the life of the engine program, Ford were particularly concerned with 

regard to mid life upgrade of the engine facility. 

2. The engine program was to be one of Ford's first programs to fully implement its 'Ford 

Production System' principles. This strategy required the use of multi-skilled production 

teams for which the existing control system was not suited. The existing system was 

recognised by Ford staff as one of the most powerful and flexible systems available, 
however it also had a reputation for being one of the more complex, [Chipperfield 19981. 

3. The third major factor was the imposition of an aggressive affordable business target 

which generated the need for a significant investment saving over the previous program. 
The impending obsolescence of the existing product gave little opportunity to achieve this 

goal. 
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These issues led to Ford's Manufacturing Engineering activity to be tasked with 
investigating alternative systems. The NGCS Design Framework was presented by the author 
to Manufacturing Management at Ford and the approach was selected as one of five potential 

solutions. Following detailed comparison it was selected as the primary route and the author 

asked to lead the Manufacturing Controls Simultaneous Engineering team. 

6.3.2 Simultaneous Engineering (S. E. ) Method and Structure 

The Simultaneous Engineering (S. E. ) method used by Ford is a team based approach, with 
the active involvement of machine tool builders (known asfirst tier suppliers), technology 

providers (known as second tier suppliers) and Ford Engineering Staff. The first tier 

supplier for the Puma Assembly line was J. A. Krause GmbH an Assembly System 

Manufacturer from Bremen in Germany. The Ford Engineering Staff were drawn from a 
Central Staff organisation and Engineering staff from the Manufacturing Plant, (In this case 
Dagenham Engine Plant. ). The team was tasked with taking responsibility for the delivery of 

the Assembly Line from initial planning and approval, through engineering and installation, 

and finally onto launch of the facility in the plant. 

The Program Management team was based on the structure specified in the NGCS Design 

Framework, namely: The Simultaneous Engineering Team reported to a Manufacturing 

Program Steering Team (M-PST) who in turn interfaced to the Executive Steering Team 

(EST). The structure us6d is shown in Figure 6-10. 
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Figure 6-10 Simultaneous Engineering Team Structure 
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Due to the time constraints placed on the team the second tier control system technology 

partners were not selected until the Technical Requirements Analysis was in progress. The 

selection criteria shown in Figure 6-11 were based on NGCS architectural and technological 

features. At this stage the SE Team also had a clear view of the required control system 

attributes. The amount of change from Ford's traditional approach can be judged by the fact 

that only one technology partner from the previous program was thought to have the 

necessary products to fulfil the NGCS design requirements. 

Having assembled the full S. E. team, detailed implementation workplans were developed for 

each element of the control system. Following the engineering and test phases of the process 

a test loop was built that utilised all elements of the system. The primary functional 

elements forming each tier are shown in Figure 6-12. 
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Figure 6-11 Second Tier Supplier Selection 
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Figure 6-13 shows a small section of conveyor system and three elementary assembly 

machines (two rear facing, one front facing). Many of the hardware changes from a 

contemporary system implementation are immediately evident the primary visual impact 

being the elimination of the machine control cabinets. The extensive use of serial network 

technology, field mounted input and output system and IP54 25 sealed units allows the 

machine mounted control elements to be distributed around the machine. Quick change 

connector systems allow units to be maintained by the machine operators and application 

software that automatically downloads when power is applied to the system completes the 

attributes applied for multi-skilled maintenance of the system. Due to the time constraint on 

the program interfaces and devices compliant with the NGCS specification could not be 

implemented to some of the more complex devices. For example a suitable bolt rundown 

unit could not be developed in time. 

25 IP54 - Equipment sealing standard to prevent the ingress of water or dust. 
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6.3.3 Engine Assembly System - Design Optimization Analysis 

This section considers each of the active elements identified during the development 

of the NGCS Proof of Concept System and outlines the resolution or compromise 
implemented by the S. E. team. 

Active element. Cost 

Issue: Price comparison of tier 6 controller hardware compared to conventional PLC 

hardware is unfavourable. 
Resolution1compromise: The sensor actuator bus unit uses a Motorola processor. 
Engineers from Phoenix Contact were able to use available processing time on the bus 

controller to run the sequential control software. The selected software was able to 

run on both Motorola and Intel based systems so allowing a common programming 

software structure from tier 6 to tier 3. This action reduced the cost of the tier 6 and 5 

controller whilst maintaining software commonality. 

Active element., Quality 
Issue: The selected sequential control software was unable to support integrated 

servo motion as part of its structure in the way prescribed by the NGCS specification. 
Resolution1compromise: The prototype NGCS system used two separate 

programming packages which individually fulfilled many of the requirements laid 

down by the NGCS sp6cification. Given the time constraints imposed on the S. E. 

team a single integrated sequential and motion software package was not achievable. 

Active element: Quality 
Issue: A number of supporting hardware units specified by the NGCS specification 

were not available at the time of the Prototype NGCS development, including: 

machine mounted power supply, standard 3 phase induction motor control unit, and 
servo axis unit. 
Resolution1compromise: The machine mounted industrial power supply and motor 
control unit were specified and developed by the team. Currently available servo 
technology was packaged into a sealed enclosure suitable for mounting on the 
machine structure. Whilst this action allowed distribution and machine mounting, 
compromises existed in the final design with regard to multi-skilled maintenance. 
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Active element. ý Quality 
Issue: The Process Development Environment used to program the sequential part of 
the control problem stopped short of NGCS specification requirements. The structure 
defined initial type (of the step) and messages however several lines of IEC 1131/3 

code was required to identify the assigned input and output variables and to drive 

standard variables used in the background function blocks. 
Resolution/compromise: Within the resource and time constraints of the project the 
team optimised the software to encompass many NGCS requirements. 

Active element: Time 

Issue: During system set-up the time required to assign input and output points to 

internal variables did not compare favourably to a proprietary system that has 

predefined input/output structure and definition.. 

Potential resolution/compromise: The open structure of the serial bus system used 
dictates the need for user defined parameters. No improvements made since this 

additional configuration step is inherent in providing a controller which is 

configurable for any open serial bus system.. 

In addition to the 'active filters' identified, other compromises were required namely: 
Active element. Quality Cost / Time 

Issue: The complexity of the serial network systems was increased due to the poor 
integration of some elements into the sensor actuator system. The preferred serial bus 

system selected by the team was the two wire Interbus LoopTm. The system contained 

the quick connection and multi-skilled properties required by NGCS however at the 

time of application the product had only been on the market for a short time, hence 

not all the required system interface devices were commercially available for 

integration. 

Potential resolution/compromise: The compromise required the introduction of a 

second field actuator bus utilising a five wire technology. The additional complexity 

potentially impacts on quality, in addition a cost filter is imposed due to the additional 
bus driver and pre-made cables required when using the five wire technology. The 

older five wire system did not contain the same diagnostic features and hence time 

penalties may be incurred during a machine failure. 
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Active element., Quality / Cost / Time 

Issue: Quality testing and certification carried out by Ford restricted the types of 
'nutrunnee technology that could be considered for use. This restriction led to the 

selection of bolt rundown technology that did not meet NGCS Framework, 

requirements. The selected equipment could not accept a network connection and was 

not designed to be maintained and adjusted by multi-skilled staff. 
Potential resolution/compromise: The compromise required the introduction of field 

mounted input and output blocks to communicate with the unit. Additional 

complexity was managed by transferring data via an RS232 link and presenting 
information to the operator on the machine operator display unit. 

6.4 Summary 

This chapter discusses the application of the NGCS Design Framework to a Proof of 
Concept System. Control system attributes that differ from conventional 

manufacturing control systems are identified along with elements that require 

optimization prior to the system being applied to a real world application. The second 

part of the chapter describes the application of the NGCS Design Framework to an 

Engine Assembly Line. Issues identified during the development of the Proof of 
Concept System are discussed and where possible resolved in the Engine Assembly 

Line application. 

The practical application of the Design Framework identifies six tiers of architectural 
definition. Four application tiers are identified ranging from a high level zone 

controller at tier 3 to a simple transport system at tier 6. During the application stage 

opportunities and improvements surface that deviate from the defined architectural 

principles. These changes may have high practical value in terms of performance or 
initial cost; however hidden life cycle costs are likely which may be undesirable to the 

system's user. Where possible the initial proof of concept controller presented 

adheres closely to the NGCS Framework principles. Practical considerations and 

compromises necessary for factory-installed systems are considered during the 

application of the process to the Engine Assembly Line. 
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Finally a design optimisation process is used to identify cost, quality and time 

elements that may need to be applied by end users to optimise the system for real 
world application. The activefilters identified as a result of the NGCS Proof of 
Concept system are addressed and where possible resolved or compromises sought. A 

number of issues arose during the application phase that require future work These 

issues are discussed in Chapter 8. 

The next chapter discusses the technical and operational performance of the applied 
NGCS control system by comparing it with a conventional control system application. 
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7. NGCS Comparative Study 

7.1 Introduction 

The previous chapter described the application of the NGCS Design Framework to a 
proof of concept system and high volume engine assembly line. The aim of this 

chapter is to critically discuss: the technical and operational performance of the Next 
Generation Control System by comparing it with a conventional shopfloor control 

system. 

To fulfil this aim a series of quantitative measures of technical and operational 

performance are specified. Two reference sites are used to carry out the tests. Factors 

influencing the life cycle effectiveness of the systems are consolidated into seven 

evaluation criteria, namely: system flexibility, system agility, operational efficiency, 

scalability, availability, performance and cost. A weighting factor is introduced to 
distinguish the importance of each criteria to the overall system performance. The 

test and measurement method is given and where possible a quantitative scaling 

system used to present the results. Further detail related to the test criteria and results 

are presented in Appendix C. 
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7.2 Reference Site Summary 

Two Ford Motor Company sites were used to compare the NGCS and conventional 
control system solutions. Both sites use the same Ford Motor Company lean 

manufacturing model. Site one produces a four cylinder in -line gasoline engine. The 

engine produced by site two is a diesel engine, however it has a similar architectural 

configuration (in-line four cylinder) with a slightly higher product complexity and 
lower volume. Despite these slight differences the two sights have comparable levels 

of control system complexity and the number of machines at each tier of architectural 
definition is similar. A summary of the sites is shown in Table 7-1. 

Table 7-1 Test Sites Summary 

Site 1 (Research date: 5/98) Site 2 (Research date 10/98) 
Location Ford Motor Company Ford Motor Company 

Limited, Bridgend. Limited, Dagenham. 
Line Zetec S. E. Puma Engine. 
Product Complexity Inline 4 cylinder, 16 valve Inline 4 cylinder, diesel. 

gasoline. 
Equipment Job 1 5/98. 5/99. 
date. 
Production volume 550,000 engines per year. 450,000 engines per year. 
Operating lean production methods. lean production methods. 
philosophy Team based multiskilled Team based multiskilled 

operators. operators 
Manufacturing Contemporary. Siemens PLC NGCS Framework. 
Control System and pre-programmed units on 

conveyor system. 
Equipment J. A. Krause Bremen. J. A. Krause Bremen. 
Manufacturer I I I 

7.3 Evaluation Criteria 

The comparative testing criteria is divided into seven attribute measures, namely: 
System Flexibility, System Agility, Operational Effectiveness, Scalability, 

Availability, Real Time Performance and Purchase Cost. The definition of each 

measure is given in Table 7-2. The comparative task detail is set for each of the seven 

measures and an appropriate weighting factor applied. The weighting factors are 
designed to recognise that each attribute has a different level of influence on the life 

cycle cost of the system. The weighting value is derived from an assessment made by 

a cross-functional team with representatives from machine tool builders, system 
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integrators and end userS26. Comments and test results for each of the seven measures 
are shown in Table 74. 

7.4 Potential Test Variance 

Few studies are able to examine intensively and in depth all instances of a given 

research problem, [Marshall 1994]. The author recognises that the data produced as a 

result of the comparative tests may be influenced by a number of practical constraints, 

namely: 
1. Insufficient sample size - The tests were carried out largely in a running 

manufacturing plant therefore the operator and application sample size was 

restricted to two operators from each site and a comparison of one machine type. 
A measure of independence was established through the use of an independent test 

supervisor that monitored all tests at both sites for consistency. 
2. Variance in operator experience - The multi-skilled operators at site I were more 

experienced than those at site 2. Although the formal training given to both sets of 

operators was comparable the operators from site I had spent additional time 

working on the production facility. At the time of the test the site 2 production 
facility was in a launch phase and hence production experience was limited. 

3. Inconsistency in test methods - Where the task could not be completed by the 

operators this is noted within the test results. The manufacturer of the equipment 

was asked for a methbd statement and a judgement made by the Ford training staff 

with regard to feasibility and time required. The two training staff activities may 
have judged the required time to be different. Note: Software training was carried 

out by the same instructor for both systems and sites therefore a measure of 

consistency is maintained for this criterion. Practical reliability data was available 
for the contemporary equipment via the Ford Production Monitoring and Failure 

systems. The NGCS equipment had not been used in production at the time of the 

tests; therefore MTBF values for site 2 were derived from manufacturer data 

sheets. 

26 Note: The cross functional tewn used to set the weighting values consisted of the Puma Simultaneous 
Engineering team and in addition three metal cutting machine supplier. End users included both Plant 
and Central Staff activities from the Ford Motor Company Limited. 
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7.5 Comparative Test Analysis 

7.5.1 System Flexibility 

The System Flexibility evaluation criterion assumes that the manufacturing control 

system was originally selected to encompass all known and planned machine 
functionality. Therefore the measure of a systems flexibility is taken to be its ability 

to be modified and reconfigured using equipment from the original manufacturer. 

Measured improvements were seen in the modification of the sequential control 

software. The use of structured dialogue boxes to collect process data proved to be an 

effective tool when working with multi-skilled staff. A limiting factor was the final 

stages of the step definition, which at the time of the tests required IEC 113 1 code to 

be written. No measurable improvement was seen in the time to add additional 

hardware or to upgrade processing speed. The contemporary test system utilised a 

similar sensor actuator system to that used on the NGCS system. Greater benefit 

would have been seen if the NGCS system had been compared to a contemporary 

system using a rack mounted input / output system. The test identified that redundant 

code is often left in existing programs due to the complexity (and risk felt by the 

operator) of removing it. The study concluded that the NGCS system gave a 9% 

improvement over a contemporary system. 

7.5.2 System Agility 

The System Agility attribute measured the ability of a the system to rapidly adapt to 

unforeseen change, therefore, the measure of a system's flexibility is taken to be its 

ability to be reconfigured with third party products. 

The open architecture of the NGCS system revealed major benefits in this test. The 

contemporary system was restricted to connecting to third party systems via the 

sensor actuator bus interface. In contrast the NGCS system gave the potential to fully 

integrate third party products. The contemporary controller was restricted to the 

original manufacturers real time code and hence programming environment. Two 

different real time systems with different real time engines were successfully tested on 
the NGCS system were used on the NGCS controller. 
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7.5.3 Operational Efficiency 

Operational Efficiency is defined as the ability of an advanced manufacturing 

technology to integrate with its operating environment. 

The NGCS's modular construction, use of quick-change connectors and software units 

with the ability to automatically download, realised a major reduction in required 

training (661/o) to achieve the specified tasks. Of the six tasks specified it was judged 

that a multi-skillcd operator could accomplish five. The team carrying out the tests 

judged that all tasks on the contemporary system would require a skilled maintenance 

person. 

The NGCS Framework draws attention to the need for effective diagnostics. Testing 

revealed that both systems provided a high degree of effectiveness in identifying 

process and hardware faults. The effectiveness of the systems to diagnose process 

faults is a function of the software design, hence the results may vary greatly with 

different software structures. The NGCS software displayed a greater degree of in- 

built structure reducing potential variability in this area. 

7.5.4 Scalability 

The scalability attribute was defined as the ability of a system to match process 

functionality (and hence complexity) with control functionality. Ten functional 

increments representative of the operating environment were mapped against the 

available control configuration. 

The contemporary system under test utilised a pre-configured 'shoebox! style 

controller for the conveyor applications. Whilst matching functionality cfficiently at 

this point the controller could only be used for tier 6 applications. This limitation led 

to the step increase shown in Figure 7-1 below. The NGCS controller used for Tier 6 

applications displays a higher base functionality however the controller is able to 

extend to tier 5 and (subject to the operator interface requirements) some tier 4 

applications. 
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Figure 7-1 Scalability Comparison 

Ideal 

Functionality 
Process 

Complexity 

KAST JS5-942 S5-945 
1024 UO 1024 UO 

S5-941 S5-943 
512 UO 1024 UO 

ldcal 

Functionality 
Process 

colnplcxity 

RFC 1111CI - 49(ý 

7.5.5 Availability 

A Witness Simulation was considered by the author to provide a more realistic 

assessment of potential improvement than the traditional M*l-FR and MTBF 

calculations based upon individual system elements. The model ofthe contemporary 

system had been verified against actual plant data over a period of' two years. The 

breakdown history (duration and Frequency) was also validated against field data 

taken from Ford Motor Company's Valencia Frigine Plant. The quick change and 

quick load facilities evident on the NGCS design improved changeover and reload 

times to 4 minutes lor the larger units and two minutes flor the motor controllers and 

smaller controller. The author considers the 4.6% improvement to be consmative as 

all electrical repair times were set at lbur minutes on the NGCS system. 

7.5.6 Technical Performance 

TheTechrucal perforinance attribute was taken ws the average cyclical scan tillic ol'a 

comparative machine controller. The test results revealed that both systems produced 

comparabic rcsults. 

7.5.7 Purchase Cost 

Purcha. se cost is defined as the purchase cost ofthe main controllcr elements given it 
typical line qumitity for each tier group. The S. F. Icam apportimied a relatively low 

weightingfim-lor to this test element however the improvement shown by the N( iCS is 

significimt. The author feels that the results must he treated with caution. as initial 

applications ofthe N(jCS will be associated with significant developiliclit wol-k 111.11 
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will reduce or eliminate the benefit seen. Although the Ticr 6 application was more 
expensive its widcr application base generates savings at Tier 5. 
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CHAPTER 8 

8. Conclusions and Recommendations for Future Work 

8.1 Introduction 

The aim of this chapter is to summarise the major elements of the work carried out in 

this thesis and discusses the principle findings with regard to the literature surveyed, 

concepts presented and NGCS Framework implementation and testing. Major 

contributions to knowledge are listed, highlighting areas where these contributions 
have satisfied the stated aims and objectives. The chapter concludes with suggestions 
for further research. 

8.2 Major Elements of Work 

This thesis focuses on addressing the need for a new approach to the design and 
implementation of manufacturing control systems for the automotive industry and in 

particular for high volume engine manufacture. Whilst the operational domain in the 

automotive industry has moved to leanproduction techniques, the design of present- 
day manufacturing control systems is still based on systems intended for use in a mass 

production environment. The design and implementation of current manufacturing 

control systems is therefore inappropriate when viewed from a business context. The 

author proposes that it is possible to create a more appropriate manufacturing control 

systems based on an optimised use of advanced manufacturing technology within the 

complete business context. 

Literature is reviewed to provide a detailed understanding of the relationship between 

modem operating practices and the application of contemporary control systems. The 

primary tasks of manufacturing control systems, within the context of a structured 

systems approach to manufacturing technology, production management and 
industrial economics are identified. A study of modem manufacturing control system 
technology is carried out, highlighting the fundamental principles that influence 

application engineering in this area. 

The thesis develops a conceptual design framework- that aids the identification of 
attributes required of a next generation manufacturing control system (NGCS), in 

order to enhance the business performance of lean automotive manufacturing. The 
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architecture for a next generation control system is specified and a proof of concept 
system implemented. Potential advances over contemporary practice are identified 

with the aid of a practical implementation at a major automotive manufacturer. A 

comparative study between the NGCS and a conventional system is described. 

Testing carried out at two reference sites is described and a method for weighting 
different factors explained. Test results are discussed and potential test variances 
highlighted. 

8.3 Principle Findings 

The study and characterisation of contemporary manufacturing strategies and 

technology is essential if a new design framework, is to produce a control system that 

meets the needs of a lean manufacturing environment. Section 2.3 identifies the 

birthplace of the modem manufacturing era as Henry Ford's manufacturing model. 
Many of the lean principles evident in modem systems can be found in Ford's original 
factories however, in an attempt to meet the demands of a rapidly expanding market; 
Ford's principles of synchronous production flow and waste elimination were lost. 

The massproduction principles that replaced them resulted in a misguided attempt to 

isolate the manufacturing system from outside demands and pressures. The Japanese 

adapted Ford's original principles to meet their particular market requirements and in 

doing so produced a more effective production system. 

The author concludes from the study of advanced manufacturing systems in Section 

2.2 that the establishment of Japanese manufacturing facilities in Europe and North 

America and key alliances between Japanese and Western automotive companies has 

resulted in the elimination of massproduction techniques and by doing so has 

effectively globalised manufacturing strategy in the high volume automotive sector. 
This globalisation of manufacturing strategy provides a common set of user 

requirements upon which Advanced manufacturing Technology (AMT) providers can 
focus. 

The study of contemporary industrial control in Chapter 3 identifies a bewildering 

array of technical solutions and diversity of opinion as to which of the available 
technologies is best suited to an application. Four architectural forms are identified 

namely: centralised, proper hierarchical, modified hierarchical and Heterarchical. The 
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author concludes from the application of the NGCS Design Framework that despite 

the Automotive industry being instrumental in the development of the first 

programmable logic controllers, a gap has formed between contemporary Automotive 

manufacturing requirements and available application technology. 

To operate as effectively as possible end users have used various methods to minimise 

the effect of this gap. The author proposes that these methods can be broadly 

characterised by region. In Europe this has been achieved by increasing the level of 

support from technology providers. Japanese end users have dealt with this issue by 

employing simpler systems with lower levels of automation and compensated for the 

technology they must employ (to maintain quality) by using highly skilled shop-floor 

technicians. In North America a strong unionised labour force has maintained the 

division of skilled labour and resisted more efficient multi-skilled working practices. 

The authoessurvey of contemporary manufacturing literature identifies three 

principle areas where AMT has traditionally played a major role in supporting 

manufacturing strategy, namely: life cycle cost, providing flexible and agile 

production facilities and sustaining continuous improvement. The results of the 

Sociotechnical Model analysis presented in section 5.2 and subsequent experience 

from the application of the Framework in chapter 6 leads the author to believe that in 

a lean manufacturing environment AMT also plays a significant role in supporting the 

organisation and effectiveness of labour. Section 2.6 recogniscs the neglect of social 

and organisational issues as one of the principle causes of inadequately functioning 

systems and proposes the necessity for greater co-operation between social and 

technical elements in the design of ANIT systems. The NGCS design framework 

described in section 4.2 proposes a sociotechnical analysis as one of the principle 

methods of addressing this issue. Test results in chapter 7 show that where the design 

attributes resulting from the NGCS Design Framework were implemented, 

measurable benefit was seen. 

Effective shop floor control systems are combinations of production resources, 
information and manufacturing technology and human resources. The analysis of 

manufacturing systems in Chapter 2 and contemporary systems in Chapter 3 reveals 
that most research focuses on the automated control system and their relation with the 
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production equipment. The author believes that ftiture excellence in control system 
design will be achieved by advanced manufacturing technology providers combining 
detailed technical knowledge with a greater understanding of the end user's 

operational strategy. Involvement will extend to an intrinsic understanding of the end 

users product and manufacturing strategy in terms of volume, line flexibility, current 

and future derivatives and operating practice. The AMT will align product 
development and the release of new technologies to meet end users requirements. 

Chapter 4 highlights the importance of architectures and design frameworks as an 

essential tool to aid the understanding and development of AMT systems. The author 

proposes that the NGCS Framework presented in this thesis, guides the designer from 

a highly abstract Business and Life Cycle domain analysis through Socio-technical 

and Technical design and development stages, resulting in NGCS Reference 

Architecture and suitable application technology. The author recognises a number of 

architecting concepts that enable the designer to mange overall system complexity, 

namely: 

" domains or environments can be used to highlight and define areas that must be 

considered. The NGCS Framework identifies four domains, Business, Life-Cycle, 

Sociotechnical and Technical. 

" definitions are required, that allow the discussion and development of a clear set of 

criteria and requirements, 

" hierarchical decomposition and tier structures should be used to divide systems 
into a number of sub-systems. The complexity of each sub-system is more 

manageable than that of the original system. 

" views can be used to emphasis particular aspects of a design allowing the designer 

to focus on a particular aspect of the design. 

" technical design methods must be utilised that manage complexity and facilitate 

modular, stable designs with inherent structural stability, 

" the design should proceed within an environment that simultaneously refines the 
design in the functional and technology domain to promote the symbiosis of 
technology and human activity. 

" attention must be paid to processes that monitor and feedback design output 
performance and address imperfections. 
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Future manufacturing excellence will be characterised by end user and AMT suppliers 
that accept the definition that AMT is introduced not only for its economic benefits 

but also for its ability to allow the organisation to use manufacturing as a strategic 

weapon. AMT design and implementation must take into account manufacturing 

strategy at every stage of the design and development. The author concludes that lean 

manufacturing requires a change in the engineering orientation from the dominance of 

technical issues in shop-floor control system design to those of work organisation. 

8.4 Contributions to Knowledge 

The author believes that this work has contributed to knowledge in the following 

areas: 

The authorproposes that the NGCE Design Frameworkprovides a contribution to the 

development of Next Generation Manufacturing Control Systems. The NGCS Design 

Framework created as part of this study, supports the design, development and 

application of advanced manufacturing technology for a lean operating environment. 

The viability of the design has been tested and shown to provide a more effective 

solution. 

Providing a Strategy for Dealing ivith Legacy Operations: In the design and 

development of shop-floor control systems little attention is paid to the requirements 

of the legacy workforce or manufacturing facility. Research to date has focused on 
installing or training a new workforce able to cope with the installed technology. The 

work in this thesis challenges the view that this is the only method of raising 

equipment availability in a multi-skilled environment. 

Providing a Novel Design Frameivork that Specifically Addresses Socio-technical 

Issues Found in a lean Manufacturing Environment: Most research focuses on the 

automated control systems and their relation with the production equipment. This 

thesis considers the role of the human and challenges current assumptions concerning 

the design of manufacturing control systems. This work also contributes by 

highlighting control elements that improve manufacturing performance and yet have 

been largely ignored by previous research. 
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Defining the Concept of Active Filters to Assess Design Effectiveness: The author 
identifies three conceptual activefilters namely,: cost, quality and time. The aim of 
the active filters is to compensate for flawed control system design. The author 
proposes, that by specifically focussing on minimisation of end user fixes, design 

effectiveness is enhanced. 

The Application of a Design Attribute Relationship Matrix to Link Shopfloor Control 

System Design Attributes to the Manufacturing Strategy: The author introduces the 

concept of a 'Design Attribute Relationship Matrix' (DARM) with the aim of 

providing clarification and a linked relationship between manufacturing strategy and 
design attributes. The interconnecting matrixes highlight to the various stakeholders 
in the design process the relationship between the key business, lifecycle, socio- 
technical and technical design factors, and promote a method of forward and 
backward propagation between them. The DARM may be used not only to record 
initial design decisions, but also to assess the potential impact of requested changes to 

the system. 

The Development of a Comparative Test Method to Assess the Effectiveness of a 
Shop-floor Control System Design: This work has contributed toward the 
development of a quantitative measure of technical and operational performance 
between a contemporary control system and the NGCS Controller. Factors 

influencing the life cycle effectiveness of the systems are consolidated into seven 

evaluation criteria, namely: system flexibility, agility, operational efficiency, 

scalability, availability, performance and cost. A weightingjactor is introduced to 
distinguish the importance of each criteria to the overall system performance. The 

test and measurement method is given and where possible a quantitative scaling 
system used to present the results. 
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8.5 Suggestions for Future Work 

The research and application of an NGCS design framework reveals two categories 
into which future work may be placed. The first set of issues are those which, 

although an issue in the current implementation, will be resolved via natural product 
development and hence do not require specific further research. Examples of these 

are: product gaps evident in the serial bus system (causing a second bus to be used) 

and servo hardware issues, which bring about additional complexity. Issues from the 

second category that requires further research are: 

Wider Application of the NGCS Design Frameivork. 

The initial application of the NGCS Design Framework focused on an Engine 

Assembly Line application. At the time of writing the author is aware of on-going 

research and development to identify the suitability of the design framework to 

machining applications in the Automotive Industry. Further research is required to 

understand the benefits and implications of applying the framework to a wider domain 

including continuous process industry. 

Application of the NGCS Frameivork Principles to a 'Heterarchicall system. It is the 

author's view that Heterarchical Systems represent the next logical architectural step 
in manufacturing control system design. As such further research is needed to apply 

the framework to this type of architecture. 

A Reference Model is required for a Process Development Language and an 
Integrated Programming and Diagnostic Environment 

The software concepts and principles realised on the Puma Assembly Line represent 

an initial attempt at defining an integrated programming, diagnostic and monitoring 

environment. Two areas require significant research effort, namely: the development 

of a reference model for Process Development Languag ges (as opposed to sequential 

control software) and a model for the integration of motion control and device bus 

systems into an integrated programming environment. 
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Socio-technical Attribute Modification 

The model used to identify and align socio-technical issues requires ftirther work to 

reflect the principles formulated in this dissertation. Particular attention should be 

paid to the complex interaction between skill alignment and technology attributes. 
The current model considers these areas separately. 

Long term evaluation of the NGCS Implementation at Ford. 

Following a period of stable high volume production a detailed field study would 

provide a greater insight into the effectiveness of the NGCS principles on a lean 

manufacturing Environment. 
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A1.1 Research Projects Related to Open Control 

Research Group Det2ils 

and Project Focus 

TEAM This US the government sponsored project has a working group 
(Technologies developing a specification that defincs an intelligent closed loop 
Enabling Agile controller environment to support open architecture concepts including 
Manufacturing) application portability at the source level, interoperability of modules, 

and extensibility of controller functionality. Ile ICLP (Intelligent 
Closed Loop Processing) area within the TEAM project is addressing 
manufacturing control issues. One key research task of the TEAM 
ICLP project is to develop a drafVprcliminary set of common 
Application Programming Interfaces (APIs). 

ICON One of the major objectives of the ICON project (which is funded by 
Manufacturing the US Department of Energy) is to develop a real time operating 
Operating System system infrastructure, called the Manufacturing Operating System 
Project (MOS), that also supports MS Windows. One of the deliverables of 

this project being developed in collaboration with GMPT is an OMAC 
running under MOS. 

NISTAEMC NIST has been working on technical issues related to control 
(National Institute architecture for many years, and the objective of the EMC project is to 
of Standards and implement a PC-based CNC controller based on the knowledge that 
Technology / has been developed within NIST. One important objective of the EMC 
Enhanced Machine project is development of a software wrapper (or API), which allows 
Controller) the capability of "Plug and Play" for a number of commercial motion 

control cards. 
Title III Project for The objective of the Title III Project (funded by the US Department of 
Open Architecture Defence) is to establish an open architecture for a world class, US built 
Machine Tool machine tool controller and evaluate the benefits of the open system 
Controller concept at different test sites. T'he goal is the commercialisation of an 

open architecture machine tool controller, for both defence and 
commercial applications. 

GMPTG OMAC The Advanced Manufacturing Department of GM Powertrain and the 
Pilot Programme Manufacturing Controls Department of the GM North American 

Operations (NAO) Manufacturing Centre have several active OMAC 
pilot projects. These projects are being done either as a part of the 
validation process or to support the government sponsored 
development efforts. 
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A1.1 Research Projects Related to Open Control (Continued) 

Research Group Details 
and Project FocU3 

RCS/ARTICS RCS was first implemented in the mid 1970s. RCS-3 became the 
Architecture for NASANBS Standard Reference Model for tele-robot control systems 
Real-Time architectures (NASREM). Systems based on RCS have been 
Intel I igent Control implemented for a variety of applications including: the NIST 
Systems) Automated Manufacturing Research Facility (AMRF), autonomous 

vehicles, submarine automation and coal-mining systems. In 1991 
Albus et al. proposed a reference model (ARTICS), which would be 
defined through co-operative efforts of industry, academia and 
govemmcnt. As envisaged, ARTICS would be a series of evolving 
guidelines specifying an infrastructure of hardware components, 
software components, communication protocols and application 
development tools. 

MOSAIC (Europe) MOSAIC was a European ESPRIT 11 research project. A consortium of 
(Modular Open twelve European companies and research groups were involved in this 
System project that was of two years duration and ended in 1993. The Open 
Architecture for Motion Control (OMQ architecture evolved on this project was 
Industrial Motion designed to address applications such as handling equipment 
Control) (including industrial robots), automatic vehicles (e. g. mobile 

autonomous robots) and special purpose systems (such as motion- 
oriented shop floor systems). Its primary focus was however fixed and 
mobile industrial robots. The OMC architecture is a fixed four-layer 
derivative of the NASREM model. 

OSACA The main goal of the European ESPRIT III project OSACA is the 
(Open System definition of hardware independent reference architecture for 
Architecture for numerical controllers, robot controllers, programmable logic 
Control within controllers and cell controllers. The project, which started in May 1992 
Automation with a duration of 3 years, is looking primarily at machine tools. With 
Systems) a stated investment of ECU 12 million, OSACA claimed to be the 

largest such research initiative in the world. 
OSEC Ile OSEC group in Japan, 
C2 RM The C2RM was developed for autonomous underwater vehicles used in 
(Command and navel applications. However, Harris and Fraser propose that it is 
Control Reference applicable to many application domains including manufacturing 
Model) automation and distributed intelligent systems. C2 RM again uses a 

reference model derived from the NIST NASREM architecture and 
was adopted for the European mobile robots project PANORAMA. 
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AM Research Projects Related to Open Control (Continued) 

Research Group Details 
and Project Focus 

MOSAIC (US) MOSAIC was a US research project. It is a "software architecture that 
(Machine-tool permits introduction of new sensors, hardware, and processing 
Open System algorithms, so as to increase the utility of machine tools". The Defence 
Architecture Advanced Research Pro ect Agency (DARPA) funded the MOSAIC j 
Intelligent Control) research project. MOSAIC has been designed to be reconfigurable, 

allowing new axes of motion or new sensors to be easily added to a 
machine. 

NGC The NGC research programme was set up in the US in 1989. It was 
(Next Generation intended that the project would be driven by industry but this was 
workstation/machi never achieved and the US Air Force and the National Centre for 
ne Controller) Manufacturing Sciences (NCMS) stepped in to guide the initiative. 

The four-year programme (budgeted at S 19.1 million) aimed to 
produce an open system architecture standard for machine tools. NIST 
have been closely involved in specifying the NGC system architecture 
and that it has been influenced by their RCS research. 

UMCIIMDC The Manufacturing Systems Integration (MSI) Research Institute at 
Loughborough University has carried out research into new 
approaches to machine control funded by the UK government. It has 
resulted in UNIC (Universal Machine Control), which is an approach 
to creating open control systems for a diverse range of applications. A 
major main focus of this work was special purpose machines for 
packaging and printing applications. The latest phase of this research 
is IMDC (Integrated Machine Design and Control). 1MDC features a 
distributed runtime architecture that is utilising Fieldbus technology. 
The IMDC platform is adopting an approach, which closely integrates 
the real-time control system, "ith machine design (and other off-line 
I ifecycle activities). 
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131.1 Introduction 

The following pages represent a typical Life Cycle Analysis tool used for machine tools and 

equipment. The analysis tool shoAn is Copyright of the Ford Motor Company Limited. 

All formulas to produce the calculated totals arc considered proprietary information by the 

Ford motor Company and as such have been removed from the worksheets. 

All figures are exarnples only and cannot be taken to rcflect expected figures. 
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C1.1 Introduction 
This appendix describes research carried out by the author with the aim of developing a 
quantitative measure of improvement between a contemporary control system and the NGC 

Framework system applied to the Puma Assembly line. The study begins with a 'problem 

definition' followed by a summary of the two reference sites. Factors influencing the life 

cycle effectiveness of the systems are consolidated into seven evaluation criteria, namely: 

system flexibility, agility, operational efficiency, scalability, availability, performance and 

cost. 

A 'weighting factor ' is introduced to distinguish the importance of each criteria. The 

weighting factors were established via a series of consensus-building meetings with an 
industry team representing machine tool builders and end users. An explanation of each 

criteria specifying the test and measurement method ensures consistency and where possible 

a quantitative scaling system is used. 

C1.2 Problem Definition 
The purpose of the comparative research study is: 

1. To identify quantitative research criteria to determine the 'Life Cycle Value' of a control 

system when applied to an application in a lean manufacturing environment. 
2. To use the research criteria to understand the benefits and weaknesses of the Puma 

Assembly system when compared to an assembly line using a contemporary control 

system architecture. 
I To recognise the strengths and weaknesses of the NGC Framework and identify areas 

requiring further work. 
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C1.3 Reference Sites 

Table E1 Site Summary Table 

Site I (Research date: 5/98) Site 2 (Research date 10/98) 
Location Ford Motor Company Ford Motor Company 

Limited, Bridgend. Limited, Dagenham. 
Line Zetec S. E. Puma Engine 
Product Complexity Inline 4 cylinder, 16 valve Inline 4 cylinder, 16 valve 

gasoline. diesel. 
Equipment Job 1 5/98 5/99 
date. 
Production volume 550,000 engines per year 450,000 engines per year 
Operating Lean production methods. Lean production methods. 
philosophy Team based multiskilled Team based multiskilled 

operators. 
Manufacturing Contemporary. Siemens PLC NGC Framework Control 
Control System and pre-programmed System. 

KADESS modules on the 
I conveyor system 

CIA Test Equipment 

Funding for a new assembly line has in both site I and 2 included for a test and training rig 

which emulates the assembly line control system. Unless specifically stated comparative test 

were carried out on these rigs. The main system elements for each rig is shown in Figure CI 

and Figure C2 below. 

C1.5 Test Operators 
The Ford staff used during the test were members of the respective site staff and had been 

trained on the equipment under test. Two multi-skilled operators worked jointly on the tasks 

that required operator involvement. 

C1.6 Test Supervision 
To ensure consistency between the sites the author employed a lecturer from the University 

of East Anglia to monitor both sets of tests. In addition Ford Training staff monitored the 

tests at their respective sites. 
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C1.7 Potential Test Variance 
A number of test variance were noted: 
1. The multi-skilled operators at site I appeared to be more experienced with the system. As 

well as formal training the two operators had spent several months working with on the 

production facility. 

2. The operators at site 2 had just completed initial training. At the time of the test the site 2 

production facility %%-as not running hence no production experience had been gained. 
3. Where the task could not be completed by the operators this is noted within the test 

results. The manufacturer of the equipment was asked for a method statement. A 

judgement was then made by the Ford training staff with regard to feasibility and time 

required. Ile two training staff may havejudged the required time to be different. Note: 

Software training was carried out by the same instructor for both systems and sites 

therefore consistency is maintained for this criteria. 
4. Accurate reliability data was available for the contemporary equipment via the Ford 

Production Monitoring and Failure systems. The NGC equipment had at the time of the 

tests not been used in production. hITBF for site 2 was therefore derived from 

manufacturer data sheet. 

C1.8 Test Dates 

o Site I- 5* May 1998 - 8dNfay 1998 

o Site 2- June 1998 
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ICP Conference, September 1996, Paris. 

Next Generation Control Systems 

in the Automotive Industry 

Leslie J. Lee 

School of Manufacturing Engineering 

Loughborough University of Technology. 

Abstract 
Introduction. 

This paper presents an argument that the 

proprietary Programmable Logic Controller 

(PLC) used by the Automotive Industry for the 

last twenty years, is now in tenninal decline. 

Some of the challenges facing the Automotive 

Industry and its PLC suppliers are considered, 

and next generation machine controller 

requirements are reviewed. " 

Extraordinary change is taking place in industry. 

The global market place has increased the 

automotive manufacturing industry's demands 

for systems that match their particular needs. 

The rapid pace of technology is continuing to 

shorten product life cycles, while product 
development, launch and maintenance cost are 

escalating. 

Sequential programming techniques currently 

used in PLCs are examined and contrasted with 
fully distributed, event driven structures. A 

generic model of an event driven system is 

presented, along with a description of the 

physical and logical layers of the model. Finally 

the potential advantages and concerns of this 

approach are considered. 

Initial findings from research in progress at 

Loughborough University suggest that current 

manufacturing control systems are not fulfilling 

the Automotive Industries requirements. Shorter 

product life cycles, rapid change-over, systems 

unsuited for multi-skilled operation and global 

availability are all problems highlighted by end 

users. The traditional Programmable Logic 

Controller (PLC) suppliers also face problems 

related to decreased revenue for a given number 



of systems, combined with increased 

competition and support requirements. 

The aim of this paper is to present an argument 

an automotive viewpOint; are true of many other 
industries. 

General Motors dismay with current PLC 

that the proprietary PLC used by the Automotive systems and their programming languages has 

Industry for the last twenty years, is now in 

tenninal decline. 

Some of the challenges facing the Automotive 

Industry and its PLC suppliers are examined, 

and next generation machine controller 

requirements are reviewed. 

been graphically demonstrated on their recent 
Powertrain projects in North America. In excess 

of two hundred 'open' P. C. based control 

systems are in use. The programming language 

used is a flow diagramming technique called 

FloPro@; developed by a small company called 

Universal Automation. (Now owned by 

Nematron). 

Sequential programming techniques currently 

used in PLC's are discussed and contrasted with 
fully distributed event driven structures. A 

generic model of an event driven system is 

presented, along with a description of the 

physical and logical layers of the model. Finally 

the potential advantages and concerns of this 

approach are considered. 

Background. 

The publication of a white paper by North 

America's three largest Automotive producers in 

December 1994, may prove to be a significant 
turning point for manufacturing control systems. 
The paper outlined the requirements for open 

modular control systems (OMAC 1994). The 

Open Modular Architecture Controller (OMAC) 

report highlights numerous problems with 

proprietary controllers that, while presented from 
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The programmable logic controller was initially programming language in the Automotive 

conceived by engineers from the General Motors Industry. 

Corporation in 1968. (Warnock 1988) The 

initial specification required that the controller 

must be: 

" Easily programmed and reprogrammed, 

preferably in plant, to alter its sequence of 

operations. 

" Easily maintained and repaired - preferably 

using plug-in modules. 

" More reliable in a plant environment, 

" Smaller than its relay equivalent. 

" Cost competitive, with solid-state and relay 

panels then in use. 

As PLC technology became available in the 

early 1970's the automotive industry was one of 

the first major industrial sectors to utilise the 

systems. 

The original specification for PLC systems and 

subsequent end user pressure led to the PLC 

being used as a relay panel replacement system 
for many years. The development of ladder logic 

as the main stream programming language 

reflected end user requirements for systems that 

mimicked the operation of the relay panel they 

were replacing. The suite of panels that once 

In 1990 a team of engineers at Ford Motor 

Company responded to an engineering led 

investment efficiency initiative with a 

distributed PLC solution (Figure 1). The 

machines being controlled consisted of a number 

of machining heads positioned on both sides of a 

part transfer system. (Figure 1) The centralised 

PLC was replaced with a small 'mini' PLC 

controlling discrete sections of the machine tool. 

Each section was linked via a real time serial 

network back to a co-ordinating controller. 

rm Mini PLC 

LLP 
Figure I PLC Architecture. 

Some savings were made in PLC 

hardware cost, however the majority of the 

investment reduction came from the 

modularization of hardware, software and 
housed the relays was replaced with a central Ised documentation. The distribution of control to 

PLC system. Incredibly some quarter of a this level allowed the development of five 

century later, ladder logic is still the dominant basic designs of machining head and a 

standardised transfer mechanism. Engineers 
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were able to commission individual heads 

before the machine was complete reducing 
lead time. Various combinations of standard 

machining heads were then grouped together 

and connected back to the co-ordinating 

controller. 'Me standardised software 

significantly reduced the amount of software 

engineering required. The combination of 

these factors led to greater reliability as well 

as the desired investment reduction. 

Splitting the control program into a number of 
discrete sequences simplified the control 

programs making them easier to maintain on the 

shop floor. The processing load (scan time) on 

an individual controller was reduced from 

typically 60 milli-seconds with a centralised 

controller architecture, to 5 milli-seconds on 

each of the distributed PLC's. The system scan 

gain an overall appreciation of the whole 

environment in which the problem must be 

addressed. 

The decline in PLC order value is dramatically 

illustrated by comparing two recent Automotive 

Powertrain projects (Ford 1994). Five years 

separate the two programmes; during which time 

the PLC supplier's order value fell by 80%. The 

reductions can be attributed to more powerful 

products at lower cost, the increasing use of 
third party 1/0 bus systems and better use being 

made of products due to the introduction of 
Simultaneous Engineering Teams. 

During this same period when order value has 

been falling dramatically, end users have been 

demanding increased support from the control 

suppliers. The manufacturing plants expect 

time including the serial communication was structured software programs, spare parts placed 
less than 20 milli-seconds. The reduction in scan on site at the control suppliers cost, five year 
time simplified mechanical and electrical design. warranties and instant on site assistance during 

the start-up period. These support requirements 
Following the successftil implementation of this have been financed from the dwindling order 

system on a major engine programme it has now 
become widely accepted within the Automotive 

Industry as the benchmark for this type of 

machine architecture. 

Manufacturing Challenges 

Before next generation control system 

requirements are discussed, it is important to 

value outlined above. 

It can be shown that approximately 50% of the 

control supplier's profit will be generated from 

input and output cards, 25% from processor 

cards and racks and 25% from operator screens 

and display systems. An explosion in the use of 
bus connected input / output modules from a 
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third party, and hence the loss of the PLC 

manufacturers biggest profit generator, may be 

about to turn a difficult position for the control 

suppliers into an impossible one. The lack of 

is normally sought between investment and 

timing constraints as well as plant preferences 

and regional support capabilities. It is emerging 
that due to changing ivorkingpractices the 

high technology devices to develop and support, large Automotive end users cannot tolerate this 

often allows third party suppliers to operate with compromisefor much longer. 

lower overheads so making their products very 

cost effective. Other challenges facing the automotive industry 

are shorter product life cycles, flexibility at high 

The increasing complexity of machine tools and volume and quick changeover. Global 

introduction of multi-skilled operation in the end competition has increased pressure on 

user's factory, has made both the end user and investment and operating cost. Machines are still 

machine tool builder increasingly reluctant to 

change from their own build standards. The 

machine tool builders (OEM's) wish to impose 

their standards to keep engineering / training 

costs down and reliability high. The 

built to last ten to fifteen years. If Powertrain 

product lifecycle is only five to seven years, the 

cost to reconfigure machines must be taken into 

account when facilities are originally designed. 

manufacturing plants need to integrate machines The challenges outlined are summarised as 
from a number of manufacturers into a 

production system. They want common 

standards on all machine tools for much the 

same reasons as the OEM's. Unfortunately for 

the end user, if he is integrating ten different 

suppliers machine tools, he is likely to have ten 
different, incompatible control systems. 

follows: 

If support requirements are to be contained 

within the cost of the PLC, the decline in total 

order value must be addressed. Alternatively 

products which require far less support are 

required. 

Because of the proprietary nature of the existing 
PLC systems, the end user is left with two 

choices; to impose his own standards and run 
the risk of timing and cost penalties, or purchase 

* The skills required to maintain machine toot 

control systems must match those available in 

the manufacturing plants. 

machine tool builder standard machines and pay * Control systems must be 'open' and available 
the price in operating efficiency. A compromise on a global basis to allow the OEM's and 
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Project Departments to accommodate 

regional preferences without the need for 

complete re-engineering. 

* Scaleable systems, designed to be easily 

modified in mid-life to accommodate shorter 

product life cycle are required. 

Next Generation System 

Requirements 

The challenges outlined do not translate directly 

into a number of isolated features that can then 

be designed into a new product. 

'Me reduction in order value for high technology 

suppliers and increasing support requirements 

can be addressed as a single problem. End users 

could pay for support from the PLC supplier 

separately. A better means of resolving this issue 

may be to commercially link the use of PLC 

systems with products that are already a 

commodity and require little support. For 

example the PLC contract could be linked to 

standard products (relays, push buttons, etc. ), 

sensors or drive systems. A contract linked in 

this way will allow support requirements to be 

carried across a larger supply base and hence 
higher order value. Of course fragmenting the 

order value as part of the drive for 'open' 

solutions will only serve to make the situation 

worse. 

Next generation control systems must be based 

upon products which are designed 

independently, and can then be integrated with 

other products from other vendors without the 

need to develop special programs, hardware or 
tools. The system must be fully documented, 

freely available, managed and promoted by a 

multi-national independent body. Independent 

certification of conformity will be required. 
(Harrison 1995). 

Such a system must break the link between 

hardware and software development. It must 

allow machine tool builders to re-use much of 

their engineering and yet accommodate many of 

the end users' standards. Machine tool builders 

must be able to efficiently move from ajob in 

Germany using company A's equipment, to 

another in North America using company B. 

Globalisation by the big Automotive users not 

only makes this an OEM requirement it is now 

an end user requirement. 

The big PLC manufacturers are in a difficult 

position as there are risks involved in the change 

to open systems. However, with more and more 

systems coming on to the market the genie is 

already out of the bottle (ARC 1996). The 

question must be not if, but when, the change 

must be made. The leading mainframe computer 

and minicomputer suppliers ignored, resisted or 

250 



minimised the PC revolution, and the effects on the development of 'Process Development 

those suppliers are still being felt today. Some of Languages'; the declared aim of which, must be 

the once-major companies are gone, several are to eliminate the software engineer from the 

struggling for survival. A few have now changed programming of machine tools. (Figure 2). It is 

their strategy and begun to support open 

systems, albeit late in the game and at a very 

high cost (Lonmark 1994). From an end user 

perspective it seems that some of the PLC 

suppliers are turning their back on change or 

worse still try to resist it? 

Shorter product life cycles demand agile 

production facilities. Machines designed for use 

on high volume lines should not be confused 

with flexible machining centres found on low 

volume facilities. High volume machines need to 

be quick and simple, which often leads to 

custom design, making them difficult and 

expensive to reconfigure. If the products 

produced by the machine tools are to have a 

shorter life cycle, either the machines need to be 

half their present cost, or they need to be 

reconfigured quickly and cost effectively in mid- 
life. This requirement demands a control system 

that is scaleable and able to accommodate 

changes in complexity a number of years after 
the original control system was supplied. 

The system must be designed to be operated and 

maintained by multi-skilled personnel and 

programmed / reprogrammed by the engineer 

who is designing the process. This will require 

unlikely that the cuffent IEC 113 1/3 languages 

will be able to fulfil this requirement. 

Features Processing 

2 

Customer Process 
Engineer 

Process Cycle 
Charts 

Translatio n 
Operator 

Machine 
Design 

Machine 
Programmer 

Figure 2 Process Development 

Languages. (Lomax 1994) 

It is not clear if the major control suppliers are 

ever going to allow complete portability of 

applications programmed using the existing 

IEC 113 1 languages; therefore the 

standardisation and portability of the new 

process development languages will present a 

major challenge. 

Control System Evolution 

The evolution of the machine control 

architecture has followed a steady course for a 

number of years. The original PLC systems 

utilised a central processing architecture with 

centralised input and output racks. This was a 
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natural first step as it directly reproduced the 

structure found in a relay system. This was 
followed by centralised processing with remote 
input and output modules fitted into sealed 

cabinets around the machine. In the early 90's 

multi-sequence machines went to distributed 

processing and distributed input and output 

modules. This architecture requires the use of 

"mini' PLC's located in small panels adjacent to 

the machining station. Recently the Input and 

Output modules have started to move out of the 

station panel to be replaced by field mounted 

IP671 blocks. 

Some would say that Personal Computer (PC) 

based technology will become next generation 

control system for machine tools. This 

development will certainly promote further, 

topen' control systems; however the PC 

controller will simply be used to replace the 

existing proprietary central processing unit 
(CPU. ) It can therefore be considered an 

advance in hardivare and not an advance in 

machine control architecture. 

Using the established path of the past twenty 

five years it is clear that where the input and 

output blocks go, the intelligence soon follows. 

Therefore the next logical step is to embed the 

control of a device and its interaction with other 

devices into IP67 blocks. 

Fully Distributed Event Driven 

Structures. 

Introduction 

In conjunction with Loughborough University of 
Technology, Ford Motor Company is in the 

process of developing a fully distributed event 
driven system for use on machine tools. The aim 
is to produce a system that will eliminate many 

of the problems evident in centralised and 

partially distributed systems. Whilst the research 
is ongoing sufficient work has been completed 

to establish a generic model. 

The concept of a fully distributed machine 

control system is to replace the distributed PLC 

with a number of controllers, physically located 

at the point of control (Harrison 1996). To 

implement this architecture machine elements 

are broken down until a small piece of generic 

code can be applied to the ftinction. Each 

controller is known as a node. 

Before a new model could be developed; the 

generic features found in existing systems were 

reviewed to establish machine control 

'requirements' and 'attractive features'. The 

I An IP67 de%ice is sealed against the ingress of dust and water and so can 
requirements are not fixed and as with other 

be mounted directly on the machine. 
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products; over time the 'attractive features' 

become 'requirements' expected of the system. 

Sequential Control of Machine Tools. 

faults, operator infonnation, error recovery and 

manual operation. 

Sequential Programming 'Requirements'. 

An application program consists of a number of Sequential ControL The program must be able 
processes, some are independent whilst many are to control a fully automatic sequence of 
inter-related. The vast majority utilise some form operations. 

of sequence controller to schedule events to take 

place in a logical order. To optimise machine 

cycle time it is often the case that a number of 

sequences will operate concurrently within a 

single PLC controller. 

Multi-sequence control programs are often 

complex and require the prioritisation of 

operator and fault messages. Each sequence will 
have a fixed overhead associated with its 

existence, this increases the memory 

requirement and hence scan time of the PLC. 

One of the drivers for partial'distribution of 

control was to reduce the number of sequences 

within a single PLC. 

Sequence Check., This term is used to describe 

an interlock condition that must be satisfied 
before the next function can occur. This must 

not be flagged as a fault condition unless the 

maximum step time is exceeded. 

Interlock Fault. This type of interlock condition 

will stop a machine tool immediately. The code 

must recognise that an actuator has moved out 

of sequence. An example of this is a clamp 

switch deactivating during a cutting cycle. Some 

interlock conditions will be monitored during 

certain steps. Others will be monitored 

constantly, for example Hydraulics or Air. The 

code must be able to differentiate between a 
A number of structured programming techniques (sequence check' and 'interlock fault. ' 

are in wide spread use in the Automotive 
Industry. Analysis of the PLC code produced 
from these techniques highlights a consistent set 
of control requirements. The test of a good 

program structure is not how well it handles the 

relatively simple task of controlling the machine 
in automatic cycle; but how it handles machine 

Manual Interlocking., The majority of machine 

tools will have a protected manual. Manual 

interlocks are often different to automatic 
interlocks and are designed to give as much 
freedom of movement as possible whilst 

ensuring that machine damage does not occur. 
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Sequential Programming 'Attractive 

Features' 

Set-up Mode. This mode of operation is often 

called maintenance mode. It is used during the 

commissioning or maintenance of the machine 

and overrides all software interlocks in manual 

mode. 

Initial Position Function. Some structured 

techniques allow the operator to return the 

machine to initial position using a single push- 

button. The manual interlocks are used to ensure 

that elements do not clash. 

Diagnostics 

Sequence and Error Message Display. Operator 

messages are displayed to indicate the position 
in the step sequence as well as sequence errors. 

Manual Cross Interlock ChiA. If a manual 

push-button is pressed the system can display 

the interlock conditions that prevent that 

operation functioning (if any) 

Operator Display Prioritisation: Often a single 

control program will have multiple independent 

sequences. A prioritisation algorithm must be 

developed to ensure that the most significant 

problem is displayed. It is normally not 

sufficient to give sequence one the highest 

priority. It could be that sequence one is 'waiting 

for a component' (sequence check) and 

sequence two has an interlock fault caused by an 

unauthorised actuator movement. 

Physical / Logical Layer 

The control elements of the development 

machine have been broken down until a small 

generic function can be identified. At this level 

the control function of a two position solenoid is 

the same as a reversing contactor; a relay has the 

same function as a single acting spring return 

valve, and so on. A small piece of generic code 
has been written for each of the device 

categories. Each node controls a single actuator 

and its associated input sensors. It is possible 

that a node may not have an actuator, or may not 
have sensors. Full distribution has occurred 

when the node is able to utilise one of the 

standard pieces of code. A number of nodes are 

then be formed into a function group as shown 

in Figure 3 

Node 2 
Node I Node 3 

Node 4 

Function Groupl 
Colloctof Node 

. ........ ... lob IC Ilactor I , 
N 

= 

Function Group2 
CollectorNode 

Figure 3 Node Architecture 
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Embedding tried and tested software into the 

node eliminates the need to programme 

equipment. The system will instead, require the 

elements of a machine to be identified and then 

linked for automatic and manual operation. The 

translation process that occurs when the 

Controls Engineer converts the mechanical 

timing charts into machine logic is no longer 

required. 

When the node has been initialised (All Nodes 

Enabled) every node in the system will attempt 

to go to its work position. The only inhibitor 

stopping this occurring is the automatic 
interlocks. Immediately the node reaches the 

work position it will attempt to return to the 

home position. Again the only inhibitor is the 

automatic interlocks. It should be noted that 

('start cycle' is a node which issues an interlock 

in the same way as a physical device. 

The event driven code eliminates the need for a 

step sequence and instead relies solely on the 

interlocks to constrain elements of the machine. 
Potentially this will produce control programs 
that self optimise to the most efficient cycle. If a 
fault occurs causing an element to slow down, 

(e. g. due to an oil leak in a cylinder) it is 

possible that the sequence of operations will 

change to take into this into account. Node scan 

time will be negligible due to the small amount 

of embedded code, network speed will be 

critical. 

The input and output signals required by each 

node have been defined in figure 4. 

All Nodes Enabled 
Node Reset 

Auto Interlock Status 
(Read) 

Manual Interlock Status 
(Read) 

Manual Request Work 
Manual Request Hofne 
Initial Position Request 

Actuator 

Work Home 

C 
Work Work Home I Home 
output Input Input Output 

Node Enabled 
Real Time Timed Out 

Serial Interlock Status 

Communication 

I 
(Write) 
Diagnostic 

Node Manual Mode 

ontroller c 
Step by Step 

t 
Automatic 

Power Supply 

Figure 4 Logical Input and Output Signals. 

Conclusions 
In this paper a generalised methodology for the 

implementation of a fully distributed control 

strategy using event driven code has been 

outlined. Tests have demonstrated that machines 

can be returned to initial position using the 

methods shown. Future work will establish if 

full control can be transferred to this system. 

Interoperability at a 'plug andplay'level will be 

a key requirement for future control systems. A 

part or product, regardless of manufacturer must 
be able to integrate into the system with the 

minimum of effort. Interoperability docsn'tjust 
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happen. A comprehensive organisational 

structure and well defined standards will be 

required. It may be the case that this will be a 

natural extension to the work of the IEC 113 1 

committee and the 2 PLCopen association. 

The fully distributed approach outlined, even at 

this early stage in its development, has shown 

the potential to solve many of the end users 

concerns whilst providing a viable path to 

`open' systems requiring very little support. 

Whilst embedding the control into IP67 blocks is 

likely to be the first step, eventually the control 

will be embedded into the standard control 

products, (e. g. relays, contactors, motors, valves, 

etc. ). 

The aim of the 'fully distributed' initiative by 

Ford is not to make the life of the current 

programmer easier. It has as one of its central 
design goals, the elimination of the application 

programmer completely. * 
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