13,626 research outputs found

    On Universal Point Sets for Planar Graphs

    Full text link
    A set P of points in R^2 is n-universal, if every planar graph on n vertices admits a plane straight-line embedding on P. Answering a question by Kobourov, we show that there is no n-universal point set of size n, for any n>=15. Conversely, we use a computer program to show that there exist universal point sets for all n<=10 and to enumerate all corresponding order types. Finally, we describe a collection G of 7'393 planar graphs on 35 vertices that do not admit a simultaneous geometric embedding without mapping, that is, no set of 35 points in the plane supports a plane straight-line embedding of all graphs in G.Comment: Fixed incorrect numbers of universal point sets in the last par

    Small Superpatterns for Dominance Drawing

    Full text link
    We exploit the connection between dominance drawings of directed acyclic graphs and permutations, in both directions, to provide improved bounds on the size of universal point sets for certain types of dominance drawing and on superpatterns for certain natural classes of permutations. In particular we show that there exist universal point sets for dominance drawings of the Hasse diagrams of width-two partial orders of size O(n^{3/2}), universal point sets for dominance drawings of st-outerplanar graphs of size O(n\log n), and universal point sets for dominance drawings of directed trees of size O(n^2). We show that 321-avoiding permutations have superpatterns of size O(n^{3/2}), riffle permutations (321-, 2143-, and 2413-avoiding permutations) have superpatterns of size O(n), and the concatenations of sequences of riffles and their inverses have superpatterns of size O(n\log n). Our analysis includes a calculation of the leading constants in these bounds.Comment: ANALCO 2014, This version fixes an error in the leading constant of the 321-superpattern siz

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy

    Three Hopf algebras and their common simplicial and categorical background

    Get PDF
    We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebras of Goncharov for multiple zeta values, that of Connes--Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, cooperads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretation of known constructions in a large common frameworkPreprin
    corecore