26,013 research outputs found

    Asymptotically rigid mapping class groups and Thompson's groups

    Full text link
    We consider Thompson's groups from the perspective of mapping class groups of surfaces of infinite type. This point of view leads us to the braided Thompson groups, which are extensions of Thompson's groups by infinite (spherical) braid groups. We will outline the main features of these groups and some applications to the quantization of Teichm\"uller spaces. The chapter provides an introduction to the subject with an emphasis on some of the authors results.Comment: survey 77

    Feynman Categories

    Full text link
    In this paper we give a new foundational, categorical formulation for operations and relations and objects parameterizing them. This generalizes and unifies the theory of operads and all their cousins including but not limited to PROPs, modular operads, twisted (modular) operads, properads, hyperoperads, their colored versions, as well as algebras over operads and an abundance of other related structures, such as crossed simplicial groups, the augmented simplicial category or FI--modules. The usefulness of this approach is that it allows us to handle all the classical as well as more esoteric structures under a common framework and we can treat all the situations simultaneously. Many of the known constructions simply become Kan extensions. In this common framework, we also derive universal operations, such as those underlying Deligne's conjecture, construct Hopf algebras as well as perform resolutions, (co)bar transforms and Feynman transforms which are related to master equations. For these applications, we construct the relevant model category structures. This produces many new examples.Comment: Expanded version. New introduction, new arrangement of text, more details on several constructions. New figure

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA
    • …
    corecore