1,100 research outputs found

    Integration of a Spanish-to-LSE machine translation system into an e-learning platform

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-21657-2_61This paper presents the first results of the integration of a Spanish-to-LSE Machine Translation (MT) system into an e-learning platform. Most e-learning platforms provide speech-based contents, which makes them inaccessible to the Deaf. To solve this issue, we have developed a MT system that translates Spanish speech-based contents into LSE. To test our MT system, we have integrated it into an e-learning tool. The e-learning tool sends the audio to our platform. The platform sends back the subtitles and a video stream with the signed translation to the e-learning tool. Preliminary results, evaluating the sign language synthesis module, show an isolated sign recognition accuracy of 97%. The sentence recognition accuracy was of 93%.Authors would like to acknowledge the FPU-UAM grant program for its financial support. Authors are grateful to the FCNSE linguistic department for sharing their knowledge in LSE and performing the evaluations. Many thanks go to María Chulvi and Benjamín Nogal for providing help during the imple-mentation of this system. This work was partially supported by the Telefónica Móviles España S.A. project number 10-047158-TE-Ed-01-1

    Automatic grammar induction from free text using insights from cognitive grammar

    Get PDF
    Automatic identification of the grammatical structure of a sentence is useful in many Natural Language Processing (NLP) applications such as Document Summarisation, Question Answering systems and Machine Translation. With the availability of syntactic treebanks, supervised parsers have been developed successfully for many major languages. However, for low-resourced minority languages with fewer digital resources, this poses more of a challenge. Moreover, there are a number of syntactic annotation schemes motivated by different linguistic theories and formalisms which are sometimes language specific and they cannot always be adapted for developing syntactic parsers across different language families. This project aims to develop a linguistically motivated approach to the automatic induction of grammatical structures from raw sentences. Such an approach can be readily adapted to different languages including low-resourced minority languages. We draw the basic approach to linguistic analysis from usage-based, functional theories of grammar such as Cognitive Grammar, Computational Paninian Grammar and insights from psycholinguistic studies. Our approach identifies grammatical structure of a sentence by recognising domain-independent, general, cognitive patterns of conceptual organisation that occur in natural language. It also reflects some of the general psycholinguistic properties of parsing by humans - such as incrementality, connectedness and expectation. Our implementation has three components: Schema Definition, Schema Assembly and Schema Prediction. Schema Definition and Schema Assembly components were implemented algorithmically as a dictionary and rules. An Artificial Neural Network was trained for Schema Prediction. By using Parts of Speech tags to bootstrap the simplest case of token level schema definitions, a sentence is passed through all the three components incrementally until all the words are exhausted and the entire sentence is analysed as an instance of one final construction schema. The order in which all intermediate schemas are assembled to form the final schema can be viewed as the parse of the sentence. Parsers for English and Welsh (a low-resource minority language) were developed using the same approach with some changes to the Schema Definition component. We evaluated the parser performance by (a) Quantitative evaluation by comparing the parsed chunks against the constituents in a phrase structure tree (b) Manual evaluation by listing the range of linguistic constructions covered by the parser and by performing error analysis on the parser outputs (c) Evaluation by identifying the number of edits required for a correct assembly (d) Qualitative evaluation based on Likert scales in online surveys

    Type-Based Detection of XML Query-Update Independence

    Get PDF
    This paper presents a novel static analysis technique to detect XML query-update independence, in the presence of a schema. Rather than types, our system infers chains of types. Each chain represents a path that can be traversed on a valid document during query/update evaluation. The resulting independence analysis is precise, although it raises a challenging issue: recursive schemas may lead to infer infinitely many chains. A sound and complete approximation technique ensuring a finite analysis in any case is presented, together with an efficient implementation performing the chain-based analysis in polynomial space and time.Comment: VLDB201
    corecore