55,838 research outputs found

    The improvement of micro-electronic component production operations by the application of cranfield developed precision engineering techniques

    Get PDF
    From an examination of the Cranfield Universal Measuring Machine certain features were selected. These features were linked together with some of the manufacturing and assembly operations used to make dual-in-line integrated circuits. The result was a group of design specifications for automatic machines to effect substantial improvements in productivity in those manufacturing operations. The report describes the preliminary work which culminated in the preparation of specifications, discussions with manufacturers and changes which were made as a result of these discussions. The report concludes with a number of proposals for continuing the main work and suggests certain additional, separate, investigations which, it is thought, would produce information of value to the semi-conductor industry

    Random Quantum Circuits and Pseudo-Random Operators: Theory and Applications

    Full text link
    Pseudo-random operators consist of sets of operators that exhibit many of the important statistical features of uniformly distributed random operators. Such pseudo-random sets of operators are most useful whey they may be parameterized and generated on a quantum processor in a way that requires exponentially fewer resources than direct implementation of the uniformly random set. Efficient pseudo-random operators can overcome the exponential cost of random operators required for quantum communication tasks such as super-dense coding of quantum states and approximately secure quantum data-hiding, and enable efficient stochastic methods for noise estimation on prototype quantum processors. This paper summarizes some recently published work demonstrating a random circuit method for the implementation of pseudo-random unitary operators on a quantum processor [Emerson et al., Science 302:2098 (Dec.~19, 2003)], and further elaborates the theory and applications of pseudo-random states and operators.Comment: This paper is a synopsis of Emerson et al., Science 302: 2098 (Dec 19, 2003) and some related unpublished work; it is based on a talk given at QCMC04; 4 pages, 1 figure, aipproc.st

    Comparing the Overhead of Topological and Concatenated Quantum Error Correction

    Full text link
    This work compares the overhead of quantum error correction with concatenated and topological quantum error-correcting codes. To perform a numerical analysis, we use the Quantum Resource Estimator Toolbox (QuRE) that we recently developed. We use QuRE to estimate the number of qubits, quantum gates, and amount of time needed to factor a 1024-bit number on several candidate quantum technologies that differ in their clock speed and reliability. We make several interesting observations. First, topological quantum error correction requires fewer resources when physical gate error rates are high, white concatenated codes have smaller overhead for physical gate error rates below approximately 10E-7. Consequently, we show that different error-correcting codes should be chosen for two of the studied physical quantum technologies - ion traps and superconducting qubits. Second, we observe that the composition of the elementary gate types occurring in a typical logical circuit, a fault-tolerant circuit protected by the surface code, and a fault-tolerant circuit protected by a concatenated code all differ. This also suggests that choosing the most appropriate error correction technique depends on the ability of the future technology to perform specific gates efficiently

    Entropy flow in near-critical quantum circuits

    Full text link
    Near-critical quantum circuits are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from the environment. The design of reversible computers is constrained by the laws governing entropy flow within the computer. In near-critical quantum circuits, entropy flows as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. The quantum entropy current is just the energy current divided by the temperature. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: \sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the temperature, S the equilibrium entropy density and v the velocity of `light'. The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega). The thermal Drude weight is, universally, v^{2}S. This gives a way to measure the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys with revisions for clarity following referee's suggestions, arguments and results unchanged, cross-posting now to quant-ph, 27 page

    Toward an architecture for quantum programming

    Full text link
    It is becoming increasingly clear that, if a useful device for quantum computation will ever be built, it will be embodied by a classical computing machine with control over a truly quantum subsystem, this apparatus performing a mixture of classical and quantum computation. This paper investigates a possible approach to the problem of programming such machines: a template high level quantum language is presented which complements a generic general purpose classical language with a set of quantum primitives. The underlying scheme involves a run-time environment which calculates the byte-code for the quantum operations and pipes it to a quantum device controller or to a simulator. This language can compactly express existing quantum algorithms and reduce them to sequences of elementary operations; it also easily lends itself to automatic, hardware independent, circuit simplification. A publicly available preliminary implementation of the proposed ideas has been realized using the C++ language.Comment: 23 pages, 5 figures, A4paper. Final version accepted by EJPD ("swap" replaced by "invert" for Qops). Preliminary implementation available at: http://sra.itc.it/people/serafini/quantum-computing/qlang.htm

    Unfinished Business: Are Today’s P2P Networks Liable for Copyright Infringement?

    Get PDF
    In June 2005, the U.S. Supreme Court issued the decision in Metro-Goldwyn-Mayer Studios v. Grokster Ltd., a case that asked whether peer-to-peer networks may be held liable for facilitating the illegal distribution of music over the internet. The music industry petitioned the Supreme Court to settle the disagreement between the circuit courts over the standard of liability for aiding in copyright infringement. The case was based on a clash between the protection of technological innovation and the protection of artistic works. This iBrief examines the circuit split and the Grokster opinion and discusses the questions of liability left unresolved by the Supreme Court. It argues that further clarification of the Sony rule is still needed in order to encourage the proliferation of legitimate peer-to-peer networks by protecting their services while discouraging illegitimate file-sharing activities

    Design and development of a digital subsystem employing n and p-channel Mos Fet's in complementary circuits in an integrated circuit array Final report, 1 May 1967 - 30 Apr. 1968

    Get PDF
    Digital subsystem design and development employing n-channel and p-channel in MOS FET units in complimentary circuits in integrated circuit arra

    The set of realizations of a max-plus linear sequence is semi-polyhedral

    Get PDF
    We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a semi-algebraic set in the max-plus sense. In particular, it is a finite union of polyhedral sets
    • …
    corecore