33 research outputs found

    Structural Invariants for Parametric Verification of Systems with Almost Linear Architectures

    Get PDF
    We consider concurrent systems consisting of a finite but unknown number of components , that are replicated instances of a given set of finite state automata. The components communicate by executing interactions which are simultaneous atomic state changes of a set of components. We specify both the type of interactions (e.g. rendezvous , broadcast) and the topology (i.e. architecture) of the system (e.g. pipeline, ring) via a decidable interaction logic, which is embedded in the classical weak sequential calculus of one successor (WS1S). Proving correctness of such system for safety properties , such as deadlock freedom or mutual exclusion, requires the inference of an induc-tive invariant that subsumes the set of reachable states and avoids the unsafe states. Our method synthesizes such invariants directly from the formula describing the interactions , without costly fixed point iterations. We applied our technique to the verification of several textbook examples, such as dining philosophers, mutual exclusion protocols and concurrent systems with preemption and priorities

    Effective Encodings of Constraint Programming Models to SMT

    Get PDF
    Satisfiability Modulo Theories (SMT) is a well-established methodology that generalises propositional satisfiability (SAT) by adding support for a variety of theories such as integer arithmetic and bit-vector operations. SMT solvers have made rapid progress in recent years. In part, the efficiency of modern SMT solvers derives from the use of specialised decision procedures for each theory. In this paper we explore how the Essence Prime constraint modelling language can be translated to the standard SMT-LIB language. We target four theories: bit-vectors (QF_BV), linear integer arithmetic (QF_LIA), non-linear integer arithmetic (QF_NIA), and integer difference logic (QF_IDL). The encodings are implemented in the constraint modelling tool Savile Row. In an extensive set of experiments, we compare our encodings for the four theories, showing some notable differences and complementary strengths. We also compare our new encodings to the existing work targeting SMT and SAT, and to a well-established learning CP solver. Our two proposed encodings targeting the theory of bit-vectors (QF_BV) both substantially outperform earlier work on encoding to QF_BV on a large and diverse set of problem classes

    Effective encodings of constraint programming models to SMT

    Get PDF
    Funding: UK EPSRC grant EP/P015638/1.Satisfiability Modulo Theories (SMT) is a well-established methodology that generalises propositional satisfiability (SAT) by adding support for a variety of theories such as integer arithmetic and bit-vector operations. SMT solvers have made rapid progress in recent years. In part, the efficiency of modern SMT solvers derives from the use of specialised decision procedures for each theory. In this paper we explore how the Essence Prime constraint modelling language can be translated to the standard SMT-LIB language. We target four theories: bit-vectors (QF_BV), linear integer arithmetic (QF_LIA), non-linear integer arithmetic (QF_NIA), and integer difference logic (QF_IDL). The encodings are implemented in the constraint modelling tool Savile Row. In an extensive set of experiments, we compare our encodings for the four theories, showing some notable differences and complementary strengths. We also compare our new encodings to the existing work targeting SMT and SAT, and to a well-established learning CP solver. Our two proposed encodings targeting the theory of bit-vectors (QF_BV) both substantially outperform earlier work on encoding to QF_BV on a large and diverse set of problem classes.Postprin
    corecore