

 University of Groningen

Planning and monitoring the execution of web service requests
Lazovik, Alexander; Aiello, Marco; Papazoglou, Mike

Published in:
International Journal on Digital Libraries

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lazovik, A., Aiello, M., & Papazoglou, M. (2006). Planning and monitoring the execution of web service
requests. International Journal on Digital Libraries, 6(3), 235-246.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232379082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/planning-and-monitoring-the-execution-of-web-service-requests(4c0b6c85-b715-4143-b1bc-9f4fffdbf32c).html

International Journal on Digital Libraries (2006) 6(3): 235–246
DOI 10.1007/s00799-006-0002-5

REGULAR PAPER

Alexander Lazovik · Marco Aiello · Mike Papazoglou

Planning and monitoring the execution of web service requests

Published online: 24 March 2006
c© Springer-Verlag 2006

Abstract Interaction with web services enabled market-
places would be greatly facilitated if users were given a high
level service request language to express their goals in com-
plex business domains. This can be achieved by using a plan-
ning framework which monitors the execution of planned
goals against predefined standard business processes and in-
teracts with the user to achieve goal satisfaction.

We present a planning architecture that accepts high
level requests, expressed in a service request language
known as XSRL. The planning framework is based on the
principle of interleaving planning and execution. This is
accomplished on the basis of refinement and revision as new
service-related information is gathered from service repos-
itories such as UDDI and web services instances, and as
execution circumstances necessitate change. The planning
system interacts with the user whenever confirmation or ver-
ification is needed.

1 Introduction

Service oriented computing (SOC) is rapidly becoming the
prominent paradigm for distributed computing and elec-
tronic business applications. SOC allows service providers
and service application developers to construct value-added
services by combining existing services that are resident
on the Web. To achieve this, firstly, web services must be
described in terms of the standard web service definition
language WSDL (http://www.w3.org/TR/wsdl) and subse-
quently must be inter-linked to express how collections of

A. Lazovik (B) · M. Aiello
Department of Information and Telecommunication Technologies,
University of Trento, Via Sommarive, 14, 38050 Trento, Italy
E-mail: {lazovik, aiellom}@dit.unitn.it

A. Lazovik
ITC-IRST, Via Sommarive, 18, 38050 Trento, Italy

M. Papazoglou
Infolab, Tilburg University, P.O. Box 90153, NL-5000 LE,
The Netherlands
E-mail: mikep@uvt.nl

web services work jointly to realize more complex function-
alities typified by business processes. A new web service can
be defined in terms of compositions of existing (constituent)
services on the basis of the standard Business Process Ex-
ecution Language for Web Services (BPEL4WS or BPEL
for short, http://www-106.ibm.com/developerworks/library/
ws-bpel/). BPEL models the actual behavior of a partici-
pant in a business interaction as well as the visible mes-
sage exchange behavior of each of the parties involved in
the business protocol. A BPEL process is defined “in the
abstract” by referencing and inter-linking portTypes speci-
fied in the WSDL definitions of the web services involved
in a process. A BPEL process is a reusable definition that
can be deployed in different ways and in different scenar-
ios, while maintaining a uniform application-level behavior
across all of them. Service compositions in BPEL are de-
scribed in such a way (e.g., WSDL over UDDI) that allows
automated discovery and offers request matching on service
descriptions.

In many situations it is desirable to empower a user to
gain explicit control over the execution of BPEL expressions
and dynamically change the nature of the web service inter-
actions conducted with a particular business partner depend-
ing on the state of the process. Consider for example the case
of a traveler deciding to change his/her hotel reservation to
take advantage of an unexpectedly lowly priced weekend of-
fer. Users may need to change message property values in
the midst of a computation, e.g., update their holiday budget
based on ticket, hotel prices and availability, evaluate differ-
ent behavioral alternatives or scenarios during a computation
and change their course of action dynamically, or revisit dif-
ferent execution paths based on non-deterministic message
property values that result from the invocation of services
involved in a process. This implies that BPEL execution
must be made adaptable at run-time to meet the changing
needs of users and businesses. Obviously, BPEL specifica-
tions do not allow for the flexibility required to react swiftly
to unforeseen circumstances or opportunities as choices are
predefined and statically bound in BPEL programs. To
meet such requirements serious re-coding efforts are

236 A. Lazovik et al.

needed every time that there is need for even a slight
deviation.

Such advanced functionality can be better supported by
a service request language and its appropriate run-time sup-
port environment to allow users to express their needs on
the basis of the characteristics and functionality of standard
business processes whose services are found in UDDI reg-
istries. A service request language provides for a formal
means of describing desired service attributes and function-
ality, including temporal and non-temporal constraints be-
tween services, service scheduling preferences, alternative
options and so on.

Our research work concentrates on developing a ser-
vice request language for XML-based web services that con-
tains a set of appropriate constructs for expressing requests
and constraints over requests as well as scheduling opera-
tors. We have named this language XSRL for XML Ser-
vice Request Language [2, 19]. XSRL expresses a request
against standard processes defined in a vertical domain, e.g.,
e-travel, and returns a set of documents as the result of
executing the request, e.g., by sending end-to-end holiday
packages (documents). The user requests generate a plan
based on a standard business process that invokes a series
of web services and interacts with the user to satisfy her/his
request.

The remainder of the paper is organized as follows.
In Sect. 2 an overview of related work is given. Then, in
Sect. 3 an example in the travel domain which runs through-
out the paper is presented. The architecture of the proposed
framework is illustrated in Sect. 4, in particular, we de-
fine the planning domain in Sect. 4.1, we present an ex-
ample of domain in Sect. (4.2), we introduce an enhanced
syntax and semantics for XSRL in Sect. (4.3) and pro-
vide algorithms for satisfying XSRL requests in Sect. (4.4).
In Sect. 5 we exemplify the functionality of the architec-
ture on the running example. Sect. 6 presents conclusions,
while proofs of algorithm correctness are sketched in the
Appendix.

2 Related work

In service-oriented computing, several initiatives have been
proposed to enable integration between heterogeneous sys-
tems. In particular, the web service protocol stack [10] in-
cludes the Web Service Description Language [27], the
Simple Object Access Protocol [1], Universal Description,
Discovery and Integration [25] that allows platform- and
language-independent service publishing, discovery and in-
vocation. Business Process Execution Language for Web
Services [6] is focused on representation of web service ex-
ecutions, where composition is known in advance. Chore-
ography Description Language defines, from a global view-
point, observable inter-enterprise behavior, where ordered
message exchanges result in accomplishing a common busi-
ness goal [13].

Despite all the efforts, service composition is still an ex-
tremely complicated task. Complexity comes from different
places. First, the number of services and partners available
on the Web is high and steadily increasing, making it diffi-
cult to choose the right service to find and invoke. Second, in
a true service-oriented architecture, there is no single owner
of the business process, that is, every change to a process
has to be approved by all involved parties. Therefore, having
consistent and stable business processes that satisfy business
goals of all participants and ensure correctness at runtime
is hard to achieve. Third, the execution of a business pro-
cess depends on the behavior of involved partners that is not
known when the process is designed, thus, designer of the
process has to take into account all possible service behav-
iors.

That is why having a mechanism for automatic or
semi-automatic service composition is crucial for successful
enterprise application integration. Several approaches have
been proposed to achieve these issues. Service composition
is somewhat similar to composition of workflows [26] and
techniques developed for workflows can be reused for com-
position of services. For example, in [7] it is proposed as
a configurable approach to service composition. However,
workflow composition frameworks do not take into account
issues specific to service-oriented computing: dynamic
binding, highly heterogeneous environments, absence of
single ownership and control over process execution. In the
context of Semantic Web Services there have been proposed
several approaches for service compositions, e.g.,
knowledge-based semantic web service composition [9],
service discovery and composition based on semantic
matching [18], semi-automatic composition of web services
based on semantic descriptions [23]. All these approaches
work under the assumption of having available rich seman-
tic service description and run-time information. In contrast
to this, in a pure service-oriented environment on the one
hand, there is little semantic description and, on the other
hand, one deals with incomplete knowledge about service
behavior and required information is gathered and analyzed
during execution.

Artificial Intelligence (AI) techniques can provide a so-
lution to the problem of service composition. In particu-
lar, there have been several proposals using AI planning.
In [24], a review of web service composition techniques is
presented and it is argued that planning techniques can be of
help in tackling the problem of automatic web service com-
position. Various authors have emphasized the importance
of planning for web services [12, 16, 17, 24]. In particular,
Knoblock et al. [12] use a form of template planning based
on hierarchical task networks and constraint satisfaction.
The authors focus on information gathering and integration
rather than on service composition. In [16], regression plan-
ning for composition is used taking into account incomplete
knowledge about planning domain. In [17], the Golog plan-
ner is used to automatically compose semantically described
services. Knowledge-sensing actions are used to gather in-
formation at runtime. The two latter approaches describe the

Planning and monitoring the execution of web service requests 237

goal as a set of desired states ignoring conditions on how
these states are reached. A finite-state machine framework
for automatic composition was introduced in [3]. Our work
is primarily based on planning as model checking under
non-determinism for extended goals [11, 20]. Extensions to-
ward interleaving planning and execution in the above con-
text are reported in [5]. The latter work emphasizes on state
explosion problems rather than information gathering, fur-
thermore, it does not handle numeric values. Temporally ex-
tended goals, i.e., goals expressing not only desired states
to be achieved but also conditions on how these are to be
reached, are an expressive way of defining complex business
goals [14, 19, 21]. Our approach differs from these recently
proposed planning approaches for web services in that it is
based on non-deterministic planning whereas most of the
previously cited approaches focus on gathering information,
on applying deterministic planning techniques, on using pre-
compiled plans or on assuming rich semantic annotations of
services.

3 Running example: organizing a trip

Suppose a user is planning a one night trip to Paris and is
interested in a number of possibilities in connection with
this trip. These include making a hotel reservation in Paris,
avoiding to travel by train, if possible, and spending an over-
all amount not greater than 300 euros for the whole package.
Further, the user prefers to spend less than 100 euros for a
hotel room but, if this is not possible, he may be willing to
spend up to 200 euros for that room. The user wants to pay
under the condition that he receives a confirmation for the
entire package. Of course, the user would also need to spec-
ify dates for his trip and accommodation in Paris. This will
not be considered in this example as it provides no additional
details about the concepts behind the presented system. The
wishes of the user have not much meaning unless they are
matched against a standard business process in the e-travel
domain. What the user requires is a business process descrip-
tion that prescribes how to interact with an e-travel market-
place infrastructure such as travel agents, hotel services and
so on.

Nowadays, standard business descriptions and terminol-
ogy descriptions are given in XML schemas, e.g., for the
automotive industry, travel industry, chemical industry and
so on, see http://xml.coverpages.org/xmlApplications.html.
We expect that in the near future abstract definitions of such
business process will be given in BPEL or similar service
orchestration languages.

A snippet of a simple hypothetical business process for
reserving a trip in the e-travel domain is given in Fig. 1.
From a planning perspective process described in Fig. 1
comprises planning domains and is modeled as a state tran-
sition diagram, that is, every node represents a state in which
the process can be, while labeled arcs indicate how the pro-
cess changes state. Actors involved in the process are shown
at the top of the diagram. The actors include the user, a travel

1 2

43

5 6

7 8 9

10 11

goal

XSRL

re
vi

si
on

 is
 re

qu
ire

d

a1:getHotelPrice()

a2:pricea3:bad price

a4:reserveHotel()

a5:reserved

a6:getTrainPrice()

a7:getFlightPrice()

a8:price

a9:bookFlight()

a10:price

a11:bookTrain()

a14:booked

a12,a13:bad price

AGENCY
a5:fault:no room

TRAVEL AIR
SERVICE SERVICE

TRAIN
AGENCY

PAYMENTHOTEL
SERVICEUSER

makePayment()payForHotel()

a15:ask confirmation

a16:confirmed

13

12

14

15

a17:acceptFlight()
a19:price

16
a18:rejectFlight()

a20:rejected

makePayment()

makePayment()

rejectPayment()

payed

payed

payed

failed

failed

failed

paymentRejected
payment cancelled

successful payment

final

17

16

18

a19:noTrain

a14:noFlight

Fig. 1 An e-travel business domain

agency, a hotel service, an air service, a train service and a
payment service.

The process is initiated by the user contacting a travel
agency, hence, (1) is the initial state. The state is changed
to (2) by requesting a quote from an hotel (action a1). The
dashed arcs represent web service responses, in particular
arc a2 brings the system in the state (3). The execution con-
tinues along these lines by traversing the paths in the state
transition diagram until state (14) is reached. In this state a
confirmation of a hotel and of a flight or train is given by the
travel agency and the user is prompted for acceptance of the
travel package (13).

The state transition diagram is non-deterministic. This is
illustrated, for instance, in state (4). In this state the user has
accepted the hotel room price but is faced with two possi-
ble outcomes, one that a room is not available (where the

238 A. Lazovik et al.

system transits back to state (1)) and the other where a room
reservation is made (state (5)).

The lower part of the business process models the pay-
ment of the travel package.

4 The XSRL framework

Two types of uncertainty for transitions between business
process states may arise: nondeterministic failures and un-
known outcomes from actions. Nondeterministic failure oc-
curs when an action has several possible outcomes which
are not known before invocation. The list of possible out-
comes is known a priori and thus modeled in the domain.
There exists several techniques that deal with this kind of
nondeterminism [8, 20, 22]. The second type of uncertainty
requires additional processing before application of the plan-
ning techniques. Unknown outcomes of action invocations
can be properly handled only at run-time, therefore planning
must be interleaved with execution. In a framework based
on the interleaving of planning and execution, information
on the outcome of action invocation is gathered at run-time
and used to replan consistently with the original goal. This
idea leads to a planning framework that is based on the no-
tion of interleaving planning and execution.

We propose a planning architecture which works in the
following way. The framework receives a request from the
user and tries to fulfill it against a standard business process,
assuming that it is syntactically correct. The standard busi-
ness process can be specified in the abstract in BPEL and we
assume that is represented graphically by a state transition
diagram as the one given in Fig. 1. The framework returns a
failure if the request cannot be satisfied in the given business
process under the current run-time circumstances, e.g., ticket
dates or hotel prices are not available. During execution the
system interacts with the service registry to find suitable ser-
vice providers, in a web service enabled marketplace, and
with the user to ask confirmation or request additional infor-
mation, if necessary.

The planning framework, shown in Fig. 2, comprises
four interacting components: monitor, planner, executor, and
run-time support environment. Figure 2 illustrates the user
issuing a request to the system expressed against a business
process (domain). The monitor manages the overall process
of the interleaved planning and execution. First, it requests
the planner to construct a plan. Subsequently, the planner ei-
ther produces a plan or returns a failure (if the request is not
satisfiable in the given domain). The executor processes the
plan provided by the planner by invoking the correspond-
ing web services. It is also responsible for finding a set of
web service providers for a particular service in the UDDI
registry. The executor may contact the user for confirmation
if user interaction is specified in the business process. The
executor does not always execute an entire plan. It rather ex-
ecutes it in steps. It may gather new information, e.g., hotel
rates, from the environment (UDDI) and inform the moni-
tor, which in turn may request a new plan to be generated

UDDI IMPLEMENTATIONS
WEB SERVICES

MONITOR
Goal (XSRL)

Business domain (BPEL4WS-like language)

PLANNER

Produce plan

User interaction

Collect new informationRetrieve providers

Update domain, goal, current state

Invoke WS

Request execution

Request plan

EXECUTOR

Fig. 2 High-level XSRL architecture

in the light of the information obtained. The executor up-
dates the monitor regarding the status of the execution when
re-planning is potentially needed or when it terminates the
execution of a plan.

4.1 Planning domain

To perform automatic planning and execution, it is necessary
to formally define the domain under which the system acts.
Although such a formalization can potentially be extracted
from a BPEL definition, BPEL cannot be used directly as,
among other things, it lacks formal semantics. Thus, we use
a formal extension of BPEL based on a state-transition sys-
tem enriched with web service domain operators and con-
structs. One may think of extrapolating a state representation
from a BPEL specification.

State-transition systems are the basis of most AI plan-
ning systems and form the core of our formalization. In
particular, we use a representation able to represent non-
determinism and the potential absence of information of the
environment (incomplete information).

Definition 1 (Planning domain) A non-deterministic web
services planning domain is a tuple D = 〈S, V ar, Act, R,
P, Out, T r, RoleAct , RoleP 〉, where:

– S is the set of states in which the business process can
be.

– Var is the space of variables. It is the Cartesian product
of any number of arbitrary domains such as the integers,
the real numbers and boolean values. Further, we define
the first k elements of the variable space as knowledge
variables.

– Act is the set of actions that can be performed in the
transition system.

– R is a set of service roles associated with actions.
– P is a set of service providers identified by their URI.
– Out is a set of output types representing the possible

response message types from services.

Planning and monitoring the execution of web service requests 239

– T r : S × Act × Out → S is the transition function.
The generic element of this relation Tr(si , a, oa) = s j
represents the transition from state si to state s j by means
of action a with output type oa . An action a is called
deterministic in a state s if ∃s′ ∀o ∈ Out Tr(s, a, o) =
s′. It is non-deterministic otherwise.

– RoleAct : Act → R is the role association function
which relates actions to service roles.

– RoleP : R → 2P is the role assignment function that
associates every provider to a role in the process.

To assign meaning to the elements of the transition rela-
tion we use semantic rules. A semantic rule is an arbitrary
function f : Act × V ar × Out → V ar . Finally, we say
that an action a ∈ Act is knowledge gathering (or a sensing)
action if it affects at least one knowledge variable. Formally,
knowledge variables are associated with actions and output
types as follows ∀o ∈ Out (∃i ≤ k : f (a, v, o)i
= vi)
where f ()i represents the restriction of the function i to the
i th element and the first k elements of v ∈ V ar are knowl-
edge variables.

We have no restrictions on what this function can be and
what is the semantics of the returned values, and it is up to
the business process and domain designers to define these
rules.

The concept behind the presented formalization of the
planning domain is that a given business process is, at any
instant, in a state from which a number of actions can be
performed to move to a new state. Roles, which represent
service interfaces, are associated to actions and implemented
by service providers.

4.2 A domain instance

To provide more intuition for the planning domain just pre-
sented, we formalize the upper half of the travel business
process in Fig. 1 in accordance with Definition 1. In fact,
Definition 1 has a number of additional features with respect
to the figure. In particular, in the figure the set of variables,
the set of service providers, the role assignment function and
the semantic rules are not represented.

There are 14 states S = {1, 2, . . . , 14} in the upper half
of the figure. The set of variables is Var = {hotelReserved,
hotelPrice, location, trainBooked, trainPrice, flightBooked,
flightPrice, confirmed, money}, among which one distin-
guishes the boolean variables (hotelReserved, trainBooked,
flightBooked, confirmed) from the real variables (hotelPrice,
trainPrice, flightPrice, money) and a variable representing
location names (location). In the set of variables a subset is
defined to be of knowledge variables. In the example, we de-
fine hotelPrice, trainPrice, flightPrice to be knowledge vari-
ables. There are also 19 actions that can be performed in the
domain Act = {a1, . . . , a19}.

Four roles are involved in the process R = {hotel, air,
travel-agency, train} and the RoleAct relation associates to
each of them the following actions: hotel has {a1, a2,
a4, a5}, travel-agency has {a3, a12, a13, a15, a16, a17}, air

has {a7, a8, a9, a14, a18, a20}, and train has the set of ac-
tions {a6, a10, a11, a19} associated. The set of actual ser-
vice providers for this services obtained by contacting
the UDDI could be Hilton and BestWestern for the hotel
role, BritishArways, Virgin for air role, ClubMed for the
travel agency and TrenItalia for the train role. The set
of output messages is Out = {normal, NoRoomFault,
NoSeatOnFlight, NoSeatOnTrain}.

Finally, the transition function is given by the set of la-
beled arcs in the figure, for example, Tr(4, a5, normal) = 5,
Tr(4, a5, NoRoom Fault) = 1 represent that the action a5
with a normal output brings the system into state 5, while
the state 1 is reached with the NoRoom Fault message. Se-
mantic rules are associated with all actions. The rules for
actions Act :

– a2, normal: hotelPrice = result
– a3, normal: hotelPrice = 0
– a5, normal: money+ = hotelPrice;

hotelReserved = true
– a5, NoRoomFault: hotelPrice = 0
– a8, normal: flightPrice = result
– a10, normal: trainPrice = result
– a12, normal: trainPrice = 0
– a13, normal: flightPrice = 0
– a14, normal: money+ = flightPrice;

flightBooked = true
– a16, normal: confirmed = true
– a19, normal: money+ = trainPrice;

trainBooked = true
– a20, normal: money− = flightPrice;

flightBooked = false

For instance, the semantic rule for action a5 with a normal
output message increments the value of the money vari-
able with the price of the reserved hotel and sets the
hotel Reserved variable to true. While the same action with
an NoRoom Fault output message yields the resetting of
hotel price to zero.

The domain could easily be enriched with further de-
tails. For example, one might consider reservation dates,
flight numbers and so on. To take this into account one
only needs to define additional variables that store this in-
formation and enrich the semantic rules attached to the
actions in order to update these variables during execu-
tion. This is not illustrated in this paper for paucity of
space.

4.3 XSRL

To express requests for composition of web services we pro-
pose the language XSRL (Xml Service Request Language)
[2, 19]. We also provide an extension of XSRL to deal with
the interleaving of planning and execution. The improved
XSRL syntax is defined as follows:

xsrl <- ’<XSRL>’ goal ’</XSRL>’
goal <- achieve-all | proposition | then |

240 A. Lazovik et al.

vital | prefer | optional | atomic |
vital-maint | optional-maint

achieve-all <-
’<ACHIEVE-ALL>’ +goal ’</ACHIEVE-ALL>’

then <-
’<BEFORE>’ goal ’</BEFORE>’
’<THEN>’ goal ’</THEN>

prefer <-
’<PREFER>’ goal ’</PREFER>’
’<TO>’ goal ’</TO>’

vital <-
’<VITAL>’ proposition ’</VITAL>’

optional <-
’<OPTIONAL>’ proposition ’</OPTIONAL>’

atomic <-
’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint <-
’<VITAL-MAINT>’ proposition

’</VITAL-MAINT>’
optional-maint <-

’<OPTIONAL-MAINT>’
proposition

’</OPTIONAL-MAINT>’
proposition <- ’<CONST ATT="true|false">’

| var |
’<AND>’ +proposition

’</AND>’ |
’<OR>’ +proposition

’</OR>’ |
’<NOT>’ proposition

’</NOT>’ |
’<GREATER>’ var ’</GREATER>’

’<THAN>’ rval ’</THAN>’ |
’<LESS>’ var ’</LESS>’

’<THAN>’ rval ’</THAN>’ |
’<EQUAL>’ var rval ’</EQUAL>’

var <- a..zA..Z[rval]
rval <- +a..zA..Z0..9.

The atomic objects of the language are propositions,
that is, boolean combination of linear inequalities and
boolean propositions. These can be either true or not
in any given state. Propositions are further combined
by sequencing operators to form goals. The sequencing
operators are: achieve-all, then, prefer. <ACHIEVE-ALL>
+goal </ACHIEVE-ALL> succeeds when all subgoals
defined inside the tag <ACHIEVE-ALL> are satisfied, it
fails otherwise. <BEFORE> goal1 </BEFORE><THEN>
goal2 </THEN> is satisfied, if goal1 is satisfied and,
starting from the state where goal1 is satisfied, goal2
is also satisfied, it fails otherwise. <PREFER> goal1
</PREFER><TO> goal2 </TO> succeeds if goal1
is satisfiable, if not then it succeeds if goal2 is satisfi-
able, it fails if both goal1 and goal2 are unsatisfiable.
<ACHIEVE-ALL> provides a way of collecting goals that
have all to be satisfied, the operator <THEN> is a way of
sequencing goals, while <PREFER> enables the user to
express user preferences over goals. Note that by nesting
preference statements, one may give a total order over any
number of sub-goals.

A number of operators take propositions as argu-
ments. These are used to express ‘how’ to satisfy the
propositions. <VITAL> proposition </VITAL> is
satisfied if there exists a state satisfying proposition

which is reachable from any future state, it fails otherwise.
<OPTIONAL>proposition </OPTIONAL> is always
satisfied as a goal. Its meaning is that, if there exists a
reachable state satisfying proposition, then this state
must be reached, otherwise the goal is ignored. <ATOMIC>
proposition </ATOMIC> means that proposition
have to be reached from the current state despite non-deter-
minism of the domain. If there is no such path to a satis-
faction state, it fails. Note the requirements of this operator
are stronger than the <VITAL> operator. The <VITAL>
operator does not guarantee satisfaction of the goal if
the execution of the plan is always non-deterministically
taking the ‘wrong’ path, this means that non-deterministic
action executions always bring the system in a state dif-
ferent from the one in which the final goal is achieved.
<VITAL-MAINT>proposition </VITAL-MAINT>
is satisfied if for all states in the execution path proposi-
tion is true. If there is a state in which proposition is
not true, then it fails. <OPTIONAL-MAINT> is analogous
to the previous one, but as a goal it does not fail if such a
path does not exist.

In Sect. 3 we have presented an e-Travel domain and
the desire of a user wanting to go to Paris for a one night
trip. Let us show how this request is expressed in XSRL.
Omitting XML tags, the request in XSRL is:

achieve-all
before

achieve-all
prefer vital-maint hotelPrice < 100 to

vital-maint hotelPrice < 200
optional-maint ¬ trainBooked
vital confirmed ∧

location = ‘‘ Paris” ∧
hotelReserved

then
atomic final

vital-maint price < 300

High-level achieve-all expression defines that both its
sub-goals (before − then and vital-maint price < 300)
have to be achieved. before − then declares that the user
first want to: (i) reserve a hotel in Paris; (ii) have a hotel price
of 100 preferred to 200; (iii) avoid train if possible. Then,
atomic final requires that the final state of the process has to
be reached in any case. In all process states price has to be
less than 300 that is defined by vital-maint price < 300.

4.3.1 Formal semantics of XSRL

To provide the formal semantics of XSRL, we adapt the def-
initions of plan and of execution structure from [11]. We
additionally define the notion of booleanization. A plan is
defined as a sequence of actions executed in given context.

Definition 2 (Plan) A plan for a domain D is a tuple π =
〈C, c0, action, ctxt〉 where

Planning and monitoring the execution of web service requests 241

– C is a set of contexts,
– c0 ∈ C is the initial context,
– action : S × C → Act is the action function,
– ctxt : S × C × S → C is the context function

XSRL in addition to dealing with boolean variables used
in typical goal languages, such as the one proposed in [20],
deals with variables that range over domains such as reals,
integers, and so on. To allow for this we introduce the notion
of ‘booleanization’. The idea behind booleanization is that
constraints expressed in the goal over domains ranging over
variables are treated as boolean propositions. For example,
consider the expression money < 100 with an integer vari-
able money. After booleanization this becomes a boolean
proposition that can be either true or false.

Definition 3 (Booleanization) The booleanization of a do-
main D with respect to a goal g is a tuple B D =
〈S ′, Prop, Act, R, P, Out, T r ′, RoleAct , RoleP 〉 derived
from the original domain D in the following way. The set
of variables V ar is replaced by the set of boolean proposi-
tion Prop according to the following rules:

– all boolean variables in V ar are also in P ,
– all linear constraints appearing in g are added as boolean

propositions in P ,
– all variables in V ar that do not appear in g are omitted

in P .

The set of states and transition function are changed to
fit the earlier introduction of boolean propositions.

An execution structure of a plan over a booleanized do-
main for a given goal, represents the possible ways a plan
can be executed and it is essential to determine the reacha-
bility of a given goal from a particular state.

Definition 4 (Execution Structure) The execution structure
of plan π in the booleanization of domain D with respect to
goal g from state s0 is the structure K = 〈S, R, L〉, where

– S = {(s, c) : action(s, c) is defined} is the set of states
of the execution structure,

– R = {((s, c), (s′, c′)) : if ∃(s, c) → (s′, c′) and
ctxt (s, c, s′) = c′} is the relation

– L(s, c) = {b ∈ P},
The execution structure of a plan in a domain represents

how the domain is traversed by the plan. Before defining
the notion of goal satisfaction, we need to introduce a few
elements of notation. We use the symbol σ to denote finite
paths. S denotes the set of all states in the execution structure
K . Given a set � of finite paths, the set of minimal paths in
� is defined as min{�} = {σ ∈ � : ∀σ ′ < σ �: σ ′
∈ �}.
Given a goal g, Sg(s) represents the the set of finite paths
that lead to the satisfaction of goal g from state s, while
Fg(s) represents the set of finite paths that lead to a failure.
A state s′ is said to be reachable from the state s if there ex-
ists a path starting from s and leading to s′. A plan is denoted
by π .

The notion of goal satisfaction K , s |� g is defined in
terms of the set of failure states for the goal g on the exe-
cution structure K derived from a booleanized domain with
starting state s as follows

K , s |� g iff Fg(s) = ∅
The set of failure states Fg(s) for a goal g from a state s is
defined inductively in the following way:

p
S(s) = {(s)}, F(s) = ∅, that is, p ∈ L(s) for all
proposition letters p of the booleanized domain, other-
wise S(s) = ∅, F(s) = {(s)}

¬p, p1 ∧ p2, p1 ∨ p1
not p, p1 and p1, p1 or p1

achieve-all g1 . . . gn
S(s) = min{σ : ∃σ1 ≤ σ σ1 ∈ Sg1(s) ∧ . . . ∧ ∃σn ≤
σ σn ∈ Sgn (s)}
F(s) = min{Fg1(s) ∪ . . . ∪ Fgn (s)}

before g1 then g2
S(s) = {σ1; σ2 : σ1 ∈ Sg1(s) ∧ σ2 ∈ Sg2(last (σ1))}
F(s) = {σ1 : σ1 ∈ Fg1(s)}∪{σ1; σ2 : σ1 ∈ Sg1(s)∧σ2 ∈
Fg2(last (σ1))}

prefer g1 to g2
S(s) = {σ1 : σ1 ∈ Sg1(s)}∪{σ1; σ2 : σ1 ∈ Fg1(s)∧σ2 ∈
Sg2(last (σ1))}
F(s) = {σ1; σ2 : σ1 ∈ Fg1(s) ∧ σ2 ∈ Fg2(last (σ1))}

atomic p
if there is some infinite path ρ such that ∀s′ ∈ ρ s′
|� p
then
S(s) = ∅, F(s) = {s}, otherwise:
S(s) = min{σ : f irst (σ) = s∧last (σ) |� p}, F(s) =
∅

vital p
S(s) = min{σ : f irst (σ) = s ∧ last (σ) |� p}
F(s) = min{σ : f irst (σ) = s ∧ ∀s′ ∈ σ s′
|� p ∧
∀σ ′ ≥ σ last (σ ′)
|� p}

optional p
– if ∃π : π, s |� vital p, otherwise
– if ∀π ′
= π : π ′, s
|� vital p

optional-maint p
– if ∃π : π, s |� vital maint p, otherwise
– if ∀π ′
= π : π ′, s
|� vital maint p

vital-maint p
if K , s′ |� p holds for all states s′ reachable from s
then
S(s) = ∅, F(s) = ∅, otherwise S(s) = ∅, F(s) = {s}

The satisfaction of a goal is thus defined in terms of
whether a goal may fail or not during execution.

A solution to an XSRL request is defined in terms of the
plan and one of the possible plan executions. This execution
is required to satisfy all XSRL goal propositions. Formally,

Definition 5 (Solution) A solution for a domain D with re-
spect to a goal g from state s0 is the tuple 〈π, σ 〉, where:

π is a valid plan for domain D and goal g: K D,π , s0 |� g

242 A. Lazovik et al.

σ is one of the possible executions of the plan π , that sat-
isfies the goal g

A problem of interleaving planning and execution is the
finding of a solution for given domain, goal and initial state.

4.4 Interleaving planning and execution

The architecture presented in Fig. 2 divides the framework
into three main functional units: a monitor, a planner and
an executor. In this section we provide three algorithms for
each of these units.

Algorithm 1 monitor(domain d , state s, goal g)
π = plan(d, s, g)
if π = ∅ then

return success
else

if π = failure then
if chooseNewProvider(provider) then

d ′ = updateDomain(d)
return monitor (d ′, s, g′)

else
g′ = generate-rollback-goal()
monitor(d , s, g′)
return failure

end if
end if
(d ′, s′, g′) = execute(π, d, s, g)
return monitor (d ′, s′, g′)

end if

The monitor (Algorithm 1) is responsible of invoking
the planner, recovering from failure and invoking the ex-
ecution of plans. Starting with a domain, an initial state
and an XSRL goal, it invokes the planner requesting the
synthesis of a plan. Then monitor analyzes the plan. An
empty plan means that the goal has been reached and
the request has been successfully met. If the planner re-
turns failure, i.e., the goal cannot be satisfied under the
current execution context, then it attempts to change a
provider. chooseNewProvider contacts the executor
module which has a list of possible providers for services
and keeps track of which providers have been considering
during the execution of the plan. If a new provider can be as-
signed, the execution proceeds, otherwise the monitor tries
to rollback all changes to a domain and returns failure. Fi-
nally, if a non-empty plan has been produced, the plan is
passed on to the executor by invoking the execute func-
tion. This function returns an updated domain, current state
and the new XSRL goal for which one needs to continue the
monitoring.

Note that after the execution phase the original goal can
be updated. This is necessary for reachability goals only
(goals that are not part of any maintainability goal). The idea
behind is simple: if one reserves a hotel he/she does not need
to look for plans that reserves hotels in the following itera-
tions. We eliminate such subgoals when they are satisfied.

Algorithm 2 execute(plan π , domain d , state s, goal g)
repeat

a = firstAction(π)
π = π − a
if webServiceAction(a) then

role = RolAct(a)
if noProviderForRole(role) then

providersList = contactUDDI(role)
provider = chooseProvider(providersList)

else
provider = previouslyChosenProvider(role)

end if
message = invoke(a, provider)

end if
(d ′, s′, g′) = update(d, s, g, a,message)
if isKnowledgeGathering(a) ∨ goalFailed(g) then

return (d ′, s′, g′)
end if

until π = ∅
return (d ′, s′, g′)

The executor (Algorithm 2) starts from a plan, a domain,
an initial state and an XSRL goal. It iterates by attempt-
ing the execution of all the actions of the input plan. The
firstAction of the plan is stored in the variable a and
then removed from the plan. If this action requires interac-
tion with a web service, then one needs to seek for a provider
for that action. The construct role stores the role associated
with the current action. If the executor has not assigned a
provider for that role during the execution so far, then the
UDDI is contacted to ask for providers for the given role.
A provider is chosen from the list of possible providers us-
ing some heuristic function (the first provider, the one for
which there are good references, etc.). If, on the other hand,
a provider has already been assigned to a role, then we must
continue executing the following actions assigned to the role
with the same provider. Once the provider has been identi-
fied, the provider is invoked with action a and the possible
return messages are stored in the message variable. The
next step is that of updating the domain, the current state and
the goal by the effects of having executed the action. This
step is necessary as the execution of the action may have
brought the system into a new state, it may have changed
the values of some variables and it may have satisfied sub-
goals of the current goal. If the action has been a knowledge
gathering action, we have acquired new information and re-
turn the current status to the monitor in order to perform
re-planning, otherwise we reiterate the cycle by looking at
the following action of the plan.

The planner function (Algorithm 3) is very short as it re-
lies on an existing planner (MBP, [4, 11]). MBP is a model-
based planner which, given a domain description and a goal,
synthesizes a plan for the given goal or returns failure if a
plan does not exist. Since MBP deals only with domains and
goals in which the variables are boolean a preliminary step
is necessary in order to adapt MBP to our framework. This
reduction, called booleanization, takes all linear constraints
over non boolean variables and turns them into boolean
propositions which are true, false or undefined in the cur-

Planning and monitoring the execution of web service requests 243

Algorithm 3 plan(domain d , state s, goal g)
domainbool = booleanize(d)
repeat

goalbool= booleanize(g)
plan = MBPplan(domainbool,s,goalbool)
if plan != failure then

return plan
else

if there are untraversed combinations of optional goals
then modify g accordingly
else

return failure
end if

end if
until true
return failure

rent state of the domain. The same reduction is necessary
for the goal. The planner returns a sequence of actions for
‘reaching’ the booleanized goal. For brevity, we do not give
the full details of booleanization here, but simply explain the
basic concept behind it:

(i) The booleanized domain is as the original one except that
instead of the set of variables we have a set of proposition
letters specified by the rules (i) and (ii).

(ii) Non boolean linear constraints in the goal are trans-
formed into boolean propositions. Note that two distinct
propositions (e.g., price < 10 and price > 5) are intro-
duced to take into account two constraints on the same
variable.

(iii) The truth of the propositions is established recursively
by starting from the current state, looking at the current
values of the variables and moving along the actions
using semantic rules to establish the truth of proposi-
tions. In case of conflicting values for a proposition in
a state (e.g., the case of two actions with different se-
mantic rules entering in the same state), the state is di-
vided into two states and then the propagation proceeds
further from each state. If an action enters an already
visited state without proposition conflicting value then
the booleanization process is complete.

After the booleanization, the domain is passed to a
model-based planner. The planner is invoked until the plan
is found or all combinations of optional goals are attempted.
The algorithm works with optional goals in the following
way. First, it processes them as vital and, in case of fail-
ure, the planner function iterates through the optional goals,
eliminating (or reintroducing) them from a goal until it can
synthesize a plan or all combinations of optional goals have
been taken into account. For instance, for an optional goal
“booking a train, if possible”: first the planner tries to find a
plan with “booking a train” as a vital condition and then, in
case of failure, it tries to synthesize a plan without any re-
striction on trains. There is no particular rule on which goals
are eliminated first and in which order. The algorithm only
ensures to the user a complete search throughout all optional
goals combinations. This approach gives us correct but pos-
sibly non optimal solution, for instance, the algorithm may

find a solution with a hotel price equal to 200, where there
may exist hotels with prices equal to 180. This is caused
by the non optimality of solutions generated a planner such
as MBP. An optimal search would require a higher level of
complexity.

4.4.1 Algorithm correctness

Algorithms 1–3 can be shown to be sound and complete un-
der specific assumptions. In case the assumptions are not sat-
isfied, completeness may be at stake. We introduce a num-
ber of definitions necessary to prove correctness of the algo-
rithms while in the Appendix we give a proof sketch. First
we qualify some actions as being knowledge-gathering and
retractable:

Knowledge-gathering action: An action a ∈ Act is said to
be a knowledge-gathering (or a sensing) action if it af-
fects at least one knowledge variable, where knowledge
variable is a variable that can be assigned to a web ser-
vice returned message value.

Retractable action: An action a ∈ Act is said to be re-
tractable in a state s ∈ S if there exists a sequence of ac-
tions that deterministically, independently of the output of
a, brings back to the state s preserving all non-knowledge
variables values.

Next we define the notion of a successful execution of a
plan.

Definition 6 (Successful execution) Given a domain D, goal
g and an initial state s0, an execution σ for a valid plan
π is successful if it satisfies the goal g when executed:
K D,σ , s0 |� g.

Let us consider the following assumptions for the pur-
pose of considering algorithms’ correctness.

(i) All actions are retractable.
(ii) All knowledge-gathering actions always return the

same values for the same provider set and for the
same knowledge variable values. That is, an action is
knowledge-gathering only for the first invocation on a
particular provider.

(iii) An action always has the same output type after invoca-
tion for the same provider set and for the same knowl-
edge variable values. However, note that it is not known
what is the action output type before its first invocation.

(iv) If there exists a valid plan for an original domain then
it is also valid for a booleanized domain.

(v) The goal is allowed to contain only non-knowledge
variables.

(vi) All knowledge variables are allowed to be modified by
assignments of web service invocations, that is, knowl-
edge variables are prohibited to be changed by other
semantic functions.

By assumption (vi), knowledge-gathering actions are
service operations that return values known only at exe-
cution time. Therefore, replanning is requested after invo-
cation of any knowledge-gathering action and only in this

244 A. Lazovik et al.

case. With assumption (v), variables can be divided into two
classes:

– Critical variables, which can be a part of the goal and
their integrity must be preserved. The user can constraint
only critical variables.

– Knowledge-gathering variables represent the framework
knowledge about the web services environment. These
variables cannot be constrained in the goal.

We are now in the position to show that Algorithms 1–3
are sound and complete. As ususal, by soundness we mean
that an algorithm returns a solution if there exists at least
one solution. Completeness requires the algorithm to return
a failure if no solution exists. Formally:

Theorem 1 (Algorithm soundness and completeness)
Given a domain D, a goal g and an initial state s0,
under assumptions (i)–(vi) Algorithms 1–3 are sound and
complete, that is:

1. if there exists a non-empty set of solutions �, s.t.
∀ 〈π, σ 〉 ∈ � : K D,π , s0 |� g and K D,σ , s0 |� g then
plan π of one of the solutions 〈π, σ 〉 is found and its
successful execution σ is executed by Algorithms 1–3.

2. if the set of solutions is empty � = ∅ then Algorithm 1
returns failure

The proof of Theorem 1 is shown in Appendix.
The proof of Theorem 1 builds on assumptions (i)–(iv).

Let us now consider the importance of these assumptions
in the proof of the theorem. If assumption (i) does not hold
true then two possible problems arise. First, the algorithms
may not find a solution even if it exists, because incom-
plete information about environment execution of some non-
retractable action can lead to a state from which there is no
plan which satisfies a goal. For instance, someone has a goal
to go to the seaside spending less than 200 euros. If he re-
serves an expensive flight, say, spending 190 euros, she/he
will probably not find a hotel with the rest of her/his money.
If the reservation of the flight is retractable, then he can
choose a cheaper flight leaving enough money for a hotel.
On the other hand, if the flight reservation is non-retractable
then he cannot cancel her/his booking. Therefore, the over-
all goal fails even if there was a solution. Second, algorithm
does not ensure the satisfaction of the domain integrity prop-
erty. The reason is that it depends on satisfaction of a roll-
back goal, that is possible only if all already invoked actions
are retractable. Assumptions (ii) and (iii) are used for prov-
ing lemmas. They are necessary to ensure termination, that
is, the number of the mutual calls between Algorithms 1–3
must be finite. From assumption (ii) and (iii) it also follows
that if the plan is executed in the same context, the result is
the same for all executions. Assumption (iv) ensures that the
booleanization process preserves the validity of a plan if it
is valid for an original domain. The booleanization process,
defined in Sect. 4.4, booleanizes the domain and a goal. By
assumption (iv) we state that synthesis of a plan is invariant
over these changes. Assumptions (v) and (vi) are introduced

for simplification of definitions of knowledge-gathering ac-
tions that are restricted only to service invocations and the
domain integrity property.

Let us now formulate the integrity property of the pro-
vided algorithms: if Algorithm 1 fails to find a solution then
critical variables must remain unchanged.

Corollary 1 (Domain integrity) Given a domain D, a goal
g and an initial state s0, under assumptions (i)–(vi) domain
integrity is preserved by Algorithms 1–3, that is, if the Algo-
rithm 1 returns failure then critical variables are unchanged.

For proof of Corollary 1, see Appendix.
The integrity property ensures the satisfaction of the “all-

or-nothing” principle. The domain is changed only in case of
successful execution and is restored to its initial state if the
goal cannot be satisfied. For instance, if the user asks for a
hotel then money are spent if and only if the hotel is booked,
and no money is taken from the user in case the reservation
process fails.

5 Executing a sample XSRL request

In Sect. 3 we have presented an e-Travel domain and the
desire of a user wanting to go to Paris for a one night trip.
Let us first express such request in XSRL and then show how
such request is executed by our framework on the domain in
Fig. 1. Omitting XML tags, the request in XSRL is:

achieve-all
before

achieve-all
prefer vital-maint hotelPrice < 100 to

vital-maint hotelPrice < 200
optional-maint ¬ trainBooked
vital confirmed ∧

location = ‘‘ Paris” ∧
hotelReserved

then
atomic final

vital-maint price < 300

This XSRL request is executed as follows: Algorithm 1
is invoked on the domain d (Sect. 4.2) with initial state
s = 1 and the defined goal g. The first step is to invoke
Algorithm 3 with (d, s, g). As there exists a plan for the
booleanized version of (d, s, g) the planner returns a plan
π with initial actions a1, a2, a4. Subsequently, the execute
function (Algorithm 2) is invoked on (π, d, s, g). The first
action is a1=getHotelPrice. The role associated with
the action a1 is ‘hotel service’. Since this is the first action
for this role, UDDI will be contacted to get a list of providers
associated with this role. Suppose, to get a list with two
providers: ‘Hilton’ and ‘BestWestern’ and further that the
first one is chosen. Subsequently, the service is invoked. The
update of the domain moves the current state to 2. Since a1
is not a knowledge gathering action, execution of the plan

Planning and monitoring the execution of web service requests 245

continues. Following this, the execution proceeds by consid-
ering the role of a2 = price which is again ‘hotel service’.
Note that this action modifies the knowledge variable price
as the interaction with the hotel provider will return a price
value. Since we have already chosen the provider ‘Hilton’
for the hotel service role, we continue with it and store in
message the price of, say, 150 euros. Next, the domain,
goal and current state are updated accordingly. In particu-
lar, the new current state is 3 and the goal is unchanged.
Since the action is a knowledge gathering one, the executor
returns the control to the monitor specifying the updated do-
main, current state, and goal. The monitor function invokes
the planner on the state 3. Again a plan exists because, even
if the cost of the hotel is more than the 100 preferred value it
is still less than 200 euros. The initial sequence of actions of
the new plan is now a4, a5, (a7 or a1). Interleaving of plan-
ning and execution proceeds analogously as in the previous
points by executing the action a4 = reserveHotel.

The next action a5 in the plan is non-deterministic, i.e.,
both states 1 and 5 could be reached. Let us assume that
we have received a confirmation message from the provider
‘Hilton’. The current state is therefore 5. The following ac-
tions request a flight price and reserve a seat in an anal-
ogous manner assuming that the cheapest flight provider
‘Virgin’ is chosen with a ticket price of, say, 200 euros.
The choice of ‘Virgin’ is achieved if the heuristic behind
the chooseProvider function in Algorithm 2 orders the
providers by offered prices. The planner will produce a new
plan whose next action is a6 = getTrainPrice since the
flight action will be retracted as the vital-maint goal of
spending less than 300 euros is violated. Suppose that the
price returned by a train provider is of 140 euros. The exe-
cution of the plan proceeds smoothly until we reach state 14.
The following action is asking the user for confirmation be-
fore payment. If it is accepted, the new state is 15 and the
goal is updated by considering the subgoal after the then
statement. The last subgoal of atomic final is achieved
as the final state 18 is always reachable from the current
state 15.

6 Conclusions

AI planning provides a sound framework for developing a
web services request language and for synthesizing plans
for it. Based on this premise we have developed a frame-
work for planning and monitoring the execution of web ser-
vice requests against standardized business processes. The
requests are expressed in the XSRL language and are pro-
cessed by a framework which interleaves planning and ex-
ecution in order to dynamically adapt to the opportunities
offered by available web services and to the preferences of
users. The request language results in the generation of exe-
cutable plans describing both the sequence of plan actions to
be undertaken in order to satisfy a request and the necessary
information essential to develop each planned action.

We have defined the full semantics of XSRL in terms of
execution structures and we have provided algorithms that
satisfy XSRL requests based on UDDI supplied information
and information gathered from web service interactions.

Services that XSRL combines in its answer may have
conflicting business rules or policies attached to them. The
issue of how constraints extracted from different business
goals are taken into account in the proposed framework is
examined in [15].

An issue for future investigation is the interaction of the
system with UDDI registries. In particular, UDDI could be
enhanced by providing better support for provider selection,
e.g., based on service quality characteristics. This has an
impact, among other things, on the choose-Provider
function. From the point of view of planning, there are sev-
eral aspects that need to be addressed. For example, the cur-
rent version of the planner does not keep track of previous
computations or “remember” history and patterns of interac-
tions.

Appendix

This section contains a proof sketch for Theorem 1 in Sect, 4.4. To
prove Theorem 1 we first need to prove the two following properties
about plan executions.

Lemma 1 (Repeatable executions) Given a domain D, goal g and
an initial state s0, if the assumptions (ii) and (iii) are satisfied, then the
execution σ for a plan π is repeatable, that is, the execution σ of the
plan π is invariant with respect of the number of times the plan π is
executed.

Proof (Repeatable executions) An execution of a plan depends on
an environment. More precisely, it depends on the knowledge vari-
ables and on actions output types. From assumption (ii) it follows that
knowledge-gathering actions return the same values when invoked in
the same context. Thus, the environment for all plan executions is the
same. By assumption (iii) for the same knowledge variables values, ac-
tions have a deterministic outcome. It follows that all executions of a
plan in the same context are the same. ��
Lemma 2 (Infinite executions) Given a domain D, goal g and an
initial state s0, if the assumptions (ii) and (iii) are satisfied, then
the infinite execution σ for a plan π is always successful, that is,
K D,π , s0 |� g.

Proof (Infinite executions) A plan consists of a finite number of states,
contexts and transitions between them, but it can imply executions that
have infinitely many action invocations. When a plan is executed, Al-
gorithm 2 checks if the goal fails after every action. Thus, infinite exe-
cution is possible only when the goal is satisfied after each action, that
is, if K D,π , s0 |� g. ��
Proof of Theorem 1 (Algorithm completeness) The proof is split into
two parts. First, we prove that if at least one solution 〈π, σ 〉 exists then
Algorithm 1 finds a plan π and successfully executes its execution σ .
Secondly, the completeness property is proved: Algorithm 1 returns a
failure if there is no solution for the given input.

Soundness. From [11] it follows that the planner for extended
goals based on model checking always synthesizes a valid plan if
at least one exists, and returns failure otherwise. A valid plan is the
plan that for a given booleanized domain Dbool satisfies the goal g:
K Dbool,π , s0 |� g. From assumption (iv) it follows that if a valid plan
exists for domain D then it also exists for a booleanized one, and, there-
fore, the model-based planner finds it.

246 A. Lazovik et al.

Let us assume that solution 〈π, σ 〉 exists such that K D,π , s0 |�
g and K D,σ , s0 |� g. From assumption (i) it follows that all actions
are retractable. Therefore we can always return to an initial state with
the same critical variables values. Thus, without loss of generality, we
can assume that at the beginning of every iteration the corresponding
compensated actions are executed to return the domain to its initial
state.

Let us define the algorithm iteration as a pair of planner–executor
invocation in Algorithm 1. As it follows from the theorem assump-
tions (ii) and (iii) the number of algorithm iterations is finite. There-
fore, either an executor is stuck in an infinite execution or the planner
is invoked for all possible combinations of providers. From Lemma 2
it follows that if an executor processes the infinite execution then the
execution satisfies the goal. On the other hand, if the planner is invoked
for all possible combinations of providers, it should, finally, synthesize
a plan yielding a solution. From Lemma 1 it follows that each plan π
has a repeatable execution σ , and, therefore a synthesis of solution plan
π implies that executor processes the execution σ from a solution pair
〈π, σ 〉.

Completeness. It is obvious that if the plan π is synthesized and
its execution successfully completed, they form a solution. As follows
from Lemma 2 infinite executions are always successful. Therefore,
by definition of a solution, a pair 〈π, σ 〉 is a solution. We have already
shown that the number of iterations is finite, therefore, if there is no
solution for the problem then Algorithm 1 returns failure in a finite
number of steps. ��

Finally, we consider the domain integrity property.

Proof of Corollary 1 (Domain integrity) We have already shown that
Algorithm 1 returns failure if there is no solution. Before returning
a failure, the rollback plan is synthesized and executed. It is always
successful according to assumption (i), and, therefore, the algorithm
preserves domain integrity. ��

References

1. Simple Object Access Protocol 1.1: http://www.w3.org/
TR/soap (2000)

2. Aiello, M., Papazoglou, M., Yang, J., Carman, M., Pistore, M.,
Serafini, L., Traverso, P.: A request language for web-services
based on planning and constraint satisfaction. In: Proceedings of
the VLDB Workshop on Technologies for E-Services (TES02).
Lecture Notes in Computer Sciences, pp. 76–85. Springer (2002)

3. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Rea-
soning about Actions for e-Service Composition. In: Proceedings
of ICAPS’03 Workshop on Planning for Web Services (2003)

4. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: MBP:
a model based planner. In: Proceedings of the IJCAI’01 Work-
shop on Planning under Uncertainty and Incomplete Information
(2001)

5. Bertoli, P., Cimatti, A., Traverso, P.: Interleaving execution and
planning via symbolic model checking. In: Proceedings of the
ICAPS’03 Workshop on Planning under Uncertainty and Incom-
plete Information (2003)

6. BPEL: Business Process Execution Language for Web Ser-
vices, http://www-106.ibm.com/developerworks/
library/ws-bpel/ (2002)

7. Casati, F., Sayal, M., Shan, M.-C.: Developing e-services for com-
posing e-services. In: Dittrich, K.R., Geppert, A., Norrie, M.C.
(eds.) Proceedings of the 13th International Conference on Ad-
vanced Information Systems Engineering (CAiSE), Lecture Notes
in Computer Science 2068, pp. 171–186. Springer-Verlag (2001)

8. Cassandra, A., Kaebling, L., Littman, M.: Acting optimally in
partially observable stochastic domains. In: Proceedings of the
AAAI-94, pp. 1023–1028. AAAI Press (1994)

9. Chen, L., Shadbolt, N.R., Goble, C., Tao, F., Cox, S.J., Puleston,
C., Smart, P.: Towards a knowledge-based approach to semantic
service composition. In: Goos, G., Hartmanis, J., van Leeuwen,
J. (eds.) Proceedings of the 2nd International Semantic Web Con-
ference (ISWC2003). Lecture Notes in Computer Sciences 2870,
pp. 319–334. Springer-Verlag (2003)

10. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The
next step in web services. Commun. ACM 46(10), 29–34 (2003)

11. Dal Lago, U., Pistore, M., Traverso, P.: Planning with a language
for extended goals. In: Proceedings of the 18th National Con-
ference of Artificial Intelligence (AAAI-02), pp. 447–454. AAAI
Press (2002)

12. Knoblock, C.A., Minton, S., Ambite, J.L., Muslea, M., Oh, J.,
Frank, M.: Mixed-initiative, multi-source information assistants.
In: Proceedings of the World Wide Web Conference, pp. 697–707.
ACM Press (2001)

13. Web Service Choreography Description Language: http://
www.w3.org/TR/2004/WD-ws-cdl-10-20040427 (2004)

14. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and moni-
toring the execution of web service requests. In: Orlowska, M.,
Weerawarana, S., Papazoglou, M. (eds.), Proceedings of the Con-
ference on Service-Oriented Computing (ICSOC-03). Lecture
Notes in Computer Sciences 2910, pp. 335–350. Springer, Berlin
Heidelberg New York (2003)

15. Lazovik, A., Aiello, M., Papazoglou, M.: Associating assertions
with business processes and monitoring their execution. In: Aiello,
M., Aoyama, M., Curbera, F., Papazoglou, M. (eds.): Proceedings
of the Conference on Service-Oriented Computing (ICSOC-04),
pp. 94–104. ACM Press (2004)

16. McDermott, D.: Estimated-regression planning for interactions
with Web Services. In: Ghallab, M., Hertzberg, J., Traverso, P.
(eds.) Proceedings of the 6th International Conference on AI Plan-
ning and Scheduling. AAAI Press (2002)

17. McIlraith, S., Son, T.C.: Adapting Golog for composition of se-
mantic web-services. In: Fensel, D., Giunchiglia, F., McGuinness,
D., Williams, M. (eds.) Proceedings of the Conference on Princi-
ples of Knowledge Representation (KR) (2002)

18. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic
matching of web services capabilities. In: Horrocks, I., Hendler,
J. (eds.) International Semantic Web Conference (ISWC2002).
Lecture Notes in Computer Science 2342, pp 333–347. Springer-
Verlag (2002)

19. Papazoglou, M., Aiello, M., Pistore, M., Yang, J.: Planning for
requests against web services. IEEE Data Eng. Bull. 25(4), 41–46
(2002)

20. Pistore, M., Traverso, P.: Planning as model checking for extended
goals in non-deterministic domains. In: Proceedings of the 7th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-01)
(2001)

21. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.:
Planning and Monitoring Web Service Composition. In: Proceed-
ings of the ICAPS’04 Workshop on Planning and Scheduling for
Web and Grid Services (2004)

22. Rintanen, J., Constructing conditional plans by a theorem-prover.
J. Artif. Intell. Res. 10, 323–352 (1999)

23. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of
web services using semantic descriptions. In: Proceedings of the
Web Services: Modeling, Architecture and Infrastructure Work-
shop in ICEIS 2003 (2003)

24. Srivastava, B., Koehler, J.: Web service composition—current so-
lutions and open problems. In: Proceedings of the ICAPS’03
Workshop on Planning for Web Services (2003)

25. UDDI: Universal Description, Discovery, and Integration.
http://www.uddi.org (2002)

26. van der Aalst, W., van Hee, K.: Workflow Management: Models,
Methods, and Systems. The MIT Press (2002)

27. WSDL: Web Services Description Language 1.1. http://
www.w3.org/TR/wsdl (March 2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

